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Find the equation of motion for the system of Figure P1.6, and find the natural frequency.
In particular, using static equilibrium along with Newton’s law, determine what effect
gravity has on the equation of motion and the system’s natural frequency. Assume the
block slides without friction.

Frictionless
surface

Figure P1.6

Solution:
Choosing a coordinate system along the plane with positive down the plane, the free-
body diagram of the system for the static case is given and (a) and for the dynamic case

in (b):
v L v
x I X
e | om i et I I
mgsinQ mgsin®
l mgcos 1 mgcos0

In the figures, N is the normal force and the components of gravity are determined by the
angle O as indicated. From the static equilibrium: —kx, +mg sin@=0. Summing forces

in (b) yields:

S F, = mii(t) = mi() = —k(x+ %)+ mgsin@
= mi(t)+ kx =—kx, + mgsin6=0
= mi(t)+ k=0

=>a),,=‘]£ rad/s
—'m



1.16 A machine part is modeled as a pendulum connected to a spring as illustrated in Figure
P1.16. Ignore the mass of pendulum’s rod and derive the equation of motion. Then
following the procedure used in Example 1.1.1, linearize the equation of motion and
compute the formula for the natural frequency. Assume that the rotation is small enough
so that the spring only deflects horizontally.
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Figure P1.16

Solution: Consider the free body diagram of the mass displaced from equilibrium:
N

+

8 £cos®

kisin@ -

-
£5in@
There are two forces acting on the system to consider, if we take moments about point O
(then we can ignore any forces at O). This yields
Y M, =J,a = mt*§ = -mglsin6—kfsin@e LcosO
= mé*0 +mglsin® + k* sin@cosf=0

Next consider the small 8 approximations to that sinf ~ 8 and cos@=1. Then the

linearized equation of motion becomes:

é(t)+(mg+kf
mé

JB(I) =0
Thus the natural frequency is

mg+ kL
@, =J d/
I me




1.32 Solve ¥+2x+2x =0 for x, =0 mm, v, = 1 mm/s and sketch the response. You
may wish to sketch x(z) = ¢" and x(1) =-¢" first.
Solution:
Given X+ 2x+x=0 where x; =0, v, = 1 mm/s
Let: x=ae"” = x=are” => ¥=ar’e"
Substitute into the equation of motion to get
ar’e” +2are” +ae" =0=>r*+2r+1=0=>r,,=-1%i

So

x= cle(—l+i): + cze(—l-i) I (_l+i)cle(—l+i)t + (—l— i)CzeH_i)'

Initial conditions:

»=x(0)=¢+¢,=0 = c¢=-— )
v, =%(0)= (=1+i)¢ +(-1-i)c, =1 )

Substituting equation (1) into (2)

Vo = (1+i)g —(-1-i)g =1
1 1

o=—=i, ==i

2 2
1

| | . —tf —i
x(t)=—§-ie( l+)'+Ele(—' e =—ie ‘(e"—€™)
Applying Euler’s formula

x(t)= --Iz-ie—'(cos t+isin t—(cos t —isin 1))
x(t)=e"'sint

Alternately use equations (1.36) and (1.38). The plot is similar to figure 1.11.




1.43 Solve ¥—x+x =0 with x, =1 and v, =0 for x(z) and sketch the response.

Solution: This is a problem with negative damping which can be used to tie into
Section 1.8 on stability, or can be used to practice the method for deriving the
solution using the method suggested following equation (1.13) and eluded to at
the start of the section on damping. To this end letx(?) = Ae” the equation of
motion to get:

A =-A+De¥ =0
This yields the characteristic equation:

l’—/l+l=0=>/l=%i§j, where j=+-1

There are thus two solutions as expected and these combine to form

xt)=e"(Ae’ +Be ')
Using the Euler relationship for the term in parenthesis as given in Window 1.4,
this can be written as
J3

x(0) = ™ (A cos?t + A, sin Tt)

