HW 2

EGEE 518 Digital Signal Processing I Fall 2008
 California State University, Fullerton

Nasser M. Abbasi

Contents

1 Problem 1 2
1.1 Solution . 2

2 Problem 2 2
3 graded HW2 4

1 Problem 1

Compute an appropriate sampling rate and DFT size $N=2^{v}$ to analyze a single with no significant frequency content above $10 k h z$ and with a minimum resolution of 100 hz

1.1 Solution

From Nyquist sampling theory we obtain that sampling frequency is

$$
f_{s}=20000 h z
$$

Now, the frequency resolution is given by

$$
\Delta f=\frac{f_{s}}{N}
$$

where N is the number of FFT samples. Now since the minimum Δf is 100 hz then we write

$$
\frac{f_{s}}{N}=\Delta f \geq 100
$$

or

$$
\frac{f_{s}}{N} \geq 100
$$

Hence

$$
\begin{aligned}
N & \leq \frac{20,000}{100} \\
& \leq 200 \text { samples }
\end{aligned}
$$

Therefore, we need the closest N below 200 which is power of 2 , and hence

$$
N=128
$$

2 Problem 2

sketch the locus of points obtained using Chirp Z Transform in the Z plane for $M=$ $8, W_{0}=2, \phi_{0}=\frac{\pi}{16}, A_{0}=2, \theta_{0}=\frac{\pi}{4}$

Answer:

Chirp Z transform is defined as

$$
\begin{equation*}
X\left(z_{k}\right)=\sum_{n=0}^{N-1} x[n] z_{k}^{-n} \quad k=0,1, \cdots, M-1 \tag{1}
\end{equation*}
$$

Where

$$
z_{k}=A W^{-k}
$$

and $A=A_{0} e^{j \theta_{0}}$ and $W=W_{0} e^{-j \phi_{0}}$
Hence

$$
\begin{aligned}
z_{k} & =\left(A_{0} e^{j \theta_{0}}\right)\left(W_{0} e^{-j \phi_{0}}\right)^{-k} \\
& =\frac{A_{0}}{W_{0}^{k}} e^{j\left(\theta_{0}+k \phi_{0}\right)}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|z_{k}\right| & =\frac{A_{0}}{W_{0}^{k}} \\
& =\frac{2}{2^{k}}
\end{aligned}
$$

and

$$
\text { phase of } \begin{aligned}
z_{k} & =\theta_{0}+k \phi_{0} \\
& =\frac{\pi}{4}+k \frac{\pi}{16}
\end{aligned}
$$

Hence

k	$\left\|z_{k}\right\|=\frac{2}{2^{k}}$	phase of $z_{k}=\frac{\pi}{4}+k \frac{\pi}{16}$	phase of z_{k} in degrees
0	$\frac{2}{1}=2$	$\frac{\pi}{4}+0 \times \frac{\pi}{16}=\frac{\pi}{4}$	45
1	$\frac{2}{2}=1$	$\frac{\pi}{4}+1 \times \frac{\pi}{16}=\frac{5}{16} \pi$	56.25
2	$\frac{2}{4}=\frac{1}{2}$	$\frac{\pi}{4}+2 \times \frac{\pi}{16}=\frac{3}{8} \pi$	67.5
3	$\frac{2}{8}=\frac{1}{4}$	$\frac{\pi}{4}+3 \times \frac{\pi}{16}=\frac{7}{16} \pi$	78.75
4	$\frac{2}{16}=\frac{1}{8}$	$\frac{\pi}{4}+4 \times \frac{\pi}{16}=\frac{1}{2} \pi$	90
5	$\frac{2}{32}=\frac{1}{16}$	$\frac{\pi}{4}+5 \times \frac{\pi}{16}=\frac{9}{16} \pi$	101.25
6	$\frac{2}{64}=\frac{1}{32}$	$\frac{\pi}{4}+6 \times \frac{\pi}{16}=\frac{5}{8} \pi$	112.5
7	$\frac{2}{128}=\frac{1}{64}$	$\frac{\pi}{4}+7 \times \frac{\pi}{16}=\frac{11}{16} \pi$	123.75

Figure 1: plot of the above contour

This is Mathematica notebook used to make plot of the Chirp Z transform contour. This is my graded HW2

3 graded HW2

(4W2, EGEE 518. CSUF, Fall 2008

1 Problem 1

Compute an appropriate sampling rate and DFT size $N=2^{v}$ to analyze a single with no significant frequency content above 10 khz and with a minimum resolution of 100 hz

