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1 Problem 2.7

Solution sketch: Obtain the Lagrangian, find EQM, solve in terms of general initial conditions x(0) = x0 and
ẋ(0) = v0, then solve parts (a) and (b) using this general solution.
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This is one degree of freedom system. Using x as the generalized coordinates, we first obtain the Lagrangian L

L = T −U

Where

T =
1
2

mẋ2

U =
1
2

kx2

L =
1
2

mẋ2− 1
2

kx2

∂L
∂ ẋ

= mẋ

d
dt

∂L
∂ ẋ

= mẍ

∂L
∂x

=−kx

Hence the EQM is (using the Lagrangian equation), and F = 10 and ω = 10 rad/sec. (the forcing frequency)

d
dt

∂L
∂ ẋ
− ∂L

∂x
= F sinωt

mẍ+ kx = F sinωt

ẍ+
k
m

x =
F
m

sinωt

ẍ+ω
2
n x =

F
m

sinωt (1)

Where ω2
n = k

m . The solution is
x(t) = xh (t)+ xp (t) (2)

To obtain xht (t)
ẍh (t)+ω

2
n xh (t) = 0

Assume xh (t) = eλ t and substitute in the above ODE we obtain the characteristic equation

λ
2 +ω

2
n = 0

λ =± jωn

Hence
xh (t) = Acosωnt +Bsinωnt (3)

Guess

xp (t) = c1 cosωt + c2 sinωt

ẋp (t) =−ωc1 sinωt +ωc2 cosωt

ẍp (t) =−ω
2c1 cosωt−ω

2c2 sinωt

Notice, the above guess is valid only under the condition that ω 6= ωn which is the case in this problem. Now,

substitute the above 3 equations into (1) we obtain(
−ω

2c1 cosωt−ω
2c2 sinωt

)
+ω

2
n (c1 cosωt + c2 sinωt) =

F
m

sinωt

sinωt
(
−ω

2c2 +ω
2
n c2
)
+ cosωt

(
−ω

2c1 +ω
2
n c1
)
=

F
m

sinωt
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By comparing coefficients, we obtain

c2
(
ω

2
n −ω

2)= F
m

c2 =
F/m

(ω2
n −ω2)

and c1 = 0, hence

xp (t) =
F/m

(ω2
n−ω2)

sinωt

Then from (2) we obtain

x(t) = xh (t)+ xp (t)

= xh (t)+
F/m

(ω2
n −ω2)

sinωt

Using (3) in the above

x(t) = Acosωnt +Bsinωnt +
F/m

(ω2
n −ω2)

sinωt (4)

Now assume x(0) = x0 and ẋ(0) = v0 For the condition x(0) = x0 we obtain

x0 = A

For the condition ẋ(0) = v0 we obtain

ẋ(t) =−Aωn sinωnt +Bωn cosωnt +ω
F/m

(ω2
n −ω2)

cosωt

ẋ(0) = v0 = Bωn +ω
F/m

(ω2
n −ω2)

Hence

B = v0
ωn
− ω

ωn

F/m
(ω2

n−ω2)

Hence (4) can be written as

x(t) = x0 cosωnt +
(

v0

ωn
− ω

ωn

F/m
(ω2

n −ω2)

)
sinωnt +

F/m
(ω2

n −ω2)
sinωt

Let ω

ωn
= r, the above becomes

x(t) = x0 cosωnt +

(
v0

ωn
−

F
m r

ω2
n (1− r2)

)
sinωnt +

F/m
ω2

n (1− r2)
sinωt

But ω2
n = k

m hence

x(t) = x0 cosωnt +

(
v0

ωn
−

F
m r

k
m (1− r2)

)
sinωnt +

F
m

k
m (1− r2)

sinωt

Therefore, the general solution is

x(t) = x0 cosωnt +
(

v0

ωn
− F

k
r

(1− r2)

)
sinωnt +

F
k

1
(1− r2)

sinωt (5)
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1.1 Part(a)

When x0 = 0,v0 = 0 we obtain from (5)

x(t) =
(
−F

k
r

(1− r2)

)
sinωnt +

F
k

1
(1− r2)

sinωt (6)

Substitute numerical values, and plot the solution. F = 10,ω = 10 rad/sec.,k = 2000,m = 100,ωn =
√

2000
100 =

4.4721,r = ω

ωn
= 10

4.4721 = 2.2361, then equation (6) becomes

x(t) =
(
− 10

2000
2.2361

(1−2.23612)