Next apply the initial conditions to determine the two constants of integration:
x(0)=1=A1)+A,(0)= A =1

Differentiate the solution to get the velocity and then apply the initial velocity
condition to get
x(1)=

V3 V3

1 .
Ee"(AI cosTO +A, sin—~

V3 3 V3

3
0)+¢e° —2-(—Al sin—2—0+ A, cos—2—0) =0

=A,+J§(A2)=0=A,=-—j§,
V3 1.\

= x(t) = e* (cos—1 — —=sin—t
) ( 2 TR )
This function oscillates with increasing amplitude as shown in the following plot
which shows the increasing amplitude. This type of response is referred to as a
flutter instability. This plot is from Mathcad.




1.62 Use Lagrange’s formulation to calculate the equation of motion and the natural
frequency of the system of Figure P1.62. Model each of the brackets as a spring
of stiffness &, and assume the inertia of the pulleys is negligible.

L

Figure P1.62

Solution: Let x denote the distance mass m moves, then each spring will deflects
a distance x/4. Thus the potential energy of the springs is

2
U=2 xlk Zl = -E-Jc2
v2 \4 16
The kinetic energy of the mass is

T=2mi?
2

Using the Lagrange formulation in the form of Equation (1.64):
d{af1 d( k? d k
—| —| —mk — — [=0=>—(mt)+—=x=0
dz(ax(z'"x Dﬁh(m] =) g

=>m§c'+-]£x=0=>a) =l,’-k— rad/s
8 "2\2m




1.64 Lagrange’s formulation can also be used for non-conservative systems by adding
the applied non-conservative term to the right side of equation (1.64) to get
d(aT) ar U R _,

@) %0

Here R, is the Rayleigh dissipation ﬁmction> defined in the case of a viscous
damper attached to ground by
1 .
R =ed;
Use this extended Lagrange formulation to derive the equation of motion of the
damped automobile suspension of Figure P1.64

Figure P1.64

Solution: The kinetic energy is (see Example 1.4.1):
1 J..
T= E(M + F)x 2

The potential energy is:

=1
2

The Rayleigh dissipation function is

R=1w°c’
2

U=—k’

The Lagrange formulation with damping becomes

g(a_r]_zr;,,a_m&_o
dt aq, dg, 9dg, aq,

4(2 (1 Ty )2 (L )s 2 Lert)-
ﬁz[g(z(mi'ﬁ)x )]'l‘ax(zkx )+aj:(2a )—0

= (m+-Dy¥+ i+ k=0
r
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Problems and Solutions Section 1.8 (1.90 through 1.93)

1.90 Consider the system of Figure 1.90 and (a) write the equations of motion in terms

of the angle, 6, the bar makes with the vertical. Assume linear deflections of the

springs and linearize the equations of motion. Then (b) discuss the stability of the
linear system’s solutions in terms of the physical constants, m, k, and £. Assume

the mass of the rod acts at the center as indicated in the figure.

k k

Figure P1.90
Solution: Note that from the geometry, the springs deflect a distance
kx = k(£sin6) and the cg moves a distance ¥cos@. Thus the total potentlal
energy is

U =2x L k(tsingy - "E cos6 e Q,__,Q 6) "
2 2 oz ~Y
and the total kinetic energy is f\ “)(5(‘%
2
r=ij@=-1m g
2 23

The Lagrange equation (1.64) becomes

e R

Using the linear, small angle approximations sin8 = 9 and cos@ =1 yields
2
a) 1’-“;6’-»(21:1’ mgt Je 0
3 2
Since the leading coefficient is positive the sign of the coefficient of 0 determines
the stability.
if 2ke-l”2£>o=>4k>%=> the system is stable

b) if 4k=mg=>0(f)=at+ b= the system is unstable
if 2ke—-"-;§<o=>4k<i”f=> the system is unstable

Note that physically this results states that the system’s response is stable as long
as the spring stiffness is large enough to over come the force of gravity.



