HW2, Math 307. CSUF. Spring 2007.

Nasser M. Abbasi
Spring 2007
Compiled on November 5, 2018 at 8:47am [public]

Contents

1 Section 1.5, Problem 2 1
2 Section 1.5, Problem 5 3
3 Section 1.5, Problem 6 4
4 Section 1.5, Problem 9 5

| 5 Section 1.5, problem 24 | 7 |
| :--- | :--- | :--- |

6	Section 1.5, problem 42	8

1 Section 1.5, Problem 2

Problem: What multiple l_{32} of row 2 of A will elimination subtract from row 3 of A ? Use
the factored form $A=\overbrace{\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 4 & 4\end{array}\right]}^{1}]\left[\begin{array}{lll}5 & 7 & 8 \\ 0 & 2 & 3 \\ 0 & 0 & 6\end{array}\right]$ what will be the pivots? will a row exchange be required?

Solution:

$l_{32}=4$, hence elimination will subtract 4 times row 2 from row 3 .
 To find out if a row exchange will be needed or not, first determine A

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 4 & 1
\end{array}\right]\left[\begin{array}{lll}
5 & 7 & 8 \\
0 & 2 & 3 \\
0 & 0 & 6
\end{array}\right]=\left[\begin{array}{ccc}
5 & 7 & 8 \\
10 & 16 & 19 \\
5 & 15 & 26
\end{array}\right]
$$

Carry the first elimination, we get

$$
A=\left[\begin{array}{ccc}
5 & 7 & 8 \\
0 & 2 & 3 \\
0 & 8 & 18
\end{array}\right]
$$

Hence, there would not be a need for a row exchange.

2 Section 1.5, Problem 5

Problem: Factor A into $L U$ and write down the upper triangular system $U x=c$ which appears after elimination for

$$
A x=\left[\begin{array}{lll}
2 & 3 & 3 \\
0 & 5 & 7 \\
6 & 9 & 8
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
5
\end{array}\right]
$$

Answer:
$A=\left[\begin{array}{lll}2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8\end{array}\right] \stackrel{l_{21}=0}{\Rightarrow}\left[\begin{array}{lll}2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8\end{array}\right] \stackrel{l_{31}=3}{\Rightarrow}\left[\begin{array}{ccc}2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & -1\end{array}\right] \stackrel{l_{32}=0}{\Rightarrow}\left[\begin{array}{ccc}2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & -1\end{array}\right]$
Hence

$$
\begin{aligned}
L & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
U=\left[\begin{array}{ccc}
2 & 3 & 3 \\
0 & 5 & 7 \\
0 & 0 & -1
\end{array}\right]
$$

Hence now we can write $A x=b$ as $(L U) x=b$, or $L(U x)=b$, Where $U x=c$ We can solve for c by solving $L c=b$, then we solve for x by solving $U x=c$

3 Section 1.5, Problem 6

Problem: Find E^{2} and E^{8} and E^{-1} if $E=\left[\begin{array}{ll}1 & 0 \\ 6 & 1\end{array}\right]$

Answer:

$E^{2}(A)$ means $E(E(A))$, which means we first subtract -6 times first row from second row of A, then apply E to this result again, subtracting -6 times first row from the second row of the resulting matrix.
Hence the net result is subtracting -12 times first row from the second row of the original matrix A.
Hence in general, we write

$$
E^{n}=\left[\begin{array}{cc}
1 & 0 \\
n \times 6 & 1
\end{array}\right]
$$

Therefore

$$
\begin{aligned}
E^{2} & =\left[\begin{array}{cc}
1 & 0 \\
2 \times 6 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
12 & 1
\end{array}\right] \\
E^{8} & =\left[\begin{array}{cc}
1 & 0 \\
8 \times 6 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
48 & 1
\end{array}\right] \\
E^{-1} & =\left[\begin{array}{cc}
1 & 0 \\
-1 \times 6 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-6 & 1
\end{array}\right]
\end{aligned}
$$

4 Section 1.5, Problem 9

Problem: (a) Under what conditions is the following product non singular?

$$
A=\overbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]}^{D}
$$

(b) Solve the system $A x=b$ starting with $L c=b$

$$
\overbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]}^{L}\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=b
$$

Solution:

(a) Since $U=[D][V]=\left[\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}d_{1} & -d_{1} & 0 \\ 0 & d_{2} & -d 2 \\ 0 & 0 & d_{3}\end{array}\right]$