)
sin4.4721t +

10
2000

1
(1−2.23612)

sin10t

= 0.002795sin4.4721t−0.001250sin10t

In the following plot, we show the homogeneous solution and the particular solution separately, then show the
general solution.
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1.2 Part(b)

When x0 = 0.05 and v0 = 0 we obtain from (5)

x(t) = 0.05cosωnt +
(
−F

k
r

(1− r2)

)
sinωnt +

F
k

1
(1− r2)

sinωt
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Substitute numerical values found in part(a), then the solution becomes

x(t) = 0.05cos4.4721t +
(
− 10

2000
2.2361

(1−2.23612)

)
sin4.4721t +

10
2000

1
(1−2.23612)

sin10t

= 0.05cos4.4721t +0.002795sin4.4721t−0.001250sin10t

In the following plot, we show the homogeneous solution and the particular solution separately, then show the
general solution.
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2 Problem 2.10

Following the approach taken in problem 2.7, the EQM is

ẍ+ω
2
n x =

F0

m
cosωt

And x(t) = xh (t)+ xp (t) where xh (t) = Acosωnt +Bsinωnt. For xp (t) , guess xp (t) = c1 cosωt + c2 sinωt and
following the same steps in problem 2.7, we obtain

sinωt
(
−ω

2c2 +ω
2
n c2
)
+ cosωt

(
−ω

2c1 +ω
2
n c1
)
=

F0

m
cosωt

Notice that the above guess is valid only under the condition that ω 6= ωn . Compare coefficients, we find

c2 = 0 and

c1 =
F0

m
1

ω2
n −ω2

Hence
xp (t) =

F0

m
1

ω2
n −ω2 cosωt

Then, the general solution is

x(t) = Acosωnt +Bsinωnt +
F0

m
1

ω2
n −ω2 cosωt (1)

Let, at t = 0, x(0) = x0, and ẋ(0) = v0,then from (1), we find

x0 = A+
F0

m
1

ω2
n −ω2

A = x0−
F0

m
1

ω2
n −ω2

And since
ẋ(t) =−Aωn sinωnt +Bωn cosωnt−ω

F0

m
1

ω2
n −ω2 sinωt

Then

v0 = Bωn

B =
v0

ωn
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Therefore, the general solution is (from (1))

x(t) =
(

x0− F0
m

1
ω2

n−ω2

)
cosωnt + v0

ωn
sinωnt + F0

m
1

ω2
n−ω2 cosωt

To make the response oscillate at frequency ω only, we can set v0 = 0 to eliminate the sinωnt, and set x0 =
F0
m

1
ω2

n−ω2

to eliminate the cosωnt term. Hence, the initial conditions are

v0 = 0

x0 =
F0

m
1

ω2
n −ω2

3 Problem 2.29

This is one degree of freedom system. Using x along the inclined surface as the generalized coordinates, we first
obtain the Lagrangian L
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We first note that k∆ = mgcosθ and the mass will lose potential as it slides down the surface. We measure
everything from the relaxed position (not the static equilibrium.) This is done to show more clearly that the angle
do not affect the solution.

L = T −U

Where

T =
1
2

m
(

d
dt

(x+∆)

)2

=
1
2

mẋ2

U =
1
2

k (x+∆)2−mg(x+∆)cosθ

Hence

L =
1
2

mẋ2−
(

1
2

k (x+∆)2−mg(x+∆)cosθ

)
=

1
2

mẋ2− 1
2

k (x+∆)2 +mgxcosθ +mg∆cosθ

∂L
∂ ẋ

= mẋ

d
dt

∂L
∂ ẋ

= mẍ

∂L
∂x

=−k (x+∆)+mgcosθ

=−kx− k∆+mgcosθ

But k∆ = mgcosθ , hence the above reduces to

∂L
∂x

=−kx
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Hence the EQM is (using the Lagrangian equation)

d
dt

∂L
∂ ẋ
− ∂L

∂x
= F cosωt

mẍ+ kx = F cosωt

ẍ+ω
2
n x =

F
m

cosωt (1)

Where ω2
n = k

m . We see that the angle θ is not in the EQM. Hence the solution does not involve θ and the

oscillation magnitude is not affected by the angle . Intuitively, the reason for this is because the angle effect

is already counted for to reach the static equilibrium. Once the system is in static equilibrium, the angle no longer
matters as far as the solution is concerned.
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4 Problem 2.46

