HW2, Math 307. CSUF. Spring 2007.

Nasser M. Abbasi

Spring 2007 Compiled on November 5, 2018 at 8:47am [public]

Contents

1	Section 1.5, Problem 2	1
2	Section 1.5, Problem 5	3
3	Section 1.5, Problem 6	4
4	Section 1.5, Problem 9	5
5	Section 1.5, problem 24	7
6	Section 1.5, problem 42	8

Section 1.5, Problem 2 1

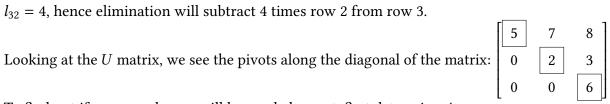
Problem: What multiple l_{32} of row 2 of A will elimination subtract from row 3 of A? Use

the factored form $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 5 & 7 & 8 \\ 0 & 2 & 3 \\ 0 & 0 & 6 \end{bmatrix}$ what will be the pivots? will a row exchange be

required?

Solution:

 $l_{32} = 4$, hence elimination will subtract 4 times row 2 from row 3.



To find out if a row exchange will be needed or not, first determine A

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 5 & 7 & 8 \\ 0 & 2 & 3 \\ 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 7 & 8 \\ 10 & 16 & 19 \\ 5 & 15 & 26 \end{bmatrix}$$

Carry the first elimination, we get

$$A = \begin{bmatrix} 5 & 7 & 8 \\ 0 & 2 & 3 \\ 0 & 8 & 18 \end{bmatrix}$$

Hence, there would not be a need for a row exchange.

2 Section 1.5, Problem 5

Problem: Factor *A* into *LU* and write down the upper triangular system Ux = c which appears after elimination for $\begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} = \begin{bmatrix} 2 \\ c \end{bmatrix}$

		$Ax = \begin{vmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{vmatrix}$	$\begin{vmatrix} u \\ v \\ w \end{vmatrix} = \begin{vmatrix} 2 \\ 2 \\ 5 \end{vmatrix}$	
Answer: $A = \begin{bmatrix} 2 & 3 \\ 0 & 5 \\ 6 & 9 \end{bmatrix}$ Hence	$\begin{bmatrix} 3 & 3 \\ 3 & 7 \\ 0 & 8 \end{bmatrix} \stackrel{l_{21}=0}{\Rightarrow} \begin{bmatrix} 2 & 3 \\ 0 & 5 \\ 6 & 9 \end{bmatrix}$	$ \begin{bmatrix} 3 \\ 7 \\ 8 \end{bmatrix} \stackrel{l_{31}=3}{\Rightarrow} \begin{bmatrix} 2 & 3 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} $	$ \begin{bmatrix} 3\\ 7\\ -1 \end{bmatrix} \stackrel{l_{32}=0}{\Rightarrow} \begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix} $	$\begin{bmatrix} 3 & 3 \\ 5 & 7 \\ 0 & -1 \end{bmatrix}$
		$L = \begin{bmatrix} 1 \\ l_{21} \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$	

 $L = \begin{bmatrix} l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix}$ $= \boxed{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}}$

and

$$U = \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & -1 \end{bmatrix}$$

Hence now we can write Ax = b as (LU)x = b, or L(Ux) = b, Where Ux = cWe can solve for *c* by solving Lc = b, then we solve for *x* by solving Ux = c

3 Section 1.5, Problem 6

Problem: Find E^2 and E^8 and E^{-1} if $E = \begin{bmatrix} 1 & 0 \\ 6 & 1 \end{bmatrix}$

Answer:

 $E^{2}(A)$ means E(E(A)), which means we first subtract -6 times first row from second row of A, then apply E to this result again, subtracting -6 times first row from the second row of the resulting matrix.

Hence the net result is subtracting -12 times first row from the second row of the original matrix *A*.

Hence in general, we write

$E^n =$	1	0	
L –	$n \times 6$	1	

Therefore

$$E^{2} = \begin{bmatrix} 1 & 0 \\ 2 \times 6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 12 & 1 \end{bmatrix}$$
$$E^{8} = \begin{bmatrix} 1 & 0 \\ 8 \times 6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 48 & 1 \end{bmatrix}$$
$$E^{-1} = \begin{bmatrix} 1 & 0 \\ -1 \times 6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -6 & 1 \end{bmatrix}$$

Section 1.5, Problem 9 4

Problem: (a) Under what conditions is the following product non singular?

		L			D			V		
<i>A</i> =	$\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$	0 1 -1	0 0 1	$\begin{bmatrix} d_1 \\ 0 \\ 0 \end{bmatrix}$	0 d_2 0	$\begin{bmatrix} 0 \\ 0 \\ d_3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	-1 1 0	$\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$	

(b) Solve the system Ax = b starting with Lc = b

$$\overbrace{\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}}^{L} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = b$$

Solution:

Solution:
(a) Since
$$U = [D][V] = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} d_1 & -d_1 & 0 \\ 0 & d_2 & -d_2 \\ 0 & 0 & d_3 \end{bmatrix}$$

Hence the elements along the diagonal of U are the pivots. Then if any one of d_1, d_2, d_3 is zero, then A will be non-singular

Hence for *A* to be non singular, then $| d_1$ and d_2 and d_3 must all be nonzero. (b)

$$Ax = b$$

$$\overbrace{L \ Ux}^{c} = b$$

Lc = b where Ux = c

hence starting with Lc = b we write

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Solve for *c* by back substitution process \Rightarrow $c_1 = 0, c_2 = 0, c_3 = 1$ Hence now we write [U] x = c or

$$\begin{bmatrix} D \end{bmatrix} \begin{bmatrix} V \end{bmatrix} \mathbf{x} = c$$

$$\overbrace{\begin{bmatrix} D \end{bmatrix} \begin{bmatrix} V \end{bmatrix}}^{[V]} \qquad \overbrace{c}^{c}$$

$$\overbrace{\begin{bmatrix} d_1 & -d_1 & 0 \\ 0 & d_2 & -d2 \\ 0 & 0 & d_3 \end{bmatrix}}^{c} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \overbrace{\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}}^{c}$$