Solution

From Nyquist sampling theory we obtain that sampling frequency is

$$
f_{s}=20000 \mathrm{hz}
$$

Now, the frequency resolution is given by

$$
\Delta f=\frac{f_{s}}{N}
$$

where N is the number of FFT samples. Now since the minimum Δf is $100 h z$ then we write

$$
\frac{f_{s}}{N}=\Delta f \geq 100
$$

or

$$
\frac{f_{s}}{N} \geq 100
$$

Hence

$$
\begin{aligned}
& \nu \leq \frac{20,000}{100} \\
& \leq \leq 200 \text { samples }
\end{aligned}
$$

Therefore, we need the closest N below 200 which is power of 2 , and hence

$$
N=128 \quad \sum \gamma
$$

2 Problem 2

sketch the locus of points obtained using Chirp Z Transform in the Z plane for $M=8, W_{0}=2, \phi_{0}=$ $\frac{\pi}{16}, A_{0}=2, \theta_{0}=\frac{\pi}{4}$
Answer:
Chirp Z transform is defined as

$$
\begin{equation*}
X\left(z_{k}\right)=\sum_{n=0}^{N-1} x[n] z_{k}^{-n} \quad k=0,1, \cdots, M-1 \tag{1}
\end{equation*}
$$

Where

$$
z_{k}=A W^{-k}
$$

and $A=A_{0} e^{j \theta_{0}}$ and $W=W_{0} e^{-j \phi_{0}}$
Hence

$$
z_{k}=\left(A_{0} e^{j \theta_{0}}\right)\left(W_{0} e^{-j \phi_{0}}\right)^{-k}
$$

$$
=\frac{A_{0}}{W_{0}^{k}} e^{j\left(\theta_{0}+k \phi_{0}\right)}
$$

Hence

$$
\begin{aligned}
\left|z_{k}\right| & =\frac{A_{0}}{W_{0}^{k}} \\
& =\frac{2}{2^{k}}
\end{aligned}
$$

and

$$
\text { phase of } \begin{aligned}
z_{k} & =\theta_{0}+k \phi_{0} \\
& =\frac{\pi}{4}+k \frac{\pi}{16}
\end{aligned}
$$

Hence

k	$\left\|z_{k}\right\|=\frac{2}{2 k}$	phase of $z_{k}=\frac{\pi}{4}+k \frac{\pi}{16}$	phase of z_{k} in degrees
0	$\frac{2}{1}=2$	$\frac{\pi}{4}+0 \times \frac{\pi}{16}=\frac{\pi}{4}$	45
1	$\frac{2}{2}=1$	$\frac{\pi}{4}+1 \times \frac{\pi}{16}=\frac{5}{16} \pi$	56.25
2	$\frac{2}{4}=\frac{1}{2}$	$\frac{\pi}{4}+2 \times \frac{\pi}{16}=\frac{3}{8} \pi$	67.5
3	$\frac{2}{8}=\frac{1}{4}$	$\frac{\pi}{4}+3 \times \frac{\pi}{16}=\frac{7}{16} \pi$	78.75
4	$\frac{2}{16}=\frac{1}{8}$	$\frac{\pi}{4}+4 \times \frac{\pi}{16}=\frac{\pi}{2} \pi$	90
5	$\frac{2}{32}=\frac{1}{16}$	$\frac{\pi}{4}+5 \times \frac{\pi}{16}=\frac{9}{16} \pi$	101.25
6	$\frac{2}{64}=\frac{1}{32}$	$\frac{\pi}{4}+6 \times \frac{\pi}{16}=\frac{5}{8} \pi$	112.5
7	$\frac{2}{128}=\frac{1}{64}$	$\frac{\pi}{4}+7 \times \frac{\pi}{16}=\frac{11}{16} \pi$	123.75

Below is plot of the above contour

```
\operatorname{ln}[579]= =[%_,WO_,AO_, QO_, QO_]:= AOEXP[I OO] (WOEXP[-I pO]) -
    W0 = 2;
    A0 = 2;
    e0= Pi/4;
    \phi0=Pi/16;
    m=8;
    zValues= Table[z[k, W0, A0, 00, ф0],{k, 0,m-1}]
    arg=Arg[zValues]
    abs=Abs[zValues]
    data = Transpose[{arg, abs}]
    p1 = ListPolarPlot[data, AxesOrigin }->{0,0
            PlotRange }->\mathrm{ All, Joined }->\mathrm{ False,
            PlotMarkers - {Automatic, Automatic}];
    p2 = ListPolarPlot[data, AxesOrigin }->{0,0
            PlotRange }->\mathrm{ All, Joined }->\mathrm{ True];
    p3 = PolarPlot[1,{t,0,2Pi}]
    Show[p1, p2, p3]
Dut[586|={\frac{\pi}{4},\frac{5\pi}{16},\frac{3\pi}{8},\frac{7\pi}{16},\frac{7}{2},\frac{9\pi}{16},\frac{5\pi}{8},\frac{11\pi}{16}}
```


