PIC

(a) Consider

pict

But since U ⊥ V  then the above reduces to

pict

Hence

pict

Hence

|---------------------------------------|
|U  ˜ χ2 with (n −  1) degrees of freedom |
----------------------------------------

(b)

pict

Now use the moment generation function to find the expectations of U  and V.

Need to find M  ′X (t)  where                    m-
MX  (t) = (1 − 2t)− 2   where m  is the degree of freedom

pict

Hence

M  ′(t) = m (1 − 2t)− m2 −1
(1)

at t = 0  the above becomes

|------------|
M-X′(0)-=-m---

For U  , we found that m =  (n −  1)  , hence

|----------------|
-E-(U-) =-(n −-1)|

and for V  we are told its degree of freedom is m  = 1  hence

|----------|
E-(V-)-=-1--

Therefore

E (W  ) = (n − 1 ) + 1

Hence

|-----------|
-E-(W-)-=-n-|

Now

pict

But U ⊥  V  so the above becomes

|-------------(---)-----(---)---------------------|
|V ar(W ) = E  U 2  + E  V 2 +  2E (U )E (V ) − n2|
--------------------------------------------------

Lets find     2
E (Z  )  for a Z  chi square random variable of degree of freedom m  . We already found    ′
 M  (t)  above in (1)

pict

At t = 0

               (         )
E (Z2 ) = − 2m   − m-−  1
                   2

Hence

   ( 2)
E   Z   = m  (m  + 2)
(2)

Hence using (2) above, we now can find E (U 2)  and E  (V 2)

For U  it has degree of freedom m =  (n − 1)  , hence

pict

For V  it has degree of freedom m =  1  , hence

pict

Hence

pict

Hence

|--------------|
V-ar(W--) =-2n-|

PIC

       λxe−λ-
X (x) ˜  x!

Moment generating function for a Poisson r.v. or parameter λ  is (from page 144)

|-----------------|
|           −λ etλ |
-MX--(t) =-e--e---

Now

pict

Hence

            (        )
M  ′(t) = E   √xe √xt
   Y

and

pict

Therefore

M ′′(0) = E (x)
  Y

But

pict

Hence

M ′′(0 ) = λ
  Y

But

  ′′        (  2)
M Y (0) = E  Y

then

|--(---)----|
|E  Y 2 =  λ|
-------------

Now to find V ar(Y )

             (   )          2
V ar(Y ) = E  Y 2 −  [E (Y )]

Where

pict

So we need to find    √ --
E  ( x )  to complete the solution.

pict

Hence

pict

Hence

|-------------(--------------)|
|V ar(Y ) ≃ λ  1 − λe−0.58578λ  |
------------------------------

PIC

(a)

pict

Now

E (X ) = E (E (X |Y ))

But E (X |Y )  is expectation of a Poisson r.v. with parameter  2
Y   . But we know that mean of a poisson r.v. with parameter λ  is λ  . Hence              2
E (X |Y ) = Y   since we are told   2
Y   is the parameter.

Hence

           (   )
E (X ) = E  Y 2

But the moment generating function for Gamma is          (-λ-) α
MY  (t) =  λ− t  (book page 145 second edition).

Hence E (Y 2) = M ′Y′(0) = α(αλ+21)   (page 145)

Hence

|-------------------|
|         α (α + 1) |
|E (X ) = -----2--- |
--------------λ-----

(b)

             (  2)          2
Var (X ) = E  X    − [E  (X  )]
(1)

But

E (X2 ) = E  (E (X2 |Y ))

But E (X2 |Y)  is E (X2 )  of a poisson r.v. with parameter Y 2   . But we know that E (X2 )  of a poisson r.v. with parameter λ  is λ2 + λ  (book page 144 example A). Hence since we are told Y 2   is the parameter, then

pict

Hence

pict

But using mgf for Gamma distribution we can find E (Y 4)  .

pict

Then

          α (6 + 11α + 6α2 + α3 )
M ′′Y′′(0) = ------------4----------
                    λ

Therefore

  (   )   α (6 + 11α + 6α2 + α3 )   α (α +  1)
E  X2  =  ------------4----------+  ----2----
                    λ                  λ

Then (1) becomes

pict

Then

|-----------------------------------|
|           α         (  2         )|
|Var (X ) = λ4-(α + 1) λ  + 4α +  6 |
-------------------------------------