Attempt at Challenge problems for Math 504

Nasser M. Abbasi

June 16, 2014

1 Problem 1

1. A stochastic process has states $0,1,2, \cdots, r$. If the process is in state $i \geq 1$, then during the next time step, it goes to a state that is selected at random from among the states $0,1,2, \cdots, i-1$. If the process is in state 0 , it stays there. This process can be modelled as a Markov chain. (a) Specify the one-step transition probability matrix. (b) Let Y_{i} be the number of steps that the process takes to reach state 0 , given that it starts in state i. Derive a linear system of equations that determines the expected values $E\left(Y_{i}\right)$, for $i=1,2, \cdots, r$. Write the linear system in the form $A x=b$, where the components of the vector x are the unknown expected values. Specify the matrices A and b.

Problem 1 Solve explicitly for the expected values $E\left(Y_{i}\right), i=1,2, \cdots, r$. Of particular interest is $E\left(Y_{r}\right)$, when r is large. What is an asymptotic estimate of this quantity?

Solution:

We start with the solution we already ${ }^{1}$ obtained for $E\left(Y_{i}\right)$ which is

$$
E\left(Y_{i}\right)=1+\sum_{k=1}^{i-1} E\left(Y_{k}\right) P_{i k}
$$

Let $E\left(Y_{i}\right)=x_{i}$ hence the above can be written as

$$
x_{i}=1+\sum_{k=1}^{i-1} x_{k} P_{i k}
$$

[^0]But $P_{i k}=\frac{1}{i}$ then the above becomes

$$
x_{i}=1+\frac{1}{i} \sum_{k=1}^{i-1} x_{k}
$$

Multiply by i the above becomes

$$
i x_{i}=i+\sum_{k=1}^{i-1} x_{k}
$$

Therefore, we obtain the following equations for $i=1 \cdots r$
For $i=1$

$$
\begin{equation*}
x_{1}=1 \tag{1}
\end{equation*}
$$

For $i=2$

$$
\begin{equation*}
2 x_{2}=2+x_{1} \tag{2}
\end{equation*}
$$

For $i=3$

$$
\begin{equation*}
3 x_{3}=3+x_{1}+x_{2} \tag{3}
\end{equation*}
$$

For $i=4$

$$
\begin{equation*}
4 x_{4}=4+x_{1}+x_{2}+x_{3} \tag{4}
\end{equation*}
$$

etc...
Now evaluate (2)-(1) and (3)-(2) and (4)-(3), etc... we obtain the following equations (2)-(1) gives

$$
\begin{align*}
2 x_{2}-x_{1} & =2+x_{1}-1 \\
x_{2} & =\frac{1+2 x_{1}}{2} \tag{5}
\end{align*}
$$

(3)-(2) gives

$$
\begin{aligned}
3 x_{3}-2 x_{2} & =3+x_{1}+x_{2}-2-x_{1} \\
3 x_{3}-2 x_{2} & =1+x_{2} \\
x_{3} & =\frac{1+3 x_{2}}{3}
\end{aligned}
$$

etc... Hence we see that for the $r^{t h}$ term we obtain

$$
x_{r}=\frac{1+r x_{r-1}}{r}
$$

Hence

$$
\begin{equation*}
x_{r}=\frac{1}{r}+x_{r-1} \tag{6}
\end{equation*}
$$

Now replace r by $r-1$ in the above we obtain

$$
x_{r-1}=\frac{1}{r-1}+x_{r-2}
$$

replace the above in (6) we obtain

$$
\begin{equation*}
x_{r}=\frac{1}{r}+\left(\frac{1}{r-1}+x_{r-2}\right) \tag{7}
\end{equation*}
$$

And again, in the above, $x_{r-2}=\frac{1}{r-2}+x_{r-3}$ hence (7) becomes

$$
\begin{equation*}
x_{r}=\frac{1}{r}+\left(\frac{1}{r-1}+\left(\frac{1}{r-2}+x_{r-3}\right)\right) \tag{8}
\end{equation*}
$$

and so on, until we get to $x_{1}=1$, hence we obtain

$$
x_{r}=\frac{1}{r}+\frac{1}{r-1}+\frac{1}{r-2}+\cdots+1
$$

Hence

$$
x_{r}=\sum_{k=1}^{r} \frac{1}{k}
$$

Which is the harmonic series. Now, it is know that ${ }^{2}$

$$
\lim _{r \rightarrow \infty} x_{r}=\log (r)-\gamma
$$

Where γ is Euler Gamma constant given by

$$
\begin{aligned}
& \operatorname{In}[47]:=\mathrm{N}[\text { EulerGamma, 16] } \\
& \text { Out[47] }=0.5772156649015329
\end{aligned}
$$

[^1]
[^0]: ${ }^{1}$ See my midterm solution for this problem

[^1]: ${ }^{2}$ Do I have to proof this?
 Please see http://en.wikipedia.org/wiki/Harmonic_number

