

HW11, Math 307. CSUF. Spring 2007

Nasser M. Abbasi

spring 2007 Compiled on October 14, 2025 at 5:15pm [public]

Contents

1 Section 5.6, problem 1	1
2 Section 5.6 problem 2	3
3 Section 5.6, problem 5	3
4 Section 5.6 problem 18	3
5 Section 6.1, problem 1	4
6 Section 6.1, problem 8	4
7 Section 6.1, problem 3	5
8 Section 6.1 problem 5	5
9 Section 6.1 problem 17	6
10 Section 6.2, problem 7	6
11 Section 6.2, problem 4	8
12 Section 6.2, problem 6	9
13 Section 6.2 problem 8	10

1 Section 5.6, problem 1

problem: If B is similar to A and C is similar to B , show that C is similar to A . What matrices are similar to I ?

answer:

Since B is similar to A and C is similar to B , then we have the following

$$S_1^{-1}CS_1 = B \tag{1}$$

$$S_2^{-1}BS_2 = A \tag{2}$$

From (1) and (2)

$$\begin{aligned} S_2^{-1}BS_2 &= A \\ S_2^{-1}(S_1^{-1}CS_1)S_2 &= A \\ (S_2^{-1}S_1^{-1})C(S_1S_2) &= A \\ (S_1S_2)^{-1}C(S_1S_2) &= A \end{aligned}$$

Let $S_1S_2 = S_3$, hence the above becomes

$$S_3^{-1}CS_3 = A$$

Hence C is similar to A . Now for the second part. We write

$$\begin{aligned}S^{-1}AS &= I \\S^{-1}A &= S\end{aligned}$$

So A must be I , hence only I is similar to I .

2 Section 5.6 problem 2

problem: Describe in words all the matrices that are similar to $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and find 2 of them
answer:

Let A be the above matrix. The above matrix represents a reflection across the x-axis. Hence Reflection across the y axis will be similar to it. Any multiple of this reflection matrix will also be similar to A .

Since reflection across the y-axis is $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ then this B matrix is similar to A

Then any multiple of B is also similar to A , such as $\begin{pmatrix} -10 & 0 \\ 0 & 10 \end{pmatrix}$ and $\begin{pmatrix} -20 & 0 \\ 0 & 20 \end{pmatrix}$

3 Section 5.6, problem 5

Problem: show (if B is invertible) then BA is similar to AB

answer: we want to show that $M^{-1}(BA)M = AB$

Let $M^{-1}(BA)M = H$, i.e. let $BA \sim H$, and try to show that $H = AB$

$$\begin{aligned} M^{-1}(BA)M &= H \\ (BA)M &= MH \\ BA &= MHM^{-1} \\ A &= B^{-1}MHM^{-1} \\ AB &= B^{-1}MHM^{-1}B \\ AB &= (B^{-1}M)H(M^{-1}B) \\ AB &= (M^{-1}B)^{-1}H(M^{-1}B) \end{aligned}$$

Let $M^{-1}B = Z$, hence the above becomes

$$AB = Z^{-1}HZ$$

Then $H \sim AB$

But we started by stating that $H \sim BA$, and since if $r_1 \sim r_2$ and $r_2 \sim r_3$ then $r_1 \sim r_3$ then we showed $BA \sim AB$.

4 Section 5.6 problem 18

problem: find normal matrix ($NN^H = N^H N$) that is not Hermitian, skew symmetric, unitary, or diagonal. Show that all permutation matrices are normal

answer:

5 Section 6.1, problem 1

problem: quadratic $f = x^2 + 4xy + 2y^2$ has saddle point at origin, despite that its coefficients are positive. Write f as difference of 2 squares

answer: Let $f = (ax + by)^2 - (cx + dy)^2$, hence

$$\begin{aligned} f &= (ax + by)^2 - (cx + dy)^2 \\ &= a^2x^2 + b^2y^2 + 2abxy - (c^2x^2 + d^2y^2 + 2cdxy) \\ &= a^2x^2 + b^2y^2 + 2abxy - c^2x^2 - d^2y^2 - 2cdxy \\ &= x^2(a^2 - c^2) + y^2(b^2 - d^2) + xy(2ab - 2cd) \end{aligned}$$

Hence, compare coefficients, we have $a^2 - c^2 = 1, b^2 - d^2 = 2, 2ab - 2cd = 4$

so $ab - cd = 2$.

