A Solution Manual For

Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010

Nasser M. Abbasi

May 15, 2024

Contents

1 Chapter 1. Introduction. Exercises page 14
2 Chapter 1. Introduction. Exercises 1.3, page $27 \quad 240$
3 Chapter 2. The Initial Value Problem. Exercises 2.1, page $40 \quad 504$
4 Chapter 2. The Initial Value Problem. Exercises 2.2, page 53 671
5 Chapter 2. The Initial Value Problem. Exercises 2.3.1, page $57 \quad 934$
6 Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
7 Chapter 2. The Initial Value Problem. Exercises 2.3.3, page $71 \quad 1139$
8 Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 1151322
9 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186

1820
10 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210

2057
11 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218

2133
12 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221

2176
13 Chapter 5. The Laplace Transform Method. Exercises 5.2, page 24203
14 Chapter 5. The Laplace Transform Method. Exercises 5.3, page 252277
15 Chapter 5. The Laplace Transform Method. Exercises 5.4, page 262323
16 Chapter 5. The Laplace Transform Method. Exercises 5.5, page 272374
17 Chapter 7. Systems of First-Order Differential Equations. Exercises page 329

18 Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page 362
19 Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
2536
20 Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
1 Chapter 1. Introduction. Exercises page 14
1.1 problem 15 4
1.2 problem 16 27]
1.3 problem 17 41
1.4 problem 18 61
1.5 problem 19 69
1.6 problem 20 83
1.7 problem 21 86
1.8 problem 22 100
1.9 problem 23 103
1.10 problem 24 118
1.11 problem 25 121
1.12 problem 26 138
1.13 problem 27 141
1.14 problem 28 144
1.15 problem 29 152
1.16 problem 30 161
1.17 problem 31 166
1.18 problem 32 181
1.19 problem 33 192
1.20 problem 34 213
1.21 problem 35 229
1.22 problem 36 232
1.23 problem 37 237

1.1 problem 15

1.1.1 Solving as second order euler ode ode 5
1.1.2 Solving as second order change of variable on x method 2 ode . 6
1.1.3 Solving as second order change of variable on x method 1 ode . 8
1.1.4 Solving as second order change of variable on y method 2 ode . 10
1.1.5 Solving as second order integrable as is ode 12
$\begin{array}{ll}\text { 1.1.6 } & \text { Solving as second order ode non constant coeff transformation } \\ & \text { on B ode . } 14\end{array}$
$\begin{array}{ll}\text { 1.1.7 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 16\end{array}$
1.1.8 Solving using Kovacic algorithm 17
1.1.9 Solving as exact linear second order ode ode 22
1.1.10 Maple step by step solution . 24

Internal problem ID [12574]
Internal file name [OUTPUT/11226_Wednesday_October_18_2023_10_03_50_PM_46704358/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 15 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on__x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second__order_change_of_cvariable_on_y_method_2", "second__order_ode__non_constant__coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

1.1.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-1=0
$$

Or

$$
\begin{equation*}
r^{2}-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Verified OK.

1.1.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(1) \tau}+c_{2} e^{(-1) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\tau}+c_{2} \mathrm{e}^{-\tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{2}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Verified OK.

1.1.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Verified OK.

1.1.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
$$

Verified OK.

1.1.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+y^{\prime} x-y\right) d x=0 \\
x^{2} y^{\prime}-y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

1.1.6 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=x \\
& C=-1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x^{3} v^{\prime \prime}+\left(3 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x^{2}\left(u^{\prime}(x) x+3 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(x)\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
$$

Verified OK.

1.1.7 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+y^{\prime} x-y\right) d x=0 \\
x^{2} y^{\prime}-y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

1.1.8 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 1: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2}
$$

Verified OK.

1.1.9 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=x \\
& r(x)=-1 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =1
\end{aligned}
$$

Therefore (1) becomes

$$
2-(1)+(-1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}-y x=c_{1}
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}-y x=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

1.1.10 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+y^{\prime} x-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}+y^{\prime} x-y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{d}{d t} y(t)$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+\frac{d}{d t} y(t)-y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

- Simplify

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(x^2*diff (y (x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2} x^{2}+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 16
DSolve[x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{c_{1}}{x}+c_{2} x
$$

1.2 problem 16

1.2.1 Solving as separable ode . 27
1.2.2 Solving as linear ode . 29
1.2.3 Solving as homogeneousTypeD2 ode 30
1.2.4 Solving as first order ode lie symmetry lookup ode 31
1.2.5 Solving as exact ode . 35
1.2.6 Maple step by step solution . 39

Internal problem ID [12575]
Internal file name [OUTPUT/11227_Wednesday_October_18_2023_10_03_52_PM_6299146/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} x-y=0
$$

1.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

1.2.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 2: Slope field plot
Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

1.2.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) x-u(x) x=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =c_{2} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x \tag{1}
\end{equation*}
$$

Figure 3: Slope field plot

Verification of solutions

$$
y=c_{2} x
$$

Verified OK.

1.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 3: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow]{ }$
\cdots		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$
	$R=x$ S	
	$=\frac{y}{x}$	$\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow-R_{0 \rightarrow \rightarrow}}$
多多多夝早新：		$\xrightarrow{-2 \rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow}$
		$\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{+}$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 4: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

1.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{c_{1}} x \tag{1}
\end{equation*}
$$

Figure 5: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{c_{1}} x
$$

Verified OK.

1.2.6 Maple step by step solution

Let's solve

$$
y^{\prime} x-y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

```
dsolve(x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} x
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 14
DSolve $[x * y$ ' $[x]-y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.3 problem 17

1.3.1 Solving as second order euler ode ode 41
1.3.2 Solving as second order change of variable on x method 2 ode . 42
1.3.3 Solving as second order change of variable on y method 2 ode . 45
1.3.4 Solving as second order integrable as is ode 47

1.3.5	$\begin{array}{l}\text { Solving as type second_order_integrable_as_is (not using ABC } \\ \\ \text { version) . }\end{array}$

1.3.6 Solving using Kovacic algorithm 50
1.3.7 Solving as exact linear second order ode ode 55
1.3.8 Maple step by step solution . 57

Internal problem ID [12576]
Internal file name [OUTPUT/11228_Wednesday_October_18_2023_10_03_53_PM_49814442/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler__ode", "exact linear second order ode", "second__order_integrable_as_is", "second_order_change_of_cvariable_on_x_method_2", "second__order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type

$$
\begin{array}{r}
\text { [[_2nd_order, _exact, _linear, _homogeneous]] } \\
\qquad 2 x^{2} y^{\prime \prime}+3 y^{\prime} x-y=0
\end{array}
$$

1.3.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
2 x^{2}(r(r-1)) x^{r-2}+3 x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
2 r(r-1) x^{r}+3 r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
2 r(r-1)+3 r-1=0
$$

Or

$$
\begin{equation*}
2 r^{2}+r-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+\sqrt{x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\sqrt{x} c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\sqrt{x} c_{2}
$$

Verified OK.

1.3.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+3 y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{3}{2 x} \\
q(x) & =-\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{2 x} d x\right)} d x \\
& =\int e^{-\frac{3 \ln (x)}{2}} d x \\
& =\int \frac{1}{x^{\frac{3}{2}}} d x \\
& =-\frac{2}{\sqrt{x}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{2 x^{2}}}{\frac{1}{x^{3}}} \\
& =-\frac{x}{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{x y(\tau)}{2} & =0
\end{aligned}
$$

But in terms of τ

$$
-\frac{x}{2}=-\frac{2}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-2 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau}+c_{2} \tau^{2}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{-x^{\frac{3}{2}} c_{1}+8 c_{2}}{2 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{\frac{3}{2}} c_{1}+8 c_{2}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-x^{\frac{3}{2}} c_{1}+8 c_{2}}{2 x}
$$

Verified OK.

1.3.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+3 y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{3}{2 x} \\
q(x) & =-\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{3 n}{2 x^{2}}-\frac{1}{2 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=\frac{1}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{2 x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{2 x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{2 x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{2 x} d x \\
\ln (u) & =-\frac{5 \ln (x)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{5 \ln (x)}{2}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{5}{2}}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) \sqrt{x} \\
& =\frac{3 x^{\frac{3}{2}} c_{2}-2 c_{1}}{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) \sqrt{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) \sqrt{x}
$$

Verified OK.

1.3.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(2 x^{2} y^{\prime \prime}+3 y^{\prime} x-y\right) d x=0 \\
-y x+2 x^{2} y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=\frac{c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x}=\frac{c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x}}\right) & =\left(\frac{1}{\sqrt{x}}\right)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{\sqrt{x}}\right) & =\left(\frac{c_{1}}{2 x^{\frac{5}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sqrt{x}}=\int \frac{c_{1}}{2 x^{\frac{5}{2}}} \mathrm{~d} x \\
& \frac{y}{\sqrt{x}}=-\frac{c_{1}}{3 x^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2}
$$

Verified OK.

1.3.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
2 x^{2} y^{\prime \prime}+3 y^{\prime} x-y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(2 x^{2} y^{\prime \prime}+3 y^{\prime} x-y\right) d x=0 \\
-y x+2 x^{2} y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=\frac{c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x}=\frac{c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x}}\right) & =\left(\frac{1}{\sqrt{x}}\right)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{\sqrt{x}}\right) & =\left(\frac{c_{1}}{2 x^{\frac{5}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sqrt{x}}=\int \frac{c_{1}}{2 x^{\frac{5}{2}}} \mathrm{~d} x \\
& \frac{y}{\sqrt{x}}=-\frac{c_{1}}{3 x^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2}
$$

Verified OK.

1.3.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 x^{2} y^{\prime \prime}+3 y^{\prime} x-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 x^{2} \\
& B=3 x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{5}{16 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=5 \\
& t=16 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{5}{16 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 6: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=16 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{5}{16 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{5}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{5}{16 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{5}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{4} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{4}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{5}{16 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{4}$	$-\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{4}$	$-\frac{1}{4}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{4}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{4}-\left(-\frac{1}{4}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{4 x}+(-)(0) \\
& =-\frac{1}{4 x} \\
& =-\frac{1}{4 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{4 x}\right)(0)+\left(\left(\frac{1}{4 x^{2}}\right)+\left(-\frac{1}{4 x}\right)^{2}-\left(\frac{5}{16 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{4 x} d x} \\
& =\frac{1}{x^{\frac{1}{4}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 x}{2 x^{2}} d x} \\
& =z_{1} e^{-\frac{3 \ln (x)}{4}} \\
& =z_{1}\left(\frac{1}{x^{\frac{3}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{2 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{3 \ln (x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 x^{\frac{3}{2}}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{2 x^{\frac{3}{2}}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{2 \sqrt{x} c_{2}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{2 \sqrt{x} c_{2}}{3}
$$

Verified OK.

1.3.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=2 x^{2} \\
& q(x)=3 x \\
& r(x)=-1 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =4 \\
q^{\prime}(x) & =3
\end{aligned}
$$

Therefore (1) becomes

$$
4-(3)+(-1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
-y x+2 x^{2} y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
-y x+2 x^{2} y^{\prime}=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=\frac{c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x}=\frac{c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x}}\right) & =\left(\frac{1}{\sqrt{x}}\right)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{\sqrt{x}}\right) & =\left(\frac{c_{1}}{2 x^{\frac{5}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sqrt{x}}=\int \frac{c_{1}}{2 x^{\frac{5}{2}}} \mathrm{~d} x \\
& \frac{y}{\sqrt{x}}=-\frac{c_{1}}{3 x^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{3 x}+\sqrt{x} c_{2}
$$

Verified OK.

1.3.8 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime} x^{2}+3 y^{\prime} x-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{2 x}+\frac{y}{2 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{2 x}-\frac{y}{2 x^{2}}=0
$$

- Multiply by denominators of the ODE
$2 y^{\prime \prime} x^{2}+3 y^{\prime} x-y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
2\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), x^{2}+3 \frac{d}{d t} y(t)-y(t)=0\right.
$$

- \quad Simplify

$$
2 \frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-y(t)=0
$$

- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=-\frac{\frac{d}{d t} y(t)}{2}+\frac{y(t)}{2}
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin

$$
\frac{d^{2}}{d t^{2}} y(t)+\frac{\frac{d}{d t} y(t)}{2}-\frac{y(t)}{2}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+\frac{1}{2} r-\frac{1}{2}=0
$$

- Factor the characteristic polynomial

$$
\frac{(r+1)(2 r-1)}{2}=0
$$

- Roots of the characteristic polynomial

$$
r=\left(-1, \frac{1}{2}\right)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{\frac{t}{2}}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{\frac{t}{2}}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x}+\sqrt{x} c_{2}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x}+\sqrt{x} c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve($2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+3 * x * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{c_{2} x^{\frac{3}{2}}+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 20
DSolve[2*x^2*y' ' $[\mathrm{x}]+3 * x * y$ ' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{c_{2} x^{3 / 2}+c_{1}}{x}
$$

1.4 problem 18

1.4.1 Solving as second order linear constant coeff ode
 61

1.4.2 Solving using Kovacic algorithm 63
1.4.3 Maple step by step solution . 67

Internal problem ID [12577]
Internal file name [OUTPUT/11229_Thursday_October_19_2023_04_43_29_PM_53032459/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

1.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 6: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Verified OK.

1.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 8: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}
$$

Verified OK.

1.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-3 r+2=0$
- Factor the characteristic polynomial
$(r-1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(1,2)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve(diff $(y(x), x \$ 2)-3 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 18
DSolve[y''[x]-3*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} e^{x}+c_{1}\right)
$$

1.5 problem 19

1.5.1 Solving as second order euler ode ode 69
1.5.2 Solving as second order integrable as is ode 70
$\begin{array}{ll}\text { 1.5.3 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 72\end{array}$
1.5.4 Solving using Kovacic algorithm 73
1.5.5 Solving as exact linear second order ode ode 78
1.5.6 Maple step by step solution . 80

Internal problem ID [12578]
Internal file name [OUTPUT/11230_Thursday_October_19_2023_04_43_30_PM_79343540/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
x^{2} y^{\prime \prime}-2 y=0
$$

1.5.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+0 r x^{r-1}-2 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+0 x^{r}-2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{2} x^{2}
$$

Verified OK.

1.5.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}-2 y\right) d x=0 \\
& x^{2} y^{\prime}-2 y x=c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{c_{1}}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{c_{1}}{x^{4}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=-\frac{c_{1}}{3 x}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{3 x}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{3 x}+c_{2} x^{2}
$$

Verified OK.

1.5.3 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}-2 y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}-2 y\right) d x=0 \\
x^{2} y^{\prime}-2 y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{c_{1}}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{c_{1}}{x^{4}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=-\frac{c_{1}}{3 x}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{3 x}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{3 x}+c_{2} x^{2}
$$

Verified OK.

1.5.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=0 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 10: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{2}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{2}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{2}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	2	-1

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(0) \\
& =-\frac{1}{x} \\
& =-\frac{1}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{x}\right)(0)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}\right)^{2}-\left(\frac{2}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\frac{1}{x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\frac{1}{x} \int \frac{1}{\frac{1}{x^{2}}} d x \\
& =\frac{1}{x}\left(\frac{x^{3}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{x^{3}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} x^{2}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2} x^{2}}{3}
$$

Verified OK.

1.5.5 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=0 \\
& r(x)=-2 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
2-(0)+(-2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}-2 y x=c_{1}
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}-2 y x=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{c_{1}}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{c_{1}}{x^{4}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=-\frac{c_{1}}{3 x}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{3 x}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{3 x}+c_{2} x^{2}
$$

Verified OK.

1.5.6 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}-2 y=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{2 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}-2 y=0$
- Make a change of variables
$t=\ln (x)$Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x, using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-2 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)-2 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-r-2=0$
- Factor the characteristic polynomial
$(r+1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(-1,2)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}$
- \quad Change variables back using $t=\ln (x)$
$y=\frac{c_{1}}{x}+c_{2} x^{2}$
- Simplify

$$
y=\frac{c_{1}}{x}+c_{2} x^{2}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x$2)-2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2} x^{3}+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 18
DSolve[x^2*y''[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{c_{2} x^{3}+c_{1}}{x}
$$

1.6 problem 20

1.6.1 Solving as quadrature ode . 83
1.6.2 Maple step by step solution . 84

Internal problem ID [12579]
Internal file name [OUTPUT/11231_Thursday_October_19_2023_04_43_31_PM_58456927/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+\frac{1}{2 y}=0
$$

1.6.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-2 y d y & =x+c_{1} \\
-y^{2} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\sqrt{-x-c_{1}} \\
& y_{2}=-\sqrt{-x-c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x-c_{1}} \tag{1}\\
& y=-\sqrt{-x-c_{1}} \tag{2}
\end{align*}
$$

Figure 8: Slope field plot

Verification of solutions

$$
y=\sqrt{-x-c_{1}}
$$

Verified OK.

$$
y=-\sqrt{-x-c_{1}}
$$

Verified OK.

1.6.2 Maple step by step solution

Let's solve
$y^{\prime}+\frac{1}{2 y}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y y^{\prime}=-\frac{1}{2}
$$

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int-\frac{1}{2} d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=-\frac{x}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{-x+2 c_{1}}, y=-\sqrt{-x+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x})+1 /(2 * \mathrm{y}(\mathrm{x}))=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{c_{1}-x} \\
& y(x)=-\sqrt{c_{1}-x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.113 (sec). Leaf size: 35
DSolve $[y$ ' $[x]+1 /(2 * y[x])==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x+2 c_{1}} \\
& y(x) \rightarrow \sqrt{-x+2 c_{1}}
\end{aligned}
$$

1.7 problem 21

1.7.1 Solving as linear ode . 86
1.7.2 Solving as homogeneousTypeD2 ode 88
1.7.3 Solving as first order ode lie symmetry lookup ode 89
1.7.4 Solving as exact ode . 93
1.7.5 Maple step by step solution . 98

Internal problem ID [12580]
Internal file name [OUTPUT/11232_Thursday_October_19_2023_04_43_32_PM_85705207/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{x}=1
$$

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\frac{1}{x} \\
\mathrm{~d}\left(\frac{y}{x}\right) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{1}{x} \mathrm{~d} x \\
& \frac{y}{x}=\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x \ln (x)+c_{1} x
$$

which simplifies to

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot

Verification of solutions

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Verified OK.

1.7.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=1
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \frac{1}{x} \mathrm{~d} x \\
& =\ln (x)+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x\left(\ln (x)+c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x)+c_{2}\right) \tag{1}
\end{equation*}
$$

Figure 10: Slope field plot
Verification of solutions

$$
y=x\left(\ln (x)+c_{2}\right)
$$

Verified OK.

1.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y+x}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+x}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y}{x}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=\ln (x)+c_{1}
$$

Which gives

$$
y=x\left(\ln (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+x}{x}$		$\frac{d S}{d R}=\frac{1}{R}$
		－
		Frary
	$R=x$	込
	$S=\underline{y}$	成 \rightarrow 年
		－
		2，${ }^{4}$
		\cdots

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=x\left(\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 11: Slope field plot

Verification of solutions

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Verified OK.

1.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(1+\frac{y}{x}\right) \mathrm{d} x \\
\left(-1-\frac{y}{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-1-\frac{y}{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-1-\frac{y}{x}\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{x}\right)-(0)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}\left(-1-\frac{y}{x}\right) \\
& =\frac{-y-x}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}(1) \\
& =\frac{1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y-x}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y-x}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{y}{x}-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y}{x}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y}{x}-\ln (x)
$$

The solution becomes

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

Figure 12: Slope field plot
Verification of solutions

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Verified OK.

1.7.5 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y}{x}=1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}+1$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int \frac{1}{x} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x\left(\ln (x)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(x),x)-y(x)/x=1,y(x), singsol=all)
```

$$
y(x)=\left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 12
DSolve[y'[x]-y[x]/x==1,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x\left(\log (x)+c_{1}\right)
$$

1.8 problem 22

1.8.1 Solving as quadrature ode . 100
1.8.2 Maple step by step solution . 101

Internal problem ID [12581]
Internal file name [OUTPUT/11233_Thursday_October_19_2023_04_43_32_PM_53349013/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 \sqrt{|y|}=0
$$

1.8.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{2 \sqrt{|y|}} d y=\int d x \\
& \frac{\left(\left\{\begin{array}{cc}
-2 \sqrt{-y} & y \leq 0 \\
2 \sqrt{y} & 0<y
\end{array}\right)\right.}{2}=x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\frac{\left(\left\{\begin{array}{cc}
-2 \sqrt{-y} & y \leq 0 \tag{1}\\
2 \sqrt{y} & 0<y
\end{array}\right)\right.}{2}=x+c_{1}
$$

Figure 13: Slope field plot

Verification of solutions

$$
\frac{\left(\left\{\begin{array}{cc}
-2 \sqrt{-y} & y \leq 0 \\
2 \sqrt{y} & 0<y
\end{array}\right)\right.}{2}=x+c_{1}
$$

Verified OK.

1.8.2 Maple step by step solution

Let's solve

$$
y^{\prime}-2 \sqrt{|y|}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\sqrt{|y|}}=2
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sqrt{|y|}} d x=\int 2 d x+c_{1}
$$

- Evaluate integral

$$
\left\{\begin{array}{cc}
-2 \sqrt{-y} & y \leq 0 \\
2 \sqrt{y} & 0<y
\end{array}=2 x+c_{1}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 27
dsolve(diff $(y(x), x)-2 * \operatorname{sqrt}(\operatorname{abs}(y(x)))=0, y(x)$, singsol=all)

$$
x+\left(\left\{\begin{array}{cc}
\sqrt{-y(x)} & y(x) \leq 0 \\
-\sqrt{y(x)} & 0<y(x)
\end{array}\right)+c_{1}=0\right.
$$

\checkmark Solution by Mathematica
Time used: 0.291 (sec). Leaf size: 31

```
DSolve[y'[x]-Sqrt[Abs[y[x]]]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{\sqrt{|K[1]|}} d K[1] \&\right]\left[x+c_{1}\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.9 problem 23

1.9.1 Solving as separable ode . 103
1.9.2 Solving as linear ode . 105
1.9.3 Solving as homogeneousTypeD2 ode 106
1.9.4 Solving as first order ode lie symmetry lookup ode 108
1.9.5 Solving as exact ode . 112
1.9.6 Maple step by step solution . 116

Internal problem ID [12582]
Internal file name [OUTPUT/11234_Thursday_October_19_2023_04_43_34_PM_68847940/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{2} y^{\prime}+2 y x=0
$$

1.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{2 y}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{2}{x} d x \\
\int \frac{1}{y} d y & =\int-\frac{2}{x} d x \\
\ln (y) & =-2 \ln (x)+c_{1} \\
y & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 14: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}
$$

Verified OK.

1.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{2} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
x^{2} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}
$$

Verified OK.

1.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{2}\left(u^{\prime}(x) x+u(x)\right)+2 u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{2} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{2}} \\
& =\frac{c_{2}}{x^{3}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =\frac{c_{2}}{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot

Verification of solutions

$$
y=\frac{c_{2}}{x^{2}}
$$

Verified OK.

1.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 17: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=x^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 x y \\
S_{y} & =x^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2} y=c_{1}
$$

Which simplifies to

$$
x^{2} y=c_{1}
$$

Which gives

$$
y=\frac{c_{1}}{x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\underset{\rightarrow+\rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}{ }$
	$R=x$	\cdots
	$S=x^{2} y$	
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\rightarrow \rightarrow \rightarrow \rightarrow$ 进
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow 0+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}
$$

Verified OK.

1.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{2 y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(-\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=-\frac{1}{2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{2 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\frac{\ln (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\frac{\ln (y)}{2}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}}
$$

Verified OK.

1.9.6 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime}+2 y x=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(x^{2} y^{\prime}+2 y x\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral

$$
x^{2} y=c_{1}
$$

- \quad Solve for y

$$
y=\frac{c_{1}}{x^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(x^2*diff(y(x),x)+2*x*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 16
DSolve[x^2*y' $[x]+2 * x * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1}}{x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.10 problem 24

1.10.1 Solving as quadrature ode . 118
1.10.2 Maple step by step solution . 119

Internal problem ID [12583]
Internal file name [OUTPUT/11235_Thursday_October_19_2023_04_43_35_PM_20815667/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=1
$$

1.10.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}+1} d y & =x+c_{1} \\
\arctan (y) & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tan \left(x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot

Verification of solutions

$$
y=\tan \left(x+c_{1}\right)
$$

Verified OK.

1.10.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}=1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{1+y^{2}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\arctan (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\tan \left(x+c_{1}\right)
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(diff(y(x),x)-y(x)^2=1,y(x), singsol=all)
```

$$
y(x)=\tan \left(c_{1}+x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.213 (sec). Leaf size: 24
DSolve[y'[x]-y[x] 2==1,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \tan \left(x+c_{1}\right) \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i
\end{aligned}
$$

1.11 problem 25

$$
\text { 1.11.1 Solving as second order euler ode ode } 121
$$

1.11.2 Solving as second order change of variable on x method 2 ode 122
1.11.3 Solving as second order change of variable on y method 2 ode 125
1.11.4 Solving as second order ode non constant coeff transformation on B ode 127
1.11.5 Solving using Kovacic algorithm 130
1.11.6 Maple step by step solution 135

Internal problem ID [12584]
Internal file name [OUTPUT/11236_Thursday_October_19_2023_04_43_35_PM_46001342/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
2 x^{2} y^{\prime \prime}+y^{\prime} x-y=0
$$

1.11.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
2 x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
2 r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
2 r(r-1)+r-1=0
$$

Or

$$
\begin{equation*}
2 r^{2}-r-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{1} x+\frac{c_{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+\frac{c_{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{c_{2}}{\sqrt{x}}
$$

Verified OK.

1.11.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =-\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{2 x} d x\right)} d x \\
& =\int e^{-\frac{\ln (x)}{2}} d x \\
& =\int \frac{1}{\sqrt{x}} d x \\
& =2 \sqrt{x} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{2 x^{2}}}{\frac{1}{x}} \\
& =-\frac{1}{2 x} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{y(\tau)}{2 x} & =0
\end{aligned}
$$

But in terms of τ

$$
-\frac{1}{2 x}=-\frac{2}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-2 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau}+c_{2} \tau^{2}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1}}{2 \sqrt{x}}+4 c_{2} x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{2 \sqrt{x}}+4 c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{2 \sqrt{x}}+4 c_{2} x
$$

Verified OK.

1.11.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+y^{\prime} x-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =-\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{2 x^{2}}-\frac{1}{2 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{2 x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{2 x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{2 x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{2 x} d x \\
\ln (u) & =-\frac{5 \ln (x)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{5 \ln (x)}{2}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{5}{2}}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x \\
& =\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x
$$

Verified OK.

1.11.4 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=2 x^{2} \\
& B=x \\
& C=-1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(2 x^{2}\right)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
2 x^{3} v^{\prime \prime}+\left(5 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
2 x^{3} u^{\prime}(x)+5 x^{2} u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{2 x} d x \\
\ln (u) & =-\frac{5 \ln (x)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{5 \ln (x)}{2}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{5}{2}}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{\frac{5}{2}}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{\frac{5}{2}}} \mathrm{~d} x \\
& =-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(x)\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) \\
& =\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x
$$

Verified OK.

1.11.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 x^{2} y^{\prime \prime}+y^{\prime} x-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 x^{2} \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{5}{16 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=5 \\
& t=16 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{5}{16 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 21: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=16 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{5}{16 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{5}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{5}{16 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{5}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{4} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{4}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{5}{16 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{4}$	$-\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{4}$	$-\frac{1}{4}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{1}{4}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{4}-\left(-\frac{1}{4}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{4 x}+(-)(0) \\
& =-\frac{1}{4 x} \\
& =-\frac{1}{4 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{4 x}\right)(0)+\left(\left(\frac{1}{4 x^{2}}\right)+\left(-\frac{1}{4 x}\right)^{2}-\left(\frac{5}{16 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{4 x} d x} \\
& =\frac{1}{x^{\frac{1}{4}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{2 x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{4}} \\
& =z_{1}\left(\frac{1}{x^{\frac{1}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{\sqrt{x}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{2 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 x^{\frac{3}{2}}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{1}{\sqrt{x}}\left(\frac{2 x^{\frac{3}{2}}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\sqrt{x}}+\frac{2 c_{2} x}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{\sqrt{x}}+\frac{2 c_{2} x}{3}
$$

Verified OK.

1.11.6 Maple step by step solution

Let's solve
$2 y^{\prime \prime} x^{2}+y^{\prime} x-y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{2 x}+\frac{y}{2 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{2 x}-\frac{y}{2 x^{2}}=0
$$

- Multiply by denominators of the ODE
$2 y^{\prime \prime} x^{2}+y^{\prime} x-y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$2\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+\frac{d}{d t} y(t)-y(t)=0$
- Simplify
$2 \frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)-y(t)=0$
- Isolate 2nd derivative
$\frac{d^{2}}{d t^{2}} y(t)=\frac{\frac{d}{d t} y(t)}{2}+\frac{y(t)}{2}$
- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin
$\frac{d^{2}}{d t^{2}} y(t)-\frac{\frac{d}{d t} y(t)}{2}-\frac{y(t)}{2}=0$
- Characteristic polynomial of ODE
$r^{2}-\frac{1}{2} r-\frac{1}{2}=0$
- Factor the characteristic polynomial
$\frac{(2 r+1)(r-1)}{2}=0$
- Roots of the characteristic polynomial
$r=\left(1,-\frac{1}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{t}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{-\frac{t}{2}}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-\frac{t}{2}}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} x+\frac{c_{2}}{\sqrt{x}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(2*x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}}{\sqrt{x}}+c_{2} x
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 18
DSolve[2*x^2*y' ' $[x]+x * y$ ' $[x]-y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{1}}{\sqrt{x}}+c_{2} x
$$

1.12 problem 26

1.12.1 Solving as quadrature ode . 138
1.12.2 Maple step by step solution . 139

Internal problem ID [12585]
Internal file name [OUTPUT/11237_Thursday_October_19_2023_04_43_36_PM_55985488/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime} x=\sin (x)
$$

1.12.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\sin (x)}{x} \mathrm{~d} x \\
& =\operatorname{Si}(x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{Si}(x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
y=\operatorname{Si}(x)+c_{1}
$$

Verified OK.

1.12.2 Maple step by step solution

Let's solve

$$
y^{\prime} x=\sin (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
y^{\prime}=\frac{\sin (x)}{x}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{\sin (x)}{x} d x+c_{1}
$$

- Evaluate integral

$$
y=\operatorname{Si}(x)+c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{Si}(x)+c_{1}
$$

Maple trace

```
'Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(x*diff(y(x),x)-sin(x)=0,y(x), singsol=all)
```

$$
y(x)=\operatorname{Si}(x)+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 10
DSolve[x*y' $[x]-\operatorname{Sin}[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \mathrm{Si}(x)+c_{1}
$$

1.13 problem 27

$$
\text { 1.13.1 Solving as quadrature ode . } 141
$$

1.13.2 Maple step by step solution . 142

Internal problem ID [12586]
Internal file name [OUTPUT/11238_Thursday_October_19_2023_04_43_36_PM_6767101/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+3 y=0
$$

1.13.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{3 y} d y & =\int d x \\
-\frac{\ln (y)}{3} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y^{\frac{1}{3}}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{y^{\frac{1}{3}}}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-3 x}}{c_{2}^{3}} \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{-3 x}}{c_{2}^{3}}
$$

Verified OK.

1.13.2 Maple step by step solution

Let's solve

$$
y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{y}=-3
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int(-3) d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-3 x+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-3 x+c_{1}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve(diff $(y(x), x)+3 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 18
DSolve $[y$ ' $[x]+3 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-3 x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.14 problem 28

1.14.1 Solving as second order linear constant coeff ode 144
1.14.2 Solving using Kovacic algorithm 146
1.14.3 Maple step by step solution . 150

Internal problem ID [12587]
Internal file name [OUTPUT/11239_Thursday_October_19_2023_04_43_37_PM_74600233/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-3 y^{\prime}-10 y=0
$$

1.14.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=-10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}-10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda-10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=-10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(-10)} \\
& =\frac{3}{2} \pm \frac{7}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{3}{2}+\frac{7}{2} \\
\lambda_{2} & =\frac{3}{2}-\frac{7}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(5) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

1.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-3 y^{\prime}-10 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=-10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{49}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=49 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{49 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 25: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{49}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{7 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{7 x}}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{7 x}}{7}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{5 x}}{7} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{5 x}}{7}
$$

Verified OK.

1.14.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-3 y^{\prime}-10 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-3 r-10=0$
- Factor the characteristic polynomial

$$
(r+2)(r-5)=0
$$

- Roots of the characteristic polynomial
$r=(-2,5)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{5 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{5 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)-3 * \operatorname{diff}(y(x), x)-10 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{1} \mathrm{e}^{7 x}+c_{2}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 22
DSolve[y''[x]-3*y'[x]-10*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} e^{7 x}+c_{1}\right)
$$

1.15 problem 29

1.15.1 Solving as second order linear constant coeff ode

152
1.15.2 Solving as linear second order ode solved by an integrating factor
ode . 154
1.15.3 Solving using Kovacic algorithm 155
1.15.4 Maple step by step solution . 159

Internal problem ID [12588]
Internal file name [OUTPUT/11240_Thursday_October_19_2023_04_43_38_PM_37522487/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

1.15.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2} \tag{1}
\end{equation*}
$$

Figure 24: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
$$

Verified OK.

1.15.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{x}}
$$

Or

$$
y=\mathrm{e}^{-x} c_{1} x+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x} c_{1} x+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x} c_{1} x+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

1.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 27: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2} \tag{1}
\end{equation*}
$$

Figure 26: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
$$

Verified OK.

1.15.4 Maple step by step solution

Let's solve
$y^{\prime \prime}+2 y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 r+1=0$
- Factor the characteristic polynomial
$(r+1)^{2}=0$
- Root of the characteristic polynomial

$$
r=-1
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff($y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 18
DSolve[y''[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-x}\left(c_{2} x+c_{1}\right)
$$

1.16 problem 30

1.16.1 Maple step by step solution

162
Internal problem ID [12589]
Internal file name [OUTPUT/11241_Thursday_October_19_2023_04_43_38_PM_48557998/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 30.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-7 y^{\prime \prime}+12 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-7 \lambda^{2}+12 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =4 \\
\lambda_{3} & =3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{3 x} \\
& y_{3}=\mathrm{e}^{4 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3}
$$

Verified OK.

1.16.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-7 y^{\prime \prime}+12 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=7 y_{3}(x)-12 y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=7 y_{3}(x)-12 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -12 & 7
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -12 & 7
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right],\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right],\left[4,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{4} \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair
$\vec{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{4} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{3 x} c_{2} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\mathrm{e}^{4 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\mathrm{e}^{3 x} c_{2}}{9}+\frac{\mathrm{e}^{4 x} c_{3}}{16}+c_{1}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff($y(x), x \$ 3)-7 * \operatorname{diff}(y(x), x \$ 2)+12 * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{3 x}+c_{3} \mathrm{e}^{4 x}
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 30
DSolve[y'''[x]-7*y''[x]+12*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{3} c_{1} e^{3 x}+\frac{1}{4} c_{2} e^{4 x}+c_{3}
$$

1.17 problem 31

1.17.1 Solving as separable ode . 166
1.17.2 Solving as linear ode . 168
1.17.3 Solving as homogeneousTypeD2 ode 169
1.17.4 Solving as first order ode lie symmetry lookup ode 171
1.17.5 Solving as exact ode . 175
1.17.6 Maple step by step solution . 179

Internal problem ID [12590]
Internal file name [OUTPUT/11242_Thursday_October_19_2023_04_43_39_PM_53530479/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 31 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 y^{\prime} x-y=0
$$

1.17.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{2 x}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{2 x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{2 x} d x \\
\ln (y) & =\frac{\ln (x)}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{\ln (x)}{2}+c_{1}} \\
& =c_{1} \sqrt{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot

Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

1.17.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
y=c_{1} \sqrt{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot
Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

1.17.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2\left(u^{\prime}(x) x+u(x)\right) x-u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{2 x} d x \\
\ln (u) & =-\frac{\ln (x)}{2}+c_{2} \\
u & =\mathrm{e}^{-\frac{\ln (x)}{2}+c_{2}} \\
& =\frac{c_{2}}{\sqrt{x}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\sqrt{x} c_{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

Figure 29: Slope field plot

Verification of solutions

$$
y=\sqrt{x} c_{2}
$$

Verified OK.

1.17.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{2 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 30: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sqrt{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sqrt{x}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{2 x^{\frac{3}{2}}} \\
S_{y} & =\frac{1}{\sqrt{x}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Which gives

$$
y=c_{1} \sqrt{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{2 x}$		$\frac{d S}{d R}=0$
		\rightarrow
込		
$\Rightarrow \rightarrow \Delta x+x+1$		
$\rightarrow \rightarrow \rightarrow$ ara		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$	$R=x$	\rightarrow
	$S=\frac{y}{\sqrt{x}}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
\cdots		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 30: Slope field plot
Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

1.17.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{2}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{2}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2}{y}\right) \mathrm{d} y \\
f(y) & =2 \ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+2 \ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+2 \ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\ln (x)}{2}+\frac{c_{1}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\ln (x)} \frac{c_{1}}{2}+\frac{c_{1}}{2} \tag{1}
\end{equation*}
$$

Figure 31: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{\frac{\ln (x)}{2}+\frac{c_{1}}{2}}
$$

Verified OK.

1.17.6 Maple step by step solution

Let's solve
$2 y^{\prime} x-y=0$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{2 x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{2 x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\frac{\ln (x)}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{\mathrm{e}^{-2 c_{1} x}}}{\mathrm{e}^{-2 c_{1}}}, y=-\frac{\sqrt{\mathrm{e}^{-2 c_{1} x}}}{\mathrm{e}^{-2 c_{1}}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sqrt{x}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 18
DSolve[2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} \sqrt{x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.18 problem 32

1.18.1 Solving as second order euler ode ode 182
1.18.2 Solving as second order ode missing y ode 183
1.18.3 Solving using Kovacic algorithm 184
1.18.4 Maple step by step solution . 189

Internal problem ID [12591]
Internal file name [OUTPUT/11243_Thursday_October_19_2023_04_43_39_PM_53610816/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x^{2} y^{\prime \prime}-y^{\prime} x=0
$$

The ODE is

$$
x^{2} y^{\prime \prime}-y^{\prime} x=0
$$

Or

$$
x\left(y^{\prime \prime} x-y^{\prime}\right)=0
$$

For $x \neq 0$ the above simplifies to

$$
y^{\prime \prime} x-y^{\prime}=0
$$

1.18.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-x r x^{r-1}+0=0
$$

Simplifying gives

$$
r(r-1) x^{r}-r x^{r}+0=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-r+0=0
$$

Or

$$
\begin{equation*}
r^{2}-2 r=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{2}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{2}+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x^{2}+c_{1}
$$

Verified OK. \{x <> 0\}

1.18.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x) x^{2}-p(x) x=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{p}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =\frac{1}{x} d x \\
\int \frac{1}{p} d p & =\int \frac{1}{x} d x \\
\ln (p) & =\ln (x)+c_{1} \\
p & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=c_{1} x
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} x \mathrm{~d} x \\
& =\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{2}}{2}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2}}{2}+c_{2}
$$

Verified OK. \{x <> 0\}

1.18.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-y^{\prime} x & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-x \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	no condition

Table 33: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{\ln (x)} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\frac{c_{2} x^{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\frac{c_{2} x^{2}}{2}
$$

Verified OK. $\{x<>0\}$

1.18.4 Maple step by step solution

Let's solve

$y^{\prime \prime} x^{2}-y^{\prime} x=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime} x-y^{\prime}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative $y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x-\frac{\frac{d}{d t} y(t)}{x}=0$
- Simplify
$\frac{\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)}{x}=0$
- Isolate 2nd derivative
$\frac{d^{2}}{d t^{2}} y(t)=2 \frac{d}{d t} y(t)$
- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-2 r=0$
- Factor the characteristic polynomial
$r(r-2)=0$
- Roots of the characteristic polynomial
$r=(0,2)$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=1$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1}+c_{2} \mathrm{e}^{2 t}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{2} x^{2}+c_{1}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} x^{2}+c_{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 17
DSolve $\left[x^{\sim} 2 * y\right.$ '' $[x]-x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{1} x^{2}}{2}+c_{2}
$$

1.19 problem 33

$$
\text { 1.19.1 Solving as second order euler ode ode } 193
$$

1.19.2 Solving as second order change of variable on x method 2 ode 194
1.19.3 Solving as second order change of variable on x method 1 ode 196
1.19.4 Solving as second order change of variable on y method 2 ode 198
1.19.5 Solving as second order integrable as is ode 201
1.19.6 Solving as type second_order_integrable_as_is (not using ABC version) 202
1.19.7 Solving using Kovacic algorithm 203
1.19.8 Solving as exact linear second order ode ode 208
1.19.9 Maple step by step solution 210

Internal problem ID [12592]
Internal file name [OUTPUT/11244_Thursday_October_19_2023_04_43_40_PM_30015343/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 33 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
x^{2} y^{\prime \prime}+6 y^{\prime} x+4 y=0
$$

1.19.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+6 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+6 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+6 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}+5 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-4 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{4}}+\frac{c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+\frac{c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{4}}+\frac{c_{2}}{x}
$$

Verified OK.

1.19.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+6 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{6}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{6}{x} d x\right)} d x \\
& =\int e^{-6 \ln (x)} d x \\
& =\int \frac{1}{x^{6}} d x \\
& =-\frac{1}{5 x^{5}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{\frac{1}{x^{12}}} \\
& =4 x^{10} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+4 x^{10} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
4 x^{10}=\frac{4}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+4 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+4 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+4 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+4=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{5} \\
& r_{2}=\frac{4}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{5}}+c_{2} \tau^{\frac{4}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{4}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{1}{5}}}{5}+\frac{c_{2} 5^{\frac{1}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{4}{5}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{4}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{1}{5}}}{5}+\frac{c_{2} 5^{\frac{1}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{4}{5}}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 5^{\frac{4}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{1}{5}}}{5}+\frac{c_{2} 5^{\frac{1}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{4}{5}}}{5}
$$

Verified OK.

1.19.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+6 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{6}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{6}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{5 c}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 c\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{5 c \tau}{4}}\left(c_{1} \cosh \left(\frac{3 c \tau}{4}\right)+i c_{2} \sinh \left(\frac{3 c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)}{x^{\frac{5}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)}{x^{\frac{5}{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)}{x^{\frac{5}{2}}}
$$

Verified OK.

1.19.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+6 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{6}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{6 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{4 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{4 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{4 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{4 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{4}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{4}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{4}{x} d x \\
\ln (u) & =-4 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-4 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{4}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{-\frac{c_{1}}{3 x^{3}}+c_{2}}{x} \\
& =\frac{3 c_{2} x^{3}-c_{1}}{3 x^{4}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\frac{c_{1}}{3 x^{3}}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\frac{c_{1}}{3 x^{3}}+c_{2}}{x}
$$

Verified OK.

1.19.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+6 y^{\prime} x+4 y\right) d x=0 \\
x^{2} y^{\prime}+4 y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{4 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4}{x} d x} \\
& =x^{4}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{4} y\right) & =\left(x^{4}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{4} y\right) & =\left(c_{1} x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{4} y=\int c_{1} x^{2} \mathrm{~d} x \\
& x^{4} y=\frac{c_{1} x^{3}}{3}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{4}$ results in

$$
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}}
$$

Verified OK.
1.19.6 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+6 y^{\prime} x+4 y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+6 y^{\prime} x+4 y\right) d x=0 \\
x^{2} y^{\prime}+4 y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{4 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4}{x} d x} \\
& =x^{4}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{4} y\right) & =\left(x^{4}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{4} y\right) & =\left(c_{1} x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{4} y=\int c_{1} x^{2} \mathrm{~d} x \\
& x^{4} y=\frac{c_{1} x^{3}}{3}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{4}$ results in

$$
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}}
$$

Verified OK.

1.19.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+6 y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=6 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 35: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{2}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{2}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{2}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	2	-1

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(0) \\
& =-\frac{1}{x} \\
& =-\frac{1}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{x}\right)(0)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}\right)^{2}-\left(\frac{2}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-3 \ln (x)} \\
& =z_{1}\left(\frac{1}{x^{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{4}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{3}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{4}}\right)+c_{2}\left(\frac{1}{x^{4}}\left(\frac{x^{3}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+\frac{c_{2}}{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{4}}+\frac{c_{2}}{3 x}
$$

Verified OK.

1.19.8 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=6 x \\
& r(x)=4 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =6
\end{aligned}
$$

Therefore (1) becomes

$$
2-(6)+(4)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}+4 y x=c_{1}
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}+4 y x=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{4 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{4}{x} d x} \\
=x^{4}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{4} y\right) & =\left(x^{4}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{4} y\right) & =\left(c_{1} x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{4} y=\int c_{1} x^{2} \mathrm{~d} x \\
& x^{4} y=\frac{c_{1} x^{3}}{3}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{4}$ results in

$$
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{3 x}+\frac{c_{2}}{x^{4}}
$$

Verified OK.

1.19.9 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+6 y^{\prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{6 y^{\prime}}{x}-\frac{4 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{6 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}+6 y^{\prime} x+4 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{\frac{d}{t} t} y(t), x^{2}+6 \frac{d}{d t} y(t)+4 y(t)=0\right.$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)+5 \frac{d}{d t} y(t)+4 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}+5 r+4=0$
- Factor the characteristic polynomial

$$
(r+4)(r+1)=0
$$

- Roots of the characteristic polynomial
$r=(-4,-1)$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-4 t}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-t}$
- Change variables back using $t=\ln (x)$ $y=\frac{c_{1}}{x^{4}}+\frac{c_{2}}{x}$
- \quad Simplify

$$
y=\frac{c_{1}}{x^{4}}+\frac{c_{2}}{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x$2)+6*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{3}+c_{2}}{x^{4}}
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 18

```
DSolve[x^2*y''[x]+6*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions ->> True]
```

$$
y(x) \rightarrow \frac{c_{2} x^{3}+c_{1}}{x^{4}}
$$

1.20 problem 34

1.20.1 Solving as second order euler ode ode 213
1.20.2 Solving as second order change of variable on x method 2 ode . 214
1.20.3 Solving as second order change of variable on x method 1 ode . 217
1.20.4 Solving as second order change of variable on y method 2 ode . 219
1.20.5 Solving using Kovacic algorithm 221
1.20.6 Maple step by step solution . 226

Internal problem ID [12593]
Internal file name [OUTPUT/11245_Thursday_October_19_2023_04_43_41_PM_14908028/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 34 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_u__method_2", "second_order_change_of_cvariable_on_y__method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+9 y=0
$$

1.20.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-5 x r x^{r-1}+9 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-5 r x^{r}+9 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-5 r+9=0
$$

Or

$$
\begin{equation*}
r^{2}-6 r+9=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=3 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{3}+c_{2} x^{3} \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{3} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+c_{2} x^{3} \ln (x)
$$

Verified OK.

1.20.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{5}{x} d x\right)} d x \\
& =\int e^{5 \ln (x)} d x \\
& =\int x^{5} d x \\
& =\frac{x^{6}}{6} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{9}{x^{2}}}{x^{10}} \\
& =\frac{9}{x^{12}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{9 y(\tau)}{x^{12}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{9}{x^{12}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(x^{6}\right)-c_{2} \ln (3)\right)}{6}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(x^{6}\right)-c_{2} \ln (3)\right)}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(x^{6}\right)-c_{2} \ln (3)\right)}{6}
$$

Verified OK.

1.20.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{5}{x} \frac{3 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{3 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 3 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}
$$

Verified OK.

1.20.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{5 n}{x^{2}}+\frac{9}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{3} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \ln (x)+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \ln (x)+c_{2}\right) x^{3}
$$

Verified OK.

1.20.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-5 x \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 37: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2}-\frac{5 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{5}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{3}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{3}\right)+c_{2}\left(x^{3}(\ln (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{3} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+c_{2} x^{3} \ln (x)
$$

Verified OK.

1.20.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-5 y^{\prime} x+9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{5 y^{\prime}}{x}-\frac{9 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{5 y^{\prime}}{x}+\frac{9 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}-5 y^{\prime} x+9 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-5 \frac{d}{d t} y(t)+9 y(t)=0
$$

- Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-6 \frac{d}{d t} y(t)+9 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-6 r+9=0$
- Factor the characteristic polynomial

$$
(r-3)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=3
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{3 t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{3 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{3 t}+c_{2} t \mathrm{e}^{3 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1} x^{3}+c_{2} x^{3} \ln (x)
$$

- \quad Simplify

$$
y=x^{3}\left(c_{1}+\ln (x) c_{2}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

```
dsolve(x^2*diff(y(x),x$2)-5*x*diff (y(x),x)+9*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{3}\left(c_{1}+c_{2} \ln (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 18
DSolve[$x^{\wedge} 2 * y$ ' ' $[x]-5 * x * y$ ' $[x]+9 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{3}\left(3 c_{2} \log (x)+c_{1}\right)
$$

1.21 problem 35

> 1.21.1 Maple step by step solution

Internal problem ID [12594]
Internal file name [OUTPUT/11246_Thursday_October_19_2023_04_43_42_PM_12799126/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 35 .
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime 2}-4 y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=2 \sqrt{y} \tag{1}\\
& y^{\prime}=-2 \sqrt{y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{2 \sqrt{y}} d y & =\int d x \\
\sqrt{y} & =x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y}=x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{y}=x+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{2 \sqrt{y}} d y & =\int d x \\
-\sqrt{y} & =x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\sqrt{y}=x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\sqrt{y}=x+c_{2}
$$

Verified OK.

1.21.1 Maple step by step solution

Let's solve

$$
y^{\prime 2}-4 y=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}}=2
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sqrt{y}} d x=\int 2 d x+c_{1}
$$

- Evaluate integral

$$
2 \sqrt{y}=2 x+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{4} c_{1}^{2}+c_{1} x+x^{2}
$$

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    <- differential order: 1; missing x successful`
```

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 15

```
dsolve(diff(y(x),x)^2-4*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\left(x-c_{1}\right)^{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 38
DSolve[($\left.y^{\prime}[x]\right)^{\wedge} 2-4 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(-2 x+c_{1}\right)^{2} \\
& y(x) \rightarrow \frac{1}{4}\left(2 x+c_{1}\right)^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.22 problem 36

1.22.1 Solving as first order nonlinear p but separable ode 232

Internal problem ID [12595]
Internal file name [OUTPUT/11247_Thursday_October_19_2023_04_43_42_PM_58881340/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 36.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p__but__separable"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]

$$
y^{\prime 2}-9 y x=0
$$

1.22.1 Solving as first order nonlinear p but separable ode

The ode has the form

$$
\begin{equation*}
\left(y^{\prime}\right)^{\frac{n}{m}}=f(x) g(y) \tag{1}
\end{equation*}
$$

Where $n=2, m=1, f=9 x, g=y$. Hence the ode is

$$
\left(y^{\prime}\right)^{2}=9 x y
$$

Solving for y^{\prime} from (1) gives

$$
\begin{aligned}
& y^{\prime}=\sqrt{f g} \\
& y^{\prime}=-\sqrt{f g}
\end{aligned}
$$

To be able to solve as separable ode, we have to now assume that $f>0, g>0$.

$$
\begin{array}{r}
9 x>0 \\
y>0
\end{array}
$$

Under the above assumption the differential equations become separable and can be written as

$$
\begin{aligned}
& y^{\prime}=\sqrt{f} \sqrt{g} \\
& y^{\prime}=-\sqrt{f} \sqrt{g}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x \\
-\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x
\end{aligned}
$$

Replacing $f(x), g(y)$ by their values gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =(\sqrt{9} \sqrt{x}) d x \\
-\frac{1}{\sqrt{y}} d y & =(\sqrt{9} \sqrt{x}) d x
\end{aligned}
$$

Integrating now gives the solutions.

$$
\begin{aligned}
\int \frac{1}{\sqrt{y}} d y & =\int \sqrt{9} \sqrt{x} d x+c_{1} \\
\int-\frac{1}{\sqrt{y}} d y & =\int \sqrt{9} \sqrt{x} d x+c_{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
2 \sqrt{y} & =\frac{2 x^{\frac{3}{2}} \sqrt{9}}{3}+c_{1} \\
-2 \sqrt{y} & =\frac{2 x^{\frac{3}{2}} \sqrt{9}}{3}+c_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& y=x^{\frac{3}{2}} c_{1}+x^{3}+\frac{c_{1}^{2}}{4} \\
& y=x^{\frac{3}{2}} c_{1}+x^{3}+\frac{c_{1}^{2}}{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x^{\frac{3}{2}} c_{1}+x^{3}+\frac{c_{1}^{2}}{4} \tag{1}\\
& y=x^{\frac{3}{2}} c_{1}+x^{3}+\frac{c_{1}^{2}}{4} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x^{\frac{3}{2}} c_{1}+x^{3}+\frac{c_{1}^{2}}{4}
$$

Verified OK. $\{0<y, 0<9 * x\}$

$$
y=x^{\frac{3}{2}} c_{1}+x^{3}+\frac{c_{1}^{2}}{4}
$$

Verified OK. $\{0<y, 0<9 * x\}$

Maple trace

```
MMethods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        1st order, trying the canonical coordinates of the invariance group
    <- 1st order, canonical coordinates successful
    <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        1st order, trying the canonical coordinates of the invariance group
        <- 1st order, canonical coordinates successful
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 69
dsolve(diff $(y(x), x)^{\wedge} 2-9 * x * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=x^{3}+2 \sqrt{c_{1} x} x+c_{1} \\
& y(x)=x^{3}-2 \sqrt{c_{1} x} x+c_{1} \\
& y(x)=x^{3}-2 \sqrt{c_{1} x} x+c_{1} \\
& y(x)=x^{3}+2 \sqrt{c_{1} x} x+c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 46
DSolve[(y ' $[x]$) ~2-9*x*y $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(-2 x^{3 / 2}+c_{1}\right)^{2} \\
& y(x) \rightarrow \frac{1}{4}\left(2 x^{3 / 2}+c_{1}\right)^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.23 problem 37

1.23.1 Maple step by step solution . 238

Internal problem ID [12596]
Internal file name [OUTPUT/11248_Thursday_October_19_2023_04_43_44_PM_72759423/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises page 14
Problem number: 37 .
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime 2}=x^{6}
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=x^{3} \tag{1}\\
& y^{\prime}=-x^{3} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int x^{3} \mathrm{~d} x \\
& =\frac{x^{4}}{4}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{4}}{4}+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{4}}{4}+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-x^{3} \mathrm{~d} x \\
& =-\frac{x^{4}}{4}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{4}}{4}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x^{4}}{4}+c_{2}
$$

Verified OK.

1.23.1 Maple step by step solution

Let's solve
$y^{\prime 2}=x^{6}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime 2} d x=\int x^{6} d x+c_{1}$
- Cannot compute integral
$\int y^{\prime 2} d x=\frac{x^{7}}{7}+c_{1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(x),x)^2=x^6,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{x^{4}}{4}+c_{1} \\
& y(x)=-\frac{x^{4}}{4}+c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 29
DSolve[($y^{\prime}[x]$) $2==x^{\wedge} 6, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{4}}{4}+c_{1} \\
& y(x) \rightarrow \frac{x^{4}}{4}+c_{1}
\end{aligned}
$$

2 Chapter 1. Introduction. Exercises 1.3, page 27
2.1 problem 1 241
2.2 problem 2 256
2.3 problem 3 269
2.4 problem 4 277
2.5 problem 5 289
2.6 problem 6 299
2.7 problem 7 302
2.8 problem 8 a(i) 317
2.9 problem 8 a(ii) 327
2.10 problem $8 \mathrm{~b}(\mathrm{i})$ 337
2.11 problem $8 \mathrm{~b}(\mathrm{ii})$ 346
2.12 problem 9 356
2.13 problem 10 (a) 363
2.14 problem 10 (b) 387
2.15 problem 10 (c) 412
2.16 problem 10 (d) 437
2.17 problem 10 (e) 463
2.18 problem 10 (f) 484

2.1 problem 1

2.1.1 Solving as separable ode . 241
2.1.2 Solving as linear ode . 243
2.1.3 Solving as homogeneousTypeD2 ode 244
2.1.4 Solving as first order ode lie symmetry lookup ode 246
2.1.5 Solving as exact ode . 250
2.1.6 Maple step by step solution . 254

Internal problem ID [12597]
Internal file name [OUTPUT/11249_Thursday_October_19_2023_04_43_44_PM_32428753/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 y x=0
$$

2.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =2 x y
\end{aligned}
$$

Where $f(x)=2 x$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =2 x d x \\
\int \frac{1}{y} d y & =\int 2 x d x \\
\ln (y) & =x^{2}+c_{1} \\
y & =\mathrm{e}^{x^{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x^{2}}
$$

Verified OK.

2.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 x \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y x=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 x d x} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-x^{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{2}}$ results in

$$
y=c_{1} \mathrm{e}^{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x^{2}}
$$

Verified OK.

2.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-2 u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(2 x^{2}-1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{2 x^{2}-1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2 x^{2}-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{2 x^{2}-1}{x} d x \\
\ln (u) & =x^{2}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{x^{2}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{x^{2}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{x^{2}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

Figure 34: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{x^{2}}
$$

Verified OK.

2.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 x y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 41: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 x y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 x \mathrm{e}^{-x^{2}} y \\
S_{y} & =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x^{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x^{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 x y$		$\frac{d S}{d R}=0$
		\rightarrow
1. 1.140		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow+S}$ (RT)
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29]{ }$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	$S=\mathrm{e}^{-x^{2}} y$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{R}$
		${ }^{-2}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

Figure 35: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x^{2}}
$$

Verified OK.

2.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{\ln (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{\ln (y)}{2}
$$

The solution becomes

$$
y=\mathrm{e}^{x^{2}+2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}+2 c_{1}} \tag{1}
\end{equation*}
$$

Figure 36: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{x^{2}+2 c_{1}}
$$

Verified OK.

2.1.6 Maple step by step solution

Let's solve
$y^{\prime}-2 y x=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=2 x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int 2 x d x+c_{1}$
- Evaluate integral

$$
\ln (y)=x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x^{2}+c_{1}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(x),x)-2*x*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x^{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 18
DSolve[y'[x]-2*x*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.2 problem 2

2.2.1 Solving as linear ode . 256
2.2.2 Solving as first order ode lie symmetry lookup ode 258
2.2.3 Solving as exact ode . 262
2.2.4 Maple step by step solution . 266

Internal problem ID [12598]
Internal file name [OUTPUT/11250_Thursday_October_19_2023_04_43_44_PM_64725706/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=x^{2}+2 x-1
$$

2.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =x^{2}+2 x-1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=x^{2}+2 x-1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}+2 x-1\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(x^{2}+2 x-1\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(\left(x^{2}+2 x-1\right) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int\left(x^{2}+2 x-1\right) \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=\left(x^{2}-1\right) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(x^{2}-1\right) \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=x^{2}-1+c_{1} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}-1+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 37: Slope field plot

Verification of solutions

$$
y=x^{2}-1+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x^{2}+2 x-y-1 \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 44: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2}+2 x-y-1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\left(x^{2}+2 x-1\right) \mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(R^{2}+2 R-1\right) \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\left(R^{2}-1\right) \mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=\left(x^{2}-1\right) \mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{x}=\left(x^{2}-1\right) \mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\left(x^{2} \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x^{2}+2 x-y-1$		$\frac{d S}{d R}=\left(R^{2}+2 R-1\right) \mathrm{e}^{R}$
¢ $4 \rightarrow L_{1}$		
$4{ }^{4} \times 1$.		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
	$S=\mathrm{e}^{x} y$	
+ 4 ¢		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2} \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 38: Slope field plot

Verification of solutions

$$
y=\left(x^{2} \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(x^{2}+2 x-y-1\right) \mathrm{d} x \\
\left(-x^{2}-2 x+y+1\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2}-2 x+y+1 \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-2 x+y+1\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(-x^{2}-2 x+y+1\right) \\
& =-\mathrm{e}^{x}\left(x^{2}+2 x-y-1\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{x}\left(x^{2}+2 x-y-1\right)\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}\left(x^{2}+2 x-y-1\right) \mathrm{d} x \\
\phi & =-\left(x^{2}-y-1\right) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\left(x^{2}-y-1\right) \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\left(x^{2}-y-1\right) \mathrm{e}^{x}
$$

The solution becomes

$$
y=\left(x^{2} \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2} \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 39: Slope field plot

Verification of solutions

$$
y=\left(x^{2} \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

2.2.4 Maple step by step solution

Let's solve
$y^{\prime}+y=x^{2}+2 x-1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+x^{2}+2 x-1$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=x^{2}+2 x-1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+y\right)=\mu(x)\left(x^{2}+2 x-1\right)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(x^{2}+2 x-1\right) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)\left(x^{2}+2 x-1\right) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)\left(x^{2}+2 x-1\right) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int\left(x^{2}+2 x-1\right) \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\left(x^{2}-1\right) \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=x^{2}-1+c_{1} \mathrm{e}^{-x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(x), x)+y(x)=x^{\wedge} 2+2 * x-1, y(x)$, singsol=all)

$$
y(x)=x^{2}-1+c_{1} \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 18
DSolve[y' $[x]+y[x]==x^{\wedge} 2+2 * x-1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}+c_{1} e^{-x}-1
$$

2.3 problem 3

2.3.1 Solving as second order linear constant coeff ode 269
2.3.2 Solving using Kovacic algorithm 271
2.3.3 Maple step by step solution . 275

Internal problem ID [12599]
Internal file name [OUTPUT/11251_Thursday_October_19_2023_04_43_45_PM_85570290/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

2.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-6)} \\
& =\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 40: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

2.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 47: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{3 x} c_{2}}{5} \tag{1}
\end{equation*}
$$

Figure 41: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{3 x} c_{2}}{5}
$$

Verified OK.

2.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-r-6=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-3)=0
$$

- Roots of the characteristic polynomial
$r=(-2,3)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{3 x} c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{1} \mathrm{e}^{5 x}+c_{2}\right) \mathrm{e}^{-2 x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 22
DSolve[y''[x]-y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} e^{5 x}+c_{1}\right)
$$

2.4 problem 4

2.4.1 Solving as separable ode . 277
2.4.2 Solving as first order ode lie symmetry lookup ode 279
2.4.3 Solving as exact ode . 283
2.4.4 Maple step by step solution . 287

Internal problem ID [12600]
Internal file name [OUTPUT/11252_Thursday_October_19_2023_04_43_46_PM_97973919/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x \sqrt{y}=0
$$

2.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x \sqrt{y}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\sqrt{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =x d x \\
\int \frac{1}{\sqrt{y}} d y & =\int x d x \\
2 \sqrt{y} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
2 \sqrt{y}-\frac{x^{2}}{2}-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 \sqrt{y}-\frac{x^{2}}{2}-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 42: Slope field plot

Verification of solutions

$$
2 \sqrt{y}-\frac{x^{2}}{2}-c_{1}=0
$$

Verified OK.

2.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x \sqrt{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 49: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x \sqrt{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{y}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{R}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \sqrt{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=2 \sqrt{y}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=2 \sqrt{y}+c_{1}
$$

Which gives

$$
y=\frac{1}{16} x^{4}-\frac{1}{4} c_{1} x^{2}+\frac{1}{4} c_{1}^{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{16} x^{4}-\frac{1}{4} c_{1} x^{2}+\frac{1}{4} c_{1}^{2} \tag{1}
\end{equation*}
$$

Figure 43: Slope field plot
Verification of solutions

$$
y=\frac{1}{16} x^{4}-\frac{1}{4} c_{1} x^{2}+\frac{1}{4} c_{1}^{2}
$$

Verified OK.

2.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{\sqrt{y}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{y}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{y}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+2 \sqrt{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+2 \sqrt{y}
$$

The solution becomes

$$
y=\frac{1}{16} x^{4}+\frac{1}{4} c_{1} x^{2}+\frac{1}{4} c_{1}^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{16} x^{4}+\frac{1}{4} c_{1} x^{2}+\frac{1}{4} c_{1}^{2} \tag{1}
\end{equation*}
$$

Figure 44: Slope field plot
Verification of solutions

$$
y=\frac{1}{16} x^{4}+\frac{1}{4} c_{1} x^{2}+\frac{1}{4} c_{1}^{2}
$$

Verified OK.

2.4.4 Maple step by step solution

Let's solve
$y^{\prime}-x \sqrt{y}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{y}}=x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{y}} d x=\int x d x+c_{1}$
- Evaluate integral

$$
2 \sqrt{y}=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{16} x^{4}+\frac{1}{4} c_{1} x^{2}+\frac{1}{4} c_{1}^{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(x),x)=x*y(x)^(1/2),y(x), singsol=all)
```

$$
\sqrt{y(x)}-\frac{x^{2}}{4}-c_{1}=0
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.2 (sec). Leaf size: 24
DSolve[y' $[\mathrm{x}]==\mathrm{x} * \mathrm{y}[\mathrm{x}]$ ~ (1/2) , $\mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{16}\left(x^{2}+2 c_{1}\right)^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.5 problem 5

2.5.1 Solving as second order linear constant coeff ode 289
2.5.2 Solving as second order ode can be made integrable ode 291
2.5.3 Solving using Kovacic algorithm 293
2.5.4 Maple step by step solution . 297

Internal problem ID [12601]
Internal file name [OUTPUT/11253_Thursday_October_19_2023_04_43_47_PM_87594477/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y=0
$$

2.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 45: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

2.5.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\sqrt{y^{2}+2 c_{1}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
y+\sqrt{y^{2}+2 c_{1}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}} \tag{2}
\end{align*}
$$

Figure 46: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}}
$$

Verified OK.

2.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 52: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 47: Slope field plot

Verification of solutions

$$
y=\frac{c_{2} \mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

2.5.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 20

```
DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{x}+c_{2} e^{-x}
$$

2.6 problem 6

2.6.1 Solving as quadrature ode . 299
2.6.2 Maple step by step solution . 300

Internal problem ID [12602]
Internal file name [OUTPUT/11254_Thursday_October_19_2023_04_43_48_PM_68138707/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-3 y^{\frac{2}{3}}=0
$$

2.6.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y^{\frac{2}{3}}} d y & =\int d x \\
y^{\frac{1}{3}} & =x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{\frac{1}{3}}=x+c_{1} \tag{1}
\end{equation*}
$$

Figure 48: Slope field plot
Verification of solutions

$$
y^{\frac{1}{3}}=x+c_{1}
$$

Verified OK.

2.6.2 Maple step by step solution

Let's solve
$y^{\prime}-3 y^{\frac{2}{3}}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{\frac{2}{3}}}=3$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{2}{3}}} d x=\int 3 d x+c_{1}$
- Evaluate integral

$$
3 y^{\frac{1}{3}}=3 x+c_{1}
$$

- \quad Solve for y

$$
y=x^{3}+c_{1} x^{2}+\frac{1}{3} c_{1}^{2} x+\frac{1}{27} c_{1}^{3}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x})=3 * \mathrm{y}(\mathrm{x})^{\wedge}(2 / 3), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)^{\frac{1}{3}}-c_{1}-x=0
$$

\checkmark Solution by Mathematica
Time used: 0.166 (sec). Leaf size: 22
DSolve[y' $[\mathrm{x}]==3 * y[\mathrm{x}] \sim(2 / 3), \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{27}\left(3 x+c_{1}\right)^{3} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.7 problem 7

2.7.1 Solving as separable ode
 302

2.7.2 Solving as linear ode 304
2.7.3 Solving as homogeneousTypeD2 ode 305
2.7.4 Solving as first order ode lie symmetry lookup ode 307
2.7.5 Solving as exact ode 311
2.7.6 Maple step by step solution 315

Internal problem ID [12603]
Internal file name [OUTPUT/11255_Thursday_October_19_2023_04_43_48_PM_53777959/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x \ln (x) y^{\prime}-(\ln (x)+1) y=0
$$

2.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{(\ln (x)+1) y}{x \ln (x)}
\end{aligned}
$$

Where $f(x)=\frac{\ln (x)+1}{x \ln (x)}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{\ln (x)+1}{x \ln (x)} d x \\
\int \frac{1}{y} d y & =\int \frac{\ln (x)+1}{x \ln (x)} d x \\
\ln (y) & =\ln (x)+\ln (\ln (x))+c_{1} \\
y & =\mathrm{e}^{\ln (x)+\ln (\ln (x))+c_{1}} \\
& =c_{1} \mathrm{e}^{\ln (x)+\ln (\ln (x))}
\end{aligned}
$$

Which simplifies to

$$
y=c_{1} x \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \ln (x) \tag{1}
\end{equation*}
$$

Figure 49: Slope field plot
Verification of solutions

$$
y=c_{1} x \ln (x)
$$

Verified OK.

2.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{\ln (x)+1}{x \ln (x)} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(\ln (x)+1) y}{x \ln (x)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{\ln (x)+1}{x \ln (x)} d x} \\
& =\mathrm{e}^{-\ln (x)-\ln (\ln (x))}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1}{x \ln (x)}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x \ln (x)}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x \ln (x)}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x \ln (x)}$ results in

$$
y=c_{1} x \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \ln (x) \tag{1}
\end{equation*}
$$

Figure 50: Slope field plot
Verification of solutions

$$
y=c_{1} x \ln (x)
$$

Verified OK.

2.7.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x \ln (x)\left(u^{\prime}(x) x+u(x)\right)-(\ln (x)+1) u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{x \ln (x)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x \ln (x)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{x \ln (x)} d x \\
\int \frac{1}{u} d u & =\int \frac{1}{x \ln (x)} d x \\
\ln (u) & =\ln (\ln (x))+c_{2} \\
u & =\mathrm{e}^{\ln (\ln (x))+c_{2}} \\
& =\ln (x) c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x \ln (x) c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \ln (x) c_{2} \tag{1}
\end{equation*}
$$

Figure 51: Slope field plot

Verification of solutions

$$
y=x \ln (x) c_{2}
$$

Verified OK.

2.7.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{(\ln (x)+1) y}{x \ln (x)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 55: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\ln (x)+\ln (\ln (x))} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\ln (x)+\ln (\ln (x))}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x \ln (x)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{(\ln (x)+1) y}{x \ln (x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{(\ln (x)+1) y}{x^{2} \ln (x)^{2}} \\
S_{y} & =\frac{1}{x \ln (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y}{x \ln (x)}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x \ln (x)}=c_{1}
$$

Which gives

$$
y=c_{1} x \ln (x)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{(\ln (x)+1) y}{x \ln (x)}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$ 他
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow}$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \longrightarrow \longrightarrow \longrightarrow}$
－4－2 0－1边	$S=\frac{y}{x \ln (x)}$	
f1淮ごさ		$\xrightarrow{\sim 2} \mathrm{ta} \mathrm{\rightarrow} \mathrm{\rightarrow} \mathrm{\rightarrow} \mathrm{\rightarrow} \mathrm{\rightarrow} \mathrm{\longrightarrow}$
＋1－20		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
1t1		$\xrightarrow[H]{\longrightarrow}$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=c_{1} x \ln (x) \tag{1}
\end{equation*}
$$

Figure 52: Slope field plot
Verification of solutions

$$
y=c_{1} x \ln (x)
$$

Verified OK.

2.7.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{\ln (x)+1}{x \ln (x)}\right) \mathrm{d} x \\
\left(-\frac{\ln (x)+1}{x \ln (x)}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\ln (x)+1}{x \ln (x)} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\ln (x)+1}{x \ln (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\ln (x)+1}{x \ln (x)} \mathrm{d} x \\
\phi & =-\ln (x)-\ln (\ln (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\ln (\ln (x))+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\ln (\ln (x))+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} \ln (x) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{c_{1}} \ln (x) x \tag{1}
\end{equation*}
$$

Figure 53: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{c_{1}} \ln (x) x
$$

Verified OK.

2.7.6 Maple step by step solution

Let's solve

$$
x \ln (x) y^{\prime}-(\ln (x)+1) y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{\ln (x)+1}{x \ln (x)}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{\ln (x)+1}{x \ln (x)} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (x)+\ln (\ln (x))+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} \ln (x) x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve((x*ln}(\textrm{x}))*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})-(1+\operatorname{ln}(\textrm{x}))*\textrm{y}(\textrm{x})=0,y(\textrm{x}),\mathrm{ singsol=all)
```

$$
y(x)=c_{1} \ln (x) x
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 16
DSolve[($x * \log [x]) * y$ ' $[x]-(1+\log [x]) * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x \log (x) \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.8 problem 8 a(i)

2.8.1 Existence and uniqueness analysis 317
2.8.2 Solving as second order linear constant coeff ode 318
2.8.3 Solving using Kovacic algorithm 320
2.8.4 Maple step by step solution . 324

Internal problem ID [12604]
Internal file name [OUTPUT/11256_Thursday_October_19_2023_04_43_49_PM_52831655/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 8 a(i).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-5\right]
$$

2.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

2.8.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=-5$ and $x=0$ in the above gives

$$
\begin{equation*}
-5=2 c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{2 x}+3 \mathrm{e}^{-x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{2 x}+3 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{2 x}+3 \mathrm{e}^{-x}
$$

Verified OK.

2.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 58: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{c_{2}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{2 c_{2} \mathrm{e}^{2 x}}{3}
$$

substituting $y^{\prime}=-5$ and $x=0$ in the above gives

$$
\begin{equation*}
-5=-c_{1}+\frac{2 c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{2 x}+3 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{2 x}+3 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{2 x}+3 \mathrm{e}^{-x}
$$

Verified OK.

2.8.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=-5\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=2$

$$
2=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-5$
$-5=-c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=-1\right\}$
- Substitute constant values into general solution and simplify $y=-\mathrm{e}^{2 x}+3 \mathrm{e}^{-x}$
- \quad Solution to the IVP

$$
y=-\mathrm{e}^{2 x}+3 \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-2 * y(x)=0, y(0)=2, D(y)(0)=-5], y(x)$, singsol=all)

$$
y(x)=3 \mathrm{e}^{-x}-\mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 19
DSolve[\{y''[x]-y'[x]-2*y[x]==0,\{y[0]==2,y'[0]==-5\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-e^{-x}\left(e^{3 x}-3\right)
$$

2.9 problem 8 a(ii)

2.9.1 Existence and uniqueness analysis 327
2.9.2 Solving as second order linear constant coeff ode 328
2.9.3 Solving using Kovacic algorithm 330
2.9.4 Maple step by step solution . 335

Internal problem ID [12605]
Internal file name [OUTPUT/11257_Thursday_October_19_2023_04_43_50_PM_93576080/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: $8 \mathrm{a}(\mathrm{ii})$.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(1)=3, y^{\prime}(1)=-1\right]
$$

2.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

2.9.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1} \mathrm{e}^{2}+c_{2} \mathrm{e}^{-1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=2 c_{1} \mathrm{e}^{2}-c_{2} \mathrm{e}^{-1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{2 \mathrm{e}^{-2}}{3} \\
& c_{2}=\frac{7 \mathrm{e}}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 \mathrm{e}^{2 x} \mathrm{e}^{-2}}{3}+\frac{7 \mathrm{e}^{-x} \mathrm{e}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \mathrm{e}^{2 x} \mathrm{e}^{-2}}{3}+\frac{7 \mathrm{e}^{-x} \mathrm{e}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \mathrm{e}^{2 x} \mathrm{e}^{-2}}{3}+\frac{7 \mathrm{e}^{-x} \mathrm{e}}{3}
$$

Verified OK.

2.9.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 60: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1} \mathrm{e}^{-1}+\frac{c_{2} \mathrm{e}^{2}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{2 c_{2} \mathrm{e}^{2 x}}{3}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=-c_{1} \mathrm{e}^{-1}+\frac{2 c_{2} \mathrm{e}^{2}}{3} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{7 \mathrm{e}}{3} \\
& c_{2}=2 \mathrm{e}^{-2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 \mathrm{e}^{2 x} \mathrm{e}^{-2}}{3}+\frac{7 \mathrm{e}^{-x} \mathrm{e}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \mathrm{e}^{2 x} \mathrm{e}^{-2}}{3}+\frac{7 \mathrm{e}^{-x} \mathrm{e}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \mathrm{e}^{2 x} \mathrm{e}^{-2}}{3}+\frac{7 \mathrm{e}^{-x} \mathrm{e}}{3}
$$

Verified OK.

2.9.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=0, y(1)=3,\left.y^{\prime}\right|_{\{x=1\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(1)=3$

$$
3=c_{1} \mathrm{e}^{-1}+c_{2} \mathrm{e}^{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=-1$

$$
-1=-c_{1} \mathrm{e}^{-1}+2 c_{2} \mathrm{e}^{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{7}{3 \mathrm{e}^{-1}}, c_{2}=\frac{2}{3 \mathrm{e}^{2}}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{2 \mathrm{e}^{2 x-2}}{3}+\frac{7 \mathrm{e}^{1-x}}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{2 \mathrm{e}^{2 x-2}}{3}+\frac{7 \mathrm{e}^{1-x}}{3}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

```
dsolve([diff(y(x),x$2)-diff(y(x),x)-2*y(x)=0,y(1) = 3, D(y)(1) = -1],y(x), singsol=all)
```

$$
y(x)=\frac{7 \mathrm{e}^{1-x}}{3}+\frac{2 \mathrm{e}^{2 x-2}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 28
DSolve[\{y''[x]-y'[x]-2*y[x]==0,\{y[1]==3,y'[1]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{7 e^{1-x}}{3}+\frac{2}{3} e^{2 x-2}
$$

2.10 problem 8 b(i)

2.10.1 Solving as second order linear constant coeff ode
2.10.2 Solving using Kovacic algorithm 340
2.10.3 Maple step by step solution 344

Internal problem ID [12606]
Internal file name [OUTPUT/11258_Thursday_October_19_2023_04_43_52_PM_25991731/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 8 b(i).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

With initial conditions

$$
[y(0)=1, y(2)=0]
$$

2.10.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=c_{1} \mathrm{e}^{4}+c_{2} \mathrm{e}^{-2} \tag{1~A}
\end{equation*}
$$

substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{\mathrm{e}^{6}-1} \\
& c_{2}=\frac{\mathrm{e}^{6}}{\mathrm{e}^{6}-1}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{-\mathrm{e}^{2 x+6}-\mathrm{e}^{-x+6}+\mathrm{e}^{12-x}+\mathrm{e}^{2 x}}{\mathrm{e}^{12}-2 \mathrm{e}^{6}+1}
$$

Which simplifies to

$$
y=\frac{-\mathrm{e}^{2 x+6}-\mathrm{e}^{-x+6}+\mathrm{e}^{12-x}+\mathrm{e}^{2 x}}{\mathrm{e}^{12}-2 \mathrm{e}^{6}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\mathrm{e}^{2 x+6}-\mathrm{e}^{-x+6}+\mathrm{e}^{12-x}+\mathrm{e}^{2 x}}{\mathrm{e}^{12}-2 \mathrm{e}^{6}+1} \tag{1}
\end{equation*}
$$

Figure 58: Solution plot

Verification of solutions

$$
y=\frac{-\mathrm{e}^{2 x+6}-\mathrm{e}^{-x+6}+\mathrm{e}^{12-x}+\mathrm{e}^{2 x}}{\mathrm{e}^{12}-2 \mathrm{e}^{6}+1}
$$

Verified OK.

2.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 62: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=c_{1} \mathrm{e}^{-2}+\frac{c_{2} \mathrm{e}^{4}}{3} \tag{1~A}
\end{equation*}
$$

substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{\mathrm{e}^{6}}{\mathrm{e}^{6}-1} \\
& c_{2}=-\frac{3}{\mathrm{e}^{6}-1}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{-\mathrm{e}^{2 x+6}-\mathrm{e}^{-x+6}+\mathrm{e}^{12-x}+\mathrm{e}^{2 x}}{\mathrm{e}^{12}-2 \mathrm{e}^{6}+1}
$$

Which simplifies to

$$
y=\frac{-\mathrm{e}^{2 x+6}-\mathrm{e}^{-x+6}+\mathrm{e}^{12-x}+\mathrm{e}^{2 x}}{\mathrm{e}^{12}-2 \mathrm{e}^{6}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\mathrm{e}^{2 x+6}-\mathrm{e}^{-x+6}+\mathrm{e}^{12-x}+\mathrm{e}^{2 x}}{\mathrm{e}^{12}-2 \mathrm{e}^{6}+1} \tag{1}
\end{equation*}
$$

Figure 59: Solution plot

Verification of solutions

$$
y=\frac{-\mathrm{e}^{2 x+6}-\mathrm{e}^{-x+6}+\mathrm{e}^{12-x}+\mathrm{e}^{2 x}}{\mathrm{e}^{12}-2 \mathrm{e}^{6}+1}
$$

Verified OK.

2.10.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=1, y(2)=0\right]
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial
$(r+1)(r-2)=0$
- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.11 (sec). Leaf size: 24

```
dsolve([diff(y(x),x$2)-\operatorname{diff}(y(x),x)-2*y(x)=0,y(0)=1, y(2) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{6-x}-\mathrm{e}^{2 x}}{\mathrm{e}^{6}-1}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 29
DSolve[\{y''[x]-y'[x]-2*y[x]==0,\{y[0]==1,y[2]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{-x}\left(e^{6}-e^{3 x}\right)}{e^{6}-1}
$$

2.11 problem 8 b(ii)

$$
\begin{array}{ll}
\text { 2.11.1 } & \text { Solving as second order linear constant coeff ode } 346 \\
\text { 2.11.2 } & \text { Solving using Kovacic algorithm } 349 \\
\text { 2.11.3 Maple step by step solution . } 353
\end{array}
$$

Internal problem ID [12607]
Internal file name [OUTPUT/11259_Thursday_October_19_2023_04_43_53_PM_93038368/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 8 b(ii).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(2)=1\right]
$$

2.11.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=1$ and $x=2$ in the above gives

$$
\begin{equation*}
1=2 c_{1} \mathrm{e}^{4}-c_{2} \mathrm{e}^{-2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{\mathrm{e}^{2}}{2 \mathrm{e}^{6}+1} \\
& c_{2}=-\frac{\mathrm{e}^{2}}{2 \mathrm{e}^{6}+1}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{-\mathrm{e}^{-x+2}-2 \mathrm{e}^{8-x}+2 \mathrm{e}^{2 x+8}+\mathrm{e}^{2 x+2}}{4 \mathrm{e}^{12}+4 \mathrm{e}^{6}+1}
$$

Which simplifies to

$$
y=\frac{-\mathrm{e}^{-x+2}-2 \mathrm{e}^{8-x}+2 \mathrm{e}^{2 x+8}+\mathrm{e}^{2 x+2}}{4 \mathrm{e}^{12}+4 \mathrm{e}^{6}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\mathrm{e}^{-x+2}-2 \mathrm{e}^{8-x}+2 \mathrm{e}^{2 x+8}+\mathrm{e}^{2 x+2}}{4 \mathrm{e}^{12}+4 \mathrm{e}^{6}+1} \tag{1}
\end{equation*}
$$

Figure 60: Solution plot

Verification of solutions

$$
y=\frac{-\mathrm{e}^{-x+2}-2 \mathrm{e}^{8-x}+2 \mathrm{e}^{2 x+8}+\mathrm{e}^{2 x+2}}{4 \mathrm{e}^{12}+4 \mathrm{e}^{6}+1}
$$

Verified OK.

2.11.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 64: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{2 c_{2} \mathrm{e}^{2 x}}{3}
$$

substituting $y^{\prime}=1$ and $x=2$ in the above gives

$$
\begin{equation*}
1=-c_{1} \mathrm{e}^{-2}+\frac{2 c_{2} \mathrm{e}^{4}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{\mathrm{e}^{2}}{2 \mathrm{e}^{6}+1} \\
& c_{2}=\frac{3 \mathrm{e}^{2}}{2 \mathrm{e}^{6}+1}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{-\mathrm{e}^{-x+2}-2 \mathrm{e}^{8-x}+2 \mathrm{e}^{2 x+8}+\mathrm{e}^{2 x+2}}{4 \mathrm{e}^{12}+4 \mathrm{e}^{6}+1}
$$

Which simplifies to

$$
y=\frac{-\mathrm{e}^{-x+2}-2 \mathrm{e}^{8-x}+2 \mathrm{e}^{2 x+8}+\mathrm{e}^{2 x+2}}{4 \mathrm{e}^{12}+4 \mathrm{e}^{6}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\mathrm{e}^{-x+2}-2 \mathrm{e}^{8-x}+2 \mathrm{e}^{2 x+8}+\mathrm{e}^{2 x+2}}{4 \mathrm{e}^{12}+4 \mathrm{e}^{6}+1} \tag{1}
\end{equation*}
$$

Figure 61: Solution plot

Verification of solutions

$$
y=\frac{-\mathrm{e}^{-x+2}-2 \mathrm{e}^{8-x}+2 \mathrm{e}^{2 x+8}+\mathrm{e}^{2 x+2}}{4 \mathrm{e}^{12}+4 \mathrm{e}^{6}+1}
$$

Verified OK.

2.11.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=2\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=1$

$$
1=-c_{1} \mathrm{e}^{-2}+2 c_{2} \mathrm{e}^{4}
$$

- Solve for c_{1} and c_{2} $\left\{c_{1}=-\frac{1}{2 \mathrm{e}^{4}+\mathrm{e}^{-2}}, c_{2}=\frac{1}{2 \mathrm{e}^{4}+\mathrm{e}^{-2}}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{-x+2}\left(\mathrm{e}^{3 x}-1\right)}{2 \mathrm{e}^{6}+1}
$$

- Solution to the IVP

$$
y=\frac{\mathrm{e}^{-x+2}\left(\mathrm{e}^{3 x}-1\right)}{2 \mathrm{e}^{6}+1}
$$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 25
dsolve([diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-2 * y(x)=0, y(0)=0, D(y)(2)=1], y(x)$, singsol=all)

$$
y(x)=\frac{\mathrm{e}^{2-x}\left(\mathrm{e}^{3 x}-1\right)}{2 \mathrm{e}^{6}+1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 29
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]-y\right.\right.$ ' $\left.[x]-2 * y[x]==0,\left\{y[0]==0, y^{\prime}[2]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{2-x}\left(e^{3 x}-1\right)}{1+2 e^{6}}
$$

2.12 problem 9

2.12.1 Maple step by step solution

358
Internal problem ID [12608]
Internal file name [OUTPUT/11260_Thursday_October_19_2023_04_43_54_PM_11144062/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 9 .
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 y^{\prime} x-6 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 y^{\prime} x-6 y=0
$$

gives

$$
6 x \lambda x^{\lambda-1}-3 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-6 x^{\lambda}=0
$$

Which simplifies to

$$
6 \lambda x^{\lambda}-3 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-6 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
6 \lambda-3 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-6=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
1	1	real root
2	1	real root
3	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2} \\
& y_{3}=x^{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x
$$

Verified OK.

2.12.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}-3 y^{\prime \prime} x^{2}+6 y^{\prime} x-6 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative
$y^{\prime \prime \prime}=\frac{6 y}{x^{3}}+\frac{3\left(y^{\prime \prime} x-2 y^{\prime}\right)}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}-\frac{3 y^{\prime \prime}}{x}+\frac{6 y^{\prime}}{x^{2}}-\frac{6 y}{x^{3}}=0$
- Multiply by denominators of the ODE
$x^{3} y^{\prime \prime \prime}-3 y^{\prime \prime} x^{2}+6 y^{\prime} x-6 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{d^{3}}{d t^{3}} y(t)-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)-3\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+6 \frac{d}{d t} y(t)-6 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{3}}{d t^{3}} y(t)-6 \frac{d^{2}}{d t^{2}} y(t)+11 \frac{d}{d t} y(t)-6 y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=6 y_{3}(t)-11 y_{2}(t)+6 y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=6 y_{3}(t)-11 y_{2}(t)+6 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- \quad System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right]
$$

- Rewrite the system as
$\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y(t)=c_{1} e^{t}+\frac{c_{2} e^{2 t}}{4}+\frac{c_{3} 3^{3 t}}{9}$
- Change variables back using $t=\ln (x)$
$y=c_{1} x+\frac{1}{4} c_{2} x^{2}+\frac{1}{9} c_{3} x^{3}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)-3 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+6 * x * \operatorname{diff}(y(x), x)-6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=x\left(c_{1} x^{2}+c_{3} x+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 19
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]-3 * x^{\wedge} 2 * y$ ' ' $[x]+6 * x * y$ ' $[x]-6 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x\left(x\left(c_{3} x+c_{2}\right)+c_{1}\right)
$$

2.13 problem 10 (a)

2.13.1 Solving as second order euler ode ode 364
2.13.2 Solving as linear second order ode solved by an integrating factor
ode . 366
2.13.3 Solving as second order change of variable on x method 2 ode . 368
2.13.4 Solving as second order change of variable on x method 1 ode . 371
2.13.5 Solving as second order change of variable on y method 1 ode . 374
2.13.6 Solving as second order change of variable on y method 2 ode . 377
2.13.7 Solving using Kovacic algorithm 380
2.13.8 Maple step by step solution . 384

Internal problem ID [12609]
Internal file name [OUTPUT/11261_Thursday_October_19_2023_04_43_55_PM_69370016/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 10 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second__order_change_of__variable_on_y_method_2", "linear_second__order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(
    x)]`]
```

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

With initial conditions

$$
[y(1)=0, y(2)=-4]
$$

2.13.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=2$ in the above gives

$$
\begin{equation*}
-4=8 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{3}+x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{3}+x^{2} \tag{1}
\end{equation*}
$$

Figure 62: Solution plot

Verification of solutions

$$
y=-x^{3}+x^{2}
$$

Verified OK.

2.13.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=2$ in the above gives

$$
\begin{equation*}
-4=8 c_{1}+4 c_{2} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{3}+x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{3}+x^{2} \tag{1}
\end{equation*}
$$

Figure 63: Solution plot

Verification of solutions

$$
y=-x^{3}+x^{2}
$$

Verified OK.

2.13.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=2$ in the above gives

$$
\begin{equation*}
-4=\frac{45^{\frac{2}{5}}\left(5^{\frac{1}{5}} c_{1}+2 c_{2}\right)}{5} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{5^{\frac{2}{5}}\left(5^{\frac{1}{5}} c_{1}+c_{2}\right)}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5^{\frac{2}{5}} \\
& c_{2}=-5^{\frac{3}{5}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\left(x^{5}\right)^{\frac{3}{5}}+\left(x^{5}\right)^{\frac{2}{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(x^{5}\right)^{\frac{3}{5}}+\left(x^{5}\right)^{\frac{2}{5}} \tag{1}
\end{equation*}
$$

Figure 64: Solution plot

Verification of solutions

$$
y=-\left(x^{5}\right)^{\frac{3}{5}}+\left(x^{5}\right)^{\frac{2}{5}}
$$

Verified OK.

2.13.4 Solving as second order change of variable on x method 1 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=2$ in the above gives

$$
\begin{equation*}
-4=2 c_{2} i+6 c_{1} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=2 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right) \tag{1}
\end{equation*}
$$

Figure 65: Solution plot

Verification of solutions

$$
y=-2 x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right)
$$

Verified OK.

2.13.5 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-4}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=2$ in the above gives

$$
\begin{equation*}
-4=8 c_{1}+4 c_{2} \tag{1A}
\end{equation*}
$$

substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}(x-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}(x-1) \tag{1}
\end{equation*}
$$

Figure 66: Solution plot

Verification of solutions

$$
y=-x^{2}(x-1)
$$

Verified OK.

2.13.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=2$ in the above gives

$$
\begin{equation*}
-4=-4 c_{1}+8 c_{2} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}(x-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}(x-1) \tag{1}
\end{equation*}
$$

Figure 67: Solution plot

Verification of solutions

$$
y=-x^{2}(x-1)
$$

Verified OK.

2.13.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 67: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=2$ in the above gives

$$
\begin{equation*}
-4=8 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{3}+x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{3}+x^{2} \tag{1}
\end{equation*}
$$

Figure 68: Solution plot

Verification of solutions

$$
y=-x^{3}+x^{2}
$$

Verified OK.

2.13.8 Maple step by step solution

Let's solve
$\left[y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0, y(1)=0, y(2)=-4\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{6 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{6 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{\frac{d}{d} t} y(t) x^{2}\right) x^{2}-4 \frac{d}{d t} y(t)+6 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+6 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-5 r+6=0$
- Factor the characteristic polynomial
$(r-2)(r-3)=0$
- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- $\quad 2 \mathrm{nd}$ solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{3 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}$
- Change variables back using $t=\ln (x)$

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

- \quad Simplify

$$
y=x^{2}\left(c_{2} x+c_{1}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

```
dsolve([x^2*\operatorname{diff}(y(x),x$2)-4*x*\operatorname{diff}(y(x),x)+6*y(x)=0,y(1) = 0, y(2) = -4],y(x), singsol=all)
```

$$
y(x)=-x^{3}+x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 13
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]-4 * x * y\right.\right.$ ' $\left.[x]+6 * y[x]==0,\{y[1]==0, y[2]==-4\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow-\left((x-1) x^{2}\right)
$$

2.14 problem 10 (b)

2.14.1 Solving as second order euler ode ode 388
2.14.2 Solving as linear second order ode solved by an integrating factor
ode . 390
2.14.3 Solving as second order change of variable on x method 2 ode . 392
2.14.4 Solving as second order change of variable on x method 1 ode . 396
2.14.5 Solving as second order change of variable on y method 1 ode . 399
2.14.6 Solving as second order change of variable on y method 2 ode . 402
2.14.7 Solving using Kovacic algorithm 405
2.14.8 Maple step by step solution . 409

Internal problem ID [12610]
Internal file name [OUTPUT/11262_Thursday_October_19_2023_04_43_56_PM_83509366/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 10 (b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of__variable_on_y_method_2", "linear_second__order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]
```

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

With initial conditions

$$
\left[y(2)=4, y^{\prime}(1)=0\right]
$$

2.14.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=8 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=3 c_{2}+2 c_{1} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 x^{3}-3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 x^{3}-3 x^{2} \tag{1}
\end{equation*}
$$

Figure 69: Solution plot

Verification of solutions

$$
y=2 x^{3}-3 x^{2}
$$

Verified OK.

2.14.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=8 c_{1}+4 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} x^{2}+2 c_{2} x
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=3 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 x^{3}-3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 x^{3}-3 x^{2} \tag{1}
\end{equation*}
$$

Figure 70: Solution plot

Verification of solutions

$$
y=2 x^{3}-3 x^{2}
$$

Verified OK.

2.14.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int e^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=\frac{45^{\frac{2}{5}}\left(5^{\frac{1}{5}} c_{1}+2 c_{2}\right)}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} 5^{\frac{3}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{3}{5}}}+\frac{3 c_{2} 5^{\frac{2}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{2}{5}}}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{\left(25^{\frac{1}{5}} c_{1}+3 c_{2}\right) 5^{\frac{2}{5}}}{5} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-35^{\frac{2}{5}} \\
& c_{2}=25^{\frac{3}{5}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2\left(x^{5}\right)^{\frac{3}{5}}-3\left(x^{5}\right)^{\frac{2}{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2\left(x^{5}\right)^{\frac{3}{5}}-3\left(x^{5}\right)^{\frac{2}{5}} \tag{1}
\end{equation*}
$$

Figure 71: Solution plot

Verification of solutions

$$
y=2\left(x^{5}\right)^{\frac{3}{5}}-3\left(x^{5}\right)^{\frac{2}{5}}
$$

Verified OK.

2.14.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=2 c_{2} i+6 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{5 x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{5}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{5 c_{1}}{2}+\frac{c_{2} i}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=-5 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=5 x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right)-x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right)
$$

Which simplifies to

$$
y=-\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}} \tag{1}
\end{equation*}
$$

Figure 72: Solution plot

Verification of solutions

$$
y=-\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}
$$

Verified OK.

2.14.5 Solving as second order change of variable on y method 1 ode

 In normal form the given ode is written as$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{y}{x}}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=8 c_{1}+4 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x^{2}+2\left(c_{1} x+c_{2}\right) x
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=3 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x^{2}(2 x-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}(2 x-3) \tag{1}
\end{equation*}
$$

Figure 73: Solution plot

Verification of solutions

$$
y=x^{2}(2 x-3)
$$

Verified OK.

2.14.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=-4 c_{1}+8 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x+3\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x^{2}(2 x-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}(2 x-3) \tag{1}
\end{equation*}
$$

Figure 74: Solution plot

Verification of solutions

$$
y=x^{2}(2 x-3)
$$

Verified OK.

2.14.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 69: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=8 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=3 c_{2}+2 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 x^{3}-3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 x^{3}-3 x^{2} \tag{1}
\end{equation*}
$$

Figure 75: Solution plot
Verification of solutions

$$
y=2 x^{3}-3 x^{2}
$$

Verified OK.

2.14.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0, y(2)=4,\left.y^{\prime}\right|_{\{x=1\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{6 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{6 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-4 \frac{d}{d t} y(t)+6 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+6 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{3 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{2} x^{3}+c_{1} x^{2}$
- \quad Simplify
$y=x^{2}\left(c_{2} x+c_{1}\right)$
Check validity of solution $y=x^{2}\left(c_{2} x+c_{1}\right)$
- Use initial condition $y(2)=4$

$$
4=8 c_{2}+4 c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=2 x\left(c_{2} x+c_{1}\right)+c_{2} x^{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=0$
$0=3 c_{2}+2 c_{1}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-3, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify

$$
y=2 x^{3}-3 x^{2}
$$

- \quad Solution to the IVP

$$
y=2 x^{3}-3 x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

```
dsolve([x^2*diff(y(x),x$2)-4*x*\operatorname{diff}(y(x),x)+6*y(x)=0,y(2)=4, D(y)(1) = 0],y(x), singsol=al
```

$$
y(x)=2 x^{3}-3 x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 14
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]-4 * x * y\right.\right.$ ' $[x]+6 * y[x]==0,\{y$ ' $\left.[1]==0, y[2]==4\}\right\}, y[x], x$, IncludeSingularSolutions -

$$
y(x) \rightarrow x^{2}(2 x-3)
$$

2.15 problem 10 (c)

2.15.1 Solving as second order euler ode ode 413
2.15.2 Solving as linear second order ode solved by an integrating factor
ode . 415
2.15.3 Solving as second order change of variable on x method 2 ode . 417
2.15.4 Solving as second order change of variable on x method 1 ode . 421
2.15.5 Solving as second order change of variable on y method 1 ode . 424
2.15.6 Solving as second order change of variable on y method 2 ode . 427
2.15.7 Solving using Kovacic algorithm 430
2.15.8 Maple step by step solution . 434

Internal problem ID [12611]
Internal file name [OUTPUT/11263_Thursday_October_19_2023_04_43_58_PM_73155439/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 10 (c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of__variable_on_y_method_2", "linear_second__order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]
```

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

With initial conditions

$$
\left[y(1)=1, y^{\prime}(2)=-12\right]
$$

2.15.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=-12$ and $x=2$ in the above gives

$$
\begin{equation*}
-12=12 c_{2}+4 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{3}+3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{3}+3 x^{2} \tag{1}
\end{equation*}
$$

Figure 76: Solution plot

Verification of solutions

$$
y=-2 x^{3}+3 x^{2}
$$

Verified OK.

2.15.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} x^{2}+2 c_{2} x
$$

substituting $y^{\prime}=-12$ and $x=2$ in the above gives

$$
\begin{equation*}
-12=12 c_{1}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{3}+3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{3}+3 x^{2} \tag{1}
\end{equation*}
$$

Figure 77: Solution plot

Verification of solutions

$$
y=-2 x^{3}+3 x^{2}
$$

Verified OK.

2.15.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{5^{\frac{2}{5}}\left(5^{\frac{1}{5}} c_{1}+c_{2}\right)}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} 5^{\frac{3}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{3}{5}}}+\frac{3 c_{2} 5^{\frac{2}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{2}{5}}}
$$

substituting $y^{\prime}=-12$ and $x=2$ in the above gives

$$
\begin{equation*}
-12=\frac{4\left(5^{\frac{1}{5}} c_{1}+3 c_{2}\right) 5^{\frac{2}{5}}}{5} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=35^{\frac{2}{5}} \\
& c_{2}=-25^{\frac{3}{5}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2\left(x^{5}\right)^{\frac{3}{5}}+3\left(x^{5}\right)^{\frac{2}{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2\left(x^{5}\right)^{\frac{3}{5}}+3\left(x^{5}\right)^{\frac{2}{5}} \tag{1}
\end{equation*}
$$

Figure 78: Solution plot

Verification of solutions

$$
y=-2\left(x^{5}\right)^{\frac{3}{5}}+3\left(x^{5}\right)^{\frac{2}{5}}
$$

Verified OK.

2.15.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{5 x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{5}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
$$

substituting $y^{\prime}=-12$ and $x=2$ in the above gives

$$
\begin{equation*}
-12=4 c_{2} i+8 c_{1} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=5 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5 x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right)+x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right)
$$

Which simplifies to

$$
y=\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}} \tag{1}
\end{equation*}
$$

Figure 79: Solution plot

Verification of solutions

$$
y=\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}
$$

Verified OK.

2.15.5 Solving as second order change of variable on y method 1 ode

 In normal form the given ode is written as$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{4}{x}}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x^{2}+2\left(c_{1} x+c_{2}\right) x
$$

substituting $y^{\prime}=-12$ and $x=2$ in the above gives

$$
\begin{equation*}
-12=12 c_{1}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}(2 x-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}(2 x-3) \tag{1}
\end{equation*}
$$

Figure 80: Solution plot

Verification of solutions

$$
y=-x^{2}(2 x-3)
$$

Verified OK.

2.15.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x+3\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2}
$$

substituting $y^{\prime}=-12$ and $x=2$ in the above gives

$$
\begin{equation*}
-12=-4 c_{1}+12 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}(2 x-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}(2 x-3) \tag{1}
\end{equation*}
$$

Figure 81: Solution plot

Verification of solutions

$$
y=-x^{2}(2 x-3)
$$

Verified OK.

2.15.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =x^{2} \\
B & =-4 x \tag{3}\\
C & =6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 71: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=-12$ and $x=2$ in the above gives

$$
\begin{equation*}
-12=12 c_{2}+4 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{3}+3 x^{2}
$$

Summary
The solution(s) found are the following

Figure 82: Solution plot
Verification of solutions

$$
y=-2 x^{3}+3 x^{2}
$$

Verified OK.

2.15.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0, y(1)=1,\left.y^{\prime}\right|_{\{x=2\}}=-12\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{6 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{6 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-4 \frac{d}{d t} y(t)+6 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+6 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{3 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{2} x^{3}+c_{1} x^{2}$
- \quad Simplify
$y=x^{2}\left(c_{2} x+c_{1}\right)$
Check validity of solution $y=x^{2}\left(c_{2} x+c_{1}\right)$
- Use initial condition $y(1)=1$

$$
1=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=2 x\left(c_{2} x+c_{1}\right)+c_{2} x^{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=-12$
$-12=12 c_{2}+4 c_{1}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=-2\right\}$
- Substitute constant values into general solution and simplify $y=-2 x^{3}+3 x^{2}$
- \quad Solution to the IVP

$$
y=-2 x^{3}+3 x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([x^2*diff(y(x),x$2)-4*x*diff (y(x),x)+6*y(x)=0,y(1) = 1, D(y)(2) = -12],y(x), singsol=
```

$$
y(x)=-2 x^{3}+3 x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 14
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]-4 * x * y\right.\right.$ ' $\left.[x]+6 * y[x]==0,\left\{y[1]==1, y^{\prime}[2]==-12\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow(3-2 x) x^{2}
$$

2.16 problem 10 (d)

2.16.1 Solving as second order euler ode ode 438
2.16.2 Solving as linear second order ode solved by an integrating factor
ode . 440
2.16.3 Solving as second order change of variable on x method 2 ode . 442
2.16.4 Solving as second order change of variable on x method 1 ode . 446
2.16.5 Solving as second order change of variable on y method 1 ode . 449
2.16.6 Solving as second order change of variable on y method 2 ode . 452
2.16.7 Solving using Kovacic algorithm 455
2.16.8 Maple step by step solution . 460

Internal problem ID [12612]
Internal file name [OUTPUT/11264_Thursday_October_19_2023_04_43_59_PM_1173136/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 10 (d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of__variable_on_y_method_2", "linear_second__order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]
```

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

With initial conditions

$$
\left[y^{\prime}(1)=3, y^{\prime}(2)=0\right]
$$

2.16.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=12 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=3 c_{2}+2 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{3}+3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{3}+3 x^{2} \tag{1}
\end{equation*}
$$

Figure 83: Solution plot
Verification of solutions

$$
y=-x^{3}+3 x^{2}
$$

Verified OK.

2.16.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} x^{2}+2 c_{2} x
$$

substituting $y^{\prime}=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=12 c_{1}+4 c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} x^{2}+2 c_{2} x
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=3 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{3}+3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{3}+3 x^{2} \tag{1}
\end{equation*}
$$

Figure 84: Solution plot

Verification of solutions

$$
y=-x^{3}+3 x^{2}
$$

Verified OK.

2.16.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} 5^{\frac{3}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{3}{5}}}+\frac{3 c_{2} 5^{\frac{2}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{2}{5}}}
$$

substituting $y^{\prime}=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=\frac{4\left(5^{\frac{1}{5}} c_{1}+3 c_{2}\right) 5^{\frac{2}{5}}}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} 5^{\frac{3}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{3}{5}}}+\frac{3 c_{2} 5^{\frac{2}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{2}{5}}}
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=\frac{\left(25^{\frac{1}{5}} c_{1}+3 c_{2}\right) 5^{\frac{2}{5}}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=35^{\frac{2}{5}} \\
& c_{2}=-5^{\frac{3}{5}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\left(x^{5}\right)^{\frac{3}{5}}+3\left(x^{5}\right)^{\frac{2}{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(x^{5}\right)^{\frac{3}{5}}+3\left(x^{5}\right)^{\frac{2}{5}} \tag{1}
\end{equation*}
$$

Figure 85: Solution plot

Verification of solutions

$$
y=-\left(x^{5}\right)^{\frac{3}{5}}+3\left(x^{5}\right)^{\frac{2}{5}}
$$

Verified OK.

2.16.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}} x^{3}}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=\frac{5 x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{5}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
$$

substituting $y^{\prime}=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=4 c_{2} i+8 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{5 x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{5}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=\frac{5 c_{1}}{2}+\frac{c_{2} i}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=4 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right)-4 x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right)
$$

Which simplifies to

$$
y=2\left(-2 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2\left(-2 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}} \tag{1}
\end{equation*}
$$

Figure 86: Solution plot

Verification of solutions

$$
y=2\left(-2 \sinh \left(\frac{\ln (x)}{2}\right)+\cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}
$$

Verified OK.
2.16.5 Solving as second order change of variable on y method 1 ode In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{4}{x}}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x^{2}+2\left(c_{1} x+c_{2}\right) x
$$

substituting $y^{\prime}=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=12 c_{1}+4 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x^{2}+2\left(c_{1} x+c_{2}\right) x
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=3 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}(x-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}(x-3) \tag{1}
\end{equation*}
$$

Figure 87: Solution plot

Verification of solutions

$$
y=-x^{2}(x-3)
$$

Verified OK.

2.16.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x+3\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2}
$$

substituting $y^{\prime}=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}+12 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x+3\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2}
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=-2 c_{1}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}(x-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}(x-3) \tag{1}
\end{equation*}
$$

Figure 88: Solution plot

Verification of solutions

$$
y=-x^{2}(x-3)
$$

Verified OK.

2.16.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 73: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=12 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=3 c_{2}+2 c_{1} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{3}+3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{3}+3 x^{2} \tag{1}
\end{equation*}
$$

Figure 89: Solution plot

Verification of solutions

$$
y=-x^{3}+3 x^{2}
$$

Verified OK.

2.16.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0,\left.y^{\prime}\right|_{\{x=1\}}=3,\left.y^{\prime}\right|_{\{x=2\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{6 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{6 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-4 \frac{d}{d t} y(t)+6 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+6 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{3 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

- \quad Simplify

$$
y=x^{2}\left(c_{2} x+c_{1}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([x^2*diff (y(x),x$2)-4*x*diff (y (x),x)+6*y(x)=0,D(y)(1) = 3, D(y) (2) = 0],y(x), singsol
```

$$
y(x)=-x^{3}+3 x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 13
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]-4 * x * y{ }^{\prime}[x]+6 * y[x]==0,\left\{y\right.\right.\right.$ ' $\left.\left.[1]==3, y^{\prime}[2]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow-\left((x-3) x^{2}\right)
$$

2.17 problem 10 (e)

2.17.1 Solving as second order euler ode ode 464
2.17.2 Solving as linear second order ode solved by an integrating factor
ode . 465
2.17.3 Solving as second order change of variable on x method 2 ode . 467
2.17.4 Solving as second order change of variable on x method 1 ode . 470
2.17.5 Solving as second order change of variable on y method 1 ode . 473
2.17.6 Solving as second order change of variable on y method 2 ode . 475
2.17.7 Solving using Kovacic algorithm 477
2.17.8 Maple step by step solution . 481

Internal problem ID [12613]
Internal file name [OUTPUT/11265_Thursday_October_19_2023_04_44_01_PM_78049625/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 10 (e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of__variable_on_y_method_2", "linear_second__order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]
```

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

With initial conditions

$$
[y(0)=0, y(2)=4]
$$

2.17.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=8 c_{2}+4 c_{1} \tag{1A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=0 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=1-2 c_{2}
$$

Substituting these values back in above solution results in

$$
y=c_{2} x^{3}-2 c_{2} x^{2}+x^{2}
$$

Which simplifies to

$$
y=x^{2}\left(1+(x-2) c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(1+(x-2) c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(1+(x-2) c_{2}\right)
$$

Verified OK.

2.17.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=8 c_{1}+4 c_{2} \tag{1A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=0 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{2}=1-2 c_{1}
$$

Substituting these values back in above solution results in

$$
y=c_{1} x^{3}-2 c_{1} x^{2}+x^{2}
$$

Which simplifies to

$$
y=x^{2}\left(1+(x-2) c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(1+(x-2) c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(1+(x-2) c_{1}\right)
$$

Verified OK.

2.17.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=\frac{45^{\frac{2}{5}}\left(5^{\frac{1}{5}} c_{1}+2 c_{2}\right)}{5} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=0 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=-\frac{25^{\frac{4}{5}} c_{2}}{5}+5^{\frac{2}{5}}
$$

Substituting these values back in above solution results in

$$
y=\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}-\frac{25^{\frac{2}{5}}\left(x^{5}\right)^{\frac{2}{5}} c_{2}}{5}+\left(x^{5}\right)^{\frac{2}{5}}
$$

Which simplifies to

$$
y=\frac{\left(x^{5}\right)^{\frac{2}{5}}\left(5+\left(\left(x^{5}\right)^{\frac{1}{5}}-2\right) c_{2} 5^{\frac{2}{5}}\right)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(x^{5}\right)^{\frac{2}{5}}\left(5+\left(\left(x^{5}\right)^{\frac{1}{5}}-2\right) c_{2} 5^{\frac{2}{5}}\right)}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(x^{5}\right)^{\frac{2}{5}}\left(5+\left(\left(x^{5}\right)^{\frac{1}{5}}-2\right) c_{2} 5^{\frac{2}{5}}\right)}{5}
$$

Verified OK.

2.17.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=2 c_{2} i+6 c_{1} \tag{1A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=0 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=\frac{2}{3}-\frac{c_{2} i}{3}
$$

Substituting these values back in above solution results in

$$
y=-\frac{i x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right) c_{2}}{3}+i x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right) c_{2}+\frac{2 x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\left(c_{2} i-2\right) \cosh \left(\frac{\ln (x)}{2}\right)-3 i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(\left(c_{2} i-2\right) \cosh \left(\frac{\ln (x)}{2}\right)-3 i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}}{3}
$$

Verified OK.

2.17.5 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{4}{x}}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=8 c_{1}+4 c_{2} \tag{1A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=0 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{2}=1-2 c_{1}
$$

Substituting these values back in above solution results in

$$
y=x^{2}\left(c_{1} x-2 c_{1}+1\right)
$$

Which simplifies to

$$
y=x^{2}\left(1+(x-2) c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(1+(x-2) c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(1+(x-2) c_{1}\right)
$$

Verified OK.

2.17.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=-4 c_{1}+8 c_{2} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=0 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=-1+2 c_{2}
$$

Substituting these values back in above solution results in

$$
y=x^{2}\left(c_{2} x-2 c_{2}+1\right)
$$

Which simplifies to

$$
y=x^{2}\left(1+(x-2) c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(1+(x-2) c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(1+(x-2) c_{2}\right)
$$

Verified OK.

2.17.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 75: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=8 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=0 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=1-2 c_{2}
$$

Substituting these values back in above solution results in

$$
y=c_{2} x^{3}-2 c_{2} x^{2}+x^{2}
$$

Which simplifies to

$$
y=x^{2}\left(1+(x-2) c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(1+(x-2) c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(1+(x-2) c_{2}\right)
$$

Verified OK.

2.17.8 Maple step by step solution

Let's solve
$\left[y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0, y(0)=0, y(2)=4\right]$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{6 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{6 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-4 \frac{d}{d t} y(t)+6 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+6 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-5 r+6=0$
- Factor the characteristic polynomial
$(r-2)(r-3)=0$
- Roots of the characteristic polynomial
$r=(2,3)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{2 t}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(t)=\mathrm{e}^{3 t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{2} x^{3}+c_{1} x^{2}$
- Simplify
$y=x^{2}\left(c_{2} x+c_{1}\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

```
dsolve([x^2*diff(y(x),x$2)-4*x*\operatorname{diff}(y(x),x)+6*y(x)=0,y(0)=0,y(2)=4],y(x), singsol=all)
```

$$
y(x)=x^{2}\left(1+c_{1}(x-2)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 23
DSolve $\left[\left\{x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]-4 * x * y\right.\right.$ ' $\left.[x]+6 * y[x]==0,\{y[0]==0, y[2]==4\}\right\}, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{1}{2} x^{2}\left(x-c_{1} x+2 c_{1}\right)
$$

2.18 problem 10 (f)

2.18.1 Solving as second order euler ode ode 485
2.18.2 Solving as linear second order ode solved by an integrating factor
ode . 486
2.18.3 Solving as second order change of variable on x method 2 ode . 487
2.18.4 Solving as second order change of variable on x method 1 ode . 490
2.18.5 Solving as second order change of variable on y method 1 ode . 493
2.18.6 Solving as second order change of variable on y method 2 ode . 495
2.18.7 Solving using Kovacic algorithm 497
2.18.8 Maple step by step solution . 500

Internal problem ID [12614]
Internal file name [OUTPUT/11266_Thursday_October_19_2023_04_44_02_PM_1413369/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 1. Introduction. Exercises 1.3, page 27
Problem number: 10 (f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second__order_change_of__variable_on_y_method_2", "linear_second__order__ode__solved__by__an__integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]
```

Unable to solve or complete the solution.

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(2)=-1\right]
$$

2.18.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=0 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=12 c_{2}+4 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.18.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=0 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} x^{2}+2 c_{2} x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=12 c_{1}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.18.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=0 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} 5^{\frac{3}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{3}{5}}}+\frac{3 c_{2} 5^{\frac{2}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{2}{5}}}
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=\frac{4\left(5^{\frac{1}{5}} c_{1}+3 c_{2}\right) 5^{\frac{2}{5}}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.18.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=0 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{5 x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{5}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=4 c_{2} i+8 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.18.5 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-4}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=0 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x^{2}+2\left(c_{1} x+c_{2}\right) x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=12 c_{1}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.18.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=0 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x+3\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2}
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=-4 c_{1}+12 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.18.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 77: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=0 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=12 c_{2}+4 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.18.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=2\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{6 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{6 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2 nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-4 \frac{d}{d t} y(t)+6 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+6 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-5 r+6=0$
- Factor the characteristic polynomial
$(r-2)(r-3)=0$
- Roots of the characteristic polynomial
$r=(2,3)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{2 t}$
- 2nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{3 t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}$
- \quad Change variables back using $t=\ln (x)$

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

- \quad Simplify

$$
y=x^{2}\left(c_{2} x+c_{1}\right)
$$

$\square \quad$ Check validity of solution $y=x^{2}\left(c_{2} x+c_{1}\right)$

- Use initial condition $y(0)=2$

$$
2=0
$$

- Compute derivative of the solution

$$
y^{\prime}=2 x\left(c_{2} x+c_{1}\right)+c_{2} x^{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=-1$

$$
-1=12 c_{2}+4 c_{1}
$$

- Solve for c_{1} and c_{2}
- The solution does not satisfy the initial conditions

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

X Solution by Maple

```
dsolve([x^2*diff (y(x),x$2)-4*x*diff (y (x),x)+6*y(x)=0,y(0)=2, D(y)(2) = -1],y(x), singsol=a
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{x^{\wedge} 2 * y\right.\right.$ ' ' $[x]-4 * x * y$ ' $\left.[x]+6 * y[x]==0,\left\{y[0]==2, y^{\prime}[2]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutions
\{\}
3 Chapter 2. The Initial Value Problem. Exercises
2.1, page 40
3.1 problem 1 (A) 505
3.2 problem 1 (B) 508
3.3 problem 2 (C) 511
3.4 problem 2 (D) 514
3.5 problem 3 (E) 517
3.6 problem 3 (F) 521
3.7 problem 4 (G) 525
3.8 problem 4 (H) 540
3.9 problem 5 (I) 555
3.10 problem 5 (J) 559
3.11 problem 6 563
3.12 problem 7 576
3.13 problem 8 591
3.14 problem 9 606
3.15 problem 10 620
3.16 problem 11 623
3.17 problem 12 627
3.18 problem 13 631
3.19 problem 14 635
3.20 problem 15 648
3.21 problem 16 655
3.22 problem 17 669

3.1 problem 1 (A)

3.1.1 Solving as quadrature ode . 505
3.1.2 Maple step by step solution . 506

Internal problem ID [12615]
Internal file name [OUTPUT/11267_Friday_November_03_2023_06_29_29_AM_64086885/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 1 (A).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=1-x
$$

3.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 1-x \mathrm{~d} x \\
& =x-\frac{1}{2} x^{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x-\frac{1}{2} x^{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot
Verification of solutions

$$
y=x-\frac{1}{2} x^{2}+c_{1}
$$

Verified OK.

3.1.2 Maple step by step solution

Let's solve

$$
y^{\prime}=1-x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int(1-x) d x+c_{1}$
- Evaluate integral
$y=x-\frac{1}{2} x^{2}+c_{1}$
- \quad Solve for y

$$
y=x-\frac{1}{2} x^{2}+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=1-x,y(x), singsol=all)
```

$$
y(x)=-\frac{1}{2} x^{2}+x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 16

```
DSolve[y'[x]==1-x,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-\frac{x^{2}}{2}+x+c_{1}
$$

3.2 problem 1 (B)

3.2.1 Solving as quadrature ode . 508
3.2.2 Maple step by step solution . 509

Internal problem ID [12616]
Internal file name [OUTPUT/11268_Friday_November_03_2023_06_29_32_AM_784968/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 1 (B).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=x-1
$$

3.2.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int x-1 \mathrm{~d} x \\
& =\frac{1}{2} x^{2}-x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} x^{2}-x+c_{1} \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot
Verification of solutions

$$
y=\frac{1}{2} x^{2}-x+c_{1}
$$

Verified OK.

3.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}=x-1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int(x-1) d x+c_{1}$
- Evaluate integral
$y=\frac{1}{2} x^{2}-x+c_{1}$
- Solve for y

$$
y=\frac{1}{2} x^{2}-x+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(x),x)=x-1,y(x), singsol=all)
```

$$
y(x)=\frac{1}{2} x^{2}-x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 18
DSolve[y'[x] ==x-1, $y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{2}}{2}-x+c_{1}
$$

3.3 problem 2 (C)

3.3.1 Solving as quadrature ode . 511
3.3.2 Maple step by step solution . 512

Internal problem ID [12617]
Internal file name [OUTPUT/11269_Friday_November_03_2023_06_29_32_AM_5344487/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 2 (C).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y=1
$$

3.3.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{1-y} d y & =\int d x \\
-\ln (1-y) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{1-y}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{1-y}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{c_{2}}+1 \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot
Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}}{c_{2}}+1
$$

Verified OK.

3.3.2 Maple step by step solution

Let's solve

$$
y^{\prime}+y=1
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{1-y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{1-y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
-\ln (1-y)=x+c_{1}
$$

- \quad Solve for y

$$
y=-\mathrm{e}^{-x-c_{1}}+1
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve(diff $(y(x), x)=1-y(x), y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{-x}+1
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 20
DSolve[y'[x]==1-y[x],y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow 1+c_{1} e^{-x} \\
& y(x) \rightarrow 1
\end{aligned}
$$

3.4 problem 2 (D)

> 3.4.1 Solving as quadrature ode
3.4.2 Maple step by step solution . 515

Internal problem ID [12618]
Internal file name [OUTPUT/11270_Friday_November_03_2023_06_29_33_AM_11055370/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 2 (D).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y=1
$$

3.4.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y+1} d y & =\int d x \\
\ln (y+1) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y+1=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{x}-1 \tag{1}
\end{equation*}
$$

Figure 93: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{x}-1
$$

Verified OK.

3.4.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y=1
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{y+1}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y+1} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\ln (y+1)=x+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x+c_{1}}-1
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve(diff $(y(x), x)=1+y(x), y(x)$, singsol=all)

$$
y(x)=-1+c_{1} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 18

```
DSolve[y'[x]==1+y[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-1+c_{1} e^{x} \\
& y(x) \rightarrow-1
\end{aligned}
$$

3.5 problem 3 (E)

3.5.1 Solving as quadrature ode . 517
3.5.2 Maple step by step solution . 519

Internal problem ID [12619]
Internal file name [OUTPUT/11271_Friday_November_03_2023_06_29_33_AM_19494184/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 3 (E).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=-4
$$

3.5.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4} d y & =\int d x \\
\frac{\ln (y-2)}{4}-\frac{\ln (y+2)}{4} & =x+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{4}\right)(\ln (y-2)-\ln (y+2)) & =x+c_{1} \\
\ln (y-2)-\ln (y+2) & =(4)\left(x+c_{1}\right) \\
& =4 c_{1}+4 x
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y+2)}=4 c_{1} \mathrm{e}^{4 x}
$$

Which simplifies to

$$
\frac{y-2}{y+2}=c_{2} \mathrm{e}^{4 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2\left(c_{2} \mathrm{e}^{4 x}+1\right)}{-1+c_{2} \mathrm{e}^{4 x}} \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot

Verification of solutions

$$
y=-\frac{2\left(c_{2} \mathrm{e}^{4 x}+1\right)}{-1+c_{2} \mathrm{e}^{4 x}}
$$

Verified OK.

3.5.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}=-4
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}-4}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}-4} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (y-2)}{4}-\frac{\ln (y+2)}{4}=x+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{2\left(\mathrm{e}^{4 c_{1}+4 x}+1\right)}{-1+\mathrm{e}^{4 c_{1}+4 x}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 24
dsolve(diff $(y(x), x)=y(x) \sim 2-4, y(x)$, singsol=all)

$$
y(x)=\frac{-2 c_{1} \mathrm{e}^{4 x}-2}{-1+c_{1} \mathrm{e}^{4 x}}
$$

\checkmark Solution by Mathematica
Time used: 1.066 (sec). Leaf size: 40
DSolve $[y$ ' $[x]==y[x] \sim 2-4, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2-2 e^{4\left(x+c_{1}\right)}}{1+e^{4\left(x+c_{1}\right)}} \\
& y(x) \rightarrow-2 \\
& y(x) \rightarrow 2
\end{aligned}
$$

3.6 problem 3 (F)

3.6.1 Solving as quadrature ode . 521
3.6.2 Maple step by step solution . 523]

Internal problem ID [12620]
Internal file name [OUTPUT/11272_Friday_November_03_2023_06_29_34_AM_54095803/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 3 (F).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y^{2}=4
$$

3.6.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y^{2}+4} d y & =\int d x \\
-\frac{\ln (y-2)}{4}+\frac{\ln (y+2)}{4} & =x+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{4}\right)(\ln (y-2)-\ln (y+2)) & =x+c_{1} \\
\ln (y-2)-\ln (y+2) & =(-4)\left(x+c_{1}\right) \\
& =-4 x-4 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y+2)}=-4 c_{1} \mathrm{e}^{-4 x}
$$

Which simplifies to

$$
\frac{y-2}{y+2}=c_{2} \mathrm{e}^{-4 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2\left(c_{2} \mathrm{e}^{-4 x}+1\right)}{-1+c_{2} \mathrm{e}^{-4 x}} \tag{1}
\end{equation*}
$$

Figure 95: Slope field plot

Verification of solutions

$$
y=-\frac{2\left(c_{2} \mathrm{e}^{-4 x}+1\right)}{-1+c_{2} \mathrm{e}^{-4 x}}
$$

Verified OK.

3.6.2 Maple step by step solution

Let's solve

$$
y^{\prime}+y^{2}=4
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{4-y^{2}}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{4-y^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\frac{\ln (y-2)}{4}+\frac{\ln (y+2)}{4}=x+c_{1}$
- \quad Solve for y

$$
y=\frac{2\left(\mathrm{e}^{4 c_{1}+4 x}+1\right)}{-1+\mathrm{e}^{4 c_{1}+4 x}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 24
dsolve(diff $(y(x), x)=4-y(x) \sim 2, y(x)$, singsol=all)

$$
y(x)=\frac{2 c_{1} \mathrm{e}^{4 x}+2}{-1+c_{1} \mathrm{e}^{4 x}}
$$

\checkmark Solution by Mathematica
Time used: 0.278 (sec). Leaf size: 45
DSolve[y' $[x]==4-y[x] \sim 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2\left(e^{4 x}-e^{4 c_{1}}\right)}{e^{4 x}+e^{4 c_{1}}} \\
& y(x) \rightarrow-2 \\
& y(x) \rightarrow 2
\end{aligned}
$$

3.7 problem 4 (G)

3.7.1 Solving as separable ode . 525
3.7.2 Solving as linear ode . 527]
3.7.3 Solving as homogeneousTypeD2 ode 528
3.7.4 Solving as first order ode lie symmetry lookup ode 530
3.7.5 Solving as exact ode . 534
3.7.6 Maple step by step solution . 538

Internal problem ID [12621]
Internal file name [OUTPUT/11273_Friday_November_03_2023_06_29_34_AM_7363715/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 4 (G).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y x=0
$$

3.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x y
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =x d x \\
\int \frac{1}{y} d y & =\int x d x \\
\ln (y) & =\frac{x^{2}}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{x^{2}}{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 96: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-x \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y x=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x d x} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{2}}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 97: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.7.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{2}-1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}-1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{2}-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{2}-1}{x} d x \\
\ln (u) & =\frac{x^{2}}{2}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{\frac{x^{2}}{2}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{x^{2}}{2}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} e^{\frac{x^{2}}{2}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 98: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.7.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 85: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{x^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{x^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{x^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-x \mathrm{e}^{-\frac{x^{2}}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x y$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$ 他
d,		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { S(R) }]{\substack{\text { d }}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	\rightarrow
	$S=\mathrm{e}^{-\frac{x^{2}}{2}} y$	
		${ }_{-2} 2^{2}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 99: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.7.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 100: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Verified OK.

3.7.6 Maple step by step solution

Let's solve
$y^{\prime}-y x=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=x
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int x d x+c_{1}$
- Evaluate integral
$\ln (y)=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=x*y(x),y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 22
DSolve[y' $[x]==x * y[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{\frac{x^{2}}{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.8 problem 4 (H)

3.8.1 Solving as separable ode . 540
3.8.2 Solving as linear ode . 542
3.8.3 Solving as homogeneousTypeD2 ode 543
3.8.4 Solving as first order ode lie symmetry lookup ode 545
3.8.5 Solving as exact ode . 549
3.8.6 Maple step by step solution . 553

Internal problem ID [12622]
Internal file name [OUTPUT/11274_Friday_November_03_2023_06_29_35_AM_27176372/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 4 (H).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+y x=0
$$

3.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-x y
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-x d x \\
\int \frac{1}{y} d y & =\int-x d x \\
\ln (y) & =-\frac{x^{2}}{2}+c_{1} \\
y & =\mathrm{e}^{-\frac{x^{2}}{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 101: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Verified OK.

3.8.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=x \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y x=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int x d x} \\
& =\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x^{2}}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\frac{x^{2}}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{x^{2}}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 102: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Verified OK.

3.8.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)+u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(x^{2}+1\right)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{x^{2}+1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{x^{2}+1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{x^{2}+1}{x} d x \\
\ln (u) & =-\frac{x^{2}}{2}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{-\frac{x^{2}}{2}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\frac{x^{2}}{2}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{-\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 103: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Verified OK.

3.8.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-x y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 88: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{x^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{x^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{x^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-x y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =x \mathrm{e}^{\frac{x^{2}}{2}} y \\
S_{y} & =\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\frac{x^{2}}{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{x^{2}}{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-x y$		$\frac{d S}{d R}=0$
		\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { S }]{\rightarrow \rightarrow}$
		\rightarrow
	$R=x$	
Sa_{4}^{4}		$\xrightarrow{\rightarrow \rightarrow+4 \rightarrow \rightarrow-t \rightarrow \rightarrow 0}$,
	$S=\mathrm{e}^{\frac{x^{2}}{2}} y$	$\xrightarrow[\rightarrow \rightarrow R^{+}]{ }$
!		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 104: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Verified OK.

3.8.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\frac{x^{2}}{2}-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x^{2}}{2}-c_{1}} \tag{1}
\end{equation*}
$$

Figure 105: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x^{2}}{2}-c_{1}}
$$

Verified OK.

3.8.6 Maple step by step solution

Let's solve

$$
y^{\prime}+y x=0
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=-x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int-x d x+c_{1}
$$

- Evaluate integral
$\ln (y)=-\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

$$
\begin{aligned}
& \operatorname{dsolve}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=-\mathrm{x} * \mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x}), \text { singsol }=\mathrm{all}) \\
& y(x)=\mathrm{e}^{-\frac{x^{2}}{2}} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 22
DSolve[y' $[\mathrm{x}]==-\mathrm{x} * \mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-\frac{x^{2}}{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.9 problem 5 (I)

> 3.9.1 Solving as riccati ode

Internal problem ID [12623]
Internal file name [OUTPUT/11275_Friday_November_03_2023_06_29_36_AM_57195971/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 5 (I).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+y^{2}=x^{2}
$$

3.9.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}-y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}-y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}, f_{1}(x)=0$ and $f_{2}(x)=-1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-u^{\prime \prime}(x)+x^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\sqrt{x}\left(c_{1} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+c_{2} \operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)\right)
$$

The above shows that

$$
u^{\prime}(x)=\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right) c_{2}+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}\right) x^{\frac{3}{2}}
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right) c_{2}+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}\right) x}{c_{1} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+c_{2} \operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}\right) x}{c_{3} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}\right) x}{c_{3} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)} \tag{1}
\end{equation*}
$$

Figure 106: Slope field plot

Verification of solutions

$$
y=\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}\right) x}{c_{3} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 44

```
dsolve(diff(y(x),x)=x^2-y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{x\left(\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)\right)}{\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Solution by Mathematica
Time used: 0.184 (sec). Leaf size: 197

```
DSolve[y'[x]==x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{-i x^{2}\left(2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{i x^{2}}{2}\right)+c_{1}\left(\operatorname{BesselJ}\left(-\frac{5}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselJ}\left(\frac{3}{4}, \frac{i x^{2}}{2}\right)\right)\right)-c_{1} \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{1} \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)} \\
& y(x) \rightarrow \frac{i x^{2} \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{i x^{2}}{2}\right)-i x^{2} \operatorname{BesselJ}\left(\frac{3}{4}, \frac{i x^{2}}{2}\right)+\operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}
\end{aligned}
$$

3.10 problem 5 (J)

> 3.10.1 Solving as riccati ode

Internal problem ID [12624]
Internal file name [OUTPUT/11276_Friday_November_03_2023_06_29_36_AM_9378555/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 5 (J).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-y^{2}=-x^{2}
$$

3.10.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-x^{2}+y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-x^{2}+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-x^{2}, f_{1}(x)=0$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-x^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-x^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\sqrt{x}\left(c_{1} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+c_{2} \operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)\right)
$$

The above shows that

$$
u^{\prime}(x)=\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right) c_{2}+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}\right) x^{\frac{3}{2}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right) c_{2}+\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}\right) x}{c_{1} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+c_{2} \operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)\right) x}{c_{3} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)\right) x}{c_{3} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)} \tag{1}
\end{equation*}
$$

Figure 107: Slope field plot

Verification of solutions

$$
y=\frac{\left(-\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{3}+\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)\right) x}{c_{3} \operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 45

```
dsolve(diff(y(x),x)=y(x)^2-x^2,y(x), singsol=all)
```

$$
y(x)=-\frac{x\left(\operatorname{BesselI}\left(-\frac{3}{4}, \frac{x^{2}}{2}\right) c_{1}-\operatorname{BesselK}\left(\frac{3}{4}, \frac{x^{2}}{2}\right)\right)}{\operatorname{BesselI}\left(\frac{1}{4}, \frac{x^{2}}{2}\right) c_{1}+\operatorname{BesselK}\left(\frac{1}{4}, \frac{x^{2}}{2}\right)}
$$

Solution by Mathematica
Time used: 0.178 (sec). Leaf size: 196

```
DSolve[y'[x]==y[x]^2-x^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \\
& -\frac{i x^{2}\left(2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{i x^{2}}{2}\right)+c_{1}\left(\operatorname{BesselJ}\left(-\frac{5}{4}, \frac{i x^{2}}{2}\right)-\operatorname{BesselJ}\left(\frac{3}{4}, \frac{i x^{2}}{2}\right)\right)\right)+c_{1} \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x\left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{i x^{2}}{2}\right)+c_{1} \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)\right)} \\
& y(x) \rightarrow-\frac{i x^{2} \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{i x^{2}}{2}\right)-i x^{2} \operatorname{BesselJ}\left(\frac{3}{4}, \frac{i x^{2}}{2}\right)+\operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}{2 x \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{i x^{2}}{2}\right)}
\end{aligned}
$$

3.11 problem 6

3.11.1 Solving as linear ode 563
3.11.2 Solving as first order ode lie symmetry lookup ode 565
3.11.3 Solving as exact ode 569
3.11.4 Maple step by step solution 573

Internal problem ID [12625]
Internal file name [OUTPUT/11277_Friday_November_03_2023_06_29_37_AM_53530479/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=x
$$

3.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{-x}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{-x} y\right) & =\left(x \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} y=\int x \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} y=-(x+1) \mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
y=-\mathrm{e}^{x}(x+1) \mathrm{e}^{-x}+\mathrm{e}^{x} c_{1}
$$

which simplifies to

$$
y=\mathrm{e}^{x} c_{1}-x-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}-x-1 \tag{1}
\end{equation*}
$$

Figure 108: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}-x-1
$$

Verified OK.

3.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y+x \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 91: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y+x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\mathrm{e}^{-x} y \\
S_{y} & =\mathrm{e}^{-x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-(R+1) \mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x} y=-(x+1) \mathrm{e}^{-x}+c_{1}
$$

Which simplifies to

$$
(x+y+1) \mathrm{e}^{-x}-c_{1}=0
$$

Which gives

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y+x$		$\frac{d S}{d R}=R \mathrm{e}^{-R}$
		相
:		
	$R=x$	
	$S=\mathrm{e}^{-x} y$	
		\rightarrow
		\rightarrow
		$\xrightarrow{\rightarrow}$
餏		
$\cdots+\cdots+H^{+} \rightarrow$		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 109: Slope field plot

Verification of solutions

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

Verified OK.

3.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(y+x) \mathrm{d} x \\
(-y-x) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-y-x \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y-x) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x}(-y-x) \\
& =-\mathrm{e}^{-x}(y+x)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x}(1) \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\mathrm{e}^{-x}(y+x)\right)+\left(\mathrm{e}^{-x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{-x}(y+x) \mathrm{d} x \\
\phi & =(x+y+1) \mathrm{e}^{-x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(x+y+1) \mathrm{e}^{-x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(x+y+1) \mathrm{e}^{-x}
$$

The solution becomes

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 110: Slope field plot

Verification of solutions

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

Verified OK.

3.11.4 Maple step by step solution

Let's solve
$y^{\prime}-y=x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y+x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y\right)=\mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x}$
$y=\frac{\int x \mathrm{e}^{-x} d x+c_{1}}{\mathrm{e}^{-x}}$
- Evaluate the integrals on the rhs
$y=\frac{-(x+1) \mathrm{e}^{-x}+c_{1}}{\mathrm{e}^{-x}}$
- Simplify
$y=\mathrm{e}^{x} c_{1}-x-1$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve(diff $(y(x), x)=x+y(x), y(x)$, singsol=all)

$$
y(x)=-x-1+c_{1} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 16
DSolve[y' $[x]==x+y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x+c_{1} e^{x}-1
$$

3.12 problem 7

3.12.1 Solving as separable ode . 576
3.12.2 Solving as linear ode . 578
3.12.3 Solving as homogeneousTypeD2 ode 579
3.12.4 Solving as first order ode lie symmetry lookup ode 581
3.12.5 Solving as exact ode . 585
3.12.6 Maple step by step solution . 589

Internal problem ID [12626]
Internal file name [OUTPUT/11278_Friday_November_03_2023_06_29_38_AM_98852067/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y x=0
$$

3.12.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x y
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =x d x \\
\int \frac{1}{y} d y & =\int x d x \\
\ln (y) & =\frac{x^{2}}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{x^{2}}{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 111: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.12.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-x \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y x=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x d x} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{2}}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.12.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-u(x) x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{2}-1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}-1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{2}-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{2}-1}{x} d x \\
\ln (u) & =\frac{x^{2}}{2}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{\frac{x^{2}}{2}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{x^{2}}{2}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} 2^{\frac{x^{2}}{2}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 113: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.12.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 94: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{x^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{x^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{x^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-x \mathrm{e}^{-\frac{x^{2}}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x y$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$ 他
d,		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { S(R) }]{\substack{\text { d }}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	\rightarrow
	$S=\mathrm{e}^{-\frac{x^{2}}{2}} y$	
		${ }_{-2} 2^{2}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.12.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Verified OK.

3.12.6 Maple step by step solution

Let's solve
$y^{\prime}-y x=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=x
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int x d x+c_{1}$
- Evaluate integral
$\ln (y)=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=x*y(x),y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 22
DSolve[y'[x]==x*y[x],y[x],x, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{\frac{x^{2}}{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.13 problem 8

3.13.1 Solving as separable ode591
3.13.2 Solving as homogeneousTypeD2 ode 593
3.13.3 Solving as differentialType ode 595
3.13.4 Solving as first order ode lie symmetry lookup ode 596
3.13.5 Solving as exact ode 600
3.13.6 Maple step by step solution 604

Internal problem ID [12627]
Internal file name [OUTPUT/11279_Friday_November_03_2023_06_29_38_AM_68378690/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x}{y}=0
$$

3.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x}{y}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y}} d y=x d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y}} d y & =\int x d x \\
\frac{y^{2}}{2} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}} \\
& y=-\sqrt{x^{2}+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x^{2}+2 c_{1}} \tag{1}\\
& y=-\sqrt{x^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 116: Slope field plot

Verification of solutions

$$
y=\sqrt{x^{2}+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{x^{2}+2 c_{1}}
$$

Verified OK.

3.13.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{1}{u(x)}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-1}{x u}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\ln (x)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\ln (x)+2 c_{2}\right) \\
& =-2 \ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-2 \ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{x^{2}} \\
& =\frac{c_{3}}{x^{2}}
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=\frac{c_{3}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x^{2}} \\
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
-(-y+x)(y+x)=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-(-y+x)(y+x)=c_{3} \tag{1}
\end{equation*}
$$

Figure 117: Slope field plot

Verification of solutions

$$
-(-y+x)(y+x)=c_{3}
$$

Verified OK.

3.13.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(x) d x=d\left(\frac{x^{2}}{2}\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{x^{2}}{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}}+c_{1} \\
& y=-\sqrt{x^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-\sqrt{x^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 118: Slope field plot
Verification of solutions

$$
y=\sqrt{x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-\sqrt{x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

3.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 97: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x}{y}$		$\frac{d S}{d R}=R$
-		
	$R=y$	
	x^{2}	
	$S=\frac{x^{2}}{0}$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 119: Slope field plot

Verification of solutions

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

3.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 120: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

3.13.6 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{x}{y}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
y y^{\prime}=x
$$

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{x^{2}+2 c_{1}}, y=-\sqrt{x^{2}+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x)=x/y(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{x^{2}+c_{1}} \\
& y(x)=-\sqrt{x^{2}+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 35
DSolve[y' $[x]==x / y[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x^{2}+2 c_{1}} \\
& y(x) \rightarrow \sqrt{x^{2}+2 c_{1}}
\end{aligned}
$$

3.14 problem 9

$$
\text { 3.14.1 Solving as separable ode . } 606
$$

3.14.2 Solving as linear ode 608
3.14.3 Solving as homogeneousTypeD2 ode 609
3.14.4 Solving as first order ode lie symmetry lookup ode 610
3.14.5 Solving as exact ode 614
3.14.6 Maple step by step solution 618

Internal problem ID [12628]
Internal file name [OUTPUT/11280_Friday_November_03_2023_06_29_39_AM_84437884/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y}{x}=0
$$

3.14.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 121: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

3.14.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 122: Slope field plot
Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

3.14.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x \tag{1}
\end{equation*}
$$

Figure 123: Slope field plot

Verification of solutions

$$
y=c_{2} x
$$

Verified OK.

3.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 100: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow]{ }$
\cdots		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$
	$R=x$ S	
	$=\frac{y}{x}$	$\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow-R_{0 \rightarrow \rightarrow}}$
多多多夝早新：		$\xrightarrow{-2 \rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow}$
		$\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{+}$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 124: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

3.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{c_{1}} x \tag{1}
\end{equation*}
$$

Figure 125: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{c_{1}} x
$$

Verified OK.

3.14.6 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{y}{x}=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral
$\ln (y)=\ln (x)+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

```
dsolve(diff(y(x),x)=y(x)/x,y(x), singsol=all)
```

$$
y(x)=c_{1} x
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 14
DSolve[y' $[x]==y[x] / x, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.15 problem 10

$$
\text { 3.15.1 Solving as quadrature ode . } 620
$$

3.15.2 Maple step by step solution . 621

Internal problem ID [12629]
Internal file name [OUTPUT/11281_Friday_November_03_2023_06_29_40_AM_41313843/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=1
$$

3.15.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}+1} d y & =x+c_{1} \\
\arctan (y) & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tan \left(x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 126: Slope field plot
Verification of solutions

$$
y=\tan \left(x+c_{1}\right)
$$

Verified OK.

3.15.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}=1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1+y^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral

$$
\arctan (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\tan \left(x+c_{1}\right)
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(diff (y(x),x)=1+y(x)^2,y(x), singsol=all)
```

$$
y(x)=\tan \left(c_{1}+x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 24
DSolve[y' $[x]==1+y[x] \sim 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \tan \left(x+c_{1}\right) \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i
\end{aligned}
$$

3.16 problem 11

3.16.1 Solving as quadrature ode . 623
3.16.2 Maple step by step solution . 625

Internal problem ID [12630]
Internal file name [OUTPUT/11282_Friday_November_03_2023_06_29_40_AM_69834863/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+3 y=0
$$

3.16.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-3 y} d y & =\int d x \\
\frac{\ln (y-3)}{3}-\frac{\ln (y)}{3} & =x+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{3}\right)(\ln (y-3)-\ln (y)) & =x+c_{1} \\
\ln (y-3)-\ln (y) & =(3)\left(x+c_{1}\right) \\
& =3 c_{1}+3 x
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-3)-\ln (y)}=3 c_{1} \mathrm{e}^{3 x}
$$

Which simplifies to

$$
\frac{y-3}{y}=\mathrm{e}^{3 x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{-1+\mathrm{e}^{3 x} c_{2}} \tag{1}
\end{equation*}
$$

Figure 127: Slope field plot
Verification of solutions

$$
y=-\frac{3}{-1+\mathrm{e}^{3 x} c_{2}}
$$

Verified OK.

3.16.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}+3 y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}-3 y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}-3 y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (y-3)}{3}-\frac{\ln (y)}{3}=x+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{3}{\mathrm{e}^{3 c_{1}+3 x}-1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{y}(\mathrm{x}) \sim 2-3 * \mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\frac{3}{1+3 c_{1} \mathrm{e}^{3 x}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.352 (sec). Leaf size: 29
DSolve[y' $[x]==y[x] \sim 2-3 * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{3}{1+e^{3\left(x+c_{1}\right)}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 3
\end{aligned}
$$

3.17 problem 12

$$
\text { 3.17.1 Solving as abelFirstKind ode } 627
$$

Internal problem ID [12631]
Internal file name [OUTPUT/11283_Friday_November_03_2023_06_29_41_AM_22483055/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "abelFirstKind"
Maple gives the following as the ode type
[_Abel]
Unable to solve or complete the solution.

$$
y^{\prime}-y^{3}=x^{3}
$$

3.17.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}+f_{3}(x) y^{3}
$$

Comparing the above to given ODE which is

$$
\begin{equation*}
y^{\prime}=x^{3}+y^{3} \tag{1}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& f_{0}(x)=x^{3} \\
& f_{1}(x)=0 \\
& f_{2}(x)=0 \\
& f_{3}(x)=1
\end{aligned}
$$

Since $f_{2}(x)=0$ then we check the Abel invariant to see if it depends on x or not. The Abel invariant is given by

$$
-\frac{f_{1}^{3}}{f_{0}^{2} f_{3}}
$$

Which when evaluating gives

$$
\frac{1}{x^{9}}
$$

Since the Abel invariant depends on x then unable to solve this ode at this time.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve(diff($y(x), x)=x \wedge 3+y(x) \wedge 3, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y'[x] ==x^3+y[x]^3,y[x],x,IncludeSingularSolutions \rightarrow True]

Not solved

3.18 problem 13

$$
\text { 3.18.1 Solving as quadrature ode . } 631
$$

3.18.2 Maple step by step solution . 633

Internal problem ID [12632]
Internal file name [OUTPUT/11284_Friday_November_03_2023_06_29_41_AM_62814595/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-|y|=0
$$

3.18.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{gathered}
\int \frac{1}{|y|} d y=x+c_{1} \\
\left\{\begin{array}{cl}
-\ln (y) & y<0 \\
\text { undefined } & y=0 \\
\ln (y) & 0<y
\end{array}\right.
\end{gathered}
$$

Solving for y gives these solutions

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{-x-c_{1}} \\
& =\frac{\mathrm{e}^{-x}}{c_{1}} \\
y_{2} & =\mathrm{e}^{x+c_{1}} \\
& =\mathrm{e}^{x} c_{1}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\mathrm{e}^{-x}}{c_{1}} \tag{1}\\
& y=\mathrm{e}^{x} c_{1} \tag{2}
\end{align*}
$$

Figure 128: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x}}{c_{1}}
$$

Verified OK.

$$
y=\mathrm{e}^{x} c_{1}
$$

Verified OK.

3.18.2 Maple step by step solution

Let's solve

$$
y^{\prime}-|y|=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{|y|}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{|y|} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\left\{\begin{array}{cc}
-\ln (y) & y<0 \\
\text { undefined } & y=0 \\
\ln (y) & 0<y
\end{array}=x+c_{1}\right.
$$

- \quad Solve for y

$$
\left\{y=\mathrm{e}^{-x-c_{1}}, y=\mathrm{e}^{x+c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 19
dsolve(diff $(y(x), x)=\operatorname{abs}(y(x)), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\mathrm{e}^{-x}}{c_{1}} \\
& y(x)=c_{1} \mathrm{e}^{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 29
DSolve[y' $[x]==A b s[y[x]], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{|K[1]|} d K[1] \&\right]\left[x+c_{1}\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.19 problem 14

3.19.1 Solving as separable ode . 635
3.19.2 Solving as first order special form ID 1 ode 637
3.19.3 Solving as first order ode lie symmetry lookup ode 638
3.19.4 Solving as exact ode . 642
3.19.5 Maple step by step solution . 646

Internal problem ID [12633]
Internal file name [OUTPUT/11285_Friday_November_03_2023_06_29_43_AM_42828604/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first order special form ID 1", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\mathrm{e}^{-y+x}=0
$$

3.19.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\mathrm{e}^{-y} \mathrm{e}^{x}
\end{aligned}
$$

Where $f(x)=\mathrm{e}^{x}$ and $g(y)=\mathrm{e}^{-y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{-y}} d y & =\mathrm{e}^{x} d x \\
\int \frac{1}{\mathrm{e}^{-y}} d y & =\int \mathrm{e}^{x} d x \\
\mathrm{e}^{y} & =\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\ln \left(\mathrm{e}^{x}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(\mathrm{e}^{x}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 129: Slope field plot

Verification of solutions

$$
y=\ln \left(\mathrm{e}^{x}+c_{1}\right)
$$

Verified OK.

3.19.2 Solving as first order special form ID 1 ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\mathrm{e}^{-y+x} \tag{1}
\end{equation*}
$$

And using the substitution $u=\mathrm{e}^{y}$ then

$$
u^{\prime}=y^{\prime} \mathrm{e}^{y}
$$

The above shows that

$$
\begin{aligned}
y^{\prime} & =u^{\prime}(x) \mathrm{e}^{-y} \\
& =\frac{u^{\prime}(x)}{u}
\end{aligned}
$$

Substituting this in (1) gives

$$
\frac{u^{\prime}(x)}{u}=\frac{\mathrm{e}^{x}}{u}
$$

The above simplifies to

$$
\begin{equation*}
u^{\prime}(x)=\mathrm{e}^{x} \tag{2}
\end{equation*}
$$

Now ode (2) is solved for $u(x)$ Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \mathrm{e}^{x} \mathrm{~d} x \\
& =\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Substituting the solution found for $u(x)$ in $u=\mathrm{e}^{y}$ gives

$$
\begin{aligned}
y & =\ln (u(x)) \\
& =\ln \left(\mathrm{e}^{x}+c_{1}\right) \\
& =\ln \left(\mathrm{e}^{x}+c_{1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(\mathrm{e}^{x}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 130: Slope field plot
Verification of solutions

$$
y=\ln \left(\mathrm{e}^{x}+c_{1}\right)
$$

Verified OK.

3.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\mathrm{e}^{-y+x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 106: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\mathrm{e}^{-x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\mathrm{e}^{-x}} d x
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\mathrm{e}^{-y+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\mathrm{e}^{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x}=\mathrm{e}^{y}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x}=\mathrm{e}^{y}+c_{1}
$$

Which gives

$$
y=\ln \left(\mathrm{e}^{x}-c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(\mathrm{e}^{x}-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 131: Slope field plot

Verification of solutions

$$
y=\ln \left(\mathrm{e}^{x}-c_{1}\right)
$$

Verified OK.

3.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y}\right) \mathrm{d} y & =\left(\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(-\mathrm{e}^{x}\right) \mathrm{d} x+\left(\mathrm{e}^{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{x} \\
N(x, y) & =\mathrm{e}^{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{x}+\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{x}+\mathrm{e}^{y}
$$

The solution becomes

$$
y=\ln \left(\mathrm{e}^{x}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(\mathrm{e}^{x}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 132: Slope field plot

Verification of solutions

$$
y=\ln \left(\mathrm{e}^{x}+c_{1}\right)
$$

Verified OK.

3.19.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\mathrm{e}^{-y+x}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime} \mathrm{e}^{y}=\mathrm{e}^{x}
$$

- Integrate both sides with respect to x
$\int y^{\prime} \mathrm{e}^{y} d x=\int \mathrm{e}^{x} d x+c_{1}$
- Evaluate integral

$$
\mathrm{e}^{y}=\mathrm{e}^{x}+c_{1}
$$

- \quad Solve for y

$$
y=\ln \left(\mathrm{e}^{x}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(diff(y(x),x)=exp(x-y(x)),y(x), singsol=all)
```

$$
y(x)=\ln \left(\mathrm{e}^{x}+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 1.319 (sec). Leaf size: 12
DSolve[y' $[x]==\operatorname{Exp}[x-y[x]], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \log \left(e^{x}+c_{1}\right)
$$

3.20 problem 15

3.20.1 Solving as first order ode lie symmetry calculated ode 648

Internal problem ID [12634]
Internal file name [OUTPUT/11286_Friday_November_03_2023_06_29_43_AM_51568707/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _dAlembert]
```

$$
y^{\prime}-\ln (y+x)=0
$$

3.20.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\ln (y+x) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{equation*}
b_{2}+\ln (y+x)\left(b_{3}-a_{2}\right)-\ln (y+x)^{2} a_{3}-\frac{x a_{2}+y a_{3}+a_{1}}{y+x}-\frac{x b_{2}+y b_{3}+b_{1}}{y+x}=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\ln (y+x)^{2} a_{3} x+\ln (y+x)^{2} a_{3} y+\ln (y+x) x a_{2}-\ln (y+x) x b_{3}+\ln (y+x) y a_{2}-\ln (y+x) y b_{3}+x a_{2}}{y+x} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\ln (y+x)^{2} a_{3} x-\ln (y+x)^{2} a_{3} y-\ln (y+x) x a_{2}+\ln (y+x) x b_{3} \tag{6E}\\
& \quad-\ln (y+x) y a_{2}+\ln (y+x) y b_{3}-x a_{2}-y a_{3}+b_{2} y-y b_{3}-a_{1}-b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \ln (y+x)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \ln (y+x)=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{3}^{2} a_{3} v_{1}-v_{3}^{2} a_{3} v_{2}-v_{3} v_{1} a_{2}-v_{3} v_{2} a_{2}+v_{3} v_{1} b_{3} \tag{7E}\\
& \quad+v_{3} v_{2} b_{3}-v_{1} a_{2}-v_{2} a_{3}+b_{2} v_{2}-v_{2} b_{3}-a_{1}-b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{3}^{2} a_{3} v_{1}+\left(b_{3}-a_{2}\right) v_{1} v_{3}-v_{1} a_{2}-v_{3}^{2} a_{3} v_{2} \tag{8E}\\
& \quad+\left(b_{3}-a_{2}\right) v_{2} v_{3}+\left(-a_{3}+b_{2}-b_{3}\right) v_{2}-a_{1}-b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-a_{2} & =0 \\
-a_{3} & =0 \\
-a_{1}-b_{1} & =0 \\
b_{3}-a_{2} & =0 \\
-a_{3}+b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-b_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-1 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-(\ln (y+x))(-1) \\
& =1+\ln (y+x) \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{1+\ln (y+x)} d y
\end{aligned}
$$

Which results in

$$
S=-\mathrm{e}^{-1} \exp \text { Integral }_{1}(-\ln (y+x)-1)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\ln (y+x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{1+\ln (y+x)} \\
S_{y} & =\frac{1}{1+\ln (y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\mathrm{e}^{-1} \exp \text { Integral }_{1}(-\ln (y+x)-1)=x+c_{1}
$$

Which simplifies to

$$
-\mathrm{e}^{-1} \exp \text { Integral }_{1}(-\ln (y+x)-1)=x+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\ln (y+x)$	$\begin{aligned} R & =x \\ S & =-\mathrm{e}^{-1} \text { expIntegral }_{1} \end{aligned}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-1} \exp \text { Integral }_{1}(-\ln (y+x)-1)=x+c_{1} \tag{1}
\end{equation*}
$$

Figure 133: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{-1} \exp \text { Integral }_{1}(-\ln (y+x)-1)=x+c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 29
dsolve(diff $(y(x), x)=\ln (x+y(x)), y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{\operatorname{RootOf}\left(c_{1} \mathrm{e}-x \mathrm{e}-\exp \operatorname{Integral}_{1}(--Z-1)\right)}-x
$$

\checkmark Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 22
DSolve $\left[y^{\prime}[x]==\log [x+y[x]], y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\text { Solve }\left[\frac{\operatorname{ExpIntegralEi}(\log (x+y(x))+1)}{e}-x=c_{1}, y(x)\right]
$$

3.21 problem 16

3.21.1 Solving as homogeneousTypeD2 ode 655
3.21.2 Solving as differentialType ode 657
3.21.3 Solving as first order ode lie symmetry calculated ode 659
3.21.4 Solving as exact ode . 664

Internal problem ID [12635]
Internal file name [OUTPUT/11287_Friday_November_03_2023_06_29_44_AM_69163266/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, class A`]]

$$
y^{\prime}-\frac{2 x-y}{3 y+x}=0
$$

3.21.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{2 x-u(x) x}{3 u(x) x+x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u^{2}+2 u-2}{x(3 u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{3 u^{2}+2 u-2}{3 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{3 u^{2}+2 u-2}{3 u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{3 u^{2}+2 u-2}{3 u+1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(3 u^{2}+2 u-2\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{3 u^{2}+2 u-2}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{3 u^{2}+2 u-2}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{3 u(x)^{2}+2 u(x)-2}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{3 u(x)^{2}+2 u(x)-2}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{3 y^{2}}{x^{2}}+\frac{2 y}{x}-2} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{3 y^{2}+2 y x-2 x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{3 y^{2}+2 y x-2 x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 134: Slope field plot
Verification of solutions

$$
\sqrt{\frac{3 y^{2}+2 y x-2 x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

3.21.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{2 x-y}{3 y+x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(3 y) d y=(-x) d y+(2 x-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(2 x-y) d x=d\left(x^{2}-x y\right)
$$

Hence (2) becomes

$$
(3 y) d y=d\left(x^{2}-x y\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{x}{3}+\frac{\sqrt{7 x^{2}+6 c_{1}}}{3}+c_{1} \\
& y=-\frac{x}{3}-\frac{\sqrt{7 x^{2}+6 c_{1}}}{3}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x}{3}+\frac{\sqrt{7 x^{2}+6 c_{1}}}{3}+c_{1} \tag{1}\\
& y=-\frac{x}{3}-\frac{\sqrt{7 x^{2}+6 c_{1}}}{3}+c_{1} \tag{2}
\end{align*}
$$

Figure 135: Slope field plot

Verification of solutions

$$
y=-\frac{x}{3}+\frac{\sqrt{7 x^{2}+6 c_{1}}}{3}+c_{1}
$$

Verified OK.

$$
y=-\frac{x}{3}-\frac{\sqrt{7 x^{2}+6 c_{1}}}{3}+c_{1}
$$

Verified OK.

3.21.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{-2 x+y}{3 y+x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(-2 x+y)\left(b_{3}-a_{2}\right)}{3 y+x}-\frac{(-2 x+y)^{2} a_{3}}{(3 y+x)^{2}} \\
& -\left(\frac{2}{3 y+x}+\frac{-2 x+y}{(3 y+x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{3 y+x}+\frac{-6 x+3 y}{(3 y+x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 x^{2} a_{2}+4 x^{2} a_{3}-8 x^{2} b_{2}-2 x^{2} b_{3}+12 x y a_{2}-4 x y a_{3}-6 x y b_{2}-12 x y b_{3}-3 y^{2} a_{2}+8 y^{2} a_{3}-9 y^{2} b_{2}+3 y^{2} b_{3}-}{(3 y+x)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{2} a_{2}-4 x^{2} a_{3}+8 x^{2} b_{2}+2 x^{2} b_{3}-12 x y a_{2}+4 x y a_{3}+6 x y b_{2} \tag{6E}\\
& +12 x y b_{3}+3 y^{2} a_{2}-8 y^{2} a_{3}+9 y^{2} b_{2}-3 y^{2} b_{3}+7 x b_{1}-7 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{2}-12 a_{2} v_{1} v_{2}+3 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}+4 a_{3} v_{1} v_{2}-8 a_{3} v_{2}^{2}+8 b_{2} v_{1}^{2} \tag{7E}\\
& \quad+6 b_{2} v_{1} v_{2}+9 b_{2} v_{2}^{2}+2 b_{3} v_{1}^{2}+12 b_{3} v_{1} v_{2}-3 b_{3} v_{2}^{2}-7 a_{1} v_{2}+7 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-2 a_{2}-4 a_{3}+8 b_{2}+2 b_{3}\right) v_{1}^{2}+\left(-12 a_{2}+4 a_{3}+6 b_{2}+12 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+7 b_{1} v_{1}+\left(3 a_{2}-8 a_{3}+9 b_{2}-3 b_{3}\right) v_{2}^{2}-7 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-7 a_{1} & =0 \\
7 b_{1} & =0 \\
-12 a_{2}+4 a_{3}+6 b_{2}+12 b_{3} & =0 \\
-2 a_{2}-4 a_{3}+8 b_{2}+2 b_{3} & =0 \\
3 a_{2}-8 a_{3}+9 b_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=b_{2}+b_{3} \\
& a_{3}=\frac{3 b_{2}}{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{-2 x+y}{3 y+x}\right)(x) \\
& =\frac{-2 x^{2}+2 x y+3 y^{2}}{3 y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x^{2}+2 x y+3 y^{2}}{3 y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-2 x^{2}+2 x y+3 y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-2 x+y}{3 y+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x-y}{2 x^{2}-2 x y-3 y^{2}} \\
S_{y} & =\frac{-3 y-x}{2 x^{2}-2 x y-3 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(3 y^{2}+2 y x-2 x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(3 y^{2}+2 y x-2 x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(3 y^{2}+2 y x-2 x^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 136: Slope field plot

Verification of solutions

$$
\frac{\ln \left(3 y^{2}+2 y x-2 x^{2}\right)}{2}=c_{1}
$$

Verified OK.

3.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(3 y+x) \mathrm{d} y & =(2 x-y) \mathrm{d} x \\
(-2 x+y) \mathrm{d} x+(3 y+x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-2 x+y \\
& N(x, y)=3 y+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 x+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(3 y+x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-2 x+y \mathrm{~d} x \\
\phi & =-x(-y+x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 y+x$. Therefore equation (4) becomes

$$
\begin{equation*}
3 y+x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(3 y) \mathrm{d} y \\
f(y) & =\frac{3 y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x(-y+x)+\frac{3 y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x(-y+x)+\frac{3 y^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x(-y+x)+\frac{3 y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 137: Slope field plot

Verification of solutions

$$
-x(-y+x)+\frac{3 y^{2}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.079 (sec). Leaf size: 53
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x})=(2 * \mathrm{x}-\mathrm{y}(\mathrm{x})) /(\mathrm{x}+3 * \mathrm{y}(\mathrm{x})), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{-c_{1} x-\sqrt{7 c_{1}^{2} x^{2}+3}}{3 c_{1}} \\
& y(x)=\frac{-c_{1} x+\sqrt{7 c_{1}^{2} x^{2}+3}}{3 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.812 (sec). Leaf size: 114
DSolve[y'[x]==(2*x-y[x])/(x+3*y[x]),y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
y(x) & \rightarrow \frac{1}{3}\left(-x-\sqrt{7 x^{2}+3 e^{2 c_{1}}}\right) \\
y(x) & \rightarrow \frac{1}{3}\left(-x+\sqrt{7 x^{2}+3 e^{2 c_{1}}}\right) \\
y(x) & \rightarrow \frac{1}{3}\left(-\sqrt{7} \sqrt{x^{2}}-x\right) \\
y(x) & \rightarrow \frac{1}{3}\left(\sqrt{7} \sqrt{x^{2}}-x\right)
\end{aligned}
$$

3.22 problem 17

Internal problem ID [12636]
Internal file name [OUTPUT/11288_Friday_November_03_2023_06_29_45_AM_12419405/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.1, page 40
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
$\left[` y=-G\left(x, y^{\prime}\right) `\right]$
Unable to solve or complete the solution.

$$
y^{\prime}-\frac{1}{\sqrt{15-x^{2}-y^{2}}}=0
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```


X Solution by Maple

```
dsolve(diff(y(x),x)=1/sqrt(15-x^2-y(x)^2),y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[y'[x]==1/Sqrt[15-x^2-y[x]^2],y[x],x,IncludeSingularSolutions -> True]
```

Not solved
4 Chapter 2. The Initial Value Problem. Exercises2.2, page 53
4.1 problem 1 672
4.2 problem 2 686
4.3 problem 3 700
4.4 problem 4 712
4.5 problem 5 715
4.6 problem 6 718
4.7 problem 7 732
4.8 problem 8 746
4.9 problem 9 758
4.10 problem 10 770
4.11 problem 11 782
4.12 problem 12 795
4.13 problem 13 810
4.14 problem 14 814
4.15 problem 15 818
4.16 problem 16 822
4.17 problem 17 826
4.18 problem 18 840
4.19 problem 19 854
4.20 problem 20 868
4.21 problem 21 883
4.22 problem 22 898
4.23 problem 23 912
4.24 problem 24 925

4.1 problem 1

4.1.1 Solving as linear ode672
4.1.2 Solving as first order ode lie symmetry lookup ode 674
4.1.3 Solving as exact ode 679
4.1.4 Maple step by step solution 683

Internal problem ID [12637]
Internal file name [OUTPUT/11289_Friday_November_03_2023_06_29_46_AM_16542071/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{3 y}{(-5+x)(x+3)}=\mathrm{e}^{-x}
$$

4.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{(-5+x)(x+3)} \\
& q(x)=\mathrm{e}^{-x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{(-5+x)(x+3)}=\mathrm{e}^{-x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{(-5+x)(x+3)} d x} \\
& =\mathrm{e}^{-\frac{3 \ln (-5+x)}{8}+\frac{3 \ln (x+3)}{8}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{-x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x+3)^{\frac{3}{8}} y}{(-5+x)^{\frac{3}{8}}}\right) & =\left(\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}\right)\left(\mathrm{e}^{-x}\right) \\
\mathrm{d}\left(\frac{(x+3)^{\frac{3}{8}} y}{(-5+x)^{\frac{3}{8}}}\right) & =\left(\frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{(x+3)^{\frac{3}{8}} y}{(-5+x)^{\frac{3}{8}}}=\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} \mathrm{~d} x \\
& \frac{(x+3)^{\frac{3}{8}} y}{(-5+x)^{\frac{3}{8}}}=\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}$ results in

$$
y=\frac{(-5+x)^{\frac{3}{8}}\left(\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x\right)}{(x+3)^{\frac{3}{8}}}+\frac{c_{1}(-5+x)^{\frac{3}{8}}}{(x+3)^{\frac{3}{8}}}
$$

which simplifies to

$$
y=\frac{(-5+x)^{\frac{3}{8}}\left(\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}\right)}{(x+3)^{\frac{3}{8}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(-5+x)^{\frac{3}{8}}\left(\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}\right)}{(x+3)^{\frac{3}{8}}} \tag{1}
\end{equation*}
$$

Figure 138: Slope field plot

Verification of solutions

$$
y=\frac{(-5+x)^{\frac{3}{8}}\left(\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}\right)}{(x+3)^{\frac{3}{8}}}
$$

Verified OK.

4.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2} \mathrm{e}^{-x}-2 x \mathrm{e}^{-x}-15 \mathrm{e}^{-x}+3 y}{(-5+x)(x+3)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 109: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{3 \ln (-5+x)}{8}-\frac{3 \ln (x+3)}{8}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{3 \ln (-5+x)}{8}-\frac{3 \ln (x+3)}{8}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\ln \left(\frac{1}{(-5+x)^{\frac{3}{8}}}\right)+\ln \left((x+3)^{\frac{3}{8}}\right)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2} \mathrm{e}^{-x}-2 x \mathrm{e}^{-x}-15 \mathrm{e}^{-x}+3 y}{(-5+x)(x+3)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{3 y}{(-5+x)^{\frac{11}{8}}(x+3)^{\frac{5}{8}}} \\
& S_{y}=\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{-R}(R+3)^{\frac{3}{8}}}{(-5+R)^{\frac{3}{8}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{\mathrm{e}^{-R}(R+3)^{\frac{3}{8}}}{(-5+R)^{\frac{3}{8}}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{(x+3)^{\frac{3}{8}} y}{(-5+x)^{\frac{3}{8}}}=\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}
$$

Which simplifies to

$$
\frac{(x+3)^{\frac{3}{8}} y}{(-5+x)^{\frac{3}{8}}}=\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}
$$

Which gives

$$
y=\frac{(-5+x)^{\frac{3}{8}}\left(\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}\right)}{(x+3)^{\frac{3}{8}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(-5+x)^{\frac{3}{8}}\left(\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}\right)}{(x+3)^{\frac{3}{8}}} \tag{1}
\end{equation*}
$$

Figure 139: Slope field plot

Verification of solutions

$$
y=\frac{(-5+x)^{\frac{3}{8}}\left(\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}\right)}{(x+3)^{\frac{3}{8}}}
$$

Verified OK.

4.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{3 y}{(-5+x)(x+3)}+\mathrm{e}^{-x}\right) \mathrm{d} x \\
\left(-\frac{3 y}{(-5+x)(x+3)}-\mathrm{e}^{-x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{3 y}{(-5+x)(x+3)}-\mathrm{e}^{-x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 y}{(-5+x)(x+3)}-\mathrm{e}^{-x}\right) \\
& =-\frac{3}{(-5+x)(x+3)}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{3}{(-5+x)(x+3)}\right)-(0)\right) \\
& =-\frac{3}{(-5+x)(x+3)}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{3}{(-5+x)(x+3)} \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{3 \ln (-5+x)}{8}+\frac{3 \ln (x+3)}{8}} \\
& =\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}\left(-\frac{3 y}{(-5+x)(x+3)}-\mathrm{e}^{-x}\right) \\
& =-\frac{\left(x^{2}-2 x-15\right) \mathrm{e}^{-x}+3 y}{(-5+x)^{\frac{11}{8}}(x+3)^{\frac{5}{8}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}(1) \\
& =\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{\left(x^{2}-2 x-15\right) \mathrm{e}^{-x}+3 y}{(-5+x)^{\frac{11}{8}}(x+3)^{\frac{5}{8}}}\right)+\left(\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\left(x^{2}-2 x-15\right) \mathrm{e}^{-x}+3 y}{(-5+x)^{\frac{11}{8}}(x+3)^{\frac{5}{8}}} \mathrm{~d} x \\
\phi & =\int^{x}-\frac{\left(-a^{2}-2 _a-15\right) \mathrm{e}^{--a}+3 y}{\left(-5+_a\right)^{\frac{11}{8}}\left(_a+3\right)^{\frac{5}{8}}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}=\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}-\frac{\left(_a^{2}-2 _a-15\right) \mathrm{e}^{-} _^{a}+3 y}{\left(-5+_a\right)^{\frac{11}{8}}\left(_a+3\right)^{\frac{5}{8}}} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}-\frac{\left(_a^{2}-2 _a-15\right) \mathrm{e}^{-_a}+3 y}{\left(-5+_a\right)^{\frac{11}{8}}\left(_a+3\right)^{\frac{5}{8}}} d _a
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\int^{x}-\frac{\left(_a^{2}-2 _a-15\right) \mathrm{e}^{-_a}+3 y}{\left(-5+_a\right)^{\frac{11}{8}}\left(_a+3\right)^{\frac{5}{8}}} d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 140: Slope field plot

Verification of solutions

$$
\int^{x}-\frac{\left(_a^{2}-2 _a-15\right) \mathrm{e}^{-_a}+3 y}{\left(-5+_a\right)^{\frac{11}{8}}\left(_a+3\right)^{\frac{5}{8}}} d _a=c_{1}
$$

Verified OK.

4.1.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{3 y}{(-5+x)(x+3)}=\mathrm{e}^{-x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{(-5+x)(x+3)}+\mathrm{e}^{-x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{3 y}{(-5+x)(x+3)}=\mathrm{e}^{-x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{(-5+x)(x+3)}\right)=\mu(x) \mathrm{e}^{-x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{(-5+x)(x+3)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{3 \mu(x)}{(-5+x)(x+3)}$
- Solve to find the integrating factor
$\mu(x)=\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{-x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{-x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{-x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}}$
$y=\frac{(-5+x)^{\frac{3}{8}}\left(\int \frac{\frac{e}{}-x^{-x}(x+3)^{\frac{3}{8}}}{(-5+x)^{\frac{3}{8}}} d x+c_{1}\right)}{(x+3)^{\frac{3}{8}}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve(diff $(y(x), x)=3 * y(x) /((x-5) *(x+3))+\exp (-x), y(x)$, singsol=all)

$$
y(x)=\frac{\left(\int \frac{\mathrm{e}^{-x}(x+3)^{\frac{3}{8}}}{(x-5)^{\frac{3}{8}}} d x+c_{1}\right)(x-5)^{\frac{3}{8}}}{(x+3)^{\frac{3}{8}}}
$$

\checkmark Solution by Mathematica
Time used: 15.323 (sec). Leaf size: 57
DSolve[y'[x] $==3 * y[x] /((x-5) *(x+3))+\operatorname{Exp}[-x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{(5-x)^{3 / 8}\left(\int_{1}^{x} \frac{e^{-K[1]}(K[1]+3)^{3 / 8}}{(5-K[1])^{3 / 8}} d K[1]+c_{1}\right)}{(x+3)^{3 / 8}}
$$

4.2 problem 2

4.2.1 Solving as homogeneousTypeD2 ode 686
4.2.2 Solving as first order ode lie symmetry calculated ode 688
4.2.3 Solving as exact ode . 693

Internal problem ID [12638]
Internal file name [OUTPUT/11290_Friday_November_03_2023_06_29_47_AM_65750474/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y^{\prime}-\frac{x y}{x^{2}+y^{2}}=0
$$

4.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2} u(x)}{x^{2}+u(x)^{2} x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}}{x\left(u^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{3}}{u^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =\int-\frac{1}{x} d x \\
-\frac{1}{2 u^{2}}+\ln (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{2 u(x)^{2}}+\ln (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& -\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 141: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

4.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x y}{x^{2}+y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{x y\left(b_{3}-a_{2}\right)}{x^{2}+y^{2}}-\frac{x^{2} y^{2} a_{3}}{\left(x^{2}+y^{2}\right)^{2}}-\left(\frac{y}{x^{2}+y^{2}}-\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{x}{x^{2}+y^{2}}-\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{-3 x^{2} y^{2} b_{2}+2 x y^{3} a_{2}-2 x y^{3} b_{3}+y^{4} a_{3}-y^{4} b_{2}+x^{3} b_{1}-x^{2} y a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
3 x^{2} y^{2} b_{2}-2 x y^{3} a_{2}+2 x y^{3} b_{3}-y^{4} a_{3}+y^{4} b_{2}-x^{3} b_{1}+x^{2} y a_{1}+x y^{2} b_{1}-y^{3} a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{2} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+3 b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4}+2 b_{3} v_{1} v_{2}^{3}+a_{1} v_{1}^{2} v_{2}-a_{1} v_{2}^{3}-b_{1} v_{1}^{3}+b_{1} v_{1} v_{2}^{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-b_{1} v_{1}^{3}+3 b_{2} v_{1}^{2} v_{2}^{2}+a_{1} v_{1}^{2} v_{2}+\left(-2 a_{2}+2 b_{3}\right) v_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}+\left(-a_{3}+b_{2}\right) v_{2}^{4}-a_{1} v_{2}^{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
3 b_{2} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
-a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x y}{x^{2}+y^{2}}\right)(x) \\
& =\frac{y^{3}}{x^{2}+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{x^{2}+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2 y^{2}}+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{y^{2}} \\
S_{y} & =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{2 \ln (y) y^{2}-x^{2}}{2 y^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{2 \ln (y) y^{2}-x^{2}}{2 y^{2}}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\text { Lambertw }\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$		$\frac{d S}{d R}=0$
ご		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
\rightarrow	$R=x$	
	S $2 \ln (y) y^{2}-x^{2}$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 142: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}}
$$

Verified OK.

4.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y^{2}\right) \mathrm{d} y & =(x y) \mathrm{d} x \\
(-x y) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x y \\
N(x, y) & =x^{2}+y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x y) \\
& =-x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+y^{2}}((-x)-(2 x)) \\
& =-\frac{3 x}{x^{2}+y^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{x y}((2 x)-(-x)) \\
& =-\frac{3}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{3}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (y)} \\
& =\frac{1}{y^{3}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{3}}(-x y) \\
& =-\frac{x}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{3}}\left(x^{2}+y^{2}\right) \\
& =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{x}{y^{2}}\right)+\left(\frac{x^{2}+y^{2}}{y^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{y^{2}} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2 y^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2}+y^{2}}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{y^{3}}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2 y^{2}}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2 y^{2}}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\operatorname{LambertW}\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 143: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\text { LambertW }\left(\mathrm{e}^{-2 c_{1} x^{2}}\right)}{2}+c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 16
dsolve(diff $(y(x), x)=x * y(x) /\left(x^{\wedge} 2+y(x)^{\wedge} 2\right), y(x)$, singsol=all)

$$
y(x)=\sqrt{\frac{1}{\text { LambertW }\left(c_{1} x^{2}\right)}} x
$$

\checkmark Solution by Mathematica
Time used: 11.187 (sec). Leaf size: 49
DSolve[y'[x]==x*y[x]/(x^2+y[x]~2),y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{\sqrt{W\left(e^{-2 c_{1}} x^{2}\right)}} \\
& y(x) \rightarrow \frac{x}{\sqrt{W\left(e^{-2 c_{1}} x^{2}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.3 problem 3

$$
\text { 4.3.1 Solving as separable ode . } 700
$$

4.3.2 Solving as first order ode lie symmetry lookup ode 702
4.3.3 Solving as exact ode . 706
4.3.4 Maple step by step solution . 710

Internal problem ID [12639]
Internal file name [OUTPUT/11291_Friday_November_03_2023_06_29_53_AM_9194465/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{1}{y x}=0
$$

4.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{1}{x y}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int \frac{1}{x} d x
\end{aligned}
$$

$$
\frac{y^{2}}{2}=\ln (x)+c_{1}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{2 \ln (x)+2 c_{1}} \\
& y=-\sqrt{2 \ln (x)+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{2 \ln (x)+2 c_{1}} \tag{1}\\
& y=-\sqrt{2 \ln (x)+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 144: Slope field plot

Verification of solutions

$$
y=\sqrt{2 \ln (x)+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{2 \ln (x)+2 c_{1}}
$$

Verified OK.

4.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{1}{x y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 112: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1}{x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\ln (x)=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{1}{x y}$		$\frac{d S}{d R}=R$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }+$		
$\rightarrow \rightarrow \rightarrow \rightarrow-\infty$		
$\rightarrow \rightarrow-\gg 0 \times 0$		
	$S=\ln (x)$	
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$		Li
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$		
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \chi_{\rightarrow \rightarrow \rightarrow}$!

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (x)=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 145: Slope field plot
Verification of solutions

$$
\ln (x)=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

4.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (x)+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 146: Slope field plot
Verification of solutions

$$
-\ln (x)+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

4.3.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{1}{y x}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
y y^{\prime}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral
$\frac{y^{2}}{2}=\ln (x)+c_{1}$
- \quad Solve for y

$$
\left\{y=\sqrt{2 \ln (x)+2 c_{1}}, y=-\sqrt{2 \ln (x)+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve(diff(y(x),x)=1/( x*y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{2 \ln (x)+c_{1}} \\
& y(x)=-\sqrt{2 \ln (x)+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 40
DSolve[y' $[x]==1 /(x * y[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{2} \sqrt{\log (x)+c_{1}} \\
& y(x) \rightarrow \sqrt{2} \sqrt{\log (x)+c_{1}}
\end{aligned}
$$

4.4 problem 4

$$
\text { 4.4.1 Solving as quadrature ode . } 712
$$

4.4.2 Maple step by step solution . 713

Internal problem ID [12640]
Internal file name [OUTPUT/11292_Friday_November_03_2023_06_29_54_AM_80971990/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\ln (y-1)=0
$$

4.4.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{\ln (y-1)} d y=\int d x \\
&-\operatorname{expIntegral} \\
& 1(-\ln (y-1))
\end{aligned}=x+c_{1}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\operatorname{expIntegral}}{ }_{1}(-\ln (y-1))=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\mathrm{e}^{-\exp \operatorname{Integral}_{1}(-\ln (y-1))}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left.y=\mathrm{e}^{\text {RootOf }^{\exp I n t e g r a l}}\left(-_Z\right)+\ln \left(c_{2}\right)+x\right)+1 \tag{1}
\end{equation*}
$$

Figure 147: Slope field plot
Verification of solutions

$$
\left.y=\mathrm{e}^{\text {RootOf(expIntegral }}(-\quad Z)+\ln \left(c_{2}\right)+x\right)+1
$$

Verified OK.

4.4.2 Maple step by step solution

Let's solve
$y^{\prime}-\ln (y-1)=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\ln (y-1)}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\ln (y-1)} d x=\int 1 d x+c_{1}$
- Evaluate integral

$$
-\mathrm{Ei}_{1}(-\ln (y-1))=x+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(x),x)=ln(y(x)-1),y(x), singsol=all)
```

$$
\left.y(x)=\mathrm{e}^{\operatorname{RootOf}(x+\operatorname{expIntegral}}(--Z)+c_{1}\right)+1
$$

\checkmark Solution by Mathematica
Time used: 0.29 (sec). Leaf size: 21

```
DSolve[y'[x]==Log[y[x]-1],y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }[\log \operatorname{Integral}(\# 1-1) \&]\left[x+c_{1}\right] \\
& y(x) \rightarrow 2
\end{aligned}
$$

4.5 problem 5

4.5.1 Solving as quadrature ode
4.5.2 Maple step by step solution . 716

Internal problem ID [12641]
Internal file name [OUTPUT/11293_Friday_November_03_2023_06_29_54_AM_30618932/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\sqrt{(y+2)(y-1)}=0
$$

4.5.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{(y+2)(y-1)}} d y & =\int d x \\
\ln \left(y+\frac{1}{2}+\sqrt{y^{2}+y-2}\right) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\frac{1}{2}+\sqrt{y^{2}+y-2}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y+\frac{1}{2}+\sqrt{y^{2}+y-2}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(4 \mathrm{e}^{2 x} c_{2}^{2}-4 c_{2} \mathrm{e}^{x}+9\right) \mathrm{e}^{-x}}{8 c_{2}} \tag{1}
\end{equation*}
$$

Figure 148: Slope field plot

Verification of solutions

$$
y=\frac{\left(4 \mathrm{e}^{2 x} c_{2}^{2}-4 c_{2} \mathrm{e}^{x}+9\right) \mathrm{e}^{-x}}{8 c_{2}}
$$

Verified OK.

4.5.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\sqrt{(y+2)(y-1)}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{(y+2)(y-1)}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{(y+2)(y-1)}} d x=\int 1 d x+c_{1}$
- Evaluate integral

$$
\ln \left(y+\frac{1}{2}+\sqrt{-2+y^{2}+y}\right)=x+c_{1}
$$

- \quad Solve for y

$$
y=\frac{4\left(\mathrm{e}^{x+c_{1}}\right)^{2}-4 \mathrm{e}^{x+c_{1}}+9}{8 \mathrm{e}^{x+c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff(y(x),x)=sqrt( (y(x)+2)*(y(x)-1)),y(x), singsol=all)
```

$$
x+\ln (2)-\ln (1+2 y(x)+2 \sqrt{(y(x)+2)(-1+y(x))})+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.497 (sec). Leaf size: 41

```
DSolve[y'[x]==Sqrt[(y[x]+2)*(y[x]-1)],y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(-e^{-x-c_{1}}-9 e^{x+c_{1}}-2\right) \\
& y(x) \rightarrow-2 \\
& y(x) \rightarrow 1
\end{aligned}
$$

4.6 problem 6

4.6.1 Solving as homogeneousTypeD2 ode 718
4.6.2 Solving as differentialType ode 720
4.6.3 Solving as first order ode lie symmetry calculated ode 722
4.6.4 Solving as exact ode . 727

Internal problem ID [12642]
Internal file name [OUTPUT/11294_Friday_November_03_2023_06_29_55_AM_26256630/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, class A`]]

$$
y^{\prime}-\frac{y}{y-x}=0
$$

4.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{u(x) x}{u(x) x-x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(u-2)}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u(u-2)}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u-2)}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u(u-2)}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u(u-2))}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u(u-2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u(u-2)}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y\left(\frac{y}{x}-2\right)}{x}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y(-2 x+y)}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y(-2 x+y)}{x^{2}}}=\frac{c_{3} \mathrm{c}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 149: Slope field plot
Verification of solutions

$$
\sqrt{\frac{y(-2 x+y)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

4.6.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{y}{y-x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-y) d y=(-x) d y+(-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-y) d x=d(-x y)
$$

Hence (2) becomes

$$
(-y) d y=d(-x y)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=x+\sqrt{x^{2}-2 c_{1}}+c_{1} \\
& y=x-\sqrt{x^{2}-2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x+\sqrt{x^{2}-2 c_{1}}+c_{1} \tag{1}\\
& y=x-\sqrt{x^{2}-2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 150: Slope field plot

Verification of solutions

$$
y=x+\sqrt{x^{2}-2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=x-\sqrt{x^{2}-2 c_{1}}+c_{1}
$$

Verified OK.

4.6.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}+\frac{y\left(b_{3}-a_{2}\right)}{y-x}-\frac{y^{2} a_{3}}{(y-x)^{2}}-\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(y-x)^{2}} \tag{5E}\\
\quad-\left(\frac{1}{y-x}-\frac{y}{(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\frac{2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}}{(-y+x)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-a_{2} v_{2}^{2}-2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{2}^{2}-a_{1} v_{2}+b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{1} v_{1}+\left(-a_{2}-2 a_{3}+b_{2}+b_{3}\right) v_{2}^{2}-a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-a_{1} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
-a_{2}-2 a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y}{y-x}\right)(x) \\
& =\frac{2 x y-y^{2}}{-y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x y-y^{2}}{-y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y(-2 x+y))}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{2 x-y} \\
S_{y} & =\frac{-y+x}{y(2 x-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 151: Slope field plot

Verification of solutions

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

Verified OK.

4.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-x) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y \mathrm{~d} x \\
\phi & =-x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y-x$. Therefore equation (4) becomes

$$
\begin{equation*}
y-x=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x y+\frac{1}{2} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x y+\frac{1}{2} y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-y x+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 152: Slope field plot

Verification of solutions

$$
-y x+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{y}(\mathrm{x}) /(\mathrm{y}(\mathrm{x})-\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
\begin{aligned}
& y(x)=x-\sqrt{x^{2}-2 c_{1}} \\
& y(x)=x+\sqrt{x^{2}-2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.836 (sec). Leaf size: 80
DSolve [y' $[x]==y[x] /(y[x]-x), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x-\sqrt{x^{2}-e^{2 c_{1}}} \\
& y(x) \rightarrow x+\sqrt{x^{2}-e^{2 c_{1}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow x-\sqrt{x^{2}} \\
& y(x) \rightarrow \sqrt{x^{2}}+x
\end{aligned}
$$

4.7 problem 7

4.7.1 Solving as separable ode732
4.7.2 Solving as differentialType ode [734]
4.7.3 Solving as first order ode lie symmetry lookup ode 736
4.7.4 Solving as exact ode . 740
4.7.5 Maple step by step solution . 744

Internal problem ID [12643]
Internal file name [OUTPUT/11295_Friday_November_03_2023_06_29_56_AM_6075644/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x}{y^{2}}=0
$$

4.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x}{y^{2}}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\frac{1}{y^{2}}$. Integrating both sides gives

$$
\begin{gathered}
\frac{1}{\frac{1}{y^{2}}} d y=x d x \\
\int \frac{1}{\frac{1}{y^{2}}} d y=\int x d x
\end{gathered}
$$

$$
\frac{y^{3}}{3}=\frac{x^{2}}{2}+c_{1}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2} \tag{1}\\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4} \tag{2}\\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4} \tag{3}
\end{align*}
$$

Figure 153: Slope field plot

Verification of solutions

$$
y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2}
$$

Verified OK.

$$
y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}
$$

Verified OK.

$$
y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}
$$

Verified OK.

4.7.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x}{y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(y^{2}\right) d y=(x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(x) d x=d\left(\frac{x^{2}}{2}\right)
$$

Hence (2) becomes

$$
\left(y^{2}\right) d y=d\left(\frac{x^{2}}{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2}+c_{1} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+c_{1} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+c_{1}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2}+c_{1} \tag{1}\\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+c_{1} \tag{2}\\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+c_{1} \tag{3}
\end{align*}
$$

Figure 154: Slope field plot

Verification of solutions

$$
y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2}+c_{1}
$$

Verified OK.

$$
y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+c_{1}
$$

Verified OK.

$$
y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+c_{1}
$$

Verified OK.

4.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x}{y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 117: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η				
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$				
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0				
quadrature ode	$y^{\prime}=f(x)$	0	1				
quadrature ode	$y^{\prime}=g(y)$	1	0				
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y				
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$				
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$				
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$				
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$					
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$				
$a_{1} b_{2}-a_{2} b_{1}$				$\frac{\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0
:---	:---	:---					

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x}{y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{3}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\frac{y^{3}}{3}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\frac{y^{3}}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x}{y^{2}}$		$\frac{d S}{d R}=R^{2}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$		
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty$		
$\cdots \times v x d x \rightarrow \rightarrow \rightarrow \infty \rightarrow \infty$ -		
		$4+4+4+4 \rightarrow \rightarrow \rightarrow-4+4+4$
	$S=\underline{x^{2}}$	
:	$S=\frac{\omega}{2}$	+ $4+4$
$\xrightarrow{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=\frac{y^{3}}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 155: Slope field plot
Verification of solutions

$$
\frac{x^{2}}{2}=\frac{y^{3}}{3}+c_{1}
$$

Verified OK.

4.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{2}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(y^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
y^{2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{3}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{3}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3}}{3}-\frac{x^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 156: Slope field plot
Verification of solutions

$$
\frac{y^{3}}{3}-\frac{x^{2}}{2}=c_{1}
$$

Verified OK.

4.7.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{x}{y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
y^{\prime} y^{2}=x
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} y^{2} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{3}}{3}=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 65
dsolve(diff $(y(x), x)=x / y(x) \sim 2, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}}{2} \\
& y(x)=-\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4} \\
& y(x)=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.283 (sec). Leaf size: 79
DSolve $[y$ ' $[x]==x / y[x] \sim 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) & \rightarrow-\sqrt[3]{-\frac{3}{2}} \sqrt[3]{x^{2}+2 c_{1}} \\
y(x) & \rightarrow \sqrt[3]{\frac{3}{2}} \sqrt[3]{x^{2}+2 c_{1}} \\
y(x) & \rightarrow(-1)^{2 / 3} \sqrt[3]{\frac{3}{2}} \sqrt[3]{x^{2}+2 c_{1}}
\end{aligned}
$$

4.8 problem 8

4.8.1 Solving as separable ode 746
4.8.2 Solving as first order ode lie symmetry lookup ode 748
4.8.3 Solving as exact ode 752
4.8.4 Maple step by step solution 756

Internal problem ID [12644]
Internal file name [OUTPUT/11296_Friday_November_03_2023_06_29_57_AM_4938376/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\sqrt{y}}{x}=0
$$

4.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\sqrt{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{y}} d y & =\int \frac{1}{x} d x \\
2 \sqrt{y} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
2 \sqrt{y}-\ln (x)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 \sqrt{y}-\ln (x)-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 157: Slope field plot

Verification of solutions

$$
2 \sqrt{y}-\ln (x)-c_{1}=0
$$

Verified OK.

4.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\sqrt{y}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 120: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{y}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{y}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{R}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \sqrt{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which simplifies to

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which gives

$$
y=\frac{\ln (x)^{2}}{4}-\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)^{2}}{4}-\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4} \tag{1}
\end{equation*}
$$

Figure 158: Slope field plot
Verification of solutions

$$
y=\frac{\ln (x)^{2}}{4}-\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

Verified OK.

4.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{\sqrt{y}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{y}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{y}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+2 \sqrt{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+2 \sqrt{y}
$$

The solution becomes

$$
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4} \tag{1}
\end{equation*}
$$

Figure 159: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

Verified OK.

4.8.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{\sqrt{y}}{x}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{y}}=\frac{1}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{y}} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral

$$
2 \sqrt{y}=\ln (x)+c_{1}
$$

- \quad Solve for y
$y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(x), x)=\operatorname{sqrt}(y(x)) / x, y(x)$, singsol=all)

$$
\sqrt{y(x)}-\frac{\ln (x)}{2}-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.202 (sec). Leaf size: 21
DSolve[y' $[\mathrm{x}]==$ Sqrt [y $[\mathrm{x}]] / \mathrm{x}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(\log (x)+c_{1}\right)^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.9 problem 9

4.9.1 Solving as separable ode 758
4.9.2 Solving as first order ode lie symmetry lookup ode 760
4.9.3 Solving as exact ode 764
4.9.4 Maple step by step solution 768

Internal problem ID [12645]
Internal file name [OUTPUT/11297_Friday_November_03_2023_06_29_58_AM_57080782/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 9 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-\frac{x y}{1-y}=0
$$

4.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x y}{y-1}
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\frac{y}{y-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y}{y-1}} d y & =-x d x \\
\int \frac{1}{\frac{y}{y-1}} d y & =\int-x d x \\
y-\ln (y) & =-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}-c_{1}}\right)+\frac{x^{2}}{2}-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}-c_{1}}\right)+\frac{x^{2}}{2}-c_{1}} \tag{1}
\end{equation*}
$$

Figure 160: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}-c_{1}}\right)+\frac{x^{2}}{2}-c_{1}}
$$

Verified OK.

4.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x y}{y-1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 123: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$			

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y}{y-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y-1}{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R-1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{2}=y-\ln (y)+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{2}=y-\ln (y)+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}\right)+\frac{x^{2}}{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x y}{y-1}$		$\frac{d S}{d R}=\frac{R-1}{R}$
A		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}\right)+\frac{x^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 161: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}\right)+\frac{x^{2}}{2}+c_{1}}
$$

Verified OK.

4.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y-1}{y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{y-1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{y-1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y-1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y-1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y-1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y-1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1-y}{y}\right) \mathrm{d} y \\
f(y) & =-y+\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-y+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-y+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}\right)+\frac{x^{2}}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{- \text {LambertW }\left(-\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}\right)+\frac{x^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 162: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{- \text {LambertW }\left(-\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}\right)+\frac{x^{2}}{2}+c_{1}}
$$

Verified OK.

4.9.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{x y}{1-y}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}(1-y)}{y}=x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}(1-y)}{y} d x=\int x d x+c_{1}$
- Evaluate integral
$-y+\ln (y)=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}\right)+\frac{x^{2}}{2}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve($\operatorname{diff}(y(x), x)=x * y(x) /(1-y(x)), y(x), \quad$ singsol=all)

$$
y(x)=-\operatorname{LambertW}\left(-\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 3.96 (sec). Leaf size: 29
DSolve [y' $[x]==x * y[x] /(1-y[x]), y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-W\left(-e^{\frac{x^{2}}{2}-c_{1}}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.10 problem 10

4.10.1 Solving as first order ode lie symmetry calculated ode 770
4.10.2 Solving as exact ode . 775

Internal problem ID [12646]
Internal file name [OUTPUT/11298_Friday_November_03_2023_06_29_58_AM_89943328/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]

$$
y^{\prime}-(y x)^{\frac{1}{3}}=0
$$

4.10.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=(x y)^{\frac{1}{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{equation*}
b_{2}+(x y)^{\frac{1}{3}}\left(b_{3}-a_{2}\right)-(x y)^{\frac{2}{3}} a_{3}-\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{3(x y)^{\frac{2}{3}}}-\frac{x\left(x b_{2}+y b_{3}+b_{1}\right)}{3(x y)^{\frac{2}{3}}}=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
-\frac{3(x y)^{\frac{4}{3}} a_{3}+4 x y a_{2}-2 x y b_{3}-3 b_{2}(x y)^{\frac{2}{3}}+x^{2} b_{2}+y^{2} a_{3}+x b_{1}+y a_{1}}{3(x y)^{\frac{2}{3}}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
-3(x y)^{\frac{4}{3}} a_{3}+3 b_{2}(x y)^{\frac{2}{3}}-x^{2} b_{2}-4 x y a_{2}+2 x y b_{3}-y^{2} a_{3}-x b_{1}-y a_{1}=0 \tag{6E}
\end{equation*}
$$

Since the PDE has radicals, simplifying gives

$$
-3 x y(x y)^{\frac{1}{3}} a_{3}-x^{2} b_{2}-4 x y a_{2}+2 x y b_{3}+3 b_{2}(x y)^{\frac{2}{3}}-y^{2} a_{3}-x b_{1}-y a_{1}=0
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,(x y)^{\frac{1}{3}},(x y)^{\frac{2}{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},(x y)^{\frac{1}{3}}=v_{3},(x y)^{\frac{2}{3}}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-3 v_{1} v_{2} v_{3} a_{3}-4 v_{1} v_{2} a_{2}-v_{2}^{2} a_{3}-v_{1}^{2} b_{2}+2 v_{1} v_{2} b_{3}-v_{2} a_{1}-v_{1} b_{1}+3 b_{2} v_{4}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-v_{1}^{2} b_{2}-3 v_{1} v_{2} v_{3} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1} v_{2}-v_{1} b_{1}-v_{2}^{2} a_{3}-v_{2} a_{1}+3 b_{2} v_{4}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-a_{1} & =0 \\
-3 a_{3} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
3 b_{2} & =0 \\
-4 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz ($1 \mathrm{E}, 2 \mathrm{E}$) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{2 y}{x} \\
& =\frac{2 y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x^{2}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x^{2}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=(x y)^{\frac{1}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{2 y}{x^{3}} \\
R_{y} & =\frac{1}{x^{2}} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x^{2}}{x(x y)^{\frac{1}{3}}-2 y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}-2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln \left(8 R^{2}-1\right)}{4}+\frac{\ln \left(2 R^{\frac{2}{3}}+4 R^{\frac{4}{3}}+1\right)}{4}-\frac{\ln \left(2 R^{\frac{2}{3}}-1\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=-\frac{\ln \left(\frac{8 y^{2}}{x^{4}}-1\right)}{4}+\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}+4\left(\frac{y}{x^{2}}\right)^{\frac{4}{3}}+1\right)}{4}-\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}-1\right)}{2}+c_{1}
$$

Which simplifies to

$$
\ln (x)=-\frac{\ln \left(\frac{8 y^{2}}{x^{4}}-1\right)}{4}+\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}+4\left(\frac{y}{x^{2}}\right)^{\frac{4}{3}}+1\right)}{4}-\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}-1\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=(x y)^{\frac{1}{3}}$		$\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}-2 R}$
$y(x)$	$R=\frac{y}{x}$	$S(R)$
	$S=\ln (x)$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (x)=-\frac{\ln \left(\frac{8 y^{2}}{x^{4}}-1\right)}{4}+\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}+4\left(\frac{y}{x^{2}}\right)^{\frac{4}{3}}+1\right)}{4}-\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}-1\right)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 163: Slope field plot

Verification of solutions

$$
\ln (x)=-\frac{\ln \left(\frac{8 y^{2}}{x^{4}}-1\right)}{4}+\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}+4\left(\frac{y}{x^{2}}\right)^{\frac{4}{3}}+1\right)}{4}-\frac{\ln \left(2\left(\frac{y}{x^{2}}\right)^{\frac{2}{3}}-1\right)}{2}+c_{1}
$$

Verified OK.

4.10.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left((x y)^{\frac{1}{3}}\right) \mathrm{d} x \\
\left(-(x y)^{\frac{1}{3}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-(x y)^{\frac{1}{3}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-(x y)^{\frac{1}{3}}\right) \\
& =-\frac{x}{3(x y)^{\frac{2}{3}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{x}{3(x y)^{\frac{2}{3}}}\right)-(0)\right) \\
& =-\frac{x}{3(x y)^{\frac{2}{3}}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{(x y)^{\frac{1}{3}}}\left((0)-\left(-\frac{x}{3(x y)^{\frac{2}{3}}}\right)\right) \\
& =-\frac{1}{3 y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{3 y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (y)}{3}} \\
& =\frac{1}{y^{\frac{1}{3}}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{\frac{1}{3}}}\left(-(x y)^{\frac{1}{3}}\right) \\
& =-\frac{(x y)^{\frac{1}{3}}}{y^{\frac{1}{3}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{\frac{1}{3}}}(1) \\
& =\frac{1}{y^{\frac{1}{3}}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{(x y)^{\frac{1}{3}}}{y^{\frac{1}{3}}}\right)+\left(\frac{1}{y^{\frac{1}{3}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{(x y)^{\frac{1}{3}}}{y^{\frac{1}{3}}} \mathrm{~d} x \\
\phi & =-\frac{3 x(x y)^{\frac{1}{3}}}{4 y^{\frac{1}{3}}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{x^{2}}{4(x y)^{\frac{2}{3}} y^{\frac{1}{3}}}+\frac{x(x y)^{\frac{1}{3}}}{4 y^{\frac{4}{3}}}+f^{\prime}(y) \tag{4}\\
& =0+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{\frac{1}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{\frac{1}{3}}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{\frac{1}{3}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{\frac{1}{3}}}\right) \mathrm{d} y \\
f(y) & =\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{3 x(x y)^{\frac{1}{3}}}{4 y^{\frac{1}{3}}}+\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{3 x(x y)^{\frac{1}{3}}}{4 y^{\frac{1}{3}}}+\frac{3 y^{\frac{2}{3}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{3 x(y x)^{\frac{1}{3}}}{4 y^{\frac{1}{3}}}+\frac{3 y^{\frac{2}{3}}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 164: Slope field plot

Verification of solutions

$$
-\frac{3 x(y x)^{\frac{1}{3}}}{4 y^{\frac{1}{3}}}+\frac{3 y^{\frac{2}{3}}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 87

```
dsolve(diff(y(x),x)=(x*y(x))^(1/3),y(x), singsol=all)
```

$$
\begin{aligned}
& -\frac{\left(\left(-4 x^{5} c_{1}+32 y(x)^{2} c_{1} x+2 x\right)(y(x) x)^{\frac{2}{3}}+\left(x^{3}+4(y(x) x)^{\frac{1}{3}} y(x)\right)\left(x^{4} c_{1}-8 c_{1} y(x)^{2}+1\right)\right) x}{\left(x^{4}-8 y(x)^{2}\right)\left(-2(y(x) x)^{\frac{2}{3}}+x^{2}\right)^{2}} \\
& =0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 4.979 (sec). Leaf size: 35

```
DSolve[y'[x]==(x*y[x])~(1/3),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{\left(3 x^{4 / 3}+4 c_{1}\right)^{3 / 2}}{6 \sqrt{6}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.11 problem 11

4.11.1 Solving as first order ode lie symmetry calculated ode 782
4.11.2 Solving as exact ode . 788

Internal problem ID [12647]
Internal file name [OUTPUT/11299_Friday_November_03_2023_06_30_00_AM_53092840/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _dAlembert]

$$
y^{\prime}-\sqrt{\frac{y-4}{x}}=0
$$

4.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\sqrt{\frac{-4+y}{x}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{equation*}
b_{2}+\sqrt{\frac{-4+y}{x}}\left(b_{3}-a_{2}\right)-\frac{(-4+y) a_{3}}{x}+\frac{(-4+y)\left(x a_{2}+y a_{3}+a_{1}\right)}{2 \sqrt{\frac{-4+y}{x}} x^{2}}-\frac{x b_{2}+y b_{3}+b_{1}}{2 \sqrt{\frac{-4+y}{x}} x}=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{2 b_{2} \sqrt{\frac{-4+y}{x}} x^{2}-2 a_{3} \sqrt{\frac{-4+y}{x}} x y+8 a_{3} \sqrt{\frac{-4+y}{x}} x-x^{2} b_{2}-x y a_{2}+x y b_{3}+y^{2} a_{3}+4 x a_{2}-x b_{1}-8 x b_{3}+y a_{1}-2}{2 \sqrt{\frac{-4+y}{x}} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 b_{2} \sqrt{\frac{-4+y}{x}} x^{2}-2 a_{3} \sqrt{\frac{-4+y}{x}} x y+8 a_{3} \sqrt{\frac{-4+y}{x}} x-x^{2} b_{2}-x y a_{2} \tag{6E}\\
& \quad+x y b_{3}+y^{2} a_{3}+4 x a_{2}-x b_{1}-8 x b_{3}+y a_{1}-4 y a_{3}-4 a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -2(-4+y) x a_{2}+2(-4+y) x b_{3}+2 b_{2} \sqrt{\frac{-4+y}{x}} x^{2}-2 a_{3} \sqrt{\frac{-4+y}{x}} x y \tag{6E}\\
& +8 a_{3} \sqrt{\frac{-4+y}{x}} x-x^{2} b_{2}+x y a_{2}-x y b_{3}+y^{2} a_{3}-4 x a_{2}-x b_{1}+y a_{1}-4 y a_{3}-4 a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 b_{2} \sqrt{\frac{-4+y}{x}} x^{2}-2 a_{3} \sqrt{\frac{-4+y}{x}} x y+8 a_{3} \sqrt{\frac{-4+y}{x}} x-x^{2} b_{2}-x y a_{2} \\
& \quad+x y b_{3}+y^{2} a_{3}+4 x a_{2}-x b_{1}-8 x b_{3}+y a_{1}-4 y a_{3}-4 a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{\frac{-4+y}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{\frac{-4+y}{x}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{3} v_{3} v_{1} v_{2}+2 b_{2} v_{3} v_{1}^{2}-v_{1} v_{2} a_{2}+8 a_{3} v_{3} v_{1}+v_{2}^{2} a_{3}-v_{1}^{2} b_{2} \tag{7E}\\
& +v_{1} v_{2} b_{3}+v_{2} a_{1}+4 v_{1} a_{2}-4 v_{2} a_{3}-v_{1} b_{1}-8 v_{1} b_{3}-4 a_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 b_{2} v_{3} v_{1}^{2}-v_{1}^{2} b_{2}-2 a_{3} v_{3} v_{1} v_{2}+\left(b_{3}-a_{2}\right) v_{1} v_{2}+8 a_{3} v_{3} v_{1} \tag{8E}\\
& \quad+\left(4 a_{2}-b_{1}-8 b_{3}\right) v_{1}+v_{2}^{2} a_{3}+\left(a_{1}-4 a_{3}\right) v_{2}-4 a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{3} & =0 \\
-4 a_{1} & =0 \\
-2 a_{3} & =0 \\
8 a_{3} & =0 \\
-b_{2} & =0 \\
2 b_{2} & =0 \\
a_{1}-4 a_{3} & =0 \\
b_{3}-a_{2} & =0 \\
4 a_{2}-b_{1}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =-4 b_{3} \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-4+y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-4+y-\left(\sqrt{\frac{-4+y}{x}}\right)(x) \\
& =-x \sqrt{-\frac{4}{x}+\frac{y}{x}}+y-4 \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-x \sqrt{-\frac{4}{x}+\frac{y}{x}}+y-4} d y
\end{aligned}
$$

Which results in

$$
S=\ln (-4+y-x)-2 \operatorname{arctanh}\left(\sqrt{-\frac{4}{x}+\frac{y}{x}}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\sqrt{\frac{-4+y}{x}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\sqrt{x}+\sqrt{-4+y}}{\sqrt{x}(4-y+x)} \\
S_{y} & =-\frac{\sqrt{x}+\sqrt{-4+y}}{\sqrt{-4+y}(4-y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{(-\sqrt{x}-\sqrt{-4+y})\left(\sqrt{\frac{-4+y}{x}} \sqrt{x}-\sqrt{-4+y}\right)}{\sqrt{x}(4-y+x) \sqrt{-4+y}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (-4+y-x)-2 \operatorname{arctanh}\left(\frac{\sqrt{y-4}}{\sqrt{x}}\right)=c_{1}
$$

Which simplifies to

$$
\ln (-4+y-x)-2 \operatorname{arctanh}\left(\frac{\sqrt{y-4}}{\sqrt{x}}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\sqrt{\frac{-4+y}{x}}$	$R=x$$S=\ln (-4+y-x$	$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow \rightarrow-\infty \rightarrow \infty$		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ } \rightarrow$ S $[R]^{-}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \text { 2- }^{+} \rightarrow \rightarrow \rightarrow \rightarrow+}$
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
		$\xrightarrow[-1]{4} \rightarrow \rightarrow \rightarrow-2 \rightarrow \rightarrow-1 \rightarrow \rightarrow-\frac{1}{2}$
2 x		
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln (-4+y-x)-2 \operatorname{arctanh}\left(\frac{\sqrt{y-4}}{\sqrt{x}}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 165: Slope field plot

Verification of solutions

$$
\ln (-4+y-x)-2 \operatorname{arctanh}\left(\frac{\sqrt{y-4}}{\sqrt{x}}\right)=c_{1}
$$

Verified OK.

4.11.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\sqrt{\frac{-4+y}{x}}\right) \mathrm{d} x \\
\left(-\sqrt{\frac{-4+y}{x}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\sqrt{\frac{-4+y}{x}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\sqrt{\frac{-4+y}{x}}\right) \\
& =-\frac{1}{2 \sqrt{\frac{-4+y}{x}} x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{2 \sqrt{\frac{-4+y}{x}} x}\right)-(0)\right) \\
& =-\frac{1}{2 \sqrt{\frac{-4+y}{x}} x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{\sqrt{\frac{-4+y}{x}}}\left((0)-\left(-\frac{1}{2 \sqrt{\frac{-4+y}{x}} x}\right)\right) \\
& =-\frac{1}{-8+2 y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{-8+2 y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (-4+y)}{2}} \\
& =\frac{1}{\sqrt{-4+y}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\sqrt{-4+y}}\left(-\sqrt{\frac{-4+y}{x}}\right) \\
& =-\frac{\sqrt{\frac{-4+y}{x}}}{\sqrt{-4+y}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\sqrt{-4+y}}(1) \\
& =\frac{1}{\sqrt{-4+y}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{\sqrt{\frac{-4+y}{x}}}{\sqrt{-4+y}}\right)+\left(\frac{1}{\sqrt{-4+y}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\sqrt{\frac{-4+y}{x}}}{\sqrt{-4+y}} \mathrm{~d} x \\
\phi & =-\frac{2 x \sqrt{\frac{-4+y}{x}}}{\sqrt{-4+y}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{1}{\sqrt{\frac{-4+y}{x}} \sqrt{-4+y}}+\frac{x \sqrt{\frac{-4+y}{x}}}{(-4+y)^{\frac{3}{2}}}+f^{\prime}(y) \tag{4}\\
& =0+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{-4+y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{-4+y}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{-4+y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{-4+y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{-4+y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{2 x \sqrt{\frac{-4+y}{x}}}{\sqrt{-4+y}}+2 \sqrt{-4+y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{2 x \sqrt{\frac{-4+y}{x}}}{\sqrt{-4+y}}+2 \sqrt{-4+y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{2 x \sqrt{\frac{y-4}{x}}}{\sqrt{y-4}}+2 \sqrt{y-4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 166: Slope field plot

Verification of solutions

$$
-\frac{2 x \sqrt{\frac{y-4}{x}}}{\sqrt{y-4}}+2 \sqrt{y-4}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 38

```
dsolve(diff(y(x),x)=sqrt( (y(x)-4)/x ),y(x), singsol=all)
```

$$
-\ln \left(\frac{-y(x)+4+x}{x}\right)+2 \operatorname{arctanh}\left(\sqrt{\frac{y(x)-4}{x}}\right)-\ln (x)-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 29
DSolve[y'[x]==Sqrt[(y[x]-4)/x],y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow x+c_{1} \sqrt{x}+4+\frac{c_{1}^{2}}{4} \\
& y(x) \rightarrow 4
\end{aligned}
$$

4.12 problem 12

4.12.1 Solving as first order ode lie symmetry lookup ode 795
4.12.2 Solving as bernoulli ode . 800
4.12.3 Solving as exact ode . 803

Internal problem ID [12648]
Internal file name [OUTPUT/11300_Friday_November_03_2023_06_30_02_AM_71545787/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
y^{\prime}+\frac{y}{x}-y^{\frac{1}{4}}=0
$$

4.12.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-y^{\frac{1}{4}} x+y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 126: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{y^{\frac{1}{4}}}{x^{\frac{3}{4}}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{\frac{1}{4}}}{x^{\frac{3}{4}}} d y}
\end{aligned}
$$

Which results in

$$
S=\frac{4 y^{\frac{3}{4}} x^{\frac{3}{4}}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-y^{\frac{1}{4}} x+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y^{\frac{3}{4}}}{x^{\frac{1}{4}}} \\
S_{y} & =\frac{x^{\frac{3}{4}}}{y^{\frac{1}{4}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{\frac{3}{4}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{\frac{3}{4}}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{4 R^{\frac{7}{4}}}{7}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{4 y^{\frac{3}{4}} x^{\frac{3}{4}}}{3}=\frac{4 x^{\frac{7}{4}}}{7}+c_{1}
$$

Which simplifies to

$$
\frac{4 y^{\frac{3}{4}} x^{\frac{3}{4}}}{3}=\frac{4 x^{\frac{7}{4}}}{7}+c_{1}
$$

Which gives

$$
y=\frac{33^{\frac{1}{3}} 28^{\frac{2}{3}}\left(\frac{4 x^{\frac{7}{4}}+7 c_{1}}{x^{\frac{3}{4}}}\right)^{\frac{4}{3}}}{784}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-y^{\frac{1}{4}} x+y}{x}$		$\frac{d S}{d R}=R^{\frac{3}{4}}$
	$R=x$	
	$4 u^{\frac{3}{4}} x^{\frac{3}{4}}$	
$\begin{array}{lllllllllllllllllllll}-4 & -2 & 0\end{array}$	$S=\frac{4 y^{\frac{3}{4}} x^{\frac{3}{4}}}{3}$	
－2．	3	
－4．		
		メアイメリキ

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{33^{\frac{1}{3}} 28^{\frac{2}{3}}\left(\frac{4 x^{\frac{7}{4}}+7 c_{1}}{x^{\frac{4}{4}}}\right)^{\frac{4}{3}}}{784} \tag{1}
\end{equation*}
$$

Figure 167: Slope field plot

Verification of solutions

$$
y=\frac{33^{\frac{1}{3}} 28^{\frac{2}{3}}\left(\frac{4 x^{\frac{7}{4}}+7 c_{1}}{x^{\frac{3}{4}}}\right)^{\frac{4}{3}}}{784}
$$

Verified OK.

4.12.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{-y^{\frac{1}{4}} x+y}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+y^{\frac{1}{4}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =1 \\
n & =\frac{1}{4}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\frac{1}{4}}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{\frac{1}{4}}}=-\frac{y^{\frac{3}{4}}}{x}+1 \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{\frac{3}{4}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{3}{4 y^{\frac{1}{4}}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{4 w^{\prime}(x)}{3} & =-\frac{w(x)}{x}+1 \\
w^{\prime} & =-\frac{3 w}{4 x}+\frac{3}{4} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{3}{4 x} \\
q(x) & =\frac{3}{4}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{3 w(x)}{4 x}=\frac{3}{4}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{4 x} d x} \\
& =x^{\frac{3}{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{3}{4}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{\frac{3}{4}} w\right) & =\left(x^{\frac{3}{4}}\right)\left(\frac{3}{4}\right) \\
\mathrm{d}\left(x^{\frac{3}{4}} w\right) & =\left(\frac{3 x^{\frac{3}{4}}}{4}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
x^{\frac{3}{4}} w & =\int \frac{3 x^{\frac{3}{4}}}{4} \mathrm{~d} x \\
x^{\frac{3}{4}} w & =\frac{3 x^{\frac{7}{4}}}{7}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{\frac{3}{4}}$ results in

$$
w(x)=\frac{3 x}{7}+\frac{c_{1}}{x^{\frac{3}{4}}}
$$

Replacing w in the above by $y^{\frac{3}{4}}$ using equation (5) gives the final solution.

$$
y^{\frac{3}{4}}=\frac{3 x}{7}+\frac{c_{1}}{x^{\frac{3}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{\frac{3}{4}}=\frac{3 x}{7}+\frac{c_{1}}{x^{\frac{3}{4}}} \tag{1}
\end{equation*}
$$

Figure 168: Slope field plot

Verification of solutions

$$
y^{\frac{3}{4}}=\frac{3 x}{7}+\frac{c_{1}}{x^{\frac{3}{4}}}
$$

Verified OK.

4.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(y^{\frac{1}{4}} x-y\right) \mathrm{d} x \\
\left(-y^{\frac{1}{4}} x+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y^{\frac{1}{4}} x+y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{\frac{1}{4}} x+y\right) \\
& =-\frac{x}{4 y^{\frac{3}{4}}}+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}\left(\left(-\frac{x}{4 y^{\frac{3}{4}}}+1\right)-(1)\right) \\
& =-\frac{1}{4 y^{\frac{3}{4}}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{-y^{\frac{1}{4}} x+y}\left((1)-\left(-\frac{x}{4 y^{\frac{3}{4}}}+1\right)\right) \\
& =-\frac{x}{y^{\frac{3}{4}}\left(4 y^{\frac{1}{4}} x-4 y\right)}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(1)-\left(-\frac{x}{4 y^{\frac{3}{4}}}+1\right)}{x\left(-y^{\frac{1}{4}} x+y\right)-y(x)} \\
& =-\frac{1}{4 x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{1}{4 t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{1}{4 t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (t)}{4}} \\
& =\frac{1}{t^{\frac{1}{4}}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{(x y)^{\frac{1}{4}}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{(x y)^{\frac{1}{4}}}\left(-y^{\frac{1}{4}} x+y\right) \\
& =\frac{-y^{\frac{1}{4}} x+y}{(x y)^{\frac{1}{4}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{(x y)^{\frac{1}{4}}}(x) \\
& =\frac{x}{(x y)^{\frac{1}{4}}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y^{\frac{1}{4}} x+y}{(x y)^{\frac{1}{4}}}\right)+\left(\frac{x}{(x y)^{\frac{1}{4}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y^{\frac{1}{4}} x+y}{(x y)^{\frac{1}{4}}} \mathrm{~d} x \\
\phi & =\frac{4(x y)^{\frac{3}{4}}\left(7 y^{\frac{3}{4}}-3 x\right)}{21 y^{\frac{3}{4}}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{\left(7 y^{\frac{3}{4}}-3 x\right) x}{7(x y)^{\frac{1}{4}} y^{\frac{3}{4}}}+\frac{(x y)^{\frac{3}{4}}}{y}-\frac{(x y)^{\frac{3}{4}}\left(7 y^{\frac{3}{4}}-3 x\right)}{7 y^{\frac{7}{4}}}+f^{\prime}(y) \tag{4}\\
& =\frac{x}{(x y)^{\frac{1}{4}}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{(x y)^{\frac{1}{4}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{(x y)^{\frac{1}{4}}}=\frac{x}{(x y)^{\frac{1}{4}}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{4(x y)^{\frac{3}{4}}\left(7 y^{\frac{3}{4}}-3 x\right)}{21 y^{\frac{3}{4}}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{4(x y)^{\frac{3}{4}}\left(7 y^{\frac{3}{4}}-3 x\right)}{21 y^{\frac{3}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{4(y x)^{\frac{3}{4}}\left(7 y^{\frac{3}{4}}-3 x\right)}{21 y^{\frac{3}{4}}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 169: Slope field plot

Verification of solutions

$$
\frac{4(y x)^{\frac{3}{4}}\left(7 y^{\frac{3}{4}}-3 x\right)}{21 y^{\frac{3}{4}}}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve($\operatorname{diff}(y(x), x)=-y(x) / x+y(x)^{\wedge}(1 / 4), y(x)$, singsol=all)

$$
y(x)^{\frac{3}{4}}-\frac{3 x}{7}-\frac{c_{1}}{x^{\frac{3}{4}}}=0
$$

\checkmark Solution by Mathematica
Time used: 9.843 (sec). Leaf size: 31
DSolve[y' $[x]==-y[x] / x+y[x] \sim(1 / 4), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\left(3 x+\frac{7 c_{1}}{x^{3 / 4}}\right)^{4 / 3}}{7 \sqrt[3]{7}}
$$

4.13 problem 13

4.13.1 Existence and uniqueness analysis 810
4.13.2 Solving as quadrature ode . 811
4.13.3 Maple step by step solution . 812

Internal problem ID [12649]
Internal file name [OUTPUT/11301_Friday_November_03_2023_06_30_04_AM_273934/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-4 y=-5
$$

With initial conditions

$$
[y(1)=4]
$$

4.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-4 \\
& q(x)=-5
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-4 y=-5
$$

The domain of $p(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

4.13.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{4 y-5} d y & =\int d x \\
\frac{\ln (4 y-5)}{4} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
(4 y-5)^{\frac{1}{4}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
(4 y-5)^{\frac{1}{4}}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4=\frac{c_{2}^{4} \mathrm{e}^{4}}{4}+\frac{5}{4} \\
& c_{2}=11^{\frac{1}{4}} \mathrm{e}^{-1}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{11 \mathrm{e}^{-4} \mathrm{e}^{4 x}}{4}+\frac{5 \mathrm{e}^{-4} \mathrm{e}^{4}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{11 \mathrm{e}^{-4} \mathrm{e}^{4 x}}{4}+\frac{5 \mathrm{e}^{-4} \mathrm{e}^{4}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{11 \mathrm{e}^{-4} \mathrm{e}^{4 x}}{4}+\frac{5 \mathrm{e}^{-4} \mathrm{e}^{4}}{4}
$$

Verified OK.

4.13.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-4 y=-5, y(1)=4\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{4 y-5}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{4 y-5} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{\ln (4 y-5)}{4}=x+c_{1}$
- \quad Solve for y

$$
y=\frac{\mathrm{e}^{4 c_{1}+4 x}}{4}+\frac{5}{4}
$$

- Use initial condition $y(1)=4$

$$
4=\frac{\mathrm{e}^{4 c_{1}+4}}{4}+\frac{5}{4}
$$

- \quad Solve for c_{1}
$c_{1}=-1+\frac{\ln (11)}{4}$
- Substitute $c_{1}=-1+\frac{\ln (11)}{4}$ into general solution and simplify
$y=\frac{11 \mathrm{e}^{4 x-4}}{4}+\frac{5}{4}$
- Solution to the IVP
$y=\frac{11 \mathrm{e}^{4 x-4}}{4}+\frac{5}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve([diff(y(x),x)=4*y(x)-5,y(1) = 4],y(x), singsol=all)
```

$$
y(x)=\frac{5}{4}+\frac{11 \mathrm{e}^{-4+4 x}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 20

```
DSolve[{y'[x]==4*y[x]-5,{y[1]==4}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{11}{4} e^{4 x-4}+\frac{5}{4}
$$

4.14 problem 14

4.14.1 Existence and uniqueness analysis 814
4.14.2 Solving as quadrature ode . 815
4.14.3 Maple step by step solution . 816

Internal problem ID [12650]
Internal file name [OUTPUT/11302_Friday_November_03_2023_06_30_05_AM_62961360/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+3 y=1
$$

With initial conditions

$$
[y(-2)=1]
$$

4.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{array}{r}
p(x)=3 \\
q(x)=1
\end{array}
$$

Hence the ode is

$$
y^{\prime}+3 y=1
$$

The domain of $p(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is also inside this domain. Hence solution exists and is unique.

4.14.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-3 y+1} d y & =\int d x \\
-\frac{\ln (-3 y+1)}{3} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(-3 y+1)^{\frac{1}{3}}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(-3 y+1)^{\frac{1}{3}}}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=-2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{c_{2}^{3}-\mathrm{e}^{6}}{3 c_{2}^{3}} \\
& c_{2}=-\frac{4^{\frac{1}{3}} \mathrm{e}^{2}}{2}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{2 \mathrm{e}^{-6} \mathrm{e}^{-3 x}}{3}+\frac{\mathrm{e}^{-6} \mathrm{e}^{6}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \mathrm{e}^{-6} \mathrm{e}^{-3 x}}{3}+\frac{\mathrm{e}^{-6} \mathrm{e}^{6}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 \mathrm{e}^{-6} \mathrm{e}^{-3 x}}{3}+\frac{\mathrm{e}^{-6} \mathrm{e}^{6}}{3}
$$

Verified OK.

4.14.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+3 y=1, y(-2)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{-3 y+1}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{-3 y+1} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\frac{\ln (-3 y+1)}{3}=x+c_{1}$
- \quad Solve for y

$$
y=-\frac{\mathrm{e}^{-3 x-3 c_{1}}}{3}+\frac{1}{3}
$$

- Use initial condition $y(-2)=1$

$$
1=-\frac{\mathrm{e}^{6-3 c_{1}}}{3}+\frac{1}{3}
$$

- \quad Solve for c_{1}

$$
c_{1}=2-\frac{\ln (2)}{3}-\frac{\mathrm{I} \pi}{3}
$$

- \quad Substitute $c_{1}=2-\frac{\ln (2)}{3}-\frac{\mathrm{I} \pi}{3}$ into general solution and simplify $y=\frac{2 \mathrm{e}^{-3 x-6}}{3}+\frac{1}{3}$
- Solution to the IVP
$y=\frac{2 \mathrm{e}^{-3 x-6}}{3}+\frac{1}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([diff(y(x),x)+3*y(x)=1,y(-2) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{1}{3}+\frac{2 \mathrm{e}^{-6-3 x}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 20

```
DSolve[{y'[x]+3*y[x]==1,{y[-2]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{2}{3} e^{-3(x+2)}+\frac{1}{3}
$$

4.15 problem 15

4.15.1 Existence and uniqueness analysis 818
4.15.2 Solving as quadrature ode . 819
4.15.3 Maple step by step solution . 820

Internal problem ID [12651]
Internal file name [OUTPUT/11303_Friday_November_03_2023_06_30_05_AM_72975530/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-a y=b
$$

With initial conditions

$$
[y(c)=d]
$$

4.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-a \\
& q(x)=b
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-a y=b
$$

The domain of $p(x)=-a$ is

$$
\{-\infty<x<\infty\}
$$

But the point $x_{0}=c$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

4.15.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{a y+b} d y & =\int d x \\
\frac{\ln (a y+b)}{a} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (a y+b)}{a}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
(a y+b)^{\frac{1}{a}}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=c$ and $y=d$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& d=\frac{\left(c_{2} \mathrm{e}^{c}\right)^{a}-b}{a} \\
& c_{2}=\mathrm{e}^{\frac{\ln (a d+b)}{a}-c}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{\left((a d+b)^{\frac{1}{a}} \mathrm{e}^{-c+x}\right)^{a}-b}{a}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(a d+b) \mathrm{e}^{-(c-x) a}-b}{a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(a d+b) \mathrm{e}^{-(c-x) a}-b}{a}
$$

Verified OK. \{positive\}

4.15.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-a y=b, y(c)=d\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{a y+b}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{a y+b} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{\ln (a y+b)}{a}=x+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{c_{1} a+a x}-b}{a}$
- Use initial condition $y(c)=d$
$d=\frac{\mathrm{e}^{c_{1} a+a c-b}}{a}$
- \quad Solve for c_{1}
$c_{1}=\frac{-a c+\ln (a d+b)}{a}$
- Substitute $c_{1}=\frac{-a c+\ln (a d+b)}{a}$ into general solution and simplify $y=\frac{(a d+b) \mathrm{e}^{-(c-x) a}-b}{a}$
- \quad Solution to the IVP
$y=\frac{(a d+b) \mathrm{e}^{-(c-x) a}-b}{a}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27
dsolve([diff $(y(x), x)=a * y(x)+b, y(c)=d], y(x)$, singsol=all)

$$
y(x)=\frac{(a d+b) \mathrm{e}^{-a(c-x)}-b}{a}
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 39
DSolve $\left[\left\{y^{\prime}[x]==a * y[x]+b,\{y[c]==d\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{-a c}\left(b\left(e^{a x}-e^{a c}\right)+a d e^{a x}\right)}{a}
$$

4.16 problem 16

4.16.1 Existence and uniqueness analysis 822
4.16.2 Solving as quadrature ode . 823
4.16.3 Maple step by step solution . 824

Internal problem ID [12652]
Internal file name [OUTPUT/11304_Friday_November_03_2023_06_30_06_AM_4856061/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=x^{2}+\mathrm{e}^{x}-\sin (x)
$$

With initial conditions

$$
[y(2)=-1]
$$

4.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =x^{2}+\mathrm{e}^{x}-\sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=x^{2}+\mathrm{e}^{x}-\sin (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=x^{2}+\mathrm{e}^{x}-\sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

4.16.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int x^{2}+\mathrm{e}^{x}-\sin (x) \mathrm{d} x \\
& =\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-1 & =\frac{8}{3}+\cos (2)+\mathrm{e}^{2}+c_{1} \\
c_{1} & =-\frac{11}{3}-\cos (2)-\mathrm{e}^{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}-\frac{11}{3}-\cos (2)-\mathrm{e}^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}-\frac{11}{3}-\cos (2)-\mathrm{e}^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}-\frac{11}{3}-\cos (2)-\mathrm{e}^{2}
$$

Verified OK.

4.16.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=x^{2}+\mathrm{e}^{x}-\sin (x), y(2)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int\left(x^{2}+\mathrm{e}^{x}-\sin (x)\right) d x+c_{1}$
- Evaluate integral
$y=\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}+c_{1}$
- \quad Solve for y
$y=\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}+c_{1}$
- Use initial condition $y(2)=-1$
$-1=\frac{8}{3}+\cos (2)+\mathrm{e}^{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{11}{3}-\cos (2)-\mathrm{e}^{2}$
- \quad Substitute $c_{1}=-\frac{11}{3}-\cos (2)-\mathrm{e}^{2}$ into general solution and simplify

$$
y=\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}-\frac{11}{3}-\cos (2)-\mathrm{e}^{2}
$$

- Solution to the IVP

$$
y=\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}-\frac{11}{3}-\cos (2)-\mathrm{e}^{2}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`

Solution by Maple
Time used: 0.031 (sec). Leaf size: 23

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{x}^{\wedge} 2+\exp (\mathrm{x})-\sin (\mathrm{x}), \mathrm{y}(2)=-1\right], \mathrm{y}(\mathrm{x}),\right. \text { singsol=all) } \\
& y(x)=\frac{x^{3}}{3}+\cos (x)+\mathrm{e}^{x}-\frac{11}{3}-\cos (2)-\mathrm{e}^{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 30
DSolve $\left[\left\{y^{\prime}[x]==x^{\wedge} 2+\operatorname{Exp}[x]-\operatorname{Sin}[x],\{y[2]==-1\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{3}}{3}+e^{x}+\cos (x)-e^{2}-\frac{11}{3}-\cos (2)
$$

4.17 problem 17

4.17.1 Existence and uniqueness analysis 826
4.17.2 Solving as linear ode . 827
4.17.3 Solving as first order ode lie symmetry lookup ode 828
4.17.4 Solving as exact ode . 832
4.17.5 Maple step by step solution . 837

Internal problem ID [12653]
Internal file name [OUTPUT/11305_Friday_November_03_2023_06_30_07_AM_38579209/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-y x=\frac{1}{x^{2}+1}
$$

With initial conditions

$$
[y(-5)=0]
$$

4.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-x \\
& q(x)=\frac{1}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y x=\frac{1}{x^{2}+1}
$$

The domain of $p(x)=-x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-5$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-5$ is also inside this domain. Hence solution exists and is unique.

4.17.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x d x} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)\left(\frac{1}{x^{2}+1}\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =\left(\frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{x^{2}}{2}} y=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} \mathrm{~d} x \\
& \mathrm{e}^{-\frac{x^{2}}{2}} y=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{2}}{2}}$ results in

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x\right)+c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-5$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{\frac{25}{2}}\left(\int^{-5} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} d _a+c_{1}\right) \\
c_{1}=-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{-a^{2}}{2}}}{-a^{2}+1} d _a\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} d _a\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} d _a\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x-\left(\int^{-5} \frac{\mathrm{e}^{--\frac{a^{2}}{2}}}{-a^{2}+1} d _a\right)\right)
$$

Verified OK.

4.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y x^{3}+x y+1}{x^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 132: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{2}-a_{2} b_{1}}{}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{x^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{x^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{x^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y x^{3}+x y+1}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-x \mathrm{e}^{-\frac{x^{2}}{2}} y \\
& S_{y}=\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{R^{2}}{2}}}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{\mathrm{e}^{-\frac{R^{2}}{2}}}{R^{2}+1} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x+c_{1}
$$

Which gives

$$
y=\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x+c_{1}\right) \mathrm{e}^{\frac{x^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y x^{3}+x y+1}{x^{2}+1}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{R^{2}}{2}}}{R^{2}+1}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow$ STRI)
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+39]{ }$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
	$S=\mathrm{e}^{-\frac{x^{2}}{2}} y$	$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow \rightarrow- \pm \rightarrow+0} 0$
	$S=\mathrm{e}^{-\frac{x^{2}}{2}} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+0]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \infty}$

Initial conditions are used to solve for c_{1}. Substituting $x=-5$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{\frac{25}{2}}\left(\int^{-5} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} d _a+c_{1}\right) \\
c_{1}=-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{-a^{2}}{2}}}{-a^{2}+1} d _a\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} d _a\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{-a^{2}}{2}}}{-a^{2}+1} d _a\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} d _a\right)\right)
$$

Verified OK.

4.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(x y+\frac{1}{x^{2}+1}\right) \mathrm{d} x \\
\left(-x y-\frac{1}{x^{2}+1}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x y-\frac{1}{x^{2}+1} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x y-\frac{1}{x^{2}+1}\right) \\
& =-x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-x)-(0)) \\
& =-x
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-x \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{x^{2}}{2}} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}\left(-x y-\frac{1}{x^{2}+1}\right) \\
& =-\frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(y x^{3}+x y+1\right)}{x^{2}+1}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}(1) \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(y x^{3}+x y+1\right)}{x^{2}+1}\right)+\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\mathrm{e}^{-\frac{x^{2}}{2}}\left(y x^{3}+x y+1\right)}{x^{2}+1} \mathrm{~d} x \\
\phi & =\int_{-5}^{x}-\frac{\mathrm{e}^{-\frac{a^{2}}{2}}\left(_a^{3} y+\ldots a y+1\right)}{-a^{2}+1} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\int_{-5}^{x}-\frac{\mathrm{e}^{--\frac{a^{2}}{2}}}{\left.-a^{3}+_a\right)} d _a+f^{\prime}(y) \tag{4}\\
& =-\left(\int_{-5}^{x}-a \mathrm{e}^{-\frac{a^{2}}{2}} d _a\right)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{x^{2}}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{x^{2}}{2}}=-\left(\int_{-5}^{x}-a \mathrm{e}^{-\frac{a^{2}}{2}} d _a\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\int_{-5}^{x}-a \mathrm{e}^{--\frac{a^{2}}{2}} d _a+\mathrm{e}^{-\frac{x^{2}}{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\int_{-5}^{x}-a \mathrm{e}^{-\frac{a^{2}}{2}} d _a+\mathrm{e}^{-\frac{x^{2}}{2}}\right) \mathrm{d} y \\
f(y) & =\left(\int_{-5}^{x}-a \mathrm{e}^{-\frac{a^{2}}{2}} d _a+\mathrm{e}^{-\frac{x^{2}}{2}}\right) y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int_{-5}^{x}-\frac{\mathrm{e}^{-\frac{a^{2}}{2}}\left(_a^{3} y+_a y+1\right)}{-a^{2}+1} d _a+\left(\int_{-5}^{x}-a \mathrm{e}^{-\frac{a^{2}}{2}} d _a+\mathrm{e}^{-\frac{x^{2}}{2}}\right) y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int_{-5}^{x}-\frac{\mathrm{e}^{-\frac{a^{2}}{2}}\left(_a^{3} y+_a y+1\right)}{-a^{2}+1} d _a+\left(\int_{-5}^{x}-a \mathrm{e}^{-\frac{a^{2}}{2}} d _a+\mathrm{e}^{-\frac{x^{2}}{2}}\right) y
$$

The solution becomes

$$
\left.y=\frac{\int_{-5}^{x} \frac{\frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{a^{2}+1}}{} d _a+c_{1}}{\mathrm{e}^{-\frac{x^{2}}{2}}-\left(\int_{-5}^{x} \frac{\mathrm{e}^{--\frac{a^{2}}{2}}}{-a^{2}+1} a\right.} d _a\right)-\left(\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}} a^{3} a^{2} d _a\right)+\int_{-5-}^{x} a \mathrm{e}^{-\frac{a^{2}}{2}} d _a
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-5$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1} \mathrm{e}^{\frac{25}{2}} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\left.y=\frac{\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{a^{2}+1} d _a}{\mathrm{e}^{-\frac{x^{2}}{2}}-\left(\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} a\right.} d _a\right)-\left(\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} a^{3} d _a\right)+\int_{-5-}^{x} a \mathrm{e}^{-\frac{a^{2}}{2}} d _a
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\left.y=\frac{\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{a^{2}+1} d _a}{\mathrm{e}^{-\frac{x^{2}}{2}}-\left(\int_{-5}^{x} \frac{\mathrm{e}^{--\frac{a^{2}}{2}}}{-a^{2}+1} a _a\right)-\left(\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-^{a^{2}+1}} a^{3}\right.} d _a\right)+\int_{-5-}^{x} a \mathrm{e}^{-\frac{a^{2}}{2}} d _a \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\left.y=\frac{\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{a^{2}+1} d _a}{\mathrm{e}^{-\frac{x^{2}}{2}}-\left(\int_{-5}^{x} \frac{\mathrm{e}^{--\frac{a^{2}}{2}}}{-a^{2}+1} a\right.} d _a\right)-\left(\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} a^{3} d _a\right)+\int_{-5-}^{x} a \mathrm{e}^{-\frac{a^{2}}{2}} d _a
$$

Verified OK.

4.17.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-y x=\frac{1}{x^{2}+1}, y(-5)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y x+\frac{1}{x^{2}+1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y x=\frac{1}{x^{2}+1}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y x\right)=\frac{\mu(x)}{x^{2}+1}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y x\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x) x$
- Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{-\frac{x^{2}}{2}}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x^{2}+1} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x^{2}+1} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x^{2}+1} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-\frac{x^{2}}{2}}$
$y=\frac{\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x+c_{1}}{\mathrm{e}^{-\frac{x^{2}}{2}}}$
- Simplify
$y=\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x+c_{1}\right) \mathrm{e}^{\frac{x^{2}}{2}}$
- Use initial condition $y(-5)=0$
$0=\left(\int^{-5} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} d _a+c_{1}\right) \mathrm{e}^{\frac{25}{2}}$
- \quad Solve for c_{1}
$c_{1}=-\left(\int^{-5} \frac{\mathrm{e}^{--a^{2}}}{-a^{2}+1} d _a\right)$
- Substitute $c_{1}=-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{a^{2}}{2}}}{-a^{2}+1} d _a\right)$ into general solution and simplify $y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x-\left(\int^{-5} \frac{\mathrm{e}^{-\frac{-a^{2}}{2}}}{a^{2}+1} d _a\right)\right)$
- \quad Solution to the IVP

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\int \frac{\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{2}+1} d x-\left(\int^{-5} \frac{\mathrm{e}^{--a^{2}}}{-a^{2}+1} d _a\right)\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.046 (sec). Leaf size: 31
dsolve([diff $\left.(y(x), x)=x * y(x)+1 /\left(1+x^{\wedge} 2\right), y(-5)=0\right], y(x)$, singsol=all)

$$
y(x)=\left(\int_{-5}^{x} \frac{\mathrm{e}^{-\frac{z 1^{2}}{2}}}{-z 1^{2}+1} d _z 1\right) \mathrm{e}^{\frac{x^{2}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.478 (sec). Leaf size: 41
DSolve $\left[\left\{y^{\prime}[x]==x * y[x]+1 /\left(1+x^{\wedge} 2\right),\{y[-5]==0\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{\frac{x^{2}}{2}} \int_{-5}^{x} \frac{e^{-\frac{1}{2} K[1]^{2}}}{K[1]^{2}+1} d K[1]
$$

4.18 problem 18

4.18.1 Existence and uniqueness analysis 840
4.18.2 Solving as linear ode . 841
4.18.3 Solving as homogeneousTypeD2 ode 842
4.18.4 Solving as first order ode lie symmetry lookup ode 843
4.18.5 Solving as exact ode . 847
4.18.6 Maple step by step solution . 851

Internal problem ID [12654]
Internal file name [OUTPUT/11306_Friday_November_03_2023_06_30_08_AM_48642611/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{x}=\cos (x)
$$

With initial conditions

$$
[y(-1)=0]
$$

4.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\cos (x)
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=-1$ is inside this domain. The domain of $q(x)=\cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is also inside this domain. Hence solution exists and is unique.

4.18.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)(\cos (x)) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{\cos (x)}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{\cos (x)}{x} \mathrm{~d} x \\
& \frac{y}{x}=\operatorname{Ci}(x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x \operatorname{Ci}(x)+c_{1} x
$$

which simplifies to

$$
y=x\left(\operatorname{Ci}(x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-i \pi-\operatorname{Ci}(1)-c_{1} \\
c_{1}=-i \pi-\operatorname{Ci}(1)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x)
$$

Verified OK.

4.18.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=\cos (x)
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \frac{\cos (x)}{x} \mathrm{~d} x \\
& =\operatorname{Ci}(x)+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x\left(\operatorname{Ci}(x)+c_{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-i \pi-\mathrm{Ci}(1)-c_{2} \\
c_{2}=-i \pi-\operatorname{Ci}(1)
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x)
$$

Verified OK.

4.18.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+\cos (x) x}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 135: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+\cos (x) x}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\cos (x)}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\cos (R)}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\operatorname{Ci}(R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=\operatorname{Ci}(x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=\mathrm{Ci}(x)+c_{1}
$$

Which gives

$$
y=x\left(\mathrm{Ci}(x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+\cos (x) x}{x}$		$\frac{d S}{d R}=\frac{\cos (R)}{R}$
		, +1
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
\rightarrow 迷		$\rightarrow \rightarrow-S(R){ }^{2}+\downarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 为
$\rightarrow x^{\text {a }}$		$\rightarrow \rightarrow \rightarrow \infty \rightarrow+\infty$
	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
$\rightarrow \rightarrow 4$.		
	$S=\frac{y}{x}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\times 14$
		$\rightarrow+4+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-i \pi-\mathrm{Ci}(1)-c_{1}
$$

$$
c_{1}=-i \pi-\mathrm{Ci}(1)
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x)
$$

Verified OK.

4.18.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{x}+\cos (x)\right) \mathrm{d} x \\
\left(-\frac{y}{x}-\cos (x)\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{y}{x}-\cos (x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{x}-\cos (x)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{x}\right)-(0)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}\left(-\frac{y}{x}-\cos (x)\right) \\
& =\frac{-y-\cos (x) x}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}(1) \\
& =\frac{1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y-\cos (x) x}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y-\cos (x) x}{x^{2}} \mathrm{~d} x \\
\phi & =-\operatorname{Ci}(x)+\frac{y}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\operatorname{Ci}(x)+\frac{y}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\operatorname{Ci}(x)+\frac{y}{x}
$$

The solution becomes

$$
y=x\left(\operatorname{Ci}(x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-i \pi-\operatorname{Ci}(1)-c_{1} \\
c_{1}=-i \pi-\operatorname{Ci}(1)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \pi x-\operatorname{Ci}(1) x+x \operatorname{Ci}(x)
$$

Verified OK.

4.18.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x}=\cos (x), y(-1)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}+\cos (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=\cos (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x) \cos (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$

$$
\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}
$$

- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \cos (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \cos (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \cos (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int \frac{\cos (x)}{x} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x\left(\mathrm{Ci}(x)+c_{1}\right)$
- Use initial condition $y(-1)=0$
$0=-\mathrm{I} \pi-\operatorname{Ci}(1)-c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\mathrm{I} \pi-\mathrm{Ci}(1)$
- Substitute $c_{1}=-\mathrm{I} \pi-\mathrm{Ci}(1)$ into general solution and simplify
$y=(\operatorname{Ci}(x)-\mathrm{I} \pi-\operatorname{Ci}(1)) x$
- \quad Solution to the IVP
$y=(\mathrm{Ci}(x)-\mathrm{I} \pi-\operatorname{Ci}(1)) x$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 17
dsolve([diff $(y(x), x)=y(x) / x+\cos (x), y(-1)=0], y(x)$, singsol=all)

$$
y(x)=(\operatorname{Ci}(x)-\operatorname{Ci}(1)-i \pi) x
$$

\checkmark Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 14
DSolve[\{y' $[x]==y[x] / x+\operatorname{Cos}[x],\{y[-1]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x(\text { CosIntegral }(x)-\operatorname{CosIntegral}(-1))
$$

4.19 problem 19

4.19.1 Existence and uniqueness analysis 854
4.19.2 Solving as linear ode . 855
4.19.3 Solving as homogeneousTypeD2 ode 856
4.19.4 Solving as first order ode lie symmetry lookup ode 857
4.19.5 Solving as exact ode . 861
4.19.6 Maple step by step solution . 865

Internal problem ID [12655]
Internal file name [OUTPUT/11307_Friday_November_03_2023_06_30_09_AM_28264325/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{x}=\tan (x)
$$

With initial conditions

$$
[y(\pi)=0]
$$

4.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =\tan (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\tan (x)
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=\pi$ is inside this domain. The domain of $q(x)=\tan (x)$ is

$$
\left\{x<\frac{1}{2} \pi+\pi _Z 117 \vee \frac{1}{2} \pi+\pi _Z 117<x\right\}
$$

And the point $x_{0}=\pi$ is also inside this domain. Hence solution exists and is unique.

4.19.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\tan (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)(\tan (x)) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{\tan (x)}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{\tan (x)}{x} \mathrm{~d} x \\
& \frac{y}{x}=-i \ln (x)-i\left(\int-\frac{2}{x\left(\mathrm{e}^{2 i x}+1\right)} d x\right)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x\left(-i \ln (x)-i\left(\int-\frac{2}{x\left(\mathrm{e}^{2 i x}+1\right)} d x\right)\right)+c_{1} x
$$

which simplifies to

$$
y=x\left(2 i\left(\int \frac{1}{x\left(\mathrm{e}^{2 i x}+1\right)} d x\right)-i \ln (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\pi\left(2 i\left(\int^{\pi} \frac{1}{-a\left(\mathrm{e}^{2 i _a}+1\right)} d _a\right)-i \ln (\pi)+c_{1}\right) \\
c_{1}=-2 i\left(\int^{\pi} \frac{1}{-a\left(\mathrm{e}^{2 i _a}+1\right)} d _a\right)+i \ln (\pi)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\left.y=x\left(2 i\left(\int \frac{1}{x\left(\mathrm{e}^{2 i x}+1\right)} d x\right)-i \ln (x)-2 i\left(\int^{\pi} \frac{1}{-a\left(\mathrm{e}^{2 i}-a\right.}+1\right) ~ d _a\right)+i \ln (\pi)\right)
$$

But this does not satisfy the initial conditions. Hence no solution can be found.
Verification of solutions N/A

4.19.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=\tan (x)
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \frac{\tan (x)}{x} \mathrm{~d} x \\
& =-i \ln (x)-i\left(\int-\frac{2}{x\left(\mathrm{e}^{2 i x}+1\right)} d x\right)+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x\left(-i \ln (x)-i\left(\int-\frac{2}{x\left(\mathrm{e}^{2 i x}+1\right)} d x\right)+c_{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\pi\left(-i \ln (\pi)+2 i\left(\int_{-}^{\pi} \frac{1}{-a\left(\mathrm{e}^{2 i _a}+1\right)} d _a\right)+c_{2}\right)
$$

$$
c_{2}=-2 i\left(\int^{\pi} \frac{1}{-a\left(\mathrm{e}^{2 i _a}+1\right)} d _a\right)+i \ln (\pi)
$$

Substituting c_{2} found above in the general solution gives

$$
y=x\left(-i \ln (x)-i\left(\int-\frac{2}{x\left(\mathrm{e}^{2 i x}+1\right)} d x\right)+i \ln (\pi)-2 i\left(\int^{\pi} \frac{1}{-a\left(\mathrm{e}^{2 i _a}+1\right)} d _a\right)\right)
$$

But this does not satisfy the initial conditions. Hence no solution can be found.
Verification of solutions N/A

4.19.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x \tan (x)+y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 138: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x \tan (x)+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\tan (x)}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\tan (R)}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{\tan (R)}{R} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=\int \frac{\tan (x)}{x} d x+c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=\int \frac{\tan (x)}{x} d x+c_{1}
$$

Which gives

$$
y=\left(\int \frac{\tan (x)}{x} d x+c_{1}\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x \tan (x)+y}{x}$		$\frac{d S}{d R}=\frac{\tan (R)}{R}$
		$\xrightarrow{1-\cdots 1}$
	$S=\underline{y}$	

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\left(\int^{\pi} \frac{\tan \left(_a\right)}{-a} d _a+c_{1}\right) \pi \\
c_{1}=-\left(\int^{\pi} \frac{\tan \left(_a\right)}{-a} d _a\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(\int \frac{\tan (x)}{x} d x-\left(\int^{\pi} \frac{\tan \left(_a\right)}{_a} d _a\right)\right) x
$$

But this does not satisfy the initial conditions. Hence no solution can be found.
Verification of solutions N/A

4.19.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{x}+\tan (x)\right) \mathrm{d} x \\
\left(-\frac{y}{x}-\tan (x)\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y}{x}-\tan (x) \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{x}-\tan (x)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{x}\right)-(0)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}\left(-\frac{y}{x}-\tan (x)\right) \\
& =\frac{-x \tan (x)-y}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}(1) \\
& =\frac{1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x \tan (x)-y}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x \tan (x)-y}{x^{2}} \mathrm{~d} x \\
\phi & =\int_{\pi}^{x} \frac{-_a \tan \left(_a\right)-y}{a^{2}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\int_{\pi}^{x}-\frac{1}{-a^{2}} d _a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x}=-\left(\int_{\pi}^{x} \frac{1}{-a^{2}} d _a\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{\left(\int_{\pi}^{x} \frac{1}{-a^{2}} d _a\right) x+1}{x}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{\left(\int_{\pi}^{x} \frac{1}{-a^{2}} d _a\right) x+1}{x}\right) \mathrm{d} y \\
f(y) & =\frac{\left(\left(\int_{\pi}^{x} \frac{1}{-a^{2}} d _a\right) x+1\right) y}{x}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int_{\pi}^{x} \frac{-_a \tan \left(_a\right)-y}{-a^{2}} d _a+\frac{\left(\left(\int_{\pi}^{x} \frac{1}{-a^{2}} d _a\right) x+1\right) y}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int_{\pi}^{x} \frac{-_a \tan \left(_a\right)-y}{a^{2}} d _a+\frac{\left(\left(\int_{\pi}^{x} \frac{1}{-a^{2}} d _a\right) x+1\right) y}{x}
$$

The solution becomes

$$
y=c_{1} x+\left(\int_{\pi}^{x} \frac{\tan \left(_a\right)}{-^{a}} d _a\right) x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=\pi c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(\int_{\pi}^{x} \frac{\tan \left(_a\right)}{_^{a}} d _a\right) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\int_{\pi}^{x} \frac{\tan \left(_a\right)}{-a} d _a\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\int_{\pi}^{x} \frac{\tan \left(_a\right)}{-a} d _a\right) x
$$

Verified OK. \{positive\}

4.19.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x}=\tan (x), y(\pi)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}+\tan (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=\tan (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x) \tan (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \tan (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \tan (x) d x+c_{1}$
- Solve for y
$y=\frac{\int \mu(x) \tan (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=\left(\int \frac{\tan (x)}{x} d x+c_{1}\right) x$
- Evaluate the integrals on the rhs
$y=\left(-\mathrm{Iln}(x)-\mathrm{I}\left(\int-\frac{2}{x\left(\left(\mathrm{e}^{x}\right)^{2}+1\right)} d x\right)+c_{1}\right) x$
- Simplify
$y=\left(-\mathrm{I} \ln (x)+2 \mathrm{I}\left(\int \frac{1}{x\left(\mathrm{e}^{21 x}+1\right)} d x\right)+c_{1}\right) x$
- Use initial condition $y(\pi)=0$
$0=\left(-\mathrm{I} \ln (\pi)+2 \mathrm{I}\left(\int^{\pi} \frac{1}{-a\left(\mathrm{e}^{11} \square a+1\right)} d _a\right)+c_{1}\right) \pi$
- \quad Solve for c_{1}

$$
c_{1}=\mathrm{I} \ln (\pi)-2 \mathrm{I}\left(\int^{\pi} \frac{1}{-a\left(\mathrm{e}^{21}-a+1\right)} d _a\right)
$$

- Substitute $c_{1}=\mathrm{I} \ln (\pi)-2 \mathrm{I}\left(\int^{\pi} \frac{1}{-^{a\left(\mathrm{e}^{2 I}-a+1\right)}} d _a\right)$ into general solution and simplify

$$
y=\mathrm{I}\left(\ln (\pi)-\ln (x)-2\left(\int^{\pi} \frac{1}{-a^{\left(\mathrm{e}^{21}-a+1\right)}} d _a\right)+2\left(\int \frac{1}{x\left(\mathrm{e}^{21 x}+1\right)} d x\right)\right) x
$$

- Solution to the IVP

$$
y=\mathrm{I}\left(\ln (\pi)-\ln (x)-2\left(\int^{\pi} \frac{1}{-a\left(e^{21 _a}+1\right)} d _a\right)+2\left(\int \frac{1}{x\left(\mathrm{e}^{21 x}+1\right)} d x\right)\right) x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

```
dsolve([diff(y(x),x)=y(x)/x+tan(x),y(Pi) = 0],y(x), singsol=all)
```

$$
y(x)=\left(\int_{\pi}^{x} \frac{\tan \left(_z 1\right)}{z 1} d _z 1\right) x
$$

\checkmark Solution by Mathematica
Time used: 1.98 (sec). Leaf size: 22
DSolve[\{y' $[x]==y[x] / x+\operatorname{Tan}[x],\{y[P i]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x \int_{\pi}^{x} \frac{\tan (K[1])}{K[1]} d K[1]
$$

4.20 problem 20

4.20.1 Existence and uniqueness analysis 868
4.20.2 Solving as linear ode . 869
4.20.3 Solving as first order ode lie symmetry lookup ode 871
4.20.4 Solving as exact ode . 875
4.20.5 Maple step by step solution . 880

Internal problem ID [12656]
Internal file name [OUTPUT/11308_Friday_November_03_2023_06_30_10_AM_86605867/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{-x^{2}+4}=\sqrt{x}
$$

With initial conditions

$$
[y(3)=4]
$$

4.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x^{2}-4} \\
q(x) & =\sqrt{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x^{2}-4}=\sqrt{x}
$$

The domain of $p(x)=\frac{1}{x^{2}-4}$ is

$$
\{-\infty \leq x<-2,-2<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=3$ is inside this domain. The domain of $q(x)=\sqrt{x}$ is

$$
\{0 \leq x\}
$$

And the point $x_{0}=3$ is also inside this domain. Hence solution exists and is unique.

4.20.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x^{2}-4} d x} \\
& =\mathrm{e}^{\frac{\ln (x-2)}{4}-\frac{\ln (x+2)}{4}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sqrt{x}) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}\right) & =\left(\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right)(\sqrt{x}) \\
\mathrm{d}\left(\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}\right) & =\left(\frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives
$\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}=\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} \mathrm{~d} x$
$\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}=\frac{2(x+2)^{\frac{3}{4}} \sqrt{x}(x-2)^{\frac{1}{4}}}{3}+\frac{\left(\int \frac{\frac{4}{3}-\frac{4 x}{3}}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}}{\sqrt{x}(x-2)^{\frac{3}{4}}(x+2)^{\frac{1}{4}}}+c_{1}$

Dividing both sides by the integrating factor $\mu=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}$ results in

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\frac{2(x+2)^{\frac{3}{4}} \sqrt{x}(x-2)^{\frac{1}{4}}}{3}+\frac{\left(\int \frac{\frac{4}{3}-\frac{4 x}{3}}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}}{ }^{\frac{1}{x}}\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}}{\sqrt{x}(x+2)^{\frac{1}{4}}}\right)}{(x-2)^{\frac{1}{4}}}+\frac{c_{1}(x+2)^{\frac{1}{4}}}{(x-2)^{\frac{1}{4}}}
$$

which simplifies to
$y=\frac{3 c_{1}(x+2)^{\frac{1}{4}}(x-2)^{\frac{3}{4}} \sqrt{x}+2 x^{3}-4\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}-8 x}{\sqrt{x}(3 x-6)}$
Initial conditions are used to solve for c_{1}. Substituting $x=3$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=\frac{\left(3 c_{1} 5^{\frac{1}{4}} \sqrt{3}+30-4\left(\int^{3} \frac{-a-1}{\left(-a^{2}\left(_a-2\right)^{3}\left(_a+2\right)\right)^{\frac{1}{4}}} d _a\right) 45^{\frac{1}{4}}\right) \sqrt{3}}{9} \\
c_{1}=-\frac{2 \sqrt{3} 5^{\frac{3}{4}}}{3}+\frac{45^{\frac{3}{4}}}{5}+\frac{4\left(\int^{3} \frac{-a-1}{\left(-a^{2}\left(__{-2}\right)^{3}\left(_a+2\right)\right)^{\frac{1}{4}}} d _a\right)}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{3\left(-\frac{2 \sqrt{3} 5^{\frac{3}{4}}}{3}+{\frac{45^{\frac{3}{4}}}{5}}_{5}+\frac{4\left(\int^{3} \frac{a_{-1}}{\left(\square^{2}\left(a_{-2}\right)^{3}\left(_a+2\right)\right)^{\frac{1}{4}}}{ }^{d _a}\right)}{3}\right)(x+2)^{\frac{1}{4}}(x-2)^{\frac{3}{4}} \sqrt{x}+2 x^{3}-4\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+\right.}\right.}{\sqrt{x}(3 x-6)}$
But this does not satisfy the initial conditions. Hence no solution can be found.
Verification of solutions N/A

4.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{\frac{5}{2}}-4 \sqrt{x}-y}{x^{2}-4} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 141: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{\ln (x-2)}{4}+\frac{\ln (x+2)}{4}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{\ln (x-2)}{4}+\frac{\ln (x+2)}{4}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\ln \left((x-2)^{\frac{1}{4}}\right)+\ln \left(\frac{1}{(x+2)^{\frac{1}{4}}}\right)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{\frac{5}{2}}-4 \sqrt{x}-y}{x^{2}-4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{(x-2)^{\frac{3}{4}}(x+2)^{\frac{5}{4}}} \\
S_{y} & =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\sqrt{R}(R-2)^{\frac{1}{4}}}{(R+2)^{\frac{1}{4}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{\sqrt{R}(R-2)^{\frac{1}{4}}}{(R+2)^{\frac{1}{4}}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}=\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x+c_{1}
$$

Which simplifies to

$$
\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}=\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x+c_{1}
$$

Which gives

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x+c_{1}\right)}{(x-2)^{\frac{1}{4}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=3$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
4 & =5^{\frac{1}{4}}\left(\int^{3} \frac{\sqrt{-a}\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a+c_{1}\right) \\
c_{1} & =-\left(\int^{3} \frac{\sqrt{-a}\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a\right)+\frac{45^{\frac{3}{4}}}{5}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x-\left(\int^{3} \frac{\sqrt{-a(a-2)^{\frac{1}{4}}}}{(-a+2)^{\frac{1}{4}}} d _a\right)+\frac{45^{\frac{3}{4}}}{5}\right)}{(x-2)^{\frac{1}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x-\left(\int^{3} \frac{\sqrt{-a}\left(_a-2\right)^{\frac{1}{4}}}{(a+2)^{\frac{1}{4}}} d _a\right)+\frac{45^{\frac{3}{4}}}{5}\right)}{(x-2)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x-\left(\int^{3} \frac{\sqrt{-a}(\ldots-2)^{\frac{1}{4}}}{(a+2)^{\frac{1}{4}}} d _a\right)+\frac{45^{\frac{3}{4}}}{5}\right.}{(x-2)^{\frac{1}{4}}}
$$

Verified OK.

4.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{-x^{2}+4}+\sqrt{x}\right) \mathrm{d} x \\
\left(-\frac{y}{-x^{2}+4}-\sqrt{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y}{-x^{2}+4}-\sqrt{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{-x^{2}+4}-\sqrt{x}\right) \\
& =\frac{1}{x^{2}-4}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{-x^{2}+4}\right)-(0)\right) \\
& =\frac{1}{x^{2}-4}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x^{2}-4} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{\ln (x-2)}{4}-\frac{\ln (x+2)}{4}} \\
& =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\left(-\frac{y}{-x^{2}+4}-\sqrt{x}\right) \\
& =\frac{\left(\frac{y}{x^{2}-4}-\sqrt{x}\right)(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}(1) \\
& =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{\left(\frac{y}{x^{2}-4}-\sqrt{x}\right)(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right)+\left(\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\left(\frac{y}{x^{2}-4}-\sqrt{x}\right)(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} \mathrm{~d} x \\
\phi & =\int_{3}^{x} \frac{\left(\frac{y}{-a^{2}-4}-\sqrt{-a}\right)\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\int_{3}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}}}{\left(_a^{2}-4\right)\left(_a+2\right)^{\frac{1}{4}}} d _a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}=\int_{3}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}}}{\left(_a^{2}-4\right)\left(_a+2\right)^{\frac{1}{4}}} d _a+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{-\left(\int_{3}^{x} \frac{\left(\llcorner a-2)^{\frac{1}{4}}\right.}{\left(-a^{2}-4\right)\left(a^{a+2}\right)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{-\left(\int_{3}^{x} \frac{\left(L_{-2}\right)^{\frac{1}{4}}}{\left(-a^{2}-4\right)\left(a^{2}+2\right)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right) \mathrm{d} y \\
f(y) & =\frac{\left(-\left(\int_{3}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}}}{\left(_a^{2}-4\right)(a+2)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}\right) y}{(x+2)^{\frac{1}{4}}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
\phi= & \int_{3}^{x} \frac{\left(\frac{y}{-^{2}-4}-\sqrt{-a}\right)\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a \\
& +\frac{\left(-\left(\int_{3}^{x} \frac{(\square a-2)^{\frac{1}{4}}}{\left(_a^{2}-4\right)\left(_a+2\right)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}\right) y}{(x+2)^{\frac{1}{4}}}+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
\begin{aligned}
c_{1}= & \int_{3}^{x} \frac{\left(\frac{y}{\square^{2}-4}-\sqrt{-a}\right)\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a \\
& +\frac{\left(-\left(\int_{3}^{x} \frac{(-a-2)^{\frac{1}{4}}}{\left(_a^{2}-4\right)\left(_a+2\right)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}\right) y}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

The solution becomes

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(c_{1}+\int_{3}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}} \sqrt{-a}}{\left(_+2\right)^{\frac{1}{4}}} d _a\right)}{(x-2)^{\frac{1}{4}}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=3$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
4 & =5^{\frac{1}{4}} c_{1} \\
c_{1} & =\frac{45^{\frac{3}{4}}}{5}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{4(x+2)^{\frac{1}{4}} 5^{\frac{3}{4}}+5(x+2)^{\frac{1}{4}}\left(\int_{3}^{x} \frac{(a-2)^{\frac{1}{4}} \sqrt{-a} a}{(a+2)^{\frac{1}{4}}} d _a\right)}{5(x-2)^{\frac{1}{4}}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4(x+2)^{\frac{1}{4}} 5^{\frac{3}{4}}+5(x+2)^{\frac{1}{4}}\left(\int_{3}^{x} \frac{(a-2)^{\frac{1}{4}} \sqrt{\frac{1}{a}}}{(-a+2)^{\frac{1}{4}}} d _a\right)}{5(x-2)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{4(x+2)^{\frac{1}{4}} 5^{\frac{3}{4}}+5(x+2)^{\frac{1}{4}}\left(\int_{3}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}} \sqrt{\frac{1}{a}}}{(-a+2)^{\frac{1}{4}}} d _a\right)}{5(x-2)^{\frac{1}{4}}}
$$

Verified OK.

4.20.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{-x^{2}+4}=\sqrt{x}, y(3)=4\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x^{2}-4}+\sqrt{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x^{2}-4}=\sqrt{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-4}\right)=\mu(x) \sqrt{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-4}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x^{2}-4}$
- Solve to find the integrating factor
$\mu(x)=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sqrt{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sqrt{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sqrt{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}$
$y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x+c_{1}\right)}{(x-2)^{\frac{1}{4}}}$
- Evaluate the integrals on the rhs

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\frac{2(x+2)^{\frac{3}{4}} \sqrt{x}(x-2)^{\frac{1}{4}}}{3}+\frac{\left(\int \frac{\frac{4}{3}-\frac{4 x}{3}}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}} d x}\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}}{\sqrt{x}(x-2)^{\frac{3}{4}(x+2)^{\frac{1}{4}}}}+c_{1}\right)}{(x-2)^{\frac{1}{4}}}
$$

- Simplify
$y=\frac{3 c_{1}(x+2)^{\frac{1}{4}}(x-2)^{\frac{3}{4}} \sqrt{x}+2 x^{3}-4\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}-8 x}{\sqrt{x}(3 x-6)}$
- Use initial condition $y(3)=4$

$$
4=\frac{\left(3 c_{1} 5^{\frac{1}{4}} \sqrt{3}+30-4\left(\int^{3} \frac{-a_{-1}}{\left(a^{2} __{a-2)^{3}} _a_{+2}\right)^{\frac{1}{4}}} d _a\right) 45^{\frac{1}{4}}\right) \sqrt{3}}{9}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{2 \sqrt{3} 5^{\frac{3}{4}}}{3}+\frac{45^{\frac{3}{4}}}{5}+\frac{4\left(\int^{3} \frac{-a_{-1}}{\left(-a^{2}\left(__{-2}\right)^{3}\left(__{+2)}\right)^{\frac{1}{4}}\right.} d _a\right)}{3}
$$

- Substitute $c_{1}=-\frac{2 \sqrt{3} 5^{\frac{3}{4}}}{3}+\frac{45^{\frac{3}{4}}}{5}+\frac{4\left(\int^{3} \frac{-a_{-1}}{\left(-a^{2}\left(_a_{-2}\right)^{3}\left(_a_{+2}\right)\right)^{\frac{1}{4}}} d _a\right)}{3}$ into general solution and simplif
$y=-\frac{20\left(\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}-\sqrt{x}\left(-\frac{\sqrt{3}^{3} 5^{\frac{3}{4}}}{2}+\int^{3} \frac{-a_{-1}}{\left(-a^{2}\left(_a_{-2}\right)^{3} _a_{+2)}\right)^{\frac{1}{4}} d _a+\frac{35^{\frac{3}{4}}}{5}}\right)(x+2)^{\frac{1}{4}}(x-\right.}{\sqrt{x}(15 x-30)}$
- \quad Solution to the IVP

$$
y=-\frac{20\left(\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}-\sqrt{x}\left(-\frac{\sqrt{3} 5^{\frac{3}{4}}}{2}+\int^{3} \frac{a_{-1}}{\left(\ldots a^{2}\left(\ldots a_{-2}\right)^{3}\left(_a+2\right)\right)^{\frac{1}{4}}} d _a+\frac{35^{\frac{3}{4}}}{5}\right)(x+2)^{\frac{1}{4}}(x-\right.}{\sqrt{x}(15 x-30)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 41

```
dsolve([diff(y(x),x)=y(x)/(4-x^2)+sqrt(x),y(3) = 4],y(x), singsol=all)
```

$$
y(x)=\frac{\left(45^{\frac{3}{4}}+5\left(\int_{3}^{x} \frac{\sqrt{_^{z 1}}\left(_z 1-2\right)^{\frac{1}{4}}}{(2+\ldots z 1)^{\frac{1}{4}}} d _z 1\right)\right)(x+2)^{\frac{1}{4}}}{5(x-2)^{\frac{1}{4}}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 2.843 (sec). Leaf size: 202
DSolve[\{y' $[x]==y[x] /\left(4-x^{\wedge} 2\right)+$ Sqrt $\left.[x],\{y[3]==4\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]
$y(x)$
$\rightarrow \underline{\left(\frac{1}{45}+\frac{i}{45}\right) \sqrt[4]{x+2}\left((10-10 i) x^{3 / 2} \text { AppellF1 }\left(\frac{3}{2}, \frac{3}{4}, \frac{1}{4}, \frac{5}{2}, \frac{x}{2},-\frac{x}{2}\right)-(30-30 i) \sqrt{x} \text { AppellF1 }\left(\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{3}{2}, \frac{x}{2},-\right.\right.}$

4.21 problem 21

4.21.1 Existence and uniqueness analysis 883
4.21.2 Solving as linear ode . 884
4.21.3 Solving as first order ode lie symmetry lookup ode 886
4.21.4 Solving as exact ode . 890
4.21.5 Maple step by step solution . 895

Internal problem ID [12657]
Internal file name [OUTPUT/11309_Friday_November_03_2023_06_30_12_AM_76026492/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{-x^{2}+4}=\sqrt{x}
$$

With initial conditions

$$
[y(1)=-3]
$$

4.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x^{2}-4} \\
q(x) & =\sqrt{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x^{2}-4}=\sqrt{x}
$$

The domain of $p(x)=\frac{1}{x^{2}-4}$ is

$$
\{-\infty \leq x<-2,-2<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\sqrt{x}$ is

$$
\{0 \leq x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

4.21.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x^{2}-4} d x} \\
& =\mathrm{e}^{\frac{\ln (x-2)}{4}-\frac{\ln (x+2)}{4}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sqrt{x}) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}\right) & =\left(\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right)(\sqrt{x}) \\
\mathrm{d}\left(\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}\right) & =\left(\frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives
$\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}=\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} \mathrm{~d} x$
$\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}=\frac{2(x+2)^{\frac{3}{4}} \sqrt{x}(x-2)^{\frac{1}{4}}}{3}+\frac{\left(\int \frac{\frac{4}{3}-\frac{4 x}{3}}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}}{\sqrt{x}(x-2)^{\frac{3}{4}}(x+2)^{\frac{1}{4}}}+c_{1}$

Dividing both sides by the integrating factor $\mu=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}$ results in

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\frac{2(x+2)^{\frac{3}{4}} \sqrt{x}(x-2)^{\frac{1}{4}}}{3}+\frac{\left(\int \frac{\frac{4}{3}-\frac{4 x}{3}}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}}{ }^{\frac{1}{x}}\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}}{\sqrt{x}(x+2)^{\frac{1}{4}}}\right)}{(x-2)^{\frac{1}{4}}}+\frac{c_{1}(x+2)^{\frac{1}{4}}}{(x-2)^{\frac{1}{4}}}
$$

which simplifies to
$y=\frac{3 c_{1}(x+2)^{\frac{1}{4}}(x-2)^{\frac{3}{4}} \sqrt{x}+2 x^{3}-4\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}-8 x}{\sqrt{x}(3 x-6)}$
Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -3=-c_{1} 3^{\frac{1}{4}}(-1)^{\frac{3}{4}}+2+\frac{4\left(\int^{1} \frac{-a-1}{\left(-a^{2}\left(_a-2\right)^{3}\left(_a+2\right)\right)^{\frac{1}{4}}} d _a\right)(-3)^{\frac{1}{4}}}{3} \\
& c_{1}=\frac{i\left(5 i \sqrt{2} 3^{\frac{3}{4}}-53^{\frac{3}{4}} \sqrt{2}-8\left(\int^{1} \frac{-a-1}{\left(-a^{2}\left(_a-2\right)^{3}\left(_a+2\right)\right)^{\frac{1}{4}}} d _a\right)\right)}{6}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{i\left(5 i \sqrt{2} 3^{\frac{3}{4}}-53^{\frac{3}{4} \sqrt{2}-8}\left(\int^{1} \frac{-a_{-1}}{\left(-a^{2}\left(_a_{-2}\right)^{3}\left(_a_{+2}\right)\right)^{\frac{1}{4}}} d _a\right)\right)(x+2)^{\frac{1}{4}}(x-2)^{\frac{3}{4} \sqrt{x}}}{2}+2 x^{3}-4\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(\right.
$$

But this does not satisfy the initial conditions. Hence no solution can be found.
Verification of solutions N/A

4.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{\frac{5}{2}}-4 \sqrt{x}-y}{x^{2}-4} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 144: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{\ln (x-2)}{4}+\frac{\ln (x+2)}{4}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{\ln (x-2)}{4}+\frac{\ln (x+2)}{4}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\ln \left((x-2)^{\frac{1}{4}}\right)+\ln \left(\frac{1}{(x+2)^{\frac{1}{4}}}\right)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{\frac{5}{2}}-4 \sqrt{x}-y}{x^{2}-4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{(x-2)^{\frac{3}{4}}(x+2)^{\frac{5}{4}}} \\
S_{y} & =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\sqrt{R}(R-2)^{\frac{1}{4}}}{(R+2)^{\frac{1}{4}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{\sqrt{R}(R-2)^{\frac{1}{4}}}{(R+2)^{\frac{1}{4}}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}=\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x+c_{1}
$$

Which simplifies to

$$
\frac{(x-2)^{\frac{1}{4}} y}{(x+2)^{\frac{1}{4}}}=\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x+c_{1}
$$

Which gives

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x+c_{1}\right)}{(x-2)^{\frac{1}{4}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-3=-3^{\frac{1}{4}}\left(\int^{1} \frac{\sqrt{-a}\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a+c_{1}\right)(-1)^{\frac{3}{4}} \\
c_{1}=-\frac{i \sqrt{2} 3^{\frac{3}{4}}}{2}-\frac{3^{\frac{3}{4}} \sqrt{2}}{2}-\left(\int^{1} \frac{\sqrt{-a}\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x-\frac{i \sqrt{2} 3^{\frac{3}{4}}}{2}-\frac{3^{\frac{3}{4} \sqrt{2}}}{2}-\left(\int^{1} \frac{\sqrt{-a(a-2)^{\frac{1}{4}}}}{(a+2)^{\frac{1}{4}}} d _a\right)\right)}{(x-2)^{\frac{1}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x-\frac{i \sqrt{2} 3^{\frac{3}{4}}}{2}-\frac{3^{\frac{3}{4}} \sqrt{2}}{2}-\left(\int^{1} \frac{\sqrt{-a}(a-2)^{\frac{1}{4}}}{(a+2)^{\frac{1}{4}}} d _a\right)\right)}{(x-2)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x-\frac{i \sqrt{2} 3^{\frac{3}{4}}}{2}-\frac{3^{\frac{3}{4} \sqrt{2}}}{2}-\left(\int^{1} \frac{\sqrt{-a}(a-2)^{\frac{1}{4}}}{(a+2)^{\frac{1}{4}}} d _a\right)\right)}{(x-2)^{\frac{1}{4}}}
$$

Verified OK. \{positive\}

4.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{-x^{2}+4}+\sqrt{x}\right) \mathrm{d} x \\
\left(-\frac{y}{-x^{2}+4}-\sqrt{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y}{-x^{2}+4}-\sqrt{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{-x^{2}+4}-\sqrt{x}\right) \\
& =\frac{1}{x^{2}-4}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{-x^{2}+4}\right)-(0)\right) \\
& =\frac{1}{x^{2}-4}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x^{2}-4} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{\ln (x-2)}{4}-\frac{\ln (x+2)}{4}} \\
& =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\left(-\frac{y}{-x^{2}+4}-\sqrt{x}\right) \\
& =\frac{\left(\frac{y}{x^{2}-4}-\sqrt{x}\right)(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}(1) \\
& =\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{\left(\frac{y}{x^{2}-4}-\sqrt{x}\right)(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right)+\left(\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\left(\frac{y}{x^{2}-4}-\sqrt{x}\right)(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} \mathrm{~d} x \\
\phi & =\int_{1}^{x} \frac{\left(\frac{y}{-a^{2}-4}-\sqrt{-^{a}}\right)\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\int_{1}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}}}{\left(_a^{2}-4\right)\left(_a+2\right)^{\frac{1}{4}}} d _a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}=\int_{1}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}}}{\left(_a^{2}-4\right)\left(_a+2\right)^{\frac{1}{4}}} d _a+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\frac{\left(\int_{1}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}}}{\left(_a^{2}-4\right)\left(_a+2\right)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}-(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} \\
& =\frac{-\left(\int_{1}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}}}{\left.\left(_a^{2}-4\right) _a+2\right)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\int f^{\prime}(y) \mathrm{d} y=\int\left(\frac{-\left(\int_{1}^{x} \frac{(-a-2)^{\frac{1}{4}}}{\left(-a^{2}-4\right)\left(a^{2}+2\right)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}\right) \mathrm{d} y
$$

$$
f(y)=\frac{\left(-\left(\int_{1}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}}}{\left(_a^{2}-4\right)\left(a^{\frac{1}{4}}\right.} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}\right) y}{(x+2)^{\frac{1}{4}}}+c_{1}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
\phi= & \int_{1}^{x} \frac{\left(\frac{y}{-a^{2}-4}-\sqrt{-a}\right)\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a \\
& +\frac{\left(-\left(\int_{1}^{x} \frac{(a-2)^{\frac{1}{4}}}{\left(-a^{2}-4\right)(\square+2)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}\right) y}{(x+2)^{\frac{1}{4}}}+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
\begin{aligned}
c_{1}= & \int_{1}^{x} \frac{\left(\frac{y}{-^{2}-4}-\sqrt{-a}\right)\left(_a-2\right)^{\frac{1}{4}}}{\left(_a+2\right)^{\frac{1}{4}}} d _a \\
& +\frac{\left(-\left(\int_{1}^{x} \frac{(-a-2)^{\frac{1}{4}}}{\left(-a^{2}-4\right)\left(_a+2\right)^{\frac{1}{4}}} d _a\right)(x+2)^{\frac{1}{4}}+(x-2)^{\frac{1}{4}}\right) y}{(x+2)^{\frac{1}{4}}}
\end{aligned}
$$

The solution becomes

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(c_{1}+\int_{1}^{x} \frac{\left(_a-2\right)^{\frac{1}{4}} \sqrt{-a}}{\left(\varsigma^{\frac{1}{4}}\right.} d _a\right)}{(x-2)^{\frac{1}{4}}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -3=\left(\frac{1}{2}-\frac{i}{2}\right) c_{1} 3^{\frac{1}{4}} \sqrt{2} \\
& c_{1}=\left(-\frac{1}{2}-\frac{i}{2}\right) 3^{\frac{3}{4}} \sqrt{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-i \sqrt{2} 3^{\frac{3}{4}}(x+2)^{\frac{1}{4}}-\sqrt{2} 3^{\frac{3}{4}}(x+2)^{\frac{1}{4}}+2(x+2)^{\frac{1}{4}}\left(\int_{1}^{x} \frac{(a-2)^{\frac{1}{4}} \sqrt{\frac{-1}{1}}}{(a+2)^{\frac{1}{4}}} d _a\right)}{2(x-2)^{\frac{1}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-i \sqrt{2} 3^{\frac{3}{4}}(x+2)^{\frac{1}{4}}-\sqrt{2} 3^{\frac{3}{4}}(x+2)^{\frac{1}{4}}+2(x+2)^{\frac{1}{4}}\left(\int_{1}^{x} \frac{(a-2)^{\frac{1}{4}} \sqrt{-a} a}{\left(a_{+2}^{\frac{1}{4}}\right.} d _a\right)}{2(x-2)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-i \sqrt{2} 3^{\frac{3}{4}}(x+2)^{\frac{1}{4}}-\sqrt{2} 3^{\frac{3}{4}}(x+2)^{\frac{1}{4}}+2(x+2)^{\frac{1}{4}}\left(\int_{1}^{x} \frac{(a-2)^{\frac{1}{4}} \sqrt{\frac{1}{4}}}{(a+2)^{\frac{1}{4}}} d _a\right)}{2(x-2)^{\frac{1}{4}}}
$$

Verified OK. \{positive\}

4.21.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{y}{-x^{2}+4}=\sqrt{x}, y(1)=-3\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x^{2}-4}+\sqrt{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x^{2}-4}=\sqrt{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-4}\right)=\mu(x) \sqrt{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-4}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x^{2}-4}$
- Solve to find the integrating factor
$\mu(x)=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}$
- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sqrt{x} d x+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sqrt{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sqrt{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}}$

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\int \frac{\sqrt{x}(x-2)^{\frac{1}{4}}}{(x+2)^{\frac{1}{4}}} d x+c_{1}\right)}{(x-2)^{\frac{1}{4}}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{(x+2)^{\frac{1}{4}}\left(\frac{2(x+2)^{\frac{3}{4}} \sqrt{x}(x-2)^{\frac{1}{4}}}{3}+\frac{\left(\int \frac{\frac{4}{3}-\frac{4 x}{3}}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}}{\sqrt{x}(x-2)^{\frac{3}{4}}(x+2)^{\frac{1}{4}}}+c_{1}\right)}{(x-2)^{\frac{1}{4}}}
$$

- Simplify
$y=\frac{3 c_{1}(x+2)^{\frac{1}{4}}(x-2)^{\frac{3}{4}} \sqrt{x}+2 x^{3}-4\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}-8 x}{\sqrt{x}(3 x-6)}$
- Use initial condition $y(1)=-3$

$$
-3=-c_{1} 3^{\frac{1}{4}}(-1)^{\frac{3}{4}}+2+\frac{4\left(\int^{1} \frac{-a_{-1}}{\left(-a^{2}\left(-a_{-2}\right)^{3}\left(_a+2\right)\right)^{\frac{1}{4}}}{ }^{d _} a\right)(-3)^{\frac{1}{4}}}{3}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{\mathrm{I}}{6}\left(5 \mathrm{I} \sqrt{2} 3^{\frac{3}{4}}-53^{\frac{3}{4}} \sqrt{2}-8\left(\int^{1} \frac{-a-1}{\left(_a^{2}\left(_a-2\right)^{3}\left(a^{a+2)}\right)^{\frac{1}{4}}\right.} d _a\right)\right)$
- \quad Substitute $c_{1}=\frac{\mathrm{I}}{6}\left(5 \mathrm{I} \sqrt{2} 3^{\frac{3}{4}}-53^{\frac{3}{4}} \sqrt{2}-8\left(\int^{1} \frac{-a-1}{\left(-a^{2}\left(_a-2\right)^{3}\left(_^{a+2)}\right)^{\frac{1}{4}}\right.} d _a\right)\right)$ into general solution

$$
y=-\frac{8\left(\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}+\sqrt{x}\left(\left(\frac{5}{8}+\frac{51}{8}\right) 3^{\frac{3}{4} \sqrt{2}+1}\left(\int^{1} \frac{a_{-1}}{\left(a^{2}\left(_a_{-2}\right)^{3}\left(_a_{+2}\right)\right)^{\frac{1}{4}}}{ }^{d}-a\right)\right)(x+2)^{\frac{1}{4}}\right.}{\sqrt{x}(6 x-12)}
$$

- \quad Solution to the IVP

$$
y=-\frac{8\left(\left(\int \frac{x-1}{\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}} d x\right)\left(x^{2}(x-2)^{3}(x+2)\right)^{\frac{1}{4}}+\sqrt{x}\left(\left(\frac{5}{8}+\frac{51}{8}\right) 3^{\frac{3}{4}} \sqrt{2}+1\left(\int^{1} \frac{a_{-1}}{\left.\left.\left(_a^{2} ___{-2}\right)^{3} __+2\right)\right)^{\frac{1}{4}}} d _a\right)\right)(x+2)^{\frac{1}{4}}\right.}{\sqrt{x}(6 x-12)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 44

```
dsolve([diff(y(x),x)=y(x)/(4-x^2)+sqrt(x),y(1) = -3],y(x), singsol=all)
```

$$
y(x)=-\frac{(x+2)^{\frac{1}{4}}\left(-2\left(\int_{1}^{x} \frac{\sqrt{-z 1}(-z 1-2)^{\frac{1}{4}}}{\left(2+_z 1\right)^{\frac{1}{4}}} d _z 1\right)+(1+i) \sqrt{2} 3^{\frac{3}{4}}\right)}{2(x-2)^{\frac{1}{4}}}
$$

\checkmark Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 158

```
DSolve[{y'[x]==y[x]/(4-x^2)+Sqrt[x],{y[1]==-3}},y[x],x,IncludeSingularSolutions -> True]
```

$y(x)$
$\rightarrow \frac{\sqrt[4]{x+2}\left(4 x^{3 / 2} \text { AppellF1 }\left(\frac{3}{2}, \frac{3}{4}, \frac{1}{4}, \frac{5}{2}, \frac{x}{2},-\frac{x}{2}\right)-12 \sqrt{x} \operatorname{AppellF} 1\left(\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{3}{2}, \frac{x}{2},-\frac{x}{2}\right)-4 \operatorname{AppellF} 1\left(\frac{3}{2}, \frac{3}{4}, \frac{1}{4}, \frac{5}{2},\right.\right.}{9 \sqrt[4]{2-x}}$

4.22 problem 22

4.22.1 Existence and uniqueness analysis 898
4.22.2 Solving as linear ode . 899
4.22.3 Solving as first order ode lie symmetry lookup ode 901
4.22.4 Solving as exact ode . 905
4.22.5 Maple step by step solution . 909

Internal problem ID [12658]
Internal file name [OUTPUT/11310_Friday_November_03_2023_06_30_15_AM_34322720/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-y \cot (x)=\csc (x)
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=1\right]
$$

4.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\cot (x) \\
q(x) & =\csc (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y \cot (x)=\csc (x)
$$

The domain of $p(x)=-\cot (x)$ is

$$
\left\{x<\pi _Z 118 \vee \pi _Z 118<x\right\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The domain of $q(x)=\csc (x)$ is

$$
\left\{x<\pi _Z 118 \vee \pi _Z 118<x\right\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is also inside this domain. Hence solution exists and is unique.

4.22.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\cot (x) d x} \\
& =\frac{1}{\sin (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\csc (x)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\csc (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\csc (x) y) & =(\csc (x))(\csc (x)) \\
\mathrm{d}(\csc (x) y) & =\csc (x)^{2} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\csc (x) y & =\int \csc (x)^{2} \mathrm{~d} x \\
\csc (x) y & =-\cot (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\csc (x)$ results in

$$
y=-\sin (x) \cot (x)+\sin (x) c_{1}
$$

which simplifies to

$$
y=\sin (x) c_{1}-\cos (x)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\cos (x)+\sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x)+\sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\cos (x)+\sin (x)
$$

Verified OK.

4.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y \cot (x)+\csc (x) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 147: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sin (x) \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sin (x)} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sin (x)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y \cot (x)+\csc (x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\csc (x) \cot (x) y \\
& S_{y}=\csc (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\csc (x)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\csc (R)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\cot (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\csc (x) y=-\cot (x)+c_{1}
$$

Which simplifies to

$$
\csc (x) y=-\cot (x)+c_{1}
$$

Which gives

$$
y=-\frac{\cot (x)-c_{1}}{\csc (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y \cot (x)+\csc (x)$		$\frac{d S}{d R}=\csc (R)^{2}$
	$R=x$	
为4 4	$S=\csc (x) y$	
-4		

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sin (x) \cot (x)+\sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sin (x) \cot (x)+\sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\sin (x) \cot (x)+\sin (x)
$$

Verified OK.

4.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(y \cot (x)+\csc (x)) \mathrm{d} x \\
(-y \cot (x)-\csc (x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \cot (x)-\csc (x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y \cot (x)-\csc (x)) \\
& =-\cot (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-\cot (x))-(0)) \\
& =-\cot (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\cot (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (\sin (x))} \\
& =\csc (x)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\csc (x)(-y \cot (x)-\csc (x)) \\
& =\csc (x)^{2}(-\cos (x) y-1)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\csc (x)(1) \\
& =\csc (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\csc (x)^{2}(-\cos (x) y-1)\right)+(\csc (x)) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \csc (x)^{2}(-\cos (x) y-1) \mathrm{d} x \\
\phi & =\cot (x)+\csc (x) y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\csc (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\csc (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\csc (x)=\csc (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\cot (x)+\csc (x) y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\cot (x)+\csc (x) y
$$

The solution becomes

$$
y=-\frac{\cot (x)-c_{1}}{\csc (x)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sin (x) \cot (x)+\sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sin (x) \cot (x)+\sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\sin (x) \cot (x)+\sin (x)
$$

Verified OK.

4.22.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y \cot (x)=\csc (x), y\left(\frac{\pi}{2}\right)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y \cot (x)+\csc (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y \cot (x)=\csc (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y \cot (x)\right)=\mu(x) \csc (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y \cot (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x) \cot (x)$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{\sin (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \csc (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \csc (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \csc (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\sin (x)}$
$y=\sin (x)\left(\int \frac{\csc (x)}{\sin (x)} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\sin (x)\left(-\cot (x)+c_{1}\right)$
- \quad Simplify
$y=\sin (x) c_{1}-\cos (x)$
- Use initial condition $y\left(\frac{\pi}{2}\right)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify
$y=-\cos (x)+\sin (x)$
- \quad Solution to the IVP
$y=-\cos (x)+\sin (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 11

```
dsolve([diff (y(x),x)=cot(x)*y(x)+csc(x),y(1/2*Pi) = 1],y(x), singsol=all)
```

$$
y(x)=-\cos (x)+\sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 12
DSolve[\{y' $[x]==\operatorname{Cot}[x] * y[x]+\operatorname{Csc}[x],\{y[P i / 2]==1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \sin (x)-\cos (x)
$$

4.23 problem 23

4.23.1 Existence and uniqueness analysis 912
4.23.2 Solving as separable ode . 913
4.23.3 Solving as first order ode lie symmetry lookup ode 915
4.23.4 Solving as exact ode . 919
4.23.5 Maple step by step solution . 923

Internal problem ID [12659]
Internal file name [OUTPUT/11311_Friday_November_03_2023_06_30_16_AM_72689874/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+x \sqrt{1-y^{2}}=0
$$

With initial conditions

$$
[y(0)=1]
$$

4.23.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-x \sqrt{-y^{2}+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-x \sqrt{-y^{2}+1}\right) \\
& =\frac{x y}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

$\frac{\partial f}{\partial y}$ is not defined at $y=1$ therefore existence and uniqueness theorem do not apply. Solution exist but not guaranteed to be unique.

4.23.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-x \sqrt{-y^{2}+1}
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-y^{2}+1}} d y & =-x d x \\
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int-x d x \\
\arcsin (y) & =-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(-\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\sin \left(c_{1}\right)
$$

$$
c_{1}=\frac{\pi}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

4.23.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-x \sqrt{-y^{2}+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 150: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-x \sqrt{-y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arcsin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which gives

$$
y=-\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-x \sqrt{-y^{2}+1}$	$\begin{aligned} R & =y \\ S & =-\frac{x^{2}}{2} \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\sin \left(c_{1}\right) \\
c_{1}=-\frac{\pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

4.23.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{1}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =-\arcsin (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\arcsin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\arcsin (y)
$$

The solution becomes

$$
y=-\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\sin \left(c_{1}\right) \\
c_{1}=-\frac{\pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

4.23.5 Maple step by step solution

Let's solve
$\left[y^{\prime}+x \sqrt{1-y^{2}}=0, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{1-y^{2}}}=-x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int-x d x+c_{1}$
- Evaluate integral
$\arcsin (y)=-\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y

$$
y=\sin \left(-\frac{x^{2}}{2}+c_{1}\right)
$$

- Use initial condition $y(0)=1$

$$
1=\sin \left(c_{1}\right)
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{\pi}{2}
$$

- \quad Substitute $c_{1}=\frac{\pi}{2}$ into general solution and simplify

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

- \quad Solution to the IVP

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=-x*sqrt(1-y(x)~2),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=1
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 6
DSolve $\left[\left\{y^{\prime}[x]==-x * S q r t[1-y[x] \sim 2],\{y[0]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 1
$$

4.24 problem 24

4.24.1 Existence and uniqueness analysis 925
4.24.2 Solving as first order ode lie symmetry calculated ode 926

Internal problem ID [12660]
Internal file name [OUTPUT/11312_Friday_November_03_2023_06_30_17_AM_68810174/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.2, page 53
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y^{\prime}-\frac{\sqrt{x^{2}+4 y}}{2}=-\frac{x}{2}
$$

With initial conditions

$$
[y(6)=-9]
$$

4.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-9$ is

$$
\{6 \leq x \leq \infty,-\infty \leq x \leq-6\}
$$

And the point $x_{0}=6$ is inside this domain. The y domain of $f(x, y)$ when $x=6$ is

$$
\{-9 \leq y\}
$$

And the point $y_{0}=-9$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right) \\
& =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-9$ is

$$
\{-\infty \leq x<-6,6<x \leq \infty\}
$$

But the point $x_{0}=6$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

4.24.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)\left(b_{3}-a_{2}\right)-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)^{2} a_{3} \tag{5E}\\
& -\left(-\frac{1}{2}+\frac{x}{2 \sqrt{x^{2}+4 y}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{x b_{2}+y b_{3}+b_{1}}{\sqrt{x^{2}+4 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+\sqrt{x^{2}+4 y} x^{2} a_{3}-2 x^{3} a_{3}-4 \sqrt{x^{2}+4 y} x a_{2}+2 \sqrt{x^{2}+4 y} x b_{3}-2 \sqrt{x^{2}+4 y} y a_{3}+4 x^{2} a_{2}-}{4 \sqrt{x^{2}+4 y}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}+2 x^{3} a_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \tag{6E}\\
& -2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+6 x y a_{3} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+2\left(x^{2}+4 y\right) x a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}-2\left(x^{2}+4 y\right) a_{2} \tag{6E}\\
& +2\left(x^{2}+4 y\right) b_{3}+4 \sqrt{x^{2}+4 y} x a_{2}-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-2 x^{2} a_{2} \\
& -2 x y a_{3}+2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{3} a_{3}-2 \sqrt{x^{2}+4 y} x^{2} a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+6 x y a_{3}-2 \sqrt{x^{2}+4 y} y a_{3}-2 x a_{1}-4 x b_{2} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+4 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+4 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}-4 v_{1}^{2} a_{2}+4 v_{3} v_{1} a_{2}+6 v_{1} v_{2} a_{3}-2 v_{3} v_{2} a_{3}+2 v_{1}^{2} b_{3} \tag{7E}\\
& \quad-2 v_{3} v_{1} b_{3}-2 v_{1} a_{1}+2 v_{3} a_{1}-8 v_{2} a_{2}-4 v_{1} b_{2}+4 b_{2} v_{3}+4 v_{2} b_{3}-4 b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1}^{2}+6 v_{1} v_{2} a_{3}+\left(4 a_{2}-2 b_{3}\right) v_{1} v_{3} \tag{8E}\\
& \quad+\left(-2 a_{1}-4 b_{2}\right) v_{1}-2 v_{3} v_{2} a_{3}+\left(-8 a_{2}+4 b_{3}\right) v_{2}+\left(2 a_{1}+4 b_{2}\right) v_{3}-4 b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
6 a_{3} & =0 \\
-4 b_{1} & =0 \\
-2 a_{1}-4 b_{2} & =0 \\
2 a_{1}+4 b_{2} & =0 \\
-8 a_{2}+4 b_{3} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
4 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-2 b_{2} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 \\
& \eta=x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)(-2) \\
& =\sqrt{x^{2}+4 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x^{2}+4 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{x^{2}+4 y}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{2 \sqrt{x^{2}+4 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which gives

$$
y=c_{1}^{2}+c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}$		$\frac{d S}{d R}=\frac{1}{2}$
		パジアジ
		$\rightarrow 1$
		S ${ }^{\prime}$ R $)^{\prime}$
	$R=x$	
	$\sqrt{x^{2}+4 y}$	こご
${ }_{\text {fotat }}$	2	
¢ ${ }_{\text {¢ }}^{4}$		
t		

Initial conditions are used to solve for c_{1} ．Substituting $x=6$ and $y=-9$ in the above solution gives an equation to solve for the constant of integration．

$$
\begin{gathered}
-9=c_{1}^{2}+6 c_{1} \\
c_{1}=-3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=9-3 x
$$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=9-3 x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=9-3 x
$$

Verified OK.
Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 2 linear symmetries. Trying reduction of order 1st order, trying the canonical coordinates of the invariance group <- 1st order, canonical coordinates successful`
\checkmark Solution by Maple
Time used: 1.328 (sec). Leaf size: 17

```
dsolve([diff (y (x),x)=(-x+sqrt (x^2+4*y(x)))/2,y(6) = -9],y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=9-3 x \\
& y(x)=-\frac{x^{2}}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.987 (sec). Leaf size: 10
DSolve $\left[\left\{y^{\prime}[x]==\left(-x+S q r t\left[x^{2} 2+4 * y[x]\right]\right) / 2,\{y[6]==-9\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 9-3 x
$$

5 Chapter 2. The Initial Value Problem. Exercises2.3.1, page 57
5.1 problem 1 935
5.2 problem 2 939
5.3 problem 3 943
5.4 problem 4 947
5.5 problem 5 951
5.6 problem 6 955
5.7 problem 7 959
5.8 problem 8 963
5.9 problem 9 967
5.10 problem 10 971

5.1 problem 1

5.1.1 Existence and uniqueness analysis935
5.1.2 Solving as quadrature ode 936
5.1.3 Maple step by step solution 937

Internal problem ID [12661]
Internal file name [OUTPUT/11313_Friday_November_03_2023_06_30_19_AM_14899875/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=3 x+1
$$

With initial conditions

$$
[y(1)=2]
$$

5.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =3 x+1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=3 x+1
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=3 x+1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

5.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 3 x+1 \mathrm{~d} x \\
& =\frac{3}{2} x^{2}+x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\frac{5}{2}+c_{1} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3}{2} x^{2}+x-\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3}{2} x^{2}+x-\frac{1}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{3}{2} x^{2}+x-\frac{1}{2}
$$

Verified OK.

5.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}=3 x+1, y(1)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int(3 x+1) d x+c_{1}$
- Evaluate integral
$y=\frac{3}{2} x^{2}+x+c_{1}$
- \quad Solve for y
$y=\frac{3}{2} x^{2}+x+c_{1}$
- Use initial condition $y(1)=2$
$2=\frac{5}{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{2}$
- \quad Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify

$$
y=\frac{3}{2} x^{2}+x-\frac{1}{2}
$$

- Solution to the IVP

$$
y=\frac{3}{2} x^{2}+x-\frac{1}{2}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

$$
\begin{array}{r}
\text { dsolve }([\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=3 * \mathrm{x}+1, \mathrm{y}(1)=2], \mathrm{y}(\mathrm{x}), \text { singsol=all) } \\
y(x)=\frac{3}{2} x^{2}+x-\frac{1}{2}
\end{array}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 17
DSolve[\{y' $[x]==3 * x+1,\{y[1]==2\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{3 x^{2}}{2}+x-\frac{1}{2}
$$

5.2 problem 2

5.2.1 Existence and uniqueness analysis 939
5.2.2 Solving as quadrature ode . 940
5.2.3 Maple step by step solution . 941

Internal problem ID [12662]
Internal file name [OUTPUT/11314_Friday_November_03_2023_06_30_19_AM_54321075/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
y^{\prime}=x+\frac{1}{x}
$$

With initial conditions

$$
[y(1)=2]
$$

5.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{x^{2}+1}{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{x^{2}+1}{x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{x^{2}+1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

5.2.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x^{2}+1}{x} \mathrm{~d} x \\
& =\frac{x^{2}}{2}+\ln (x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\frac{1}{2}+c_{1} \\
c_{1}=\frac{3}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{2}}{2}+\ln (x)+\frac{3}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}+\ln (x)+\frac{3}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{x^{2}}{2}+\ln (x)+\frac{3}{2}
$$

Verified OK.

5.2.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=x+\frac{1}{x}, y(1)=2\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x
$\int y^{\prime} d x=\int\left(x+\frac{1}{x}\right) d x+c_{1}$
- Evaluate integral
$y=\frac{x^{2}}{2}+\ln (x)+c_{1}$
- \quad Solve for y

$$
y=\frac{x^{2}}{2}+\ln (x)+c_{1}
$$

- Use initial condition $y(1)=2$

$$
2=\frac{1}{2}+c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{3}{2}
$$

- \quad Substitute $c_{1}=\frac{3}{2}$ into general solution and simplify

$$
y=\frac{x^{2}}{2}+\ln (x)+\frac{3}{2}
$$

- Solution to the IVP

$$
y=\frac{x^{2}}{2}+\ln (x)+\frac{3}{2}
$$

Maple trace
'Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

$$
\begin{aligned}
& \operatorname{dsolve}([\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{x}+1 / \mathrm{x}, \mathrm{y}(1)=2], \mathrm{y}(\mathrm{x}), \text { singsol=all) } \\
& \qquad y(x)=\frac{x^{2}}{2}+\ln (x)+\frac{3}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 18
DSolve[\{y' $[x]==x+1 / x,\{y[1]==2\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2}\left(x^{2}+2 \log (x)+3\right)
$$

5.3 problem 3

5.3.1 Existence and uniqueness analysis 943
5.3.2 Solving as quadrature ode . 944
5.3.3 Maple step by step solution . 945

Internal problem ID [12663]
Internal file name [OUTPUT/11315_Friday_November_03_2023_06_30_20_AM_49692135/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=2 \sin (x)
$$

With initial conditions

$$
[y(\pi)=1]
$$

5.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =2 \sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=2 \sin (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\pi$ is inside this domain. The domain of $q(x)=2 \sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\pi$ is also inside this domain. Hence solution exists and is unique.

5.3.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 2 \sin (x) \mathrm{d} x \\
& =-2 \cos (x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}+2 \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 \cos (x)-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \cos (x)-1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \cos (x)-1
$$

Verified OK.

5.3.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=2 \sin (x), y(\pi)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int 2 \sin (x) d x+c_{1}$
- Evaluate integral
$y=-2 \cos (x)+c_{1}$
- \quad Solve for y

$$
y=-2 \cos (x)+c_{1}
$$

- Use initial condition $y(\pi)=1$
$1=c_{1}+2$
- \quad Solve for c_{1}
$c_{1}=-1$
- Substitute $c_{1}=-1$ into general solution and simplify
$y=-2 \cos (x)-1$
- \quad Solution to the IVP
$y=-2 \cos (x)-1$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve([diff(y(x),x)=2*sin(x),y(Pi) = 1],y(x), singsol=all)
```

$$
y(x)=-2 \cos (x)-1
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 11

```
DSolve[{y'[x]==2*Sin[x],{y[Pi]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-2 \cos (x)-1
$$

5.4 problem 4

5.4.1 Existence and uniqueness analysis 947
5.4.2 Solving as quadrature ode . 948
5.4.3 Maple step by step solution . 949

Internal problem ID [12664]
Internal file name [OUTPUT/11316_Friday_November_03_2023_06_30_20_AM_22437125/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=x \sin (x)
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=1\right]
$$

5.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =x \sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=x \sin (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The domain of $q(x)=x \sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is also inside this domain. Hence solution exists and is unique.

5.4.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \sin (x) \mathrm{d} x \\
& =-\cos (x) x+\sin (x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=1+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\cos (x) x+\sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x) x+\sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\cos (x) x+\sin (x)
$$

Verified OK.

5.4.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=x \sin (x), y\left(\frac{\pi}{2}\right)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int x \sin (x) d x+c_{1}$
- Evaluate integral
$y=-\cos (x) x+\sin (x)+c_{1}$
- \quad Solve for y

$$
y=-\cos (x) x+\sin (x)+c_{1}
$$

- Use initial condition $y\left(\frac{\pi}{2}\right)=1$ $1=1+c_{1}$
- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=-\cos (x) x+\sin (x)
$$

- \quad Solution to the IVP

$$
y=-\cos (x) x+\sin (x)
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful-
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([diff(y(x),x)=x*Sin(x),y(1/2*Pi) = 1],y(x), singsol=all)
```

$$
y(x)=\sin (x)-\cos (x) x
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 13
DSolve[\{y' $[x]==x * \operatorname{Sin}[x],\{y[P i / 2]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sin (x)-x \cos (x)
$$

5.5 problem 5

5.5.1 Existence and uniqueness analysis 951
5.5.2 Solving as quadrature ode . 952
5.5.3 Maple step by step solution . 953

Internal problem ID [12665]
Internal file name [OUTPUT/11317_Friday_November_03_2023_06_30_21_AM_40510007/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{1}{x-1}
$$

With initial conditions

$$
[y(2)=1]
$$

5.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{1}{x-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{x-1}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{1}{x-1}$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

5.5.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x-1} \mathrm{~d} x \\
& =\ln (x-1)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (x-1)+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x-1)+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x-1)+1
$$

Verified OK.

5.5.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{1}{x-1}, y(2)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{x-1} d x+c_{1}$
- Evaluate integral

$$
y=\ln (x-1)+c_{1}
$$

- \quad Solve for y

$$
y=\ln (x-1)+c_{1}
$$

- Use initial condition $y(2)=1$

$$
1=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=1
$$

- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=\ln (x-1)+1
$$

- \quad Solution to the IVP

$$
y=\ln (x-1)+1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

```
dsolve([diff(y(x),x)=1/(x-1),y(2) = 1],y(x), singsol=all)
```

$$
y(x)=\ln (-1+x)+1
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 11

```
DSolve[{y'[x]==1/(x-1),{y[2]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \log (x-1)+1
$$

5.6 problem 6

5.6.1 Existence and uniqueness analysis 955
5.6.2 Solving as quadrature ode . 956
5.6.3 Maple step by step solution . 957

Internal problem ID [12666]
Internal file name [OUTPUT/11318_Friday_November_03_2023_06_30_21_AM_38775294/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{1}{x-1}
$$

With initial conditions

$$
[y(0)=1]
$$

5.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{1}{x-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{x-1}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{1}{x-1}$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.6.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x-1} \mathrm{~d} x \\
& =\ln (x-1)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=i \pi+c_{1} \\
c_{1}=-i \pi+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (x-1)+1-i \pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x-1)+1-i \pi \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x-1)+1-i \pi
$$

Verified OK.

5.6.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{1}{x-1}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{x-1} d x+c_{1}$
- Evaluate integral
$y=\ln (x-1)+c_{1}$
- \quad Solve for y
$y=\ln (x-1)+c_{1}$
- Use initial condition $y(0)=1$
$1=\mathrm{I} \pi+c_{1}$
- \quad Solve for c_{1}
$c_{1}=1-\mathrm{I} \pi$
- \quad Substitute $c_{1}=1-\mathrm{I} \pi$ into general solution and simplify
$y=\ln (x-1)+1-\mathrm{I} \pi$
- \quad Solution to the IVP
$y=\ln (x-1)+1-\mathrm{I} \pi$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14
dsolve([diff $(y(x), x)=1 /(x-1), y(0)=1], y(x)$, singsol=all)

$$
y(x)=\ln (-1+x)+1-i \pi
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 16
DSolve[\{y' $[x]==1 /(x-1),\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \log (x-1)-i \pi+1
$$

5.7 problem 7

5.7.1 Existence and uniqueness analysis 959
5.7.2 Solving as quadrature ode . 960
5.7.3 Maple step by step solution . 961

Internal problem ID [12667]
Internal file name [OUTPUT/11319_Friday_November_03_2023_06_30_22_AM_46393715/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{1}{x^{2}-1}
$$

With initial conditions

$$
[y(2)=1]
$$

5.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{1}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{x^{2}-1}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}-1}$ is

$$
\{-\infty \leq x<-1,-1<x<1,1<x \leq \infty\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

5.7.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x^{2}-1} \mathrm{~d} x \\
& =-\operatorname{arctanh}(x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\operatorname{arccoth}(2)+\frac{i \pi}{2}+c_{1} \\
c_{1}=\operatorname{arccoth}(2)-\frac{i \pi}{2}+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\operatorname{arctanh}(x)+\operatorname{arccoth}(2)-\frac{i \pi}{2}+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\operatorname{arctanh}(x)+\operatorname{arccoth}(2)-\frac{i \pi}{2}+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\operatorname{arctanh}(x)+\operatorname{arccoth}(2)-\frac{i \pi}{2}+1
$$

Verified OK.

5.7.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{1}{x^{2}-1}, y(2)=1\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{1}{x^{2}-1} d x+c_{1}
$$

- Evaluate integral

$$
y=-\operatorname{arctanh}(x)+c_{1}
$$

- \quad Solve for y

$$
y=-\operatorname{arctanh}(x)+c_{1}
$$

- Use initial condition $y(2)=1$
$1=-\operatorname{arctanh}\left(\frac{1}{2}\right)+\frac{\mathrm{I} \pi}{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{\mathrm{I} \pi}{2}+1$
- Substitute $c_{1}=\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{\mathrm{I} \pi}{2}+1$ into general solution and simplify $y=-\operatorname{arctanh}(x)+\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{\mathrm{I} \pi}{2}+1$
- Solution to the IVP

$$
y=-\operatorname{arctanh}(x)+\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{\mathrm{I} \pi}{2}+1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 16
dsolve([diff $\left.(y(x), x)=1 /\left(x^{\wedge} 2-1\right), y(2)=1\right], y(x)$, singsol=all)

$$
y(x)=-\operatorname{arctanh}(x)+1+\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{i \pi}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 28
DSolve[\{y' $\left.[x]==1 /\left(x^{\wedge} 2-1\right),\{y[2]==1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}(\log (3-3 x)-\log (x+1)-i \pi+2)
$$

5.8 problem 8

5.8.1 Existence and uniqueness analysis 963
5.8.2 Solving as quadrature ode . 964
5.8.3 Maple step by step solution . 965

Internal problem ID [12668]
Internal file name [OUTPUT/11320_Friday_November_03_2023_06_30_22_AM_50345438/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{1}{x^{2}-1}
$$

With initial conditions

$$
[y(0)=1]
$$

5.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{1}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{x^{2}-1}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}-1}$ is

$$
\{-\infty \leq x<-1,-1<x<1,1<x \leq \infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.8.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x^{2}-1} \mathrm{~d} x \\
& =-\operatorname{arctanh}(x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\operatorname{arctanh}(x)+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\operatorname{arctanh}(x)+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\operatorname{arctanh}(x)+1
$$

Verified OK.

5.8.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{1}{x^{2}-1}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{x^{2}-1} d x+c_{1}$
- Evaluate integral

$$
y=-\operatorname{arctanh}(x)+c_{1}
$$

- \quad Solve for y

$$
y=-\operatorname{arctanh}(x)+c_{1}
$$

- Use initial condition $y(0)=1$

$$
1=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=1
$$

- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=-\operatorname{arctanh}(x)+1
$$

- \quad Solution to the IVP

$$
y=-\operatorname{arctanh}(x)+1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 10

```
dsolve([diff(y(x),x)=1/(x^2-1),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=-\operatorname{arctanh}(x)+1
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 23

```
DSolve[{y'[x]==1/(x^2-1),{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{2}(\log (1-x)-\log (x+1)+2)
$$

5.9 problem 9

5.9.1 Existence and uniqueness analysis 967
5.9.2 Solving as quadrature ode . 968
5.9.3 Maple step by step solution . 969

Internal problem ID [12669]
Internal file name [OUTPUT/11321_Friday_November_03_2023_06_30_23_AM_4631435/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\tan (x)
$$

With initial conditions

$$
[y(0)=0]
$$

5.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\tan (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\tan (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\tan (x)$ is

$$
\left\{x<\frac{1}{2} \pi+\pi_{-} Z 117 \vee \frac{1}{2} \pi+\pi_{-} Z 117<x\right\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.9.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \tan (x) \mathrm{d} x \\
& =-\ln (\cos (x))+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\ln (\cos (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln (\cos (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\ln (\cos (x))
$$

Verified OK.

5.9.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\tan (x), y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \tan (x) d x+c_{1}
$$

- Evaluate integral

$$
y=-\ln (\cos (x))+c_{1}
$$

- \quad Solve for y

$$
y=-\ln (\cos (x))+c_{1}
$$

- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=-\ln (\cos (x))
$$

- \quad Solution to the IVP

$$
y=-\ln (\cos (x))
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve([diff(y(x),x)=tan(x),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=-\ln (\cos (x))
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 10

```
DSolve[{y'[x]==Tan[x],{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-\log (\cos (x))
$$

5.10 problem 10

5.10.1 Existence and uniqueness analysis 971
5.10.2 Solving as quadrature ode . 972
5.10.3 Maple step by step solution . 973

Internal problem ID [12670]
Internal file name [OUTPUT/11322_Friday_November_03_2023_06_30_23_AM_43163742/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\tan (x)
$$

With initial conditions

$$
[y(\pi)=0]
$$

5.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\tan (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\tan (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\pi$ is inside this domain. The domain of $q(x)=\tan (x)$ is

$$
\left\{x<\frac{1}{2} \pi+\pi _Z 117 \vee \frac{1}{2} \pi+\pi _Z 117<x\right\}
$$

And the point $x_{0}=\pi$ is also inside this domain. Hence solution exists and is unique.

5.10.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \tan (x) \mathrm{d} x \\
& =-\ln (\cos (x))+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-i \pi+c_{1} \\
c_{1}=i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\ln (\cos (x))+i \pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln (\cos (x))+i \pi \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\ln (\cos (x))+i \pi
$$

Verified OK.

5.10.3 Maple step by step solution

Let's solve
$\left[y^{\prime}=\tan (x), y(\pi)=0\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \tan (x) d x+c_{1}$
- Evaluate integral
$y=-\ln (\cos (x))+c_{1}$
- \quad Solve for y
$y=-\ln (\cos (x))+c_{1}$
- Use initial condition $y(\pi)=0$
$0=-\mathrm{I} \pi+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\mathrm{I} \pi$
- \quad Substitute $c_{1}=\mathrm{I} \pi$ into general solution and simplify
$y=-\ln (\cos (x))+\mathrm{I} \pi$
- Solution to the IVP
$y=-\ln (\cos (x))+\mathrm{I} \pi$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve([diff $(y(x), x)=\tan (x), y(P i)=0], y(x)$, singsol=all)

$$
y(x)=-\ln (\cos (x))+i \pi
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 16
DSolve[\{y' $[x]==\operatorname{Tan}[x],\{y[P i]==0\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-\log (\cos (x))+i \pi
$$

6 Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
6.1 problem 1 976
6.2 problem 2 980
6.3 problem 3 984
6.4 problem 4 988
6.5 problem 5 1003
6.6 problem 6 1018
6.7 problem 7 1035
6.8 problem 8 1040
6.9 problem 9 1054
6.10 problem 10 1068
6.11 problem 11 1083
6.12 problem 12 1086
6.13 problem 13 1101
6.14 problem 14 1114
6.15 problem 15 1127

6.1 problem 1

6.1.1 Existence and uniqueness analysis 976
6.1.2 Solving as quadrature ode . 977
6.1.3 Maple step by step solution . 978

Internal problem ID [12671]
Internal file name [OUTPUT/11323_Friday_November_03_2023_06_30_24_AM_55103717/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-3 y=0
$$

With initial conditions

$$
[y(0)=-1]
$$

6.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-3 \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=0
$$

The domain of $p(x)=-3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. Hence solution exists and is unique.

6.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y} d y & =\int d x \\
\frac{\ln (y)}{3} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y^{\frac{1}{3}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y^{\frac{1}{3}}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{2}^{3} \\
& c_{2}=-1
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{3 x}
$$

Verified OK.

6.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 y=0, y(0)=-1\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=3
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int 3 d x+c_{1}$
- Evaluate integral
$\ln (y)=3 x+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{3 x+c_{1}}$
- Use initial condition $y(0)=-1$

$$
-1=\mathrm{e}^{c_{1}}
$$

- \quad Solve for c_{1}
$c_{1}=\mathrm{I} \pi$
- Substitute $c_{1}=\mathrm{I} \pi$ into general solution and simplify

$$
y=-\mathrm{e}^{3 x}
$$

- Solution to the IVP

$$
y=-\mathrm{e}^{3 x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 10

```
dsolve([diff(y(x),x)=3*y(x),y(0) = -1],y(x), singsol=all)
```

$$
y(x)=-\mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 12
DSolve[\{y' $[x]==3 * y[x],\{y[0]==-1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-e^{3 x}
$$

6.2 problem 2

6.2.1 Existence and uniqueness analysis 980
6.2.2 Solving as quadrature ode . 981
6.2.3 Maple step by step solution . 982

Internal problem ID [12672]
Internal file name [OUTPUT/11324_Friday_November_03_2023_06_30_25_AM_44070852/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y=1
$$

With initial conditions

$$
[y(0)=1]
$$

6.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{gathered}
p(x)=1 \\
q(x)=1
\end{gathered}
$$

Hence the ode is

$$
y^{\prime}+y=1
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.2.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{1-y} d y & =\int d x \\
-\ln (1-y) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{1-y}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{1-y}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{-1+c_{2}}{c_{2}}
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=-\frac{\mathrm{e}^{-x}}{c_{2}}+1=y=1$ Summary
and this result satisfies the given initial condition. The solution(s) found are the following

$$
y=1
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=1
$$

Verified OK.

6.2.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y=1, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{1-y}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1-y} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\ln (1-y)=x+c_{1}$
- \quad Solve for y

$$
y=-\mathrm{e}^{-x-c_{1}}+1
$$

- Use initial condition $y(0)=1$

$$
1=-\mathrm{e}^{-c_{1}}+1
$$

- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=-y(x)+1,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=1
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6

```
DSolve[{y'[x]==-y[x]+1,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 1
$$

6.3 problem 3

6.3.1 Existence and uniqueness analysis 984
6.3.2 Solving as quadrature ode . 985
6.3.3 Maple step by step solution . 986

Internal problem ID [12673]
Internal file name [OUTPUT/11325_Friday_November_03_2023_06_30_25_AM_58471505/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y=1
$$

With initial conditions

$$
[y(0)=2]
$$

6.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=1
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.3.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{1-y} d y & =\int d x \\
-\ln (1-y) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{1-y}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{1-y}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\frac{-1+c_{2}}{c_{2}} \\
c_{2}=-1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\mathrm{e}^{-x}+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-x}+1
$$

Verified OK.

6.3.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y=1, y(0)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{1-y}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1-y} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\ln (1-y)=x+c_{1}$
- \quad Solve for y

$$
y=-\mathrm{e}^{-x-c_{1}}+1
$$

- Use initial condition $y(0)=2$

$$
2=-\mathrm{e}^{-c_{1}}+1
$$

- \quad Solve for c_{1}

$$
c_{1}=-\mathrm{I} \pi
$$

- \quad Substitute $c_{1}=-\mathrm{I} \pi$ into general solution and simplify

$$
y=\mathrm{e}^{-x}+1
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-x}+1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve([diff(y(x),x)=-y(x)+1,y(0) = 2],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x}+1
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 12
DSolve[\{y' $[x]==-y[x]+1,\{y[0]==2\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}+1
$$

6.4 problem 4

6.4.1 Existence and uniqueness analysis 988
6.4.2 Solving as separable ode . 989
6.4.3 Solving as first order special form ID 1 ode 991
6.4.4 Solving as first order ode lie symmetry lookup ode 992
6.4.5 Solving as exact ode . 997
6.4.6 Maple step by step solution . 1000

Internal problem ID [12674]
Internal file name [OUTPUT/11326_Friday_November_03_2023_06_30_26_AM_35982736/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first order special form ID 1", "first_order_ode_lie__symmetry__lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x \mathrm{e}^{-x^{2}+y}=0
$$

With initial conditions

$$
[y(0)=0]
$$

6.4.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =x \mathrm{e}^{-x^{2}+y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(x \mathrm{e}^{-x^{2}+y}\right) \\
& =x \mathrm{e}^{-x^{2}+y}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

6.4.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x \mathrm{e}^{-x^{2}} \mathrm{e}^{y}
\end{aligned}
$$

Where $f(x)=x \mathrm{e}^{-x^{2}}$ and $g(y)=\mathrm{e}^{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{y}} d y & =x \mathrm{e}^{-x^{2}} d x \\
\int \frac{1}{\mathrm{e}^{y}} d y & =\int x \mathrm{e}^{-x^{2}} d x \\
-\mathrm{e}^{-y} & =-\frac{\mathrm{e}^{-x^{2}}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\ln \left(-\frac{2}{-1+2 c_{1} \mathrm{e}^{x^{2}}}\right)+x^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln (2)+\ln \left(-\frac{1}{2 c_{1}-1}\right) \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (2)+\ln \left(\frac{1}{1+\mathrm{e}^{x^{2}}}\right)+x^{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\ln (2)+\ln \left(\frac{1}{1+\mathrm{e}^{x^{2}}}\right)+x^{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln (2)+\ln \left(\frac{1}{1+\mathrm{e}^{x^{2}}}\right)+x^{2}
$$

Verified OK.

6.4.3 Solving as first order special form ID 1 ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=x \mathrm{e}^{-x^{2}+y} \tag{1}
\end{equation*}
$$

And using the substitution $u=\mathrm{e}^{-y}$ then

$$
u^{\prime}=-y^{\prime} \mathrm{e}^{-y}
$$

The above shows that

$$
\begin{aligned}
y^{\prime} & =-u^{\prime}(x) \mathrm{e}^{y} \\
& =-\frac{u^{\prime}(x)}{u}
\end{aligned}
$$

Substituting this in (1) gives

$$
-\frac{u^{\prime}(x)}{u}=\frac{x \mathrm{e}^{-x^{2}}}{u}
$$

The above simplifies to

$$
\begin{equation*}
u^{\prime}(x)=-x \mathrm{e}^{-x^{2}} \tag{2}
\end{equation*}
$$

Now ode (2) is solved for $u(x)$ Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int-x \mathrm{e}^{-x^{2}} \mathrm{~d} x \\
& =\frac{\mathrm{e}^{-x^{2}}}{2}+c_{1}
\end{aligned}
$$

Substituting the solution found for $u(x)$ in $u=\mathrm{e}^{-y}$ gives

$$
\begin{aligned}
y & =-\ln (u(x)) \\
& =-\ln \left(\frac{\mathrm{e}^{-x^{2}}}{2}+c_{1}\right) \\
& =\ln (2)-\ln \left(\mathrm{e}^{-x^{2}}+2 c_{1}\right)
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\ln (2)-\ln \left(2 c_{1}+1\right)
$$

$$
c_{1}=\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (2)-\ln \left(\mathrm{e}^{-x^{2}}+1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (2)-\ln \left(\mathrm{e}^{-x^{2}}+1\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln (2)-\ln \left(\mathrm{e}^{-x^{2}}+1\right)
$$

Verified OK.

6.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x \mathrm{e}^{-x^{2}+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 166: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}$
$a_{1} b_{2}-a_{2} b_{1}$			
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{\mathrm{e}^{x^{2}}}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{\mathrm{e}^{x^{2}}}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{\mathrm{e}^{-x^{2}}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x \mathrm{e}^{-x^{2}+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \mathrm{e}^{-x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\mathrm{e}^{-x^{2}}}{2}=-\mathrm{e}^{-y}+c_{1}
$$

Which simplifies to

$$
-\frac{\mathrm{e}^{-x^{2}}}{2}=-\mathrm{e}^{-y}+c_{1}
$$

Which gives

$$
y=-\ln \left(c_{1} \mathrm{e}^{x^{2}}+\frac{1}{2}\right)+x^{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x \mathrm{e}^{-x^{2}+y}$		$\frac{d S}{d R}=\mathrm{e}^{-R}$
		+ + + + +
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+1}$	$R=y$	
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-}$	$\mathrm{e}^{-x^{2}}$	
	$S=-\frac{\mathrm{e}^{-2}}{2}$	
$\xrightarrow[{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2_{2} \xrightarrow[\rightarrow \rightarrow \rightarrow]{ }}]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln (2)-\ln \left(2 c_{1}+1\right) \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (2)-\ln \left(1+\mathrm{e}^{x^{2}}\right)+x^{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\ln (2)-\ln \left(1+\mathrm{e}^{x^{2}}\right)+x^{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln (2)-\ln \left(1+\mathrm{e}^{x^{2}}\right)+x^{2}
$$

Verified OK.

6.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{-y}\right) \mathrm{d} y & =\left(x \mathrm{e}^{-x^{2}}\right) \mathrm{d} x \\
\left(-x \mathrm{e}^{-x^{2}}\right) \mathrm{d} x+\left(\mathrm{e}^{-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \mathrm{e}^{-x^{2}} \\
N(x, y) & =\mathrm{e}^{-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x \mathrm{e}^{-x^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{e}^{-x^{2}} \mathrm{~d} x \\
\phi & =\frac{\mathrm{e}^{-x^{2}}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{-y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{-y}\right) \mathrm{d} y \\
f(y) & =-\mathrm{e}^{-y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\mathrm{e}^{-x^{2}}}{2}-\mathrm{e}^{-y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\mathrm{e}^{-x^{2}}}{2}-\mathrm{e}^{-y}
$$

The solution becomes

$$
y=-\ln \left(\frac{1}{2}-c_{1} \mathrm{e}^{x^{2}}\right)+x^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln (2)-\ln \left(-2 c_{1}+1\right) \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (2)-\ln \left(1+\mathrm{e}^{x^{2}}\right)+x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (2)-\ln \left(1+\mathrm{e}^{x^{2}}\right)+x^{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\ln (2)-\ln \left(1+\mathrm{e}^{x^{2}}\right)+x^{2}
$$

Verified OK.

6.4.6 Maple step by step solution

Let's solve
$\left[y^{\prime}-x \mathrm{e}^{-x^{2}+y}=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{\mathrm{e}^{y}}=\frac{x}{\mathrm{e}^{\mathrm{e}^{2}}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\mathrm{e}^{y}} d x=\int \frac{x}{\mathrm{e}^{x^{2}}} d x+c_{1}$
- Evaluate integral
$-\frac{1}{\mathrm{e}^{y}}=-\frac{1}{2 \mathrm{e}^{x^{2}}}+c_{1}$
- \quad Solve for y

$$
y=\ln \left(-\frac{2}{-1+2 c_{1} \mathrm{e}^{\mathrm{x}^{2}}}\right)+x^{2}
$$

- Use initial condition $y(0)=0$
$0=\ln \left(-\frac{2}{2 c_{1}-1}\right)$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{2}$
- \quad Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify

$$
y=\ln (2)+\ln \left(\frac{1}{1+\mathrm{e}^{x^{2}}}\right)+x^{2}
$$

- Solution to the IVP
$y=\ln (2)+\ln \left(\frac{1}{1+\mathrm{e}^{x^{2}}}\right)+x^{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.062 (sec). Leaf size: 19

```
dsolve([diff(y(x),x)=x*exp(y(x)-x^2),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\ln (2)-\ln \left(1+\mathrm{e}^{x^{2}}\right)+x^{2}
$$

\checkmark Solution by Mathematica
Time used: 2.198 (sec). Leaf size: 21
DSolve[\{y' $\left.[x]==x * \operatorname{Exp}\left[y[x]-x^{\wedge} 2\right],\{y[0]==0\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\log \left(\frac{1}{2}\left(e^{-x^{2}}+1\right)\right)
$$

6.5 problem 5

6.5.1 Existence and uniqueness analysis 1003
6.5.2 Solving as separable ode . 1004
6.5.3 Solving as linear ode . 1005
6.5.4 Solving as homogeneousTypeD2 ode 1007
6.5.5 Solving as first order ode lie symmetry lookup ode 1008
6.5.6 Solving as exact ode . 1012
6.5.7 Maple step by step solution . 1016

Internal problem ID [12675]
Internal file name [OUTPUT/11327_Friday_November_03_2023_06_30_27_AM_65173093/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y}{x}=0
$$

With initial conditions

$$
[y(-1)=2]
$$

6.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=0
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=-1$ is inside this domain. Hence solution exists and is unique.

6.5.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2 x
$$

Verified OK.

6.5.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 x
$$

Verified OK.

6.5.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} x
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-c_{2} \\
& c_{2}=-2
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=-2 x
$$

Verified OK.

6.5.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 169: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
\triangle -		\rightarrow
$\rightarrow \rightarrow \rightarrow-\infty$	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow \rightarrow \infty$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-2^{2} \rightarrow \rightarrow]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=-c_{1}
$$

$$
c_{1}=-2
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=-2 x
$$

Verified OK.

6.5.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{1}{x} \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\mathrm{e}^{c_{1}} \\
c_{1}=\ln (2)+i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=-2 x
$$

Verified OK.

6.5.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x}=0, y(-1)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=\ln (x)+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{c_{1}} x$
- Use initial condition $y(-1)=2$
$2=-\mathrm{e}^{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=\ln (2)+\mathrm{I} \pi$
- \quad Substitute $c_{1}=\ln (2)+\mathrm{I} \pi$ into general solution and simplify
$y=-2 x$
- \quad Solution to the IVP
$y=-2 x$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

```
dsolve([diff(y(x),x)=y(x)/x,y(-1) = 2],y(x), singsol=all)
```

$$
y(x)=-2 x
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 8
DSolve[\{y' $[x]==y[x] / x,\{y[-1]==2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-2 x
$$

6.6 problem 6

6.6.1 Existence and uniqueness analysis 1018
6.6.2 Solving as separable ode . 1019
6.6.3 Solving as homogeneousTypeD2 ode 1021
6.6.4 Solving as differentialType ode 1022
6.6.5 Solving as first order ode lie symmetry lookup ode 1024
6.6.6 Solving as exact ode . 1029
6.6.7 Maple step by step solution . 1032

Internal problem ID [12676]
Internal file name [OUTPUT/11328_Friday_November_03_2023_06_30_28_AM_68330762/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 x}{y}=0
$$

With initial conditions

$$
[y(0)=2]
$$

6.6.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{2 x}{y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 x}{y}\right) \\
& =-\frac{2 x}{y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

6.6.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 x}{y}
\end{aligned}
$$

Where $f(x)=2 x$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =2 x d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int 2 x d x \\
\frac{y^{2}}{2} & =x^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{2 x^{2}+2 c_{1}} \\
& y=-\sqrt{2 x^{2}+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=-\sqrt{c_{1}} \sqrt{2}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\sqrt{c_{1}} \sqrt{2} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{2 x^{2}+4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2 x^{2}+4} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\sqrt{2 x^{2}+4}
$$

Verified OK.

6.6.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{2}{u(x)}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-2}{x u}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-2}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-2}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-2}{u}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}-2\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}-2}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}-2}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}-2}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2}-2}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}-2} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y^{2}-2 x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\frac{\ln \left(\frac{4}{c_{3}^{2}}\right)}{2}$. Hence the solution becomes Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration. Unable to solve for constant of integration.

Warning: Failed to find c_{3} using initial conditions. Solution could be wrong or there is no solution that satisfies the given initial conditions.
Verification of solutions N/A

6.6.4 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{2 x}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(2 x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(2 x) d x=d\left(x^{2}\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(x^{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{2 x^{2}+2 c_{1}}+c_{1} \\
& y=-\sqrt{2 x^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=-\sqrt{c_{1}} \sqrt{2}+c_{1}
$$

$$
c_{1}=\sqrt{2}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{10}}{2}\right)+2
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{2 x^{2}+6+2 \sqrt{5}}+3+\sqrt{5}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\sqrt{c_{1}} \sqrt{2}+c_{1} \\
c_{1}=-\sqrt{2}\left(-\frac{\sqrt{2}}{2}+\frac{\sqrt{10}}{2}\right)+2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{2 x^{2}+6-2 \sqrt{5}}+3-\sqrt{5}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{2 x^{2}+6-2 \sqrt{5}}+3-\sqrt{5} \tag{1}\\
& y=-\sqrt{2 x^{2}+6+2 \sqrt{5}}+3+\sqrt{5} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{2 x^{2}+6-2 \sqrt{5}}+3-\sqrt{5}
$$

Verified OK.

$$
y=-\sqrt{2 x^{2}+6+2 \sqrt{5}}+3+\sqrt{5}
$$

Verified OK.

6.6.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 x}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 172: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{2 x}} d x
\end{aligned}
$$

Which results in

$$
S=x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
x^{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x}{y}$		$\frac{d S}{d R}=R$
1.151		
	$R=y$	ditidivasosgatatat
	$S=x^{2}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}+2 \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x^{2}=\frac{y^{2}}{2}-2
$$

Solving for y from the above gives

$$
y=\sqrt{2 x^{2}+4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2 x^{2}+4} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\sqrt{2 x^{2}+4}
$$

Verified OK.

6.6.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y}{2}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{y}{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{y}{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y}{2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y}{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y}{2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y}{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y}{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{2}}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{2}}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{2}}{2}+\frac{y^{2}}{4}=1
$$

Solving for y from the above gives

$$
y=\sqrt{2 x^{2}+4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2 x^{2}+4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{2 x^{2}+4}
$$

Verified OK.

6.6.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2 x}{y}=0, y(0)=2\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y y^{\prime}=2 x
$$

- Integrate both sides with respect to x $\int y y^{\prime} d x=\int 2 x d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=x^{2}+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{2 x^{2}+2 c_{1}}, y=-\sqrt{2 x^{2}+2 c_{1}}\right\}$
- Use initial condition $y(0)=2$
$2=\sqrt{c_{1}} \sqrt{2}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify

$$
y=\sqrt{2 x^{2}+4}
$$

- Use initial condition $y(0)=2$
$2=-\sqrt{c_{1}} \sqrt{2}$
- Solution does not satisfy initial condition
- \quad Solution to the IVP
$y=\sqrt{2 x^{2}+4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

```
dsolve([diff(y(x),x)=2*x/y(x),y(0) = 2],y(x), singsol=all)
```

$$
y(x)=\sqrt{2 x^{2}+4}
$$

\checkmark Solution by Mathematica
Time used: 0.121 (sec). Leaf size: 20
DSolve[\{y' $[x]==2 * x / y[x],\{y[0]==2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{2} \sqrt{x^{2}+2}
$$

6.7 problem 7

6.7.1 Existence and uniqueness analysis 1035
6.7.2 Solving as quadrature ode . 1036
6.7.3 Maple step by step solution . 1037

Internal problem ID [12677]
Internal file name [OUTPUT/11329_Friday_November_03_2023_06_30_29_AM_99627193/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}+2 y-y^{2}=0
$$

With initial conditions

$$
[y(0)=1]
$$

6.7.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2}-2 y
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-2 y\right) \\
& =2 y-2
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

6.7.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-2 y} d y & =\int d x \\
\frac{\ln (y-2)}{2}-\frac{\ln (y)}{2} & =x+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (y-2)-\ln (y)) & =x+c_{1} \\
\ln (y-2)-\ln (y) & =(2)\left(x+c_{1}\right) \\
& =2 x+2 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y)}=2 c_{1} \mathrm{e}^{2 x}
$$

Which simplifies to

$$
\frac{y-2}{y}=c_{2} \mathrm{e}^{2 x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{2}{-1+c_{2}} \\
c_{2}=-1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{2}{\mathrm{e}^{2 x}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2}{\mathrm{e}^{2 x}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2}{\mathrm{e}^{2 x}+1}
$$

Verified OK.

6.7.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+2 y-y^{2}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{-2 y+y^{2}}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{-2 y+y^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{\ln (y-2)}{2}-\frac{\ln (y)}{2}=x+c_{1}$
- \quad Solve for y
$y=-\frac{2}{\mathrm{e}^{2 x+2 c_{1}}-1}$
- Use initial condition $y(0)=1$
$1=-\frac{2}{\mathrm{e}^{2 c_{1}-1}}$
- \quad Solve for c_{1}
$c_{1}=\frac{\mathrm{I}}{2} \pi$
- \quad Substitute $c_{1}=\frac{\mathrm{I}}{2} \pi$ into general solution and simplify

$$
y=\frac{2}{\mathrm{e}^{2 x}+1}
$$

- Solution to the IVP

$$
y=\frac{2}{\mathrm{e}^{2 x}+1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14
dsolve([diff $(y(x), x)=-2 * y(x)+y(x) \wedge 2, y(0)=1], y(x), \quad$ singsol=all)

$$
y(x)=\frac{2}{\mathrm{e}^{2 x}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 16
DSolve[\{y' $[x]==-2 * y[x]+y[x] \sim 2,\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{2}{e^{2 x}+1}
$$

6.8 problem 8

6.8.1 Existence and uniqueness analysis 1040
6.8.2 Solving as separable ode . 1041
6.8.3 Solving as linear ode . 1042
6.8.4 Solving as first order ode lie symmetry lookup ode 1044
6.8.5 Solving as exact ode . 1048
6.8.6 Maple step by step solution . 1052

Internal problem ID [12678]
Internal file name [OUTPUT/11330_Friday_November_03_2023_06_30_30_AM_17269816/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y x=x
$$

With initial conditions

$$
[y(1)=2]
$$

6.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-x \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y x=x
$$

The domain of $p(x)=-x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

6.8.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x(y+1)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y+1} d y & =x d x \\
\int \frac{1}{y+1} d y & =\int x d x \\
\ln (y+1) & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
y+1=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=c_{2} \mathrm{e}^{\frac{1}{2}+c_{1}}-1
$$

$$
c_{1}=-\frac{1}{2}+\ln \left(\frac{3}{c_{2}}\right)
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

Verified OK.

6.8.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x d x} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =\left(x \mathrm{e}^{-\frac{x^{2}}{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{x^{2}}{2}} y=\int x \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{~d} x \\
& \mathrm{e}^{-\frac{x^{2}}{2}} y=-\mathrm{e}^{-\frac{x^{2}}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{2}}{2}}$ results in

$$
y=-\mathrm{e}^{\frac{x^{2}}{2}} \mathrm{e}^{-\frac{x^{2}}{2}}+c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

which simplifies to

$$
y=-1+c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-1+c_{1} \mathrm{e}^{\frac{1}{2}} \\
c_{1}=3 \mathrm{e}^{-\frac{1}{2}}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

Verified OK.

6.8.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x y+x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 176: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{x^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{x^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{x^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x y+x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-x \mathrm{e}^{-\frac{x^{2}}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{-\frac{x^{2}}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{-\frac{R^{2}}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-\frac{R^{2}}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=-\mathrm{e}^{-\frac{x^{2}}{2}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=-\mathrm{e}^{-\frac{x^{2}}{2}}+c_{1}
$$

Which gives

$$
y=-\left(\mathrm{e}^{-\frac{x^{2}}{2}}-c_{1}\right) \mathrm{e}^{\frac{x^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x y+x$		$\frac{d S}{d R}=R \mathrm{e}^{-\frac{R^{2}}{2}}$
		$\rightarrow \rightarrow$
(1) ${ }_{\text {d }}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
	$R=x$	$\rightarrow \rightarrow$
	$S=\mathrm{e}^{-\frac{x^{2}}{2}} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\rightarrow \rightarrow$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=-1+c_{1} \mathrm{e}^{\frac{1}{2}}
$$

$$
c_{1}=3 \mathrm{e}^{-\frac{1}{2}}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

Verified OK.

6.8.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y+1}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y+1}\right) \mathrm{d} y \\
f(y) & =\ln (y+1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\ln (y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\ln (y+1)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}-1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
2 & =\mathrm{e}^{\frac{1}{2}+c_{1}}-1 \\
c_{1} & =-\frac{1}{2}+\ln (3)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

Verified OK.

6.8.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y x=x, y(1)=2\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{y+1}=x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y+1} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y+1)=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}-1
$$

- Use initial condition $y(1)=2$

$$
2=\mathrm{e}^{\frac{1}{2}+c_{1}}-1
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{1}{2}+\ln (3)
$$

- Substitute $c_{1}=-\frac{1}{2}+\ln (3)$ into general solution and simplify

$$
y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1
$$

- Solution to the IVP
$y=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}-1$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.032 (sec). Leaf size: 17

```
dsolve([diff(y(x),x)=x*y(x)+x,y(1) = 2],y(x), singsol=all)
```

$$
y(x)=-1+3 \mathrm{e}^{\frac{(-1+x)(1+x)}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.099 (sec). Leaf size: 20

```
DSolve[{y'[x]==x*y[x]+x,{y[1]==2}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 3 e^{\frac{1}{2}\left(x^{2}-1\right)}-1
$$

6.9 problem 9

6.9.1 Existence and uniqueness analysis 1054
6.9.2 Solving as separable ode . 1055
6.9.3 Solving as first order special form ID 1 ode 1057
6.9.4 Solving as first order ode lie symmetry lookup ode 1058
6.9.5 Solving as exact ode . 1062
6.9.6 Maple step by step solution . 1066

Internal problem ID [12679]
Internal file name [OUTPUT/11331_Friday_November_03_2023_06_30_31_AM_99325169/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first order special form ID 1", "first_order_ode_lie__symmetry__lookup"

Maple gives the following as the ode type
[_separable]

$$
x \mathrm{e}^{y}+y^{\prime}=0
$$

With initial conditions

$$
[y(0)=0]
$$

6.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-x \mathrm{e}^{y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-x \mathrm{e}^{y}\right) \\
& =-x \mathrm{e}^{y}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

6.9.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-x \mathrm{e}^{y}
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\mathrm{e}^{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{y}} d y & =-x d x \\
\int \frac{1}{\mathrm{e}^{y}} d y & =\int-x d x \\
-\mathrm{e}^{-y} & =-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\ln \left(-\frac{2}{-x^{2}+2 c_{1}}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln \left(-\frac{1}{c_{1}}\right) \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (2)+\ln \left(\frac{1}{x^{2}+2}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\ln (2)+\ln \left(\frac{1}{x^{2}+2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln (2)+\ln \left(\frac{1}{x^{2}+2}\right)
$$

Verified OK.

6.9.3 Solving as first order special form ID 1 ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-x \mathrm{e}^{y} \tag{1}
\end{equation*}
$$

And using the substitution $u=\mathrm{e}^{-y}$ then

$$
u^{\prime}=-y^{\prime} \mathrm{e}^{-y}
$$

The above shows that

$$
\begin{aligned}
y^{\prime} & =-u^{\prime}(x) \mathrm{e}^{y} \\
& =-\frac{u^{\prime}(x)}{u}
\end{aligned}
$$

Substituting this in (1) gives

$$
-\frac{u^{\prime}(x)}{u}=-\frac{x}{u}
$$

The above simplifies to

$$
\begin{equation*}
u^{\prime}(x)=x \tag{2}
\end{equation*}
$$

Now ode (2) is solved for $u(x)$ Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int x \mathrm{~d} x \\
& =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Substituting the solution found for $u(x)$ in $u=\mathrm{e}^{-y}$ gives

$$
\begin{aligned}
y & =-\ln (u(x)) \\
& =-\ln \left(\frac{x^{2}}{2}+c_{1}\right) \\
& =\ln (2)-\ln \left(x^{2}+2 c_{1}\right)
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\ln \left(c_{1}\right) \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (2)-\ln \left(x^{2}+2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (2)-\ln \left(x^{2}+2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln (2)-\ln \left(x^{2}+2\right)
$$

Verified OK.

6.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-x \mathrm{e}^{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 179: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-x \mathrm{e}^{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{2}=-\mathrm{e}^{-y}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{2}=-\mathrm{e}^{-y}+c_{1}
$$

Which gives

$$
y=-\ln \left(\frac{x^{2}}{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-x \mathrm{e}^{y}$		$\frac{d S}{d R}=\mathrm{e}^{-R}$
4$+$4		
+ $1+4+4$		+ $+1+1$
	$R=y$	
	$R=y$	$1+1+4$
	$S=-\frac{x^{2}}{2}$	
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		
$\rightarrow \rightarrow$		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\ln \left(c_{1}\right)
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (2)-\ln \left(x^{2}+2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (2)-\ln \left(x^{2}+2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\ln (2)-\ln \left(x^{2}+2\right)
$$

Verified OK.

6.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\mathrm{e}^{-y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\mathrm{e}^{-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =-\mathrm{e}^{-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\mathrm{e}^{-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\mathrm{e}^{-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\mathrm{e}^{-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\mathrm{e}^{-y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\mathrm{e}^{-y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{-y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\mathrm{e}^{-y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\mathrm{e}^{-y}
$$

The solution becomes

$$
y=-\ln \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\ln \left(c_{1}\right) \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (2)-\ln \left(x^{2}+2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (2)-\ln \left(x^{2}+2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\ln (2)-\ln \left(x^{2}+2\right)
$$

Verified OK.

6.9.6 Maple step by step solution

Let's solve
$\left[x \mathrm{e}^{y}+y^{\prime}=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{\mathrm{e}^{y}}=-x
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\mathrm{e}^{y}} d x=\int-x d x+c_{1}$
- Evaluate integral
$-\frac{1}{\mathrm{e}^{y}}=-\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\ln \left(-\frac{2}{-x^{2}+2 c_{1}}\right)$
- Use initial condition $y(0)=0$

$$
0=\ln \left(-\frac{1}{c_{1}}\right)
$$

- \quad Solve for c_{1}
$c_{1}=-1$
- Substitute $c_{1}=-1$ into general solution and simplify

$$
y=\ln (2)+\ln \left(\frac{1}{x^{2}+2}\right)
$$

- \quad Solution to the IVP
$y=\ln (2)+\ln \left(\frac{1}{x^{2}+2}\right)$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 15

```
dsolve([x*exp(y(x))+diff(y(x),x)=0,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\ln (2)-\ln \left(x^{2}+2\right)
$$

Solution by Mathematica
Time used: 0.476 (sec). Leaf size: 16
DSolve[\{x*Exp[y[x]]+y'[x]==0,\{y[0]==0\}\},y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \log (2)-\log \left(x^{2}+2\right)
$$

6.10 problem 10

6.10.1 Existence and uniqueness analysis 1068
6.10.2 Solving as separable ode . 1069
6.10.3 Solving as linear ode . 1070
6.10.4 Solving as homogeneousTypeD2 ode 1072
6.10.5 Solving as first order ode lie symmetry lookup ode 1073
6.10.6 Solving as exact ode . 1077
6.10.7 Maple step by step solution . 1081

Internal problem ID [12680]
Internal file name [OUTPUT/11332_Friday_November_03_2023_06_30_32_AM_16605047/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[_separable]

$$
y-x^{2} y^{\prime}=0
$$

With initial conditions

$$
[y(1)=1]
$$

6.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x^{2}} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. Hence solution exists and is unique.

6.10.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x^{2}}
\end{aligned}
$$

Where $f(x)=\frac{1}{x^{2}}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x^{2}} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x^{2}} d x \\
\ln (y) & =-\frac{1}{x}+c_{1} \\
y & =\mathrm{e}^{-\frac{1}{x}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{1}{x}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1} \mathrm{e}^{-1} \\
c_{1}=\mathrm{e}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x-1}{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1} \mathrm{e}^{-1} \\
c_{1}=\mathrm{e}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x-1}{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Verified OK.

6.10.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x-x^{2}\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(x-1)}{x^{2}}
\end{aligned}
$$

Where $f(x)=-\frac{x-1}{x^{2}}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{x-1}{x^{2}} d x \\
\int \frac{1}{u} d u & =\int-\frac{x-1}{x^{2}} d x \\
\ln (u) & =-\frac{1}{x}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{-\frac{1}{x}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\frac{1}{x}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{-\frac{1}{x}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\mathrm{e}^{-\frac{1}{x}} c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{2} \mathrm{e}^{-1} \\
c_{2}=\mathrm{e}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x-1}{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Verified OK.

6.10.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 182: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{1}{x}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{1}{x}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{1}{x}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{\mathrm{e}^{\frac{1}{x}} y}{x^{2}} \\
& S_{y}=\mathrm{e}^{\frac{1}{x}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\frac{1}{x}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{1}{x}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x^{2}}$		$\frac{d S}{d R}=0$
$\rightarrow \rightarrow$ -		
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
$\xrightarrow{\rightarrow} \rightarrow \rightarrow \rightarrow \infty$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty} 1+\uparrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-}$,		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	$S=\mathrm{e}^{\frac{1}{x}} y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow+R^{+}}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2^{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
$\cdots{ }_{\text {a }}$		$\rightarrow \rightarrow \rightarrow$
ch:		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
**....t+		

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=c_{1} \mathrm{e}^{-1}
$$

$$
c_{1}=\mathrm{e}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x-1}{x}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Verified OK.

6.10.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{1}{x^{2}}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x^{2}} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{1}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{1}{x}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{1}{x}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{c_{1} x-1}{x}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\mathrm{e}^{-1+c_{1}} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x-1}{x}} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x-1}{x}}
$$

Verified OK.

6.10.7 Maple step by step solution

Let's solve
$\left[y-x^{2} y^{\prime}=0, y(1)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{1}{x^{2}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x^{2}} d x+c_{1}$
- Evaluate integral
$\ln (y)=-\frac{1}{x}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{c_{1} x-1}{x}}$
- Use initial condition $y(1)=1$
$1=\mathrm{e}^{-1+c_{1}}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify
$y=\mathrm{e}^{\frac{x-1}{x}}$
- \quad Solution to the IVP
$y=\mathrm{e}^{\frac{x-1}{x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 13

```
dsolve([y(x)-x^2*diff (y (x),x)=0,y(1) = 1],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{-1+x}{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 14
DSolve[\{y[x]-x^2*y'[x]==0,\{y[1]==1\}\},y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{1-\frac{1}{x}}
$$

6.11 problem 11

6.11.1 Solving as quadrature ode . 1083
6.11.2 Maple step by step solution . 1084

Internal problem ID [12681]
Internal file name [OUTPUT/11333_Friday_November_03_2023_06_30_33_AM_84621573/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
2 y y^{\prime}=1
$$

6.11.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int 2 y d y & =x+c_{1} \\
y^{2} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\sqrt{x+c_{1}} \\
& y_{2}=-\sqrt{x+c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x+c_{1}} \tag{1}\\
& y=-\sqrt{x+c_{1}} \tag{2}
\end{align*}
$$

Figure 217: Slope field plot
Verification of solutions

$$
y=\sqrt{x+c_{1}}
$$

Verified OK.

$$
y=-\sqrt{x+c_{1}}
$$

Verified OK.

6.11.2 Maple step by step solution

Let's solve
$2 y y^{\prime}=1$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int 2 y y^{\prime} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
y^{2}=x+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{x+c_{1}}, y=-\sqrt{x+c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(2*y(x)*diff(y(x),x)=1,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{c_{1}+x} \\
& y(x)=-\sqrt{c_{1}+x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 31
DSolve[2*y $[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x+2 c_{1}} \\
& y(x) \rightarrow \sqrt{x+2 c_{1}}
\end{aligned}
$$

6.12 problem 12

6.12.1 Solving as separable ode . 1086
6.12.2 Solving as first order ode lie symmetry lookup ode 1088
6.12.3 Solving as bernoulli ode . 1092
6.12.4 Solving as exact ode . 1095
6.12.5 Maple step by step solution . 1099

Internal problem ID [12682]
Internal file name [OUTPUT/11334_Friday_November_03_2023_06_30_33_AM_90158799/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 x y y^{\prime}+y^{2}=-1
$$

6.12.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y^{2}+1}{2 x y}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(y)=\frac{y^{2}+1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{2}+1}{y}} d y & =-\frac{1}{2 x} d x \\
\int \frac{1}{\frac{y^{2}+1}{y}} d y & =\int-\frac{1}{2 x} d x
\end{aligned}
$$

$$
\frac{\ln \left(y^{2}+1\right)}{2}=-\frac{\ln (x)}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\sqrt{y^{2}+1}=\mathrm{e}^{-\frac{\ln (x)}{2}+c_{1}}
$$

Which simplifies to

$$
\sqrt{y^{2}+1}=\frac{c_{2}}{\sqrt{x}}
$$

Which simplifies to

$$
\sqrt{1+y^{2}}=\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{x}}
$$

The solution is

$$
\sqrt{1+y^{2}}=\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{1+y^{2}}=\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Figure 218: Slope field plot

Verification of solutions

$$
\sqrt{1+y^{2}}=\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{x}}
$$

Verified OK.

6.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{2}+1}{2 x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 186: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-2 x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-2 x} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}+1}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{1}{2 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{y^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{2}+1\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (x)}{2}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (x)}{2}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}+1}{2 x y}$		$\frac{d S}{d R}=\frac{R}{R^{2}+1}$
		\cdots
		SR
-		-
	$R=y$	
-	$S=-\underline{\ln (x)}$	$\pm \rightarrow$
- -	2	
		\cdots
-xviry		过
		\because

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (x)}{2}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 219: Slope field plot
Verification of solutions

$$
-\frac{\ln (x)}{2}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

Verified OK.

6.12.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2}+1}{2 x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{2 x} y-\frac{1}{2 x} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{2 x} \\
f_{1}(x) & =-\frac{1}{2 x} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{y^{2}}{2 x}-\frac{1}{2 x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{2 x}-\frac{1}{2 x} \\
w^{\prime} & =-\frac{w}{x}-\frac{1}{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-\frac{1}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{1}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x w) & =(x)\left(-\frac{1}{x}\right) \\
\mathrm{d}(x w) & =-1 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x w=\int-1 \mathrm{~d} x \\
& x w=-x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=-1+\frac{c_{1}}{x}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-1+\frac{c_{1}}{x}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(-x+c_{1}\right)}}{x} \\
& y(x)=-\frac{\sqrt{x\left(-x+c_{1}\right)}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{x\left(-x+c_{1}\right)}}{x} \tag{1}\\
& y=-\frac{\sqrt{x\left(-x+c_{1}\right)}}{x} \tag{2}
\end{align*}
$$

Figure 220: Slope field plot
Verification of solutions

$$
y=\frac{\sqrt{x\left(-x+c_{1}\right)}}{x}
$$

Verified OK.

$$
y=-\frac{\sqrt{x\left(-x+c_{1}\right)}}{x}
$$

Verified OK.

6.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2 y}{y^{2}+1}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(-\frac{2 y}{y^{2}+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=-\frac{2 y}{y^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{2 y}{y^{2}+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 y}{y^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 y}{y^{2}+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{2 y}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{2 y}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =-\ln \left(y^{2}+1\right)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\ln \left(y^{2}+1\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\ln \left(y^{2}+1\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (x)-\ln \left(1+y^{2}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 221: Slope field plot

Verification of solutions

$$
-\ln (x)-\ln \left(1+y^{2}\right)=c_{1}
$$

Verified OK.

6.12.5 Maple step by step solution

Let's solve

$$
2 x y y^{\prime}+y^{2}=-1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(2 x y y^{\prime}+y^{2}\right) d x=\int(-1) d x+c_{1}
$$

- Evaluate integral

$$
y^{2} x=-x+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{x\left(-x+c_{1}\right)}}{x}, y=-\frac{\sqrt{x\left(-x+c_{1}\right)}}{x}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
dsolve(2*x*y(x)*diff (y(x),x)+y(x)^2=-1,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(c_{1}-x\right)}}{x} \\
& y(x)=-\frac{\sqrt{x\left(c_{1}-x\right)}}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.471 (sec). Leaf size: 98
DSolve [2*x*y [x] *y' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}] \sim 2==-1, \mathrm{y}[\mathrm{x}]$, x , IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-x+e^{2 c_{1}}}}{\sqrt{x}} \\
& y(x) \rightarrow \frac{\sqrt{-x+e^{2 c_{1}}}}{\sqrt{x}} \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i \\
& y(x) \rightarrow \frac{\sqrt{-x}}{\sqrt{x}} \\
& y(x) \rightarrow \frac{\sqrt{x}}{\sqrt{-x}}
\end{aligned}
$$

6.13 problem 13

6.13.1 Solving as linear ode . 1101
6.13.2 Solving as first order ode lie symmetry lookup ode 1103
6.13.3 Solving as exact ode . 1107
6.13.4 Maple step by step solution . 1112

Internal problem ID [12683]
Internal file name [OUTPUT/11335_Friday_November_03_2023_06_30_34_AM_54833312/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{1-y x}{x^{2}}=0
$$

6.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{1}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{1}{x^{2}}\right) \\
\mathrm{d}(x y) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int \frac{1}{x} \mathrm{~d} x \\
& x y=\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{\ln (x)}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
y=\frac{\ln (x)+c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 222: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)+c_{1}}{x}
$$

Verified OK.

6.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x y-1}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 189: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
$$

Which results in

$$
S=x y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y-1}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y x=\ln (x)+c_{1}
$$

Which simplifies to

$$
y x=\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{\ln (x)+c_{1}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x y-1}{x^{2}}$		$\frac{d S}{d R}=\frac{1}{R}$
		- - -
		\bigcirc
		STR
		- M M M
$\xrightarrow{+\infty}$	$R=x$	$\xrightarrow{\square}$
\rightarrow 过	$S=x y$	为
		-

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 223: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)+c_{1}}{x}
$$

Verified OK.

6.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{-x y+1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{-x y+1}{x^{2}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{-x y+1}{x^{2}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-x y+1}{x^{2}}\right) \\
& =\frac{1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{1}{x}\right)-(0)\right) \\
& =\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x)} \\
& =x
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x\left(-\frac{-x y+1}{x^{2}}\right) \\
& =\frac{x y-1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x(1) \\
& =x
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x y-1}{x}\right)+(x) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x y-1}{x} \mathrm{~d} x \\
\phi & =x y-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x$. Therefore equation (4) becomes

$$
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y-\ln (x)
$$

The solution becomes

$$
y=\frac{\ln (x)+c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 224: Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)+c_{1}}{x}
$$

Verified OK.

6.13.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{1-y x}{x^{2}}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x}+\frac{1}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x}=\frac{1}{x^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\frac{\mu(x)}{x^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x^{2}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x$
$y=\frac{\int \frac{1}{x} d x+c_{1}}{x}$
- Evaluate the integrals on the rhs
$y=\frac{\ln (x)+c_{1}}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=(1-x*y(x))/x^2,y(x), singsol=all)
```

$$
y(x)=\frac{\ln (x)+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 14
DSolve[y'[x]==(1-x*y[x])/x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\log (x)+c_{1}}{x}
$$

6.14 problem 14

6.14.1 Solving as homogeneousTypeD2 ode 1114
6.14.2 Solving as first order ode lie symmetry calculated ode 1116
6.14.3 Solving as exact ode . 1122

Internal problem ID [12684]
Internal file name [OUTPUT/11336_Friday_November_03_2023_06_30_35_AM_26110690/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y^{\prime}+\frac{y(2 x+y)}{x(x+2 y)}=0
$$

6.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)+\frac{u(x)(2 x+u(x) x)}{x+2 u(x) x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u(u+1)}{x(2 u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=\frac{u(u+1)}{2 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u+1)}{2 u+1}} d u & =-\frac{3}{x} d x \\
\int \frac{1}{\frac{u(u+1)}{2 u+1}} d u & =\int-\frac{3}{x} d x \\
\ln (u(u+1)) & =-3 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u(u+1)=\mathrm{e}^{-3 \ln (x)+c_{2}}
$$

Which simplifies to

$$
u(u+1)=\frac{c_{3}}{x^{3}}
$$

Which simplifies to

$$
u(x)(u(x)+1)=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{3}}
$$

The solution is

$$
u(x)(u(x)+1)=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{3}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{y\left(\frac{y}{x}+1\right)}{x} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{3}} \\
\frac{y(y+x)}{x^{2}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{3}}
\end{aligned}
$$

Which simplifies to

$$
y(y+x)=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y(y+x)=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 225: Slope field plot
Verification of solutions

$$
y(y+x)=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

6.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y(2 x+y)}{x(x+2 y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y(2 x+y)\left(b_{3}-a_{2}\right)}{x(x+2 y)}-\frac{y^{2}(2 x+y)^{2} a_{3}}{x^{2}(x+2 y)^{2}} \\
& -\left(-\frac{2 y}{x(x+2 y)}+\frac{y(2 x+y)}{x^{2}(x+2 y)}+\frac{y(2 x+y)}{x(x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 x+y}{x(x+2 y)}-\frac{y}{x(x+2 y)}+\frac{2 y(2 x+y)}{x(x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{3 x^{4} b_{2}+6 x^{3} y b_{2}+3 x^{2} y^{2} a_{2}-6 x^{2} y^{2} a_{3}+6 x^{2} y^{2} b_{2}-3 x^{2} y^{2} b_{3}-6 x y^{3} a_{3}-3 y^{4} a_{3}+2 x^{3} b_{1}-2 x^{2} y a_{1}+2 x^{2} y b_{1}-}{x^{2}(x+2 y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{4} b_{2}+6 x^{3} y b_{2}+3 x^{2} y^{2} a_{2}-6 x^{2} y^{2} a_{3}+6 x^{2} y^{2} b_{2}-3 x^{2} y^{2} b_{3}-6 x y^{3} a_{3} \tag{6E}\\
& \quad-3 y^{4} a_{3}+2 x^{3} b_{1}-2 x^{2} y a_{1}+2 x^{2} y b_{1}-2 x y^{2} a_{1}+2 x y^{2} b_{1}-2 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 3 a_{2} v_{1}^{2} v_{2}^{2}-6 a_{3} v_{1}^{2} v_{2}^{2}-6 a_{3} v_{1} v_{2}^{3}-3 a_{3} v_{2}^{4}+3 b_{2} v_{1}^{4}+6 b_{2} v_{1}^{3} v_{2}+6 b_{2} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& \quad-3 b_{3} v_{1}^{2} v_{2}^{2}-2 a_{1} v_{1}^{2} v_{2}-2 a_{1} v_{1} v_{2}^{2}-2 a_{1} v_{2}^{3}+2 b_{1} v_{1}^{3}+2 b_{1} v_{1}^{2} v_{2}+2 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3 b_{2} v_{1}^{4}+6 b_{2} v_{1}^{3} v_{2}+2 b_{1} v_{1}^{3}+\left(3 a_{2}-6 a_{3}+6 b_{2}-3 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(-2 a_{1}+2 b_{1}\right) v_{1}^{2} v_{2}-6 a_{3} v_{1} v_{2}^{3}+\left(-2 a_{1}+2 b_{1}\right) v_{1} v_{2}^{2}-3 a_{3} v_{2}^{4}-2 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
-6 a_{3} & =0 \\
-3 a_{3} & =0 \\
2 b_{1} & =0 \\
3 b_{2} & =0 \\
6 b_{2} & =0 \\
-2 a_{1}+2 b_{1} & =0 \\
3 a_{2}-6 a_{3}+6 b_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(2 x+y)}{x(x+2 y)}\right)(x) \\
& =\frac{3 x y+3 y^{2}}{x+2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x y+3 y^{2}}{x+2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y(y+x))}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(2 x+y)}{x(x+2 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{3 x+3 y} \\
S_{y} & =\frac{x+2 y}{3 y(y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{3 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{3}+\frac{\ln (y+x)}{3}=-\frac{\ln (x)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{3}+\frac{\ln (y+x)}{3}=-\frac{\ln (x)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(2 x+y)}{x(x+2 y)}$		$\frac{d S}{d R}=-\frac{1}{3 R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
	$R=x$	他
$\rightarrow \rightarrow$ 为	$S=\frac{\ln (y)}{3}+\frac{\ln (y+x)}{3}$	
	$S=\frac{3}{3}+\frac{1}{3}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
x_{0}		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		\rightarrow
为		\rightarrow

Summary

The solution（s）found are the following

$$
\begin{equation*}
\frac{\ln (y)}{3}+\frac{\ln (y+x)}{3}=-\frac{\ln (x)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 226: Slope field plot

Verification of solutions

$$
\frac{\ln (y)}{3}+\frac{\ln (y+x)}{3}=-\frac{\ln (x)}{3}+c_{1}
$$

Verified OK.

6.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x(x+2 y)) \mathrm{d} y & =(-y(2 x+y)) \mathrm{d} x \\
(y(2 x+y)) \mathrm{d} x+(x(x+2 y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y(2 x+y) \\
N(x, y) & =x(x+2 y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y(2 x+y)) \\
& =2 y+2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x(x+2 y)) \\
& =2 y+2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y(2 x+y) \mathrm{d} x \\
\phi & =y x(y+x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =(y+x) x+x y+f^{\prime}(y) \tag{4}\\
& =x(x+2 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x(x+2 y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x(x+2 y)=x(x+2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x(y+x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x(y+x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y(y+x) x=c_{1} \tag{1}
\end{equation*}
$$

Figure 227: Slope field plot

Verification of solutions

$$
y(y+x) x=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 71

```
dsolve(diff (y(x), x)=-y(x)*(2*x+y(x))/(x*(2*y(x)+x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-c_{1}^{2} x^{2}+\sqrt{c_{1} x\left(c_{1}^{3} x^{3}+4\right)}}{2 c_{1}^{2} x} \\
& y(x)=\frac{-c_{1}^{2} x^{2}-\sqrt{c_{1} x\left(c_{1}^{3} x^{3}+4\right)}}{2 c_{1}^{2} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.084 (sec). Leaf size: 118
DSolve $\left[y^{\prime}[x]==-y[x] *(2 * x+y[x]) /(x *(2 * y[x]+x)), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-x-\frac{\sqrt{x^{3}+4 e^{c_{1}}}}{\sqrt{x}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(-x+\frac{\sqrt{x^{3}+4 e^{c_{1}}}}{\sqrt{x}}\right) \\
& y(x) \rightarrow-\frac{x^{3 / 2}+\sqrt{x^{3}}}{2 \sqrt{x}} \\
& y(x) \rightarrow \frac{\sqrt{x^{3}}}{2 \sqrt{x}}-\frac{x}{2}
\end{aligned}
$$

6.15 problem 15

6.15.1 Solving as first order ode lie symmetry calculated ode 1127
6.15.2 Solving as exact ode . 1132

Internal problem ID [12685]
Internal file name [OUTPUT/11337_Friday_November_03_2023_06_30_36_AM_33531861/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.2, page 63
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y^{\prime}-\frac{y^{2}}{1-y x}=0
$$

6.15.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{2}}{x y-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}-\frac{y^{2}\left(b_{3}-a_{2}\right)}{x y-1}-\frac{y^{4} a_{3}}{(x y-1)^{2}}-\frac{y^{3}\left(x a_{2}+y a_{3}+a_{1}\right)}{(x y-1)^{2}} \tag{5E}\\
\quad-\left(-\frac{2 y}{x y-1}+\frac{y^{2} x}{(x y-1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\frac{2 x^{2} y^{2} b_{2}-2 y^{4} a_{3}+x y^{2} b_{1}-y^{3} a_{1}-4 x y b_{2}-y^{2} a_{2}-y^{2} b_{3}-2 y b_{1}+b_{2}}{(x y-1)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
2 x^{2} y^{2} b_{2}-2 y^{4} a_{3}+x y^{2} b_{1}-y^{3} a_{1}-4 x y b_{2}-y^{2} a_{2}-y^{2} b_{3}-2 y b_{1}+b_{2}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{3} v_{2}^{4}+2 b_{2} v_{1}^{2} v_{2}^{2}-a_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}-a_{2} v_{2}^{2}-4 b_{2} v_{1} v_{2}-b_{3} v_{2}^{2}-2 b_{1} v_{2}+b_{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
2 b_{2} v_{1}^{2} v_{2}^{2}+b_{1} v_{1} v_{2}^{2}-4 b_{2} v_{1} v_{2}-2 a_{3} v_{2}^{4}-a_{1} v_{2}^{3}+\left(-a_{2}-b_{3}\right) v_{2}^{2}-2 b_{1} v_{2}+b_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
-2 a_{3} & =0 \\
-2 b_{1} & =0 \\
-4 b_{2} & =0 \\
2 b_{2} & =0 \\
-a_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y^{2}}{x y-1}\right)(-x) \\
& =-\frac{y}{x y-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{y}{x y-1}} d y
\end{aligned}
$$

Which results in

$$
S=-x y+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}}{x y-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-y \\
S_{y} & =-x+\frac{1}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-y x+\ln (y)=c_{1}
$$

Which simplifies to

$$
-y x+\ln (y)=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\left.c_{1} x\right)+c_{1}}\right.}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}}{x y-1}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow S}$ (Rl)
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		$\rightarrow \rightarrow \rightarrow \rightarrow$
$\rightarrow 0$	$S=-x y+\ln (y)$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow ~}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{c_{1}} x\right)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 228: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{\left.c_{1} x\right)+c_{1}}\right.}
$$

Verified OK.

6.15.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y^{2}}{-x y+1}\right) \mathrm{d} x \\
\left(-\frac{y^{2}}{-x y+1}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y^{2}}{-x y+1} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y^{2}}{-x y+1}\right) \\
& =\frac{y(x y-2)}{(x y-1)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{2 y}{-x y+1}-\frac{y^{2} x}{(-x y+1)^{2}}\right)-(0)\right) \\
& =\frac{y(x y-2)}{(x y-1)^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{x y-1}{y^{2}}\left((0)-\left(-\frac{2 y}{-x y+1}-\frac{y^{2} x}{(-x y+1)^{2}}\right)\right) \\
& =\frac{-x y+2}{y(x y-1)}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(-\frac{2 y}{-x y+1}-\frac{y^{2} x}{(-x y+1)^{2}}\right)}{x\left(-\frac{y^{2}}{-x y+1}\right)-y(1)} \\
& =\frac{-x y+2}{x y-1}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{-t+2}{t-1}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{-t+2}{t-1}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-t+\ln (t-1)} \\
& =(t-1) \mathrm{e}^{-t}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=(x y-1) \mathrm{e}^{-x y}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =(x y-1) \mathrm{e}^{-x y}\left(-\frac{y^{2}}{-x y+1}\right) \\
& =y^{2} \mathrm{e}^{-x y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =(x y-1) \mathrm{e}^{-x y}(1) \\
& =(x y-1) \mathrm{e}^{-x y}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y^{2} \mathrm{e}^{-x y}\right)+\left((x y-1) \mathrm{e}^{-x y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2} \mathrm{e}^{-x y} \mathrm{~d} x \\
\phi & =-y \mathrm{e}^{-x y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\mathrm{e}^{-x y}+y x \mathrm{e}^{-x y}+f^{\prime}(y) \tag{4}\\
& =(x y-1) \mathrm{e}^{-x y}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(x y-1) \mathrm{e}^{-x y}$. Therefore equation (4) becomes

$$
\begin{equation*}
(x y-1) \mathrm{e}^{-x y}=(x y-1) \mathrm{e}^{-x y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-y \mathrm{e}^{-x y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-y \mathrm{e}^{-x y}
$$

The solution becomes

$$
y=-\frac{\text { LambertW }\left(c_{1} x\right)}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\text { LambertW }\left(c_{1} x\right)}{x} \tag{1}
\end{equation*}
$$

Figure 229: Slope field plot

Verification of solutions

$$
y=-\frac{\text { LambertW }\left(c_{1} x\right)}{x}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve(diff(y(x),x)=y(x)~2/(1-x*y(x)),y(x), singsol=all)
```

$$
y(x)=-\frac{\text { LambertW }\left(-x \mathrm{e}^{-c_{1}}\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 3.256 (sec). Leaf size: 25
DSolve[y'[x]==y[x]~2/(1-x*y[x]),y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{W\left(-e^{-c_{1}} x\right)}{x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

7 Chapter 2. The Initial Value Problem. Exercises2.3.3, page 71
7.1 problem 1 1140
7.2 problem 2 1144
7.3 problem 3 1158
7.4 problem 4 1173
7.5 problem 5 1186
7.6 problem 6 1202
7.7 problem 7 1216
7.8 problem 12 1230
7.9 problem 13 1245
7.10 problem 14 1259
7.11 problem 15 1273
7.12 problem 16 1291
7.13 problem 17 1307

7.1 problem 1

7.1.1 Existence and uniqueness analysis 1140
7.1.2 Solving as quadrature ode . 1141
7.1.3 Maple step by step solution . 1142

Internal problem ID [12686]
Internal file name [OUTPUT/11338_Friday_November_03_2023_06_30_37_AM_48167268/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-4 y=1
$$

With initial conditions

$$
[y(0)=1]
$$

7.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-4 \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-4 y=1
$$

The domain of $p(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{4 y+1} d y & =\int d x \\
\frac{\ln (4 y+1)}{4} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
(4 y+1)^{\frac{1}{4}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
(4 y+1)^{\frac{1}{4}}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{c_{2}^{4}}{4}-\frac{1}{4} \\
c_{2}=5^{\frac{1}{4}}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{5 \mathrm{e}^{4 x}}{4}-\frac{1}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 \mathrm{e}^{4 x}}{4}-\frac{1}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 \mathrm{e}^{4 x}}{4}-\frac{1}{4}
$$

Verified OK.

7.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-4 y=1, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{4 y+1}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{4 y+1} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{\ln (4 y+1)}{4}=x+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{4}+\frac{\mathrm{e}^{4 c_{1}+4 x}}{4}
$$

- Use initial condition $y(0)=1$

$$
1=-\frac{1}{4}+\frac{\mathrm{e}^{4 c_{1}}}{4}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{\ln (5)}{4}$
- Substitute $c_{1}=\frac{\ln (5)}{4}$ into general solution and simplify

$$
y=\frac{5 e^{4 x}}{4}-\frac{1}{4}
$$

- Solution to the IVP

$$
y=\frac{5 \mathrm{e}^{4 x}}{4}-\frac{1}{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff(y(x),x)=4*y(x)+1,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=-\frac{1}{4}+\frac{5 \mathrm{e}^{4 x}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 18

```
DSolve[{y'[x]==4*y[x]+1,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{4}\left(5 e^{4 x}-1\right)
$$

7.2 problem 2

7.2.1 Existence and uniqueness analysis 1144
7.2.2 Solving as linear ode . 1145
7.2.3 Solving as first order ode lie symmetry lookup ode 1147
7.2.4 Solving as exact ode . 1151

Internal problem ID [12687]
Internal file name [OUTPUT/11339_Friday_November_03_2023_06_30_38_AM_52579092/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-y x=2
$$

With initial conditions

$$
[y(0)=1]
$$

7.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-x \\
& q(x)=2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y x=2
$$

The domain of $p(x)=-x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.2.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x d x} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(2) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)(2) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =\left(2 \mathrm{e}^{-\frac{x^{2}}{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{x^{2}}{2}} y=\int 2 \mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{~d} x \\
& \mathrm{e}^{-\frac{x^{2}}{2}} y=\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{2}}{2}}$ results in

$$
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

7.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x y+2 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 193: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{x^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{x^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{x^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x y+2
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-x \mathrm{e}^{-\frac{x^{2}}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \mathrm{e}^{-\frac{x^{2}}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 \mathrm{e}^{-\frac{R^{2}}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} R}{2}\right)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x y+2$		$\frac{d S}{d R}=2 \mathrm{e}^{-\frac{R^{2}}{2}}$
¢ \dagger ¢		
1:		
	$R=x$	
	$S=\mathrm{e}^{-\frac{x^{2}}{2}} y$	
		\bigcirc 嵒》
		$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

7.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(x y+2) \mathrm{d} x \\
(-x y-2) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x y-2 \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x y-2) \\
& =-x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-x)-(0)) \\
& =-x
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-x \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{x^{2}}{2}} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}(-x y-2) \\
& =-\mathrm{e}^{-\frac{x^{2}}{2}}(x y+2)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}(1) \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{-\frac{x^{2}}{2}}(x y+2)\right)+\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{-\frac{x^{2}}{2}}(x y+2) \mathrm{d} x \\
\phi & =\mathrm{e}^{-\frac{x^{2}}{2}} y-\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{x^{2}}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{x^{2}}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{x^{2}}{2}}=\mathrm{e}^{-\frac{x^{2}}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{-\frac{x^{2}}{2}} y-\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{-\frac{x^{2}}{2}} y-\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{x^{2}}{2}}\left(\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{x^{2}}{2}} \sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+\mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 27

```
dsolve([diff(y(x),x)=x*y(x)+2,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\left(\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{x \sqrt{2}}{2}\right)+1\right) \mathrm{e}^{\frac{x^{2}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 33
DSolve[\{y' $[x]==x * y[x]+2,\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{\frac{x^{2}}{2}}\left(\sqrt{2 \pi} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)+1\right)
$$

7.3 problem 3

7.3.1 Existence and uniqueness analysis 1158
7.3.2 Solving as separable ode . 1159
7.3.3 Solving as linear ode . 1160
7.3.4 Solving as homogeneousTypeD2 ode 1162
7.3.5 Solving as first order ode lie symmetry lookup ode 1163
7.3.6 Solving as exact ode . 1167
7.3.7 Maple step by step solution . 1171

Internal problem ID [12688]
Internal file name [OUTPUT/11340_Friday_November_03_2023_06_30_38_AM_52738796/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y}{x}=0
$$

With initial conditions

$$
[y(-1)=2]
$$

7.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=0
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=-1$ is inside this domain. Hence solution exists and is unique.

7.3.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2 x
$$

Verified OK.

7.3.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 x
$$

Verified OK.

7.3.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} x
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-c_{2} \\
& c_{2}=-2
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=-2 x
$$

Verified OK.

7.3.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 195: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
\triangle -		\rightarrow
$\rightarrow \rightarrow \rightarrow-\infty$	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow \rightarrow \infty$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-2^{2} \rightarrow \rightarrow]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=-c_{1}
$$

$$
c_{1}=-2
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=-2 x
$$

Verified OK.

7.3.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{1}{x} \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\mathrm{e}^{c_{1}} \\
c_{1}=\ln (2)+i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=-2 x
$$

Verified OK.

7.3.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x}=0, y(-1)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=\ln (x)+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{c_{1}} x$
- Use initial condition $y(-1)=2$
$2=-\mathrm{e}^{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=\ln (2)+\mathrm{I} \pi$
- \quad Substitute $c_{1}=\ln (2)+\mathrm{I} \pi$ into general solution and simplify
$y=-2 x$
- \quad Solution to the IVP
$y=-2 x$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

```
dsolve([diff(y(x),x)=y(x)/x,y(-1) = 2],y(x), singsol=all)
```

$$
y(x)=-2 x
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 8
DSolve[\{y' $[x]==y[x] / x,\{y[-1]==2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-2 x
$$

7.4 problem 4

7.4.1 Existence and uniqueness analysis 1173
7.4.2 Solving as linear ode . 1174
7.4.3 Solving as first order ode lie symmetry lookup ode 1175
7.4.4 Solving as exact ode . 1179
7.4.5 Maple step by step solution . 1183

Internal problem ID [12689]
Internal file name [OUTPUT/11341_Friday_November_03_2023_06_30_39_AM_22100225/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{x-1}=x^{2}
$$

With initial conditions

$$
[y(0)=1]
$$

7.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x-1} \\
& q(x)=x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x-1}=x^{2}
$$

The domain of $p(x)=-\frac{1}{x-1}$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.4.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x-1} d x} \\
& =\frac{1}{x-1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x-1}\right) & =\left(\frac{1}{x-1}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\frac{y}{x-1}\right) & =\left(\frac{x^{2}}{x-1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x-1}=\int \frac{x^{2}}{x-1} \mathrm{~d} x \\
& \frac{y}{x-1}=\frac{x^{2}}{2}+x+\ln (x-1)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x-1}$ results in

$$
y=(x-1)\left(\frac{x^{2}}{2}+x+\ln (x-1)\right)+c_{1}(x-1)
$$

which simplifies to

$$
y=(x-1)\left(\frac{x^{2}}{2}+x+\ln (x-1)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-i \pi-c_{1} \\
& c_{1}=-i \pi-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1
$$

Verified OK.

7.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{3}-x^{2}+y}{x-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 198: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x-1 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x-1} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x-1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{3}-x^{2}+y}{x-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{(x-1)^{2}} \\
S_{y} & =\frac{1}{x-1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x^{2}}{x-1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{2}}{R-1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+R+\ln (R-1)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x-1}=\frac{x^{2}}{2}+x+\ln (x-1)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x-1}=\frac{x^{2}}{2}+x+\ln (x-1)+c_{1}
$$

Which gives

$$
y=\frac{(x-1)\left(x^{2}+2 \ln (x-1)+2 c_{1}+2 x\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{3}-x^{2}+y}{x-1}$		$\frac{d S}{d R}=\frac{R^{2}}{R-1}$
+ ${ }_{\text {a }}$		
保		
	$S=y$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-i \pi-c_{1} \\
& c_{1}=-i \pi-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1
$$

Verified OK.

7.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{x-1}+x^{2}\right) \mathrm{d} x \\
\left(-\frac{y}{x-1}-x^{2}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y}{x-1}-x^{2} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{x-1}-x^{2}\right) \\
& =-\frac{1}{x-1}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{x-1}\right)-(0)\right) \\
& =-\frac{1}{x-1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x-1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x-1)} \\
& =\frac{1}{x-1}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x-1}\left(-\frac{y}{x-1}-x^{2}\right) \\
& =\frac{-x^{3}+x^{2}-y}{(x-1)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x-1}(1) \\
& =\frac{1}{x-1}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{3}+x^{2}-y}{(x-1)^{2}}\right)+\left(\frac{1}{x-1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{3}+x^{2}-y}{(x-1)^{2}} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}-x+\frac{y}{x-1}-\ln (x-1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x-1}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x-1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x-1}=\frac{1}{x-1}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-x+\frac{y}{x-1}-\ln (x-1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-x+\frac{y}{x-1}-\ln (x-1)
$$

The solution becomes

$$
y=\frac{(x-1)\left(x^{2}+2 \ln (x-1)+2 c_{1}+2 x\right)}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-i \pi-c_{1} \\
& c_{1}=-i \pi-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \pi x+\frac{x^{3}}{2}+\ln (x-1) x+i \pi+\frac{x^{2}}{2}-\ln (x-1)-2 x+1
$$

Verified OK.

7.4.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x-1}=x^{2}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x-1}+x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x-1}=x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x-1}\right)=\mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x-1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x-1}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x-1}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x-1}$
$y=(x-1)\left(\int \frac{x^{2}}{x-1} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=(x-1)\left(\frac{x^{2}}{2}+x+\ln (x-1)+c_{1}\right)$
- Use initial condition $y(0)=1$
$1=-\mathrm{I} \pi-c_{1}$
- \quad Solve for c_{1}
$c_{1}=-1-\mathrm{I} \pi$
- Substitute $c_{1}=-1-\mathrm{I} \pi$ into general solution and simplify
$y=\left(\frac{x^{2}}{2}+x+\ln (x-1)-1-\mathrm{I} \pi\right)(x-1)$
- \quad Solution to the IVP
$y=\left(\frac{x^{2}}{2}+x+\ln (x-1)-1-\mathrm{I} \pi\right)(x-1)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve([diff(y(x),x)=y(x)/(x-1)+x^2,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\left(\frac{x^{2}}{2}+x+\ln (-1+x)-1-i \pi\right)(-1+x)
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 31
DSolve[\{y' $\left.[x]==y[x] /(x-1)+x^{\wedge} 2,\{y[0]==1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}(x-1)\left(x^{2}+2 x+2 \log (x-1)-2 i \pi-2\right)
$$

7.5 problem 5

7.5.1 Existence and uniqueness analysis 1186
7.5.2 Solving as linear ode . 1187
7.5.3 Solving as homogeneousTypeD2 ode 1189
7.5.4 Solving as first order ode lie symmetry lookup ode 1190
7.5.5 Solving as exact ode . 1195
7.5.6 Maple step by step solution . 1199

Internal problem ID [12690]
Internal file name [OUTPUT/11342_Friday_November_03_2023_06_30_40_AM_41951789/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{x}=\sin \left(x^{2}\right)
$$

With initial conditions

$$
[y(-1)=-1]
$$

7.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\sin \left(x^{2}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\sin \left(x^{2}\right)
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=-1$ is inside this domain. The domain of $q(x)=\sin \left(x^{2}\right)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is also inside this domain. Hence solution exists and is unique.

7.5.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\sin \left(x^{2}\right)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\sin \left(x^{2}\right)\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{\sin \left(x^{2}\right)}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{\sin \left(x^{2}\right)}{x} \mathrm{~d} x \\
& \frac{y}{x}=\frac{\operatorname{Si}\left(x^{2}\right)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=\frac{x \operatorname{Si}\left(x^{2}\right)}{2}+c_{1} x
$$

which simplifies to

$$
y=x\left(\frac{\mathrm{Si}\left(x^{2}\right)}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-1 & =-\frac{\mathrm{Si}(1)}{2}-c_{1} \\
c_{1} & =-\frac{\mathrm{Si}(1)}{2}+1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2-\operatorname{Si}(1)\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(\mathrm{Si}\left(x^{2}\right)+2-\mathrm{Si}(1)\right)}{2} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=\frac{x\left(\mathrm{Si}\left(x^{2}\right)+2-\mathrm{Si}(1)\right)}{2}
$$

Verified OK.

7.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=\sin \left(x^{2}\right)
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \frac{\sin \left(x^{2}\right)}{x} \mathrm{~d} x \\
& =\frac{\operatorname{Si}\left(x^{2}\right)}{2}+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x\left(\frac{\mathrm{Si}\left(x^{2}\right)}{2}+c_{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-1 & =-\frac{\mathrm{Si}(1)}{2}-c_{2} \\
c_{2} & =-\frac{\mathrm{Si}(1)}{2}+1
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2-\operatorname{Si}(1)\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(\mathrm{Si}\left(x^{2}\right)+2-\mathrm{Si}(1)\right)}{2} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=\frac{x\left(\mathrm{Si}\left(x^{2}\right)+2-\mathrm{Si}(1)\right)}{2}
$$

Verified OK.

7.5.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+\sin \left(x^{2}\right) x}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 201: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+\sin \left(x^{2}\right) x}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sin \left(x^{2}\right)}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\sin \left(R^{2}\right)}{R}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\operatorname{Si}\left(R^{2}\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y}{x}=\frac{\operatorname{Si}\left(x^{2}\right)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=\frac{\operatorname{Si}\left(x^{2}\right)}{2}+c_{1}
$$

Which gives

$$
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+\sin \left(x^{2}\right) x}{x}$		$\frac{d S}{d R}=\frac{\sin \left(R^{2}\right)}{R}$
		$\rightarrow \rightarrow \rightarrow \rightarrow$ 优
		$\rightarrow \rightarrow$ 迷
		$\rightarrow \rightarrow \rightarrow$ 为 ${ }_{\text {d }}$
		\rightarrow
	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$S=\underline{y}$	$\xrightarrow[\rightarrow \rightarrow-9 \rightarrow+ \pm \times \pm]{ }$
$\rightarrow \rightarrow \rightarrow 0$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 连

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-1 & =-\frac{\operatorname{Si}(1)}{2}-c_{1} \\
c_{1} & =-\frac{\operatorname{Si}(1)}{2}+1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2-\operatorname{Si}(1)\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2-\operatorname{Si}(1)\right)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{x\left(\mathrm{Si}\left(x^{2}\right)+2-\mathrm{Si}(1)\right)}{2}
$$

Verified OK.

7.5.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{x}+\sin \left(x^{2}\right)\right) \mathrm{d} x \\
\left(-\frac{y}{x}-\sin \left(x^{2}\right)\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{y}{x}-\sin \left(x^{2}\right) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{x}-\sin \left(x^{2}\right)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{x}\right)-(0)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}\left(-\frac{y}{x}-\sin \left(x^{2}\right)\right) \\
& =\frac{-y-\sin \left(x^{2}\right) x}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}(1) \\
& =\frac{1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y-\sin \left(x^{2}\right) x}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y-\sin \left(x^{2}\right) x}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{y}{x}-\frac{\operatorname{Si}\left(x^{2}\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y}{x}-\frac{\mathrm{Si}\left(x^{2}\right)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y}{x}-\frac{\mathrm{Si}\left(x^{2}\right)}{2}
$$

The solution becomes

$$
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2 c_{1}\right)}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-1 & =-\frac{\operatorname{Si}(1)}{2}-c_{1} \\
c_{1} & =-\frac{\operatorname{Si}(1)}{2}+1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2-\operatorname{Si}(1)\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2-\mathrm{Si}(1)\right)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{x\left(\operatorname{Si}\left(x^{2}\right)+2-\operatorname{Si}(1)\right)}{2}
$$

Verified OK.

7.5.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x}=\sin \left(x^{2}\right), y(-1)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}+\sin \left(x^{2}\right)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-\frac{y}{x}=\sin \left(x^{2}\right)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x) \sin \left(x^{2}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sin \left(x^{2}\right) d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x) \sin \left(x^{2}\right) d x+c_{1}
$$

- Solve for y
$y=\frac{\int \mu(x) \sin \left(x^{2}\right) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int \frac{\sin \left(x^{2}\right)}{x} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x\left(\frac{\mathrm{Si}\left(x^{2}\right)}{2}+c_{1}\right)$
- Use initial condition $y(-1)=-1$

$$
-1=-\frac{\operatorname{Si}(1)}{2}-c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=-\frac{\mathrm{Si}_{\mathrm{i}}(1)}{2}+1$
- Substitute $c_{1}=-\frac{\mathrm{Si}(1)}{2}+1$ into general solution and simplify
$y=\frac{x\left(\mathrm{~S}\left(x^{2}\right)+2-\mathrm{Si}(1)\right)}{2}$
- Solution to the IVP
$y=\frac{x\left(\mathrm{Si}\left(x^{2}\right)+2-\mathrm{Si}(1)\right)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 17

```
dsolve([diff(y(x),x)=y(x)/x+\operatorname{sin}(\mp@subsup{x}{}{\wedge}2),y(-1) = -1],y(x), singsol=all)
```

$$
y(x)=-\frac{\left(-\operatorname{Si}\left(x^{2}\right)-2+\operatorname{Si}(1)\right) x}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 20
DSolve[\{y' $\left.[x]==y[x] / x+\operatorname{Sin}\left[x^{\wedge} 2\right],\{y[-1]==-1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} x\left(\operatorname{Si}\left(x^{2}\right)-\operatorname{Si}(1)+2\right)
$$

7.6 problem 6

7.6.1 Existence and uniqueness analysis 1202
7.6.2 Solving as linear ode . 1203
7.6.3 Solving as first order ode lie symmetry lookup ode 1205
7.6.4 Solving as exact ode . 1209
7.6.5 Maple step by step solution . 1214

Internal problem ID [12691]
Internal file name [OUTPUT/11343_Friday_November_03_2023_06_30_41_AM_1617631/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{2 y}{x}=\mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(1)=\frac{1}{2}\right]
$$

7.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\mathrm{e}^{x}
$$

The domain of $p(x)=-\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

7.6.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\mathrm{e}^{x}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{\mathrm{e}^{x}}{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{\mathrm{e}^{x}}{x^{2}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =-\frac{\mathrm{e}^{x}}{x}-\exp \operatorname{Integral}_{1}(-x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=x^{2}\left(-\frac{\mathrm{e}^{x}}{x}-\exp \operatorname{Integral}_{1}(-x)\right)+c_{1} x^{2}
$$

which simplifies to

$$
y=x\left(-\exp \text { Integral }_{1}(-x) x+c_{1} x-\mathrm{e}^{x}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=-\operatorname{expIntegral} \\
& 1
\end{aligned}(-1)+c_{1}-\mathrm{e}, ~=\exp \operatorname{Integral}_{1}(-1)+\mathrm{e}+\frac{1}{2} .
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\exp \operatorname{Integral}_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e}^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\exp \operatorname{Integral}_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e}^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\operatorname{expIntegral}{ }_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e}^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2}
$$

Verified OK.

7.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x \mathrm{e}^{x}+2 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 204: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=c i a l$		
polynomial type ode	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
Bernoulli ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Reduced Riccati	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x \mathrm{e}^{x}+2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{2 y}{x^{3}} \\
& S_{y}=\frac{1}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{x}}{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{R}}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\mathrm{e}^{R}}{R}-\exp \operatorname{Integral}_{1}(-R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{2}}=-\frac{\mathrm{e}^{x}}{x}-\exp \text { Integral }_{1}(-x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}}=-\frac{\mathrm{e}^{x}}{x}-\exp \operatorname{Integral}_{1}(-x)+c_{1}
$$

Which gives

$$
y=-x\left(\exp \operatorname{Integral}_{1}(-x) x-c_{1} x+\mathrm{e}^{x}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x \mathrm{e}^{x}+2 y}{x}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{R}}{R^{2}}$
	$R=x$	
	$S=\underline{y}$	
	$S=\frac{}{x^{2}}$	

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=-\operatorname{expIntegral}{ }_{1}(-1)+c_{1}-\mathrm{e} \\
& c_{1}=\operatorname{expIntegral} \\
& 1
\end{aligned}(-1)+\mathrm{e}+\frac{1}{2} .
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\exp \operatorname{Integral}_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e}^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\operatorname{expIntegral}{ }_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e}^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\exp \operatorname{Integral}_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e} x^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2}
$$

Verified OK.

7.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{2 y}{x}+\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(-\frac{2 y}{x}-\mathrm{e}^{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{2 y}{x}-\mathrm{e}^{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 y}{x}-\mathrm{e}^{x}\right) \\
& =-\frac{2}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{2}{x}\right)-(0)\right) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-\frac{2 y}{x}-\mathrm{e}^{x}\right) \\
& =\frac{-x \mathrm{e}^{x}-2 y}{x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(1) \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x \mathrm{e}^{x}-2 y}{x^{3}}\right)+\left(\frac{1}{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x \mathrm{e}^{x}-2 y}{x^{3}} \mathrm{~d} x \\
\phi & =\frac{\operatorname{expIntegral} 1(-x) x^{2}+x \mathrm{e}^{x}+y}{x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{2}}=\frac{1}{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\operatorname{expIntegral}{ }_{1}(-x) x^{2}+x \mathrm{e}^{x}+y}{x^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\operatorname{expIntegral}_{1}(-x) x^{2}+x \mathrm{e}^{x}+y}{x^{2}}
$$

The solution becomes

$$
y=-x\left(\operatorname{expIntegral}{ }_{1}(-x) x-c_{1} x+\mathrm{e}^{x}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=-\exp \operatorname{Integral}_{1}(-1)+c_{1}-\mathrm{e} \\
c_{1}=\operatorname{expIntegral}_{1}(-1)+\mathrm{e}+\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\exp \operatorname{Integral}_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e}^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\exp \operatorname{Integral}_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e}^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\operatorname{expIntegral}{ }_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\mathrm{e}^{2}-x \mathrm{e}^{x}+\frac{x^{2}}{2}
$$

Verified OK.

7.6.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2 y}{x}=\mathrm{e}^{x}, y(1)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 y}{x}+\mathrm{e}^{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{x}=\mathrm{e}^{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=\mu(x) \mathrm{e}^{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{2 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{2}}$
$y=x^{2}\left(\int \frac{\mathrm{e}^{x}}{x^{2}} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x^{2}\left(-\frac{\mathrm{e}^{x}}{x}-\mathrm{Ei}_{1}(-x)+c_{1}\right)$
- Simplify
$y=x\left(-\mathrm{Ei}_{1}(-x) x+c_{1} x-\mathrm{e}^{x}\right)$
- Use initial condition $y(1)=\frac{1}{2}$
$\frac{1}{2}=-\operatorname{Ei}_{1}(-1)+c_{1}-\mathrm{e}$
- \quad Solve for c_{1}
$c_{1}=\operatorname{Ei}_{1}(-1)+\mathrm{e}+\frac{1}{2}$
- Substitute $c_{1}=\operatorname{Ei}_{1}(-1)+\mathrm{e}+\frac{1}{2}$ into general solution and simplify
$y=-\mathrm{Ei}_{1}(-x) x^{2}+\mathrm{Ei}_{1}(-1) x^{2}+\frac{\left(2 x \mathrm{e}+x-2 \mathrm{e}^{x}\right) x}{2}$
- \quad Solution to the IVP
$y=-\mathrm{Ei}_{1}(-x) x^{2}+\mathrm{Ei}_{1}(-1) x^{2}+\frac{\left(2 x \mathrm{e}+x-2 \mathrm{e}^{x}\right) x}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 29

```
dsolve([diff(y(x),x)=2*y(x)/x+exp(x),y(1) = 1/2],y(x), singsol=all)
```

$$
y(x)=-\exp \operatorname{Integral}_{1}(-x) x^{2}+\exp \operatorname{Integral}_{1}(-1) x^{2}+\frac{\left(2 x \mathrm{e}+x-2 \mathrm{e}^{x}\right) x}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 31
DSolve[\{y' $[x]==2 * y[x] / x+\operatorname{Exp}[x],\{y[1]==1 / 2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} x\left(2 x \operatorname{ExpIntegralEi}(x)-2 \operatorname{ExpIntegralEi}(1) x+2 e x+x-2 e^{x}\right)
$$

7.7 problem 7

7.7.1 Existence and uniqueness analysis 1216
7.7.2 Solving as linear ode . 1217
7.7.3 Solving as first order ode lie symmetry lookup ode 1219
7.7.4 Solving as exact ode . 1223
7.7.5 Maple step by step solution . 1227

Internal problem ID [12692]
Internal file name [OUTPUT/11344_Friday_November_03_2023_06_30_47_AM_70439168/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-y \cot (x)=\sin (x)
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=0\right]
$$

7.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\cot (x) \\
q(x) & =\sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y \cot (x)=\sin (x)
$$

The domain of $p(x)=-\cot (x)$ is

$$
\left\{x<\pi _Z 118 \vee \pi _Z 118<x\right\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The domain of $q(x)=\sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is also inside this domain. Hence solution exists and is unique.

7.7.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\cot (x) d x} \\
& =\frac{1}{\sin (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\csc (x)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sin (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\csc (x) y) & =(\csc (x))(\sin (x)) \\
\mathrm{d}(\csc (x) y) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\csc (x) y & =\int \mathrm{d} x \\
\csc (x) y & =x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\csc (x)$ results in

$$
y=x \sin (x)+\sin (x) c_{1}
$$

which simplifies to

$