
HW 4
EGEE 518 Digital Signal Processing I

Fall 2008
California State University, Fullerton

Nasser M. Abbasi

May 29, 2019 Compiled on May 29, 2019 at 5:29pm

Contents
1 my solution, First Problem 2

1.1 Analysis . 2
1.2 Computation and Results . 2
1.3 Conclusion . 3

2 my solution, second problem 3

3 key solution 4

1

mailto:nma@12000.org

2

1 my solution, First Problem
Looking at 2 floating points problems. The first to illustrate the problem when adding
large number to small number. The second to illustrate the problem of subtracting 2
numbers close to each others in magnitude.

Investigate floating point errors generated by the following sum
N∑

n=1

1
n2 , compare the result

to that due summation in forward and in reverse directions.

1.1 Analysis
When performing the sum in the forward direction, as in 1 + 1

4 + 1
16 + · · · + 1

N2 we
observe that very quickly into the sum, we will be adding relatively large quantity to
a very small quantity. Adding a large number of a very small number leads to loss
of digits as was discussed in last lecture. However, we adding in reverse order, as in

1
N2 + 1

(N−1)2 + 1
(N−2)2 + · · · + 1, we see that we will be adding, each time, 2 quantities that

are relatively close to each other in magnitude. This reduces floating point errors.

The following code and results generated confirms the above. N = 20, 000 was used. The
computation was forced to be in single precision to be able to better illustrate the problem.

1.2 Computation and Results
This program prints the result of the sum in the forward direction

1 PROGRAM main
2 IMPLICIT NONE
3 REAL :: s
4 INTEGER :: n,MAX
5
6 s = 0.0;
7 MAX = 20000;
8 DO n = 1,MAX
9 s = s + (1./n**2);

10 END DO
11
12 WRITE(*,1) s
13 1 format('sum = ', F8.6)
14 END PROGRAM main
15
16
17 sum = 1.644725

now compare the above result with that when performing the sum in the reverse direction
1 PROGRAM main
2 IMPLICIT NONE
3 REAL :: s
4 INTEGER :: n,MAX
5
6 s = 0.0;
7 MAX = 20000;
8 DO n = MAX,1,-1
9 s = s + (1./n**2);

10 END DO
11
12 WRITE(*,1) s
13 1 format('sum = ', F8.6)
14 END PROGRAM main
15
16 sum = 1.644884

The result from the reverse direction sum is the more accurate result. To proof this, we
can use double precision and will see that the sum resulting from double precision agrees

3

with the digits from the above result when using reverse direction sum
1 PROGRAM main
2 IMPLICIT NONE
3 DOUBLE PRECISION :: s
4 INTEGER :: n,MAX
5
6 s = 0.0;
7 MAX = 20000;
8 DO n = 1,MAX
9 s = s + (1./n**2);

10 END DO
11
12 WRITE(*,1) s
13 1 format('sum = ', F18.16)
14 END PROGRAM main
15
16 sum = 1.6448840680982091

1.3 Conclusion
In floating point arithmetic, avoid adding a large number to a very small number as
this results in loss of digits of the small number. The above trick illustrate one way to
accomplish this and still perform the required computation.

In the above, there was 1.644884 − 1.644725 = 1. 59 × 10−4 error in the sum when it was
done in the forward direction as compared to the reverse direction (for 20, 000 steps).In
relative term, this error is 1.644884−1.644725

1.644884 100 which is about 0.01% relative error.

2 my solution, second problem
Investigate the problem when subtracting 2 numbers which are close in magnitude. If
a, b are 2 numbers close to each others, then instead of doing a − b do the following
(a − b) (a+b)

(a+b) = a2−b2

a+b
. The following program attempts to illustrate this by comparing

result from a − b to that from a2−b2

a+b
for 2 numbers close to each others.

1 PROGRAM main
2 IMPLICIT NONE
3 DOUBLE PRECISION :: a,b,diff
4
5 a = 32.000008;
6 b = 32.000002;
7 diff = a-b;
8 WRITE(*,1), diff
9 diff = (a**2-b**2)/(a+b);

10 WRITE(*,1), diff
11 1 format('diff = ', F18.16)
12 END PROGRAM main
13
14 diff = 0.0000038146972656
15 diff = 0.0000038146972656

I need to look more into this as I am not getting the right 2 numbers to show this problem.

4

3 key solution

5

6

7

8

9

10

11

	my solution, First Problem
	Analysis
	Computation and Results
	Conclusion

	my solution, second problem
	key solution

