HW4 Solution

1. Problem 3.4.4

Soln: (a) $F'(x) = -2x(1+x^2)^{-2}$. max |F'(x)| is obtained when $x = 1/\sqrt{3} \approx 0.65$. Thus F(x) is a contractive mapping. $\lambda = 0.65$

(b) |F(x) - F(y)| = (1/2)|(y - x)/(xy)| < |y - x|/2, since x and y are between 1 and 5. $\lambda = 1/2$ from above.

(c) By Mean value theorem, $|F(x) - F(y)| = |F'(\xi)||x - y| = |x - y|/(1 + \xi^2)$. Given an interval [a, b], such that $x, y \in [a, b]$, then $\xi \in [a, b]$. So $1/(1 + \xi^2) \le 1/(1 + a^2)$. Therefore $\lambda = 1/(1 + a^2)$.

(d) By Mean value theorem, $|F(x) - F(y)| = |F'(\xi)||x - y| = 3/2|\xi^{1/2}||x - y|$. Since $x, y \in [-1/3, 1/3]$, so $\xi \in [-1/3, 1/3]$. $\lambda = 3/2|\xi^{1/2}| \le 3/2\sqrt{1/3} \approx 0.866$.

2. Problem 3.4.6

Soln: We need to have $F^{(1)}(r) = 0, F^{(2)}(r) = 0, F^{(3)}(r) \neq 0$. From $F^{(1)}(r) = 0, \Rightarrow g(r) = -1/f^{(1)}(r)$. From $F^{(2)}(r) = 0, \Rightarrow g^{(1)} = f^{(2)}(r)/[2(f^{(1)}(r))^2]$.

3. Problem 3.4.20

Soln: (a) $|F(x) - F(y)| = |x^2 - y^2| = |x - y||x + y| \le (1/2)|x - y|$, since $|x + y| \le |x| + |y|$, and |x| < 1/4 and |y| < 1/4. *F* is a contracting mapping, but F(0) = 3, which means *F* does not map the interval [-1/4, 1/4] into [-1/4, 1/4].

(b) |F(x) - F(y)| = |x - y|/2. F is a contraction. Since F(-1) = 1/2, F does not map the set $[-2, -1] \cup [1, 2]$ into $[-2, -1] \cup [1, 2]$.

4.

Soln: $e_{n+1} = k^{\alpha} e_n \Rightarrow e_n = (k^{\alpha})^n e_0$. If we need to have $e_n < 10^{-m} e_0$, $\Rightarrow (k^{\alpha})^n < 10^{-m}$. $\Rightarrow n\alpha \log_{10} k < -m$. Since |k| < 1, $\Rightarrow n\alpha > -m/\log_{10} k$.

5. Problem 3.5.1

Soln: p(4) = 946.

	3	-7	-5	1	-8	2
4		12	20	60	244	944
	3	5	15	61	236	946