Hence the elements along the diagonal of U are the pivots. Then if any one of d_{1}, d_{2}, d_{3} is zero, then A will be non-singular
Hence for A to be non singular, then d_{1} and d_{2} and d_{3} must all be nonzero.
(b)

$$
L \overbrace{U x}^{\begin{array}{c}
A x \\
c
\end{array}=b}=b
$$

$L c=b$ where $U x=c$
hence starting with $L c=b$ we write

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Solve for c by back substitution process $\Rightarrow c_{1}=0, c_{2}=0, c_{3}=1$
Hence now we write $[U] x=c$ or

$$
[D][V] x=c
$$

$$
\overbrace{\left[\begin{array}{ccc}
d_{1} & -d_{1} & 0 \\
0 & d_{2} & -d 2 \\
0 & 0 & d_{3}
\end{array}\right]}^{[D][V]}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overbrace{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}^{c}
$$

Solve for x by back substitution process \Rightarrow

$$
x_{3}=\frac{1}{d_{3}}
$$

and from second row, $d_{2} x_{2}-d_{2} x_{3}=0 \Rightarrow d_{2} x_{2}-\frac{d_{2}}{d_{3}}=0$, hence

$$
\begin{aligned}
x_{2} & =\left(\frac{d_{2}}{d_{3}}\right) \frac{1}{d_{2}} \\
& =\frac{1}{d_{3}}
\end{aligned}
$$

and from the first row, we have $x_{1} d_{1}-x_{2} d_{1}=0$, hence $x_{1} d_{1}=\frac{d_{1}}{d_{3}} \Rightarrow x_{1}=\frac{1}{d_{3}}$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{d_{3}} \\
\frac{1}{d_{3}} \\
\frac{1}{d_{3}}
\end{array}\right]
$$

5 Section 1.5, problem 24

Problem: What three elimination matrices E_{21}, E_{31}, E_{32} put A into upper triangular form $E_{32} E_{31} E_{21} A=U$? Multiply by $E_{32}^{-1}, E_{31}^{-1}, E_{21}^{-1}$ to factor A into $L U$ where $L=E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}$. Find L and U

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 2 \\
3 & 4 & 5
\end{array}\right]
$$

Solution:

$\overbrace{\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5\end{array}\right]}^{A} \stackrel{l_{21}=2}{\Rightarrow}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 4 & 5\end{array}\right] \stackrel{l_{31}=3}{\Rightarrow}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & 2\end{array}\right] \stackrel{l_{32}==}{\Rightarrow} \overbrace{\left[\begin{array}{|ccc}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]}^{U}$
Hence $E_{21}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -l_{21} & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{31}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -l_{31} & 0 & 1\end{array}\right], E_{32}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -l_{32} & 1\end{array}\right]$
i.e. $E_{21}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{31}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right], E_{32}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]$

$$
L=E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}=\overbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]}^{E_{21}^{-1}} E_{31}^{-1} \quad E_{32}^{-1} \quad
$$

$$
=\overbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}^{E_{21}^{-1}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]
$$

$$
=\overbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]}^{L}
$$

Hence $L=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right], U=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$

6 Section 1.5, problem 42

Problem: If P_{1} and P_{2} are permutation matrices, so is $P_{1} P_{2}$. This still has the rows of I in some order. Give examples with $P_{1} P_{2} \neq P_{2} P_{1}$, and examples of $P_{3} P_{4}=P_{4} P_{3}$

Solution:

A permutation matrix exchanges one row with another. It is used when the pivot is zero.
Assume P_{1} exchanges row i with row j. Assume P_{2} exchanges row k with row l. Hence $P_{1} P_{2}$ exchanges row k with row l and next exchanges row i with row j of the resulting matrix.
For specific examples, Let P_{2} exchange second row with third row, and let P_{1} exchange second
row with third row. Given $A=\left[\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\right]$ hence $P_{1} P_{2}(A)=P_{1} P_{2}\left[\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\right]=P_{1}\left[\begin{array}{l}R_{1} \\ R_{3} \\ R_{2}\end{array}\right]=\left[\begin{array}{l}R_{3} \\ R_{1} \\ R_{2}\end{array}\right]$
While $P_{2} P_{1}(A)=P_{2} P_{1}\left[\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\right]=P_{2}\left[\begin{array}{l}R_{2} \\ R_{1} \\ R_{3}\end{array}\right]=\left[\begin{array}{l}R_{2} \\ R_{3} \\ R_{1}\end{array}\right]$
We see that the result is not the same. Hence in this example $P_{1} P_{2} \neq P_{2} P_{1}$
Now assume we have $A=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$, and let P_{3} be an exchange of the first and second rows, while P_{4}
be an exchange of the third and 4th row. In this case we will see that $P_{3} P_{4}=P_{4} P_{3}$
Hence the rule is as follows : If P_{1} exchanges row i with row j,and P_{2} exchanges row k with row l. Then $P_{1} P_{2}=P_{2} P_{1}$ only when i, j, k, l are all not equal. (not counting the trivial case when $i=j, k=l$)
Specific examples
$P_{1}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], P_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \Rightarrow P_{1} P_{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \neq P_{2} P_{1}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
While
$P_{3}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], P_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \Rightarrow P_{3} P_{4}=P_{4} P_{3}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

