96 Representation Of Signals And Systems

2.19 m new Book.

(a) Find the Fourier transform of the half-cosine pulse shown in Fig. P2.4(a).

(b) Apply the time-shifting property to the result obtained in part (a) to evaluate the spectrum of the half-sine pulse shown in Fig. P2.4(b).

(c) What is the spectrum of a half-sine pulse having a duration equal to aT?

(d) What is the spectrum of the negative half-sine pulse shown in Fig. P2.4(c)?

(e) Find the spectrum of the single sine pulse shown in Fig. P2.4(d).

B(H)=A W (些). rect (辛)

(Chapt 2)

due Thursday.

Figure P2.4

Prob. # 2 . 2

GIVEN G(f) = exp(-t) Sim(211fet) ult). Find

The Fourier Transform of glt): F.T[g(t)] = ?

32.20 in Back

Any function g(t) can be split unambiguously into an even part and an odd part.

Problem - A as shown by

$$g(t) = g_{\rho}(t) + g_{\rho}(t)$$

$$g(t) = g_{c}(t) + g_{d}(t)$$
 => $g(t) = g_{c}(t) + g_{c}(t)$

The even part is defined by

$$g_{\ell}(t) = \frac{1}{2} [g(t) + g(-t)]$$

and the odd part is defined by

$$g_{\mathbf{g}}(t) = \frac{1}{2} [g(t) - g(-t)]$$

(a) Evaluate the even and odd parts of a rectangular pulse defined by

$$g(t) = A \operatorname{rect}\left(\frac{t}{T} - \frac{1}{2}\right)$$

(b) What are the Fourier transforms of these two parts of the pulse?

(That in find F. T. of gelt) on golf)

2.4

Problem Determine the inverse Fourier transform of the frequency function G(f) defined by the amplitude and phase spectra shown in Fig. P

Figure P2.5