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1 Problem 1.6

Figure P1.5

/ A Find the equation of motion for the system of Figure P1.6 and compute the formula for

\.__ the natural frequency. In particular, using static equilibrium along with Newton’s law,
determine what effect gravity has on the equation of motion and the system’s natural
frequency. Assume the block slides without friction.
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Figure P1.6

Taking displacement along the x-direction shown to be from the static equilibrium position, then
applying Y F, = mx along the shown x direction, we obtain

mx = —kx

k
i+—x=0
m

which is the equation of motion. To obtain the natural frequency, we consider free vibration i + %x =0,

which implies that @, = \/% , hence we see that thel natural frequency is independent of g

We see that gravity has no effect on the spring mass system, this is because we use x to be from the
static equilibrium position of the spring.



2 Problem 1.16

\] 1.16.) A machine part is modeled as a pendulum connected to a spring as illustrated 1n
- Figure P1.16. Ignore the mass of pendulum’s rod and derive the equation of motion.
: Then, following the procedure used in Example 1.1.1, linearize the equation of motion,
and compute the formula for the natural frequency. Assume that the rotation is small

enough so that the spring only deflects horizontally.
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Figure P1.16

First we need to derive the equation of motion. Considering the following diagram

F/, Tt tcose
K AS
L Sin

Using as generalized coordinates 6, we obtain

1 )

1
U= Ek(Lsin 6)> +mg(L—Lcos0)

Nptice that in the calculation of U above, we assumed that the spring stretches by Lsin 6 in the horizontal
direction only, which we are allowed to do for small 6.
Now we can find Lagrangian

L=T-U
|

2 1 .
= 5m (LO)” — EkL2 sin® @ —mgL (1 —cos6)



Hence the equation of motion is

d (dL\ JL _
dt \ 00 20
d

o (mL 9) — (—kL2 sin O cos O —mgLsin 9) =0

mL*6 + kL?sin 6 cos 6 + mgLsin @ = 0

The above is nonlinear equation. Linearize around 0 = 0 (equilibrium point) using Taylor series, and
for small 6 we obtain sin @ ~ 6 and cos 6 ~ 1, hence the above becomes

mLO +kLO +mgh =0

) kL
9+(mg; )9:0

m

Hence effective m,,can be found from

kL
w? = 8T
mL
Hence
o=/E+5

Compare the above to the natural frequency of pendulum with no spring attached which is a)n:\/% ,
we can see the effect of adding a spring on the natural frequency: The more stiff the spring is, in other
words, the larger £ is, the larger w, will become, and the smaller the period of oscillation will be. We
conclude that a pendulum with a spring attached to it will always oscillate with a period which is smaller
than the same pendulum without the spring attached. This makes sense as a mass with spring alone has

k
@f:¢;



3 Problem 1.32

L 5\1.32. Solve ¥ + 2% + 2x = Ofor xy = O mm,v; = 1 mm/s and sketch the response. You may
" wish to sketch x(¢) = ¢ and x(t) = —e™ first.

122 Nariva tha farm Af ) and ) asivan ho anna tian (1 21 fram amnatian (1 972\ and tha

We need to solve X + 2x + 2x = 0 for xo = Omm and vy = lmm/s

The characteristic equation is A2 +2A + 2 = 0 which has roots Moo= —bt V;f‘““" = _Zizv 4-8
14

Hence the solution is
x, = e ' (Acost + Bsint)
is the general solution. Now we use I.C. to find A,B. Whent =0

0=A

Hence xj, = Be 'sint, and xj, = Be ' cost — Be 'sint and att = 0, we obtain 0.01 = B
Then

x, =0.0le 'sint

This is a plot of the solution for # up to 50 seconds
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4 Problem 1.43

xo = 100 mm.

NN ]

(143,)Solve & — & + x = Owith x = Land o = Ofor x

\'~«. — . -
1.44. A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m, and damping

coefficient of 300 kg/s. Calculate the undamped natural frequency, the damping ratio, and

(¢) and sketch the response.

ViTd _

Weneedtosolve i —x+x=0forxg=1and vy =0
The characteristic equation is A2 — A + 1 = 0 which has roots Ao =

1 .\/3
2 EJ%5

Hence the solution is
1
Xp = e?’

V3
A —1t+ Bsin—t
CcoSs > + Bsin 2

V3

is the general solution. Now we use I.C. to find A,B. Whent =0

1 .
Hence xj, = e2’ (cos gt + Bsin %gt), and

1 3 )
xh:—e%’ cos£t+Bsm—t +

and at r = 0, we obtain

I1=A

1
e2!

Hence

1
xp, = e2! (COS ‘/7§t —

\/ig sin \/T§t>

This is a plot of the solution for ¢ up to 12 seconds
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5 Problem 1.62
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Figure P1.62

This is a single degree of freedom linear system. Assume x from static equilibrium, then (using parallel
springs) we obtain

1

T = me2

U= lk)c2 + lk)c2 = kx?
2 2

Hence L=T —-U = %mxz — kx? and the Lagrangian equation is

AN
dt \ dx ox

d .
7 (mx) — (—2kx) =0

Hence equation of motion is

mi+2kx=0

Anda)n:\/%



6 Problem 1.90

Section 1.8 (see also Froblem 1.43)
N

( 1.90? Consider the system of Figure P1.90. (a) Write the equations of motion in terms of the
— N 7 angle, 8, the bar makes with the vertical. Assume linear deflections of the springs and lin-
earize the equations of motion. (b) Discuss the stability of the linear system’s solutions in

terms of the physical constants, n1, k, and .. Assume the mass of the rod acts at the center

as indicated in the figure.

Figure P1.90
Solution
Part(a)
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1 .
= —ml*6?
8

1 ) 1 .
Usprings = Ek (l S 9)2 + zk (l S 9)2
Assuming small angle oscillation, sin @ ~ 6, hence
Usprings — k1292

8



and for the mass, since it losses potential, we have

[ 1
Unass = —mg 5 — E cos O

Hence Lagrangian L is
L=T-— (Usprings + Umass)

1 . l
= gmlze)2 — (k1292 —mg (1—cos 9))
= lmlzé2 — ki’6? +mg£ — mgicos 0
8 2 2

Now find the Lagrangian equation

oL 1 .
96 2"
d (dL L,
— | == | =-ml"0
dt (ae) 4"
JdL ’ [ .
%——Zkl 9+mg§sm9

Hence

% (%) — g—z = %mlzé - (—2k126 —i—mgé sin 9>
= %mlzé +2kI%0 — mgé sin @
And the equation of motion is
| ) .
é_lml 0 +2kl“0 —mgisme =0
8k

6+20_286ino=0
m l

Linearize by setting sin 8 ~ 0 we obtain equation of motion

.. 8k
9+9(——2‘5>=0 (1)
m l
Hence
o= y/2(3 %)
Part (b)

To discuss stability, we need to determine the location of the roots of the characteristic equation of
the homogeneous EQM, hence from equation (1), we see that

6+w0=0

9



And assuming solution 6 (1) = ¢* leads to the characteristic equation

A+ w?=0
A2 = —w?
A==44/—07?
=+j\/o;
Since ®? > 0, then
A=+tjw,

Since roots of the characteristic equation on the imaginary axis, thisisa| marginally stable system

regardless of the values of m, [, k.

Since we are looking at the linearized system, there is only one equilibrium point, and the system is
either stable or not. Here we found it is marginally stable. The effect of changing k,,m is to change the
period of oscillation around the equilibrium point.
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