From example 2.4.1, we note the following table

Also, from example 2.4.1, the mass of car 1 is 1007kg and the mass of car 2 is 1585kg. Hence we write

m1 = 1007kg

m2 = 1585kg

To find the deflection of the car, we use equation 2.70 in the book, which is

X = Y

√
1+(2ξ r)2

(1− r2)2 +(2ξ r)2

Where X is the magnitude of the steady state deflection and Y is the magnitude of the base deflection, which is
given as 0.01 meters in the example.
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Hence, for each speed, we calculate ωp and then we find ωn =
√

k
m1+mp

and then find r = ωp
ωn

and then

find ξ = c
2
√

k(m1+mp)
and then using equation(1), we calculate X . This is done for each different speed (all for

car m1). Next, we do the same for car m2. These calculation are shown in the following table. Note also that

c = 2000 N s/m as given in the example and k = 4×104N/m

car 1

v (km/h) ωp = 0.2909 v ωn =
√

k
m1+mp

r = ωp
ωn

ξ = c
2
√

k(m1+mp)
X = Y

√
1+(2ξ r)2

(1−r2)
2
+(2ξ r)2 (cm)

20 5.818 5.7567 1.0106 0.14392 3.571

80 23.272 5.7567 4.0426 0.14392 0.0997

100 29.09 5.7567 5.0532 0.14392 0.0718

150 43.635 5.7567 7.5799 0.14392 0.0425

car

2

v (km/h) ωp = 0.2909 v ωn =
√

k
m2+mp

r = ωp
ωn

ξ = c
2
√

k(m2+mp)
X = Y

√
1+(2ξ r)2

(1−r2)
2
+(2ξ r)2 (cm)

20 5.818 4.7338 1.229 0.11835 1.7726

80 23.272 4.7338 4.9161 0.11835 0.066141

100 29.09 4.7338 6.1452 0.11835 0.04797

150 43.635 4.7338 9.2178 0.11835 0.02857

Ob-

servations: The heavier car (car 2) has smaller defection (X values) for all speeds. Adding passengers, causes
ωn to change. This results in making the deflection smaller when passengers are in the car as compared without
them. Heaver cars and heavier passenger results in smaller deflection values. For the lighter car however, adding
the passenger did not result in smaller deflection for all speeds. For speed v = 20, adding the passenger caused a
larger defection (3.19 vs. 3.571). As car 1 speed became larger, the deflection became smaller for both cars.

So, in conclusion: lighter cars have larger deflections at bumps, and the faster the car, the smaller the deflection.
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5 Problem 2.57

Given m = 120 kg,k = 800×103N/M, c = 500 kg/s, and mass m0 has angular speed of ωr =
3000×2π

60 = 100π

radians per seconds

5.1 Part(a)

The rotating mass will cause a downward force as the result of the centripetal force m0eω2
r sin(ωrt). Hence the

reaction to this force on the machine will be in the upward direction. Hence

Fr = m0eω
2
r sin(ωrt)

Hence the machine equation of motion is

mẍ+ cẋ+ kx = m0eω
2
r sin(ωrt)

ẍ+2ξ ωnẋ+ω
2
n x =

m0

m
eω

2
r sin(ωrt) (1)
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By guessing xp = X sin(ωrt−θ) then we find that (The method of undetermined coefficients is used, derivation is
show in text book at page 115)

X =
moe
m

r2√
(1− r2)2 +(2ξ r)2

(2)

This is the maximum magnitude of motion in steady state. In the above, r = ωr
ωn

. Hence to find X we substitute the
given values in the above expression. We first note that we are told that m0eω2

r = 374N, hence moe = 374
ω2

r
but we

found that ωr = 100π rad/sec, hence

moe =
374

(100 π)2 = 0.0037894

And
r =

ωr

ωn
=

100π√
k
m

=
100 π√
800×103

120

= 3.8476

And
ξ =

c
2
√

km
=

500
2
√

800×103×120
= 0.025516

Substitute into (2) we obtain

X =

(
0.0037894

120

)
3.84762√

(1−3.84762)2 +(2×0.025516×3.8476)2

= 3.3863×10−5 meter

5.2 Part(b)

We are told that mo = 0.01×m, hence mo = 0.01×120 = 1.2kg. And since we are told that m0eω2
r = 374N, then

e =
374

m0ω2
r
=

374

1.2× (100π)2 = 3.1578×10−3 meter
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