Let $c = 1$, then we have

$$a^2 = 2, b^2 - d^2 = 2, 2ab - 2d = 4$$

3 equations in 3 unknown. Solve with computer for speed (running out of time!) I get one of the solutions as

$$d = 0, a = -\sqrt{2}, b = -\sqrt{2}$$

$$\text{So } f = (ax + by)^2 - (cx + dy)^2 = \boxed{(-\sqrt{2}x - \sqrt{2}y)^2 - (x)^2}$$

6 Section 6.1, problem 8

problem: decide for or against PD for these matrices, write out corresponding $f = x^T Ax$

Answer: I use $a > 0$, and $ac > b^2$ test where $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$

$$\begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} \rightarrow 1 > 0, 5 > 9 \text{ no, } \boxed{\text{Not PD}} \rightarrow f = ax^2 = 2bxy + cy^2 \rightarrow \boxed{f = x^2 + 6xy + 3y}$$

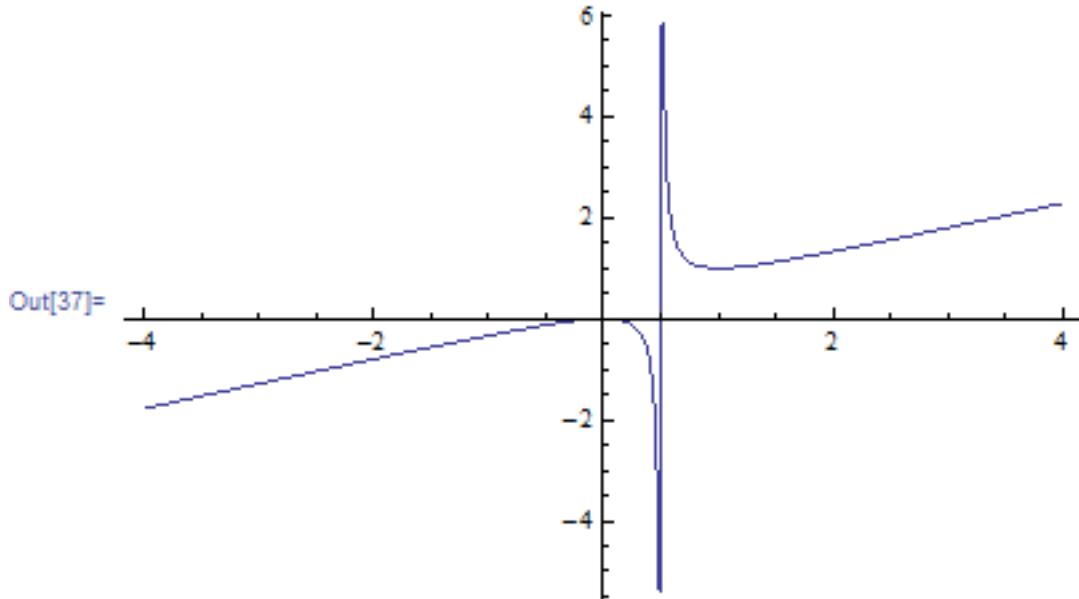
$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \rightarrow a > 0, 1 > 1, \text{no, } \boxed{\text{Not PD}} \rightarrow f = ax^2 = 2bxy + cy^2 \rightarrow \boxed{f = x^2 - 2xy + y}$$

$$\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \rightarrow a > 0, 10 > 9, \text{yes, } \boxed{\text{PD}} \rightarrow f = ax^2 = 2bxy + cy^2 \rightarrow \boxed{f = 2x^2 + 6xy + 5y}$$

$$\begin{pmatrix} -1 & 2 \\ 2 & -8 \end{pmatrix} \rightarrow -1 > 0, \text{no } \boxed{\text{Not PD}} \rightarrow f = ax^2 + 2bxy + cy^2 \rightarrow \boxed{f = -x^2 + 4xy - 8y}$$

For (b) we have $f = x^2 - 2xy + y$, if $y = \frac{x^2}{2x-1}$ then $f = x^2 - 2x \frac{x^2}{2x-1} + \frac{x^2}{2x-1} = 0$, hence I plot this:

```
In[37]:= Plot[x^2 / (-1 + 2 x), {x, -4, 4}]
```



And along the lines shown is $f = 0$

7 Section 6.1, problem 3

problem: if A is 2×2 symmetric matrix, passes test that $a > 0$, $ac > b^2$ solve equation $\det(A - \lambda I) = 0$ and show that eigenvalues are > 0

answer:

Matrix is PD, then

$$\begin{aligned} \det \left(\begin{pmatrix} a & b \\ b & c \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) &= 0 \\ \left| \begin{pmatrix} a - \lambda & b \\ b & c - \lambda \end{pmatrix} \right| &= 0 \\ (a - \lambda)(c - \lambda) - b^2 &= 0 \\ ac - a\lambda - c\lambda + \lambda^2 &= 0 \\ \lambda^2 + \lambda(-a - c) + ac &= 0 \end{aligned}$$

Hence $\lambda_1 = a$, $\lambda_2 = c$

But $a > 0$, so $\lambda_1 > 0$, and given $ac >$ positive quantity b^2 , then $\lambda_2 = c \rightarrow \lambda_2 > 0$

8 Section 6.1 problem 5

(a) For which numbers b is $\begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix}$ PD?

