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1 Problem 1.6

Taking displacement along the x-direction shown to be from the static equilibrium position, then
applying ∑Fx = mẍ along the shown x direction, we obtain

mẍ =−kx

ẍ+
k
m

x = 0

which is the equation of motion. To obtain the natural frequency, we consider free vibration ẍ+ k
mx = 0,

which implies that ωn =
√

k
m , hence we see that the natural frequency is independent of g

We see that gravity has no effect on the spring mass system, this is because we use x to be from the
static equilibrium position of the spring.
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2 Problem 1.16

First we need to derive the equation of motion. Considering the following diagram

Using as generalized coordinates θ , we obtain

T =
1
2

m
(
Lθ̇
)2

U =
1
2

k (Lsinθ)2 +mg(L−Lcosθ)

Notice that in the calculation of U above, we assumed that the spring stretches by Lsinθ in the horizontal
direction only, which we are allowed to do for small θ .

Now we can find Lagrangian

L = T −U

=
1
2

m
(
Lθ̇
)2− 1

2
kL2 sin2

θ −mgL(1− cosθ)

3



Hence the equation of motion is

d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= 0

d
dt

(
mL2

θ̇
)
−
(
−kL2 sinθ cosθ −mgLsinθ

)
= 0

mL2
θ̈ + kL2 sinθ cosθ +mgLsinθ = 0

The above is nonlinear equation. Linearize around θ = 0 (equilibrium point) using Taylor series, and
for small θ we obtain sinθ ≈ θ and cosθ ≈ 1, hence the above becomes

mLθ̈ + kLθ +mgθ = 0

θ̈ +

(
mg+ kL

mL

)
θ = 0

Hence effective ωncan be found from

ω
2
n =

mg+ kL
mL

Hence

ωn=
√

g
L +

k
m

Compare the above to the natural frequency of pendulum with no spring attached which is ωn=
√

g
L ,

we can see the effect of adding a spring on the natural frequency: The more stiff the spring is, in other
words, the larger k is, the larger ωn will become, and the smaller the period of oscillation will be. We
conclude that a pendulum with a spring attached to it will always oscillate with a period which is smaller
than the same pendulum without the spring attached. This makes sense as a mass with spring alone has

ωn =
√

k
m
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3 Problem 1.32

We need to solve ẍ+2ẋ+2x = 0 for x0 = 0mm and v0 = 1mm/s
The characteristic equation is λ 2 +2λ +2 = 0 which has roots λ1,2 =

−b±
√

b2−4ac
2a = −2±

√
4−8

2 =
−1± j

Hence the solution is
xh = e−t (Acos t +Bsin t)

is the general solution. Now we use I.C. to find A,B. When t = 0

0 = A

Hence xh = Be−t sin t, and ẋh = Be−t cos t−Be−t sin t and at t = 0, we obtain 0.01 = B
Then

xh = 0.01e−t sin t

This is a plot of the solution for t up to 50 seconds
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4 Problem 1.43

We need to solve ẍ− ẋ+ x = 0 for x0 = 1 and v0 = 0
The characteristic equation is λ 2− λ + 1 = 0 which has roots λ1,2 = −b±

√
b2−4ac

2a = 1±
√

1−4
2 =

1
2 ± j

√
3

2
Hence the solution is

xh = e
1
2 t

(
Acos

√
3

2
t +Bsin

√
3

2
t

)
is the general solution. Now we use I.C. to find A,B. When t = 0

1 = A

Hence xh = e
1
2 t
(

cos
√

3
2 t +Bsin

√
3

2 t
)

, and

ẋh =
1
2

e
1
2 t

(
cos

√
3

2
t +Bsin

√
3

2
t

)
+ e

1
2 t

(
−
√

3
2

sin

√
3

2
t +B

√
3

2
cos

√
3

2
t

)
and at t = 0, we obtain

0 =
1
2
+B

√
3

2

B =
−1√

3

Hence

xh = e
1
2 t
(

cos
√

3
2 t− 1√

3
sin
√

3
2 t
)

This is a plot of the solution for t up to 12 seconds
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5 Problem 1.62

This is a single degree of freedom linear system. Assume x from static equilibrium, then (using parallel
springs) we obtain

T =
1
2

mẋ2

U =
1
2

kx2 +
1
2

kx2 = kx2

Hence L = T −U = 1
2mẋ2− kx2 and the Lagrangian equation is

d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= 0

d
dt

(mẋ)− (−2kx) = 0

Hence equation of motion is

mẍ+2kx = 0

And ωn =
√

2k
m
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6 Problem 1.90

Solution
Part(a)

T =
1
2

m
(

l
2

θ̇

)2

=
1
8

ml2
θ̇

2

Usprings =
1
2

k (l sinθ)2 +
1
2

k (l sinθ)2

Assuming small angle oscillation, sinθ ' θ , hence

Usprings = kl2
θ

2
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and for the mass, since it losses potential, we have

Umass =−mg
(

l
2
− l

2
cosθ

)
Hence Lagrangian L is

L = T − (Usprings +Umass)

=
1
8

ml2
θ̇

2−
(

kl2
θ

2−mg
l
2
(1− cosθ)

)
=

1
8

ml2
θ̇

2− kl2
θ

2 +mg
l
2
−mg

l
2

cosθ

Now find the Lagrangian equation

∂L
∂ θ̇

=
1
4

ml2
θ̇

d
dt

(
∂L
∂ θ̇

)
=

1
4

ml2
θ̈

∂L
∂θ

=−2kl2
θ +mg

l
2

sinθ

Hence

d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
=

1
4

ml2
θ̈ −

(
−2kl2

θ +mg
l
2

sinθ

)
=

1
4

ml2
θ̈ +2kl2

θ −mg
l
2

sinθ

And the equation of motion is

1
4

ml2
θ̈ +2kl2

θ −mg
l
2

sinθ = 0

θ̈ +
8k
m

θ −2
g
l

sinθ = 0

Linearize by setting sinθ ' θ we obtain equation of motion

θ̈ +θ

(
8k
m
−2

g
l

)
= 0 (1)

Hence

ωn=
√

2
(
4 k

m −
g
l

)
Part (b)
To discuss stability, we need to determine the location of the roots of the characteristic equation of

the homogeneous EQM, hence from equation (1), we see that

θ̈ +ω
2
n θ = 0
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And assuming solution θ (t) = eλ t leads to the characteristic equation

λ
2 +ω

2
n = 0

λ
2 =−ω

2
n

λ =±
√
−ω2

n

=± j
√

ω2
n

Since ω2
n > 0, then

λ =± jωn

Since roots of the characteristic equation on the imaginary axis, this is a marginally stable system

regardless of the values of m, l,k.
Since we are looking at the linearized system, there is only one equilibrium point, and the system is

either stable or not. Here we found it is marginally stable. The effect of changing k, l,m is to change the
period of oscillation around the equilibrium point.
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