Solve for *x* by back substitution process \Rightarrow

$$x_3 = \frac{1}{d_3}$$

and from second row, $d_2x_2 - d_2x_3 = 0 \Rightarrow d_2x_2 - \frac{d_2}{d_3} = 0$, hence

$$x_2 = \left(\frac{d_2}{d_3}\right) \frac{1}{d_2}$$
$$= \frac{1}{d_3}$$

and from the first row, we have $x_1d_1 - x_2d_1 = 0$, hence $x_1d_1 = \frac{d_1}{d_3} \Rightarrow x_1 = \frac{1}{d_3}$

$\begin{bmatrix} x_1 \end{bmatrix}$		$\left[\frac{1}{d_3}\right]$
x_2	=	$\frac{1}{d_3}$
x_3		$\left \frac{1}{d_3}\right $

5 Section 1.5, problem 24

Problem: What three elimination matrices E_{21}, E_{31}, E_{32} put *A* into upper triangular form $E_{32}E_{31}E_{21}A = U$? Multiply by $E_{32}^{-1}, E_{31}^{-1}, E_{21}^{-1}$ to factor *A* into *LU* where $L = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}$. Find *L* and *U*

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$$

Solution:

$$\begin{array}{c} A\\ \hline 1 & 0 & 1\\ 2 & 2 & 2\\ 3 & 4 & 5 \end{array} \stackrel{l_{21}=2}{\longrightarrow} \begin{bmatrix} 1 & 0 & 1\\ 0 & 2 & 0\\ 3 & 4 & 5 \end{bmatrix} \stackrel{l_{21}=3}{\Longrightarrow} \begin{bmatrix} 1 & 0 & 1\\ 0 & 2 & 0\\ 0 & 4 & 2 \end{bmatrix} \stackrel{l_{22}=2}{\Longrightarrow} \begin{bmatrix} 1 & 0 & 1\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{bmatrix}$$
Hence $E_{21} = \begin{bmatrix} 1 & 0 & 0\\ -l_{21} & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}, E_{31} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ -l_{31} & 0 & 1 \end{bmatrix}, E_{32} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -l_{32} & 1 \end{bmatrix}$
i.e. $E_{21} = \begin{bmatrix} 1 & 0 & 0\\ -2 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}, E_{31} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ -3 & 0 & 1 \end{bmatrix}, E_{32} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix}$

$$L = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1} = \overbrace{\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 2 & 1 \end{bmatrix}$$

$$= \overbrace{\begin{bmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 2 & 1 \end{bmatrix}$$
Hence $L = \begin{bmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & 0 & 1\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{bmatrix}$

6 Section 1.5, problem 42

Problem: If P_1 and P_2 are permutation matrices, so is P_1P_2 . This still has the rows of *I* in some order. Give examples with $P_1P_2 \neq P_2P_1$, and examples of $P_3P_4 = P_4P_3$

Solution:

A permutation matrix exchanges one row with another. It is used when the pivot is zero. Assume P_1 exchanges row *i* with row *j*. Assume P_2 exchanges row *k* with row *l*. Hence P_1P_2 exchanges row *k* with row *l* and next exchanges row *i* with row *j* of the resulting matrix. For specific examples, Let P_2 exchange second row with third row, and let P_1 exchange second

row with third row. Given
$$A = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix}$$
 hence $P_1 P_2 (A) = P_1 P_2 \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix} = P_1 \begin{bmatrix} R_1 \\ R_3 \\ R_2 \end{bmatrix} = \begin{bmatrix} R_3 \\ R_1 \\ R_2 \end{bmatrix}$
While $P_2 P_1 (A) = P_2 P_1 \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix} = P_2 \begin{bmatrix} R_2 \\ R_1 \\ R_3 \end{bmatrix} = \begin{bmatrix} R_2 \\ R_3 \\ R_1 \end{bmatrix}$

We see that the result is not the same. Hence in this example $P_1P_2 \neq P_2P_1$

Now assume we have $A = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$, and let P_3 be an exchange of the first and second rows, while P_4

be an exchange of the third and 4th row. In this case we will see that $P_3P_4 = P_4P_3$

Hence the rule is as follows : If P_1 exchanges row *i* with row *j*,and P_2 exchanges row *k* with row *l*. Then $P_1P_2 = P_2P_1$ only when *i*, *j*, *k*, *l* are all not equal. (not counting the trivial case when i = j, k = l)

Specific examples

	0	0	1		1	0	0				0	1	0				0	0	1
$P_1 =$	1	0	0	$, P_2 =$	0	0	1	\Rightarrow	P_1	$P_2 =$	1	0	1	$\neq P$	P_2P_1	=	0	0	1
	0	0	1		0	1	0				0	1	0				1	0	0
While	د																		
	0	1	0	0		[1	0	0	0						0	1	0	0	
D _	1	0	0	$0 _{D}$, $P_4 = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$	0	1	0	0	$\Rightarrow P_3$	מו	_	_ תת) _	1	0	0	0	
$P_{3} =$	0	0	1	0 , P_4		0	0	0	1		$P_{3}P_{4} =$	= .	$= P_4 P_3 =$		0	0	0	1	
	0	0	0	1		0	0	1	0	,					0	0	1	0	