$\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is PD is $a > 0$ and $ac > b^2$

for PD need $ac > b^2$, hence need $9 > b^2$ ie. $b < 3$ and $b > -3$, so $-3 < b < 3$

(b) Factor $A = LDL^T$ when b is in the range above

$$\begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix} \rightarrow l_{21} = b \rightarrow U = \begin{pmatrix} 1 & b \\ 0 & 9 - b^2 \end{pmatrix}$$

$$\text{So } L = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & 9-b^2 \end{pmatrix}, L^T = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$

(c) What is the minimum of $f(x, y) = \frac{1}{2}(x^2 + 2bxy + 9y^2) - y$ when in this range

$$\text{when } f(x, y) = \frac{1}{2}(x^2 + 2bxy + 9y^2) - y = \frac{1}{2}x^2 + bxy + \frac{9}{2}y^2 - y$$

$$\frac{\partial f}{\partial x} = x + by = 0, \frac{\partial f}{\partial y} = bx + 9y - 1 = 0$$

$$\text{Hence } \begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & b \\ 0 & 9-b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\text{Hence } \boxed{y = \frac{1}{9-b^2}}, \text{ and } x + by = 0 \rightarrow \boxed{x = -\frac{b}{9-b^2}}$$

$$\text{So } f(x, y) = \frac{1}{2}(x^2 + 2bxy + 9y^2) - y$$

$$\text{Hence } f(x, y) \rightarrow \frac{1}{2} \left(\left(-\frac{b}{9-b^2} \right)^2 + 2b \left(-\frac{b}{9-b^2} \right) \left(\frac{1}{9-b^2} \right) + 9 \left(\frac{1}{9-b^2} \right)^2 \right) - \left(\frac{1}{9-b^2} \right) = \frac{1}{2(b^2-9)}$$

$$\text{So minimum is } \boxed{\frac{1}{2(b^2-9)}}$$

(d) When $b = 3$, we see that we get $\frac{1}{0} = \infty$ so no minimum

9 Section 6.1 problem 17

Problem: If A has independent columns then $A^T A$ is square and symmetric and invertible. Rewrite $\vec{x}^T A^T A \vec{x}$ to show why it is positive except when $\vec{x} = 0$, then $A^T A$ is PD

answer: $\vec{x}^T (A^T A) \vec{x} = (A\vec{x})^T A\vec{x}$

Let $A\vec{x} = \vec{b}$, then the above is $\vec{b}^T \vec{b} = \|\vec{b}\|^2$, which is positive quantity except when $\vec{b} = \vec{0}$, which occurs when $A\vec{x} = \vec{b} = \vec{0}$ which happens only when $\vec{x} = \vec{0}$, since A is invertible.

Hence $A^T A$ is positive definite except when $\vec{x} = 0$

10 Section 6.2, problem 7

problem: If $A = Q\Lambda Q^T$ is P.D. then $R = Q\sqrt{\Lambda}Q^T$ is its S.P.D. square root. Why does R have positive eigenvalues? Compute R and verify $R^2 = A$ for $A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$, $A = \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix}$

answer:

$$\text{For } A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$$

Given R is P.D. (problem said so), Hence $\vec{x}^T R \vec{x} > 0$ for all $\vec{x} \neq 0$

Now (assuming in all that follows that $x \neq 0$)

$$\begin{aligned} R\vec{x} &= \lambda\vec{x} \\ \vec{x}^T R \vec{x} &= x^T \lambda \vec{x} \\ \vec{x}^T R \vec{x} &= \lambda \|\vec{x}\|^2 \end{aligned}$$

Since $\vec{x}^T R \vec{x} > 0$ then $\lambda \|\vec{x}\|^2 > 0$, and since $\|\vec{x}\|^2 > 0$ hence $\boxed{\lambda > 0}$

To compute R we first need to find Q .

$$A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} \rightarrow l_{21} = \frac{6}{10} \rightarrow \begin{pmatrix} 10 & 6 \\ 6 - \frac{6}{10} \times 10 & 10 - \frac{6}{10} \times 6 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & 6 \\ 0 & \frac{32}{5} \end{pmatrix}$$

$$\text{Hence } L = \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix}, U = \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}$$

Then

$$\begin{aligned} LDU &= \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & \frac{6}{10} \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix}^T \end{aligned}$$

$$\text{Hence we see that } Q = L = \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix}, \Lambda = D = \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}, Q^T = L^T$$

Since A is SPD, then $A = R^T R$ and $A = Q \Lambda Q^T$, hence we can take $R = \sqrt{\Lambda} Q^T$

$$\begin{aligned} R &= \sqrt{\Lambda} Q^T = \sqrt{\begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}} \begin{pmatrix} 1 & \frac{6}{10} \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \sqrt{10} & 0 \\ 0 & \sqrt{\frac{32}{5}} \end{pmatrix} \begin{pmatrix} 1 & \frac{6}{10} \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \sqrt{10} & \frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \end{aligned}$$

Verify that $R^T R = A$

$$\begin{aligned} R^T R &= \begin{pmatrix} \sqrt{10} & 0 \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \begin{pmatrix} \sqrt{10} & \frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \\ &= \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} \end{aligned}$$

verified oK.

$$\text{Now do the same for } A = \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix}$$

$$A = \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix} \rightarrow l_{21} = \frac{-6}{10} \rightarrow U = \begin{pmatrix} 10 & -6 \\ -6 - \frac{-6}{10} \times 10 & 10 - \frac{-6}{10} \times -6 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & -6 \\ 0 & \frac{32}{5} \end{pmatrix} :$$

$$\text{Hence } L = \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}, U = \begin{pmatrix} 10 & -6 \\ 0 & \frac{32}{5} \end{pmatrix}$$

Then

$$\begin{aligned} LDU &= \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}^T \end{aligned}$$

$$\text{Hence we see that } Q = L = \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}, \Lambda = D = \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}, Q^T = L^T$$

Then now we find R

Since A is SPD, then $A = R^T R$ and $A = Q\Lambda Q^T$, hence we can take $R = \sqrt{\Lambda}Q^T$

$$\begin{aligned} R &= \sqrt{\Lambda}Q^T = \sqrt{\begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \sqrt{10} & 0 \\ 0 & \sqrt{\frac{32}{5}} \end{pmatrix} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \sqrt{10} & -\frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \end{aligned}$$

Verify that $R^T R = A$

$$\begin{aligned} R^T R &= \begin{pmatrix} \sqrt{10} & 0 \\ -\frac{3}{5}\sqrt{2}\sqrt{5} & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \begin{pmatrix} \sqrt{10} & -\frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \\ &= \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix} \end{aligned}$$

verified oK.

11 Section 6.2, problem 4

Show from the eigenvalues that if A is P.D. so is A^2 and so is A^{-1}

answer:

Given A is PD. Hence Eigenvalues of A are positive.

Let eigenvalue of A be λ_A

Let $B = A^2$

Let eigenvalue of B be λ_B

We need to show that $\lambda_B > 0$

Now

$$\begin{aligned} Bx &= \lambda_B x \\ A^2 x &= \lambda_B x \\ AAx &= \lambda_B x \\ A\lambda_A x &= \lambda_B x \\ \lambda_A A x &= \lambda_B x \\ \lambda_A \lambda_A x &= \lambda_B x \end{aligned}$$

From the last statement above we can now say

$$\lambda_A^2 = \lambda_B$$

Hence $\lambda_B > 0$, hence by theorem 6B which says that if all eigenvalues are positive then the matrix is PD, then in this case the matrix B which is A^2 is PD. QED

Now for A^{-1}

$$Ax = \lambda_A x$$

pre multiply both sides by A^{-1}

$$\begin{aligned}\overbrace{A^{-1}Ax}^I &= A^{-1}\lambda_A x \\ x &= A^{-1}\lambda_A x \\ \frac{1}{\lambda_A}x &= A^{-1}x\end{aligned}$$

i.e.

$$A^{-1}x = \frac{1}{\lambda_A}x$$

Hence eigenvalue of A^{-1} is $\frac{1}{\lambda_A}$. And since $\lambda_A > 0$, then so is $\frac{1}{\lambda_A}$, and by theorem 6B again, since all eigenvalues are positive then A^{-1} is P.D.

12 Section 6.2, problem 6

From the pivots, eigenvalues, eigenvectors of $A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$, write A as $R^T R$ in 3 ways

1. $(L\sqrt{D})(\sqrt{D}L^T)$
2. $(Q\sqrt{\Lambda})(\sqrt{\Lambda}Q^T)$
3. $(Q\sqrt{\Lambda}Q^T)(Q\sqrt{\Lambda}Q^T)$

Answer:

First find if A is PD or not. Since this is a 2 by 2 matrix, a simple test is to look at the quantity $a^2 - bc$ and if it is positive, and if a is also positive, then the matrix is PD

$$\begin{aligned}A &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ a &= 5 > 0 \\ a^2 - bc &= 25 - 16 \\ &= 9 > 0\end{aligned}$$

hence A is P.D.

Then it can be written as $R^T R$ where R is full rank square matrix.

1) Since A is symmetric P.D., then it has choleskly decomposition CC^T where $C = L\sqrt{D}$, and $C^T = \sqrt{D}L^T$ (the pivots are positive in the D matrix diagonal, so we can take their square root)

Then we write $A = R^T R = (L\sqrt{D})(\sqrt{D}L^T)$ where $R = (\sqrt{D}L^T)$

$$\begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \rightarrow l_{21} = \frac{4}{5} \rightarrow U = \begin{pmatrix} 5 & 4 \\ 0 & 5 - \frac{4}{5} \times 4 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 0 & \frac{9}{5} \end{pmatrix}$$

$$\text{Hence } L = \begin{pmatrix} 1 & 0 \\ \frac{4}{5} & 1 \end{pmatrix}, U = \begin{pmatrix} 5 & 4 \\ 0 & \frac{9}{5} \end{pmatrix} \rightarrow LDU = \begin{pmatrix} 1 & 0 \\ \frac{4}{5} & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & \frac{9}{5} \end{pmatrix} \begin{pmatrix} 1 & \frac{4}{5} \\ 0 & 1 \end{pmatrix}$$

$$\text{Hence } R = \sqrt{\begin{pmatrix} 5 & 0 \\ 0 & \frac{9}{5} \end{pmatrix}} \begin{pmatrix} 1 & \frac{4}{5} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{\frac{9}{5}} \end{pmatrix} \begin{pmatrix} 1 & \frac{4}{5} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \sqrt{5} & \frac{4}{5}\sqrt{5} \\ 0 & \frac{3}{5}\sqrt{5} \end{pmatrix}$$

Hence

$$A = \overbrace{\begin{pmatrix} \sqrt{5} & 0 \\ \frac{4}{5}\sqrt{5} & \frac{3}{5}\sqrt{5} \end{pmatrix}}^{L\sqrt{D}} \overbrace{\begin{pmatrix} \sqrt{5} & \frac{4}{5}\sqrt{5} \\ 0 & \frac{3}{5}\sqrt{5} \end{pmatrix}}^{\sqrt{D}L^T}$$

2) From $A = Q\Lambda Q^T$ where Q is the matrix which contains as its columns the normalized eigenvectors of A and Λ contains in its diagonal the eigenvalues of A . First start by finding eigenvalues and eigenvectors of A

$$\begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \rightarrow \text{eigenvectors: } \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\} \leftrightarrow 1, \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \leftrightarrow 9$$

$$\text{Hence } Q = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow \text{normalize columns} \rightarrow Q = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}$$

So, verify first that the above is correct:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} = \frac{1}{2} \times \begin{pmatrix} 10 & 8 \\ 8 & 10 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$$

$$\text{Correct. So we write } R = \left(\sqrt{\Lambda} Q^T \right) = \sqrt{\begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} = \begin{pmatrix} -1 & 1 \\ 3 & 3 \end{pmatrix} \frac{1}{\sqrt{2}}$$

Hence

$$A = R^T R$$

$$= \overbrace{\frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 3 \\ 1 & 3 \end{pmatrix}}^{R^T = Q\sqrt{\Lambda}} \overbrace{\begin{pmatrix} -1 & 1 \\ 3 & 3 \end{pmatrix} \frac{1}{\sqrt{2}}}^{R = \sqrt{\Lambda}Q^T}$$

$$3) \text{ now find } R = \left(Q\sqrt{\Lambda}Q^T \right)$$

$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \sqrt{\begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}} \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Hence

$$A = R^T R$$

$$= \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^T \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$= \overbrace{\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}}^{R^T = Q\sqrt{\Lambda}Q^T} \overbrace{\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}}^{R = Q\sqrt{\Lambda}Q^T}$$

13 Section 6.2 problem 8

problem: if A is SPD and C is nonsingular, prove that $B = C^T AC$ is also SPD

solution: Since A is SPD, then it has positive eigenvalues.

Since B is similar to A (given), then B has the same eigenvalues as A , Hence B also has all its eigenvalues positive.

Hence by theorem 6B, B is symmetric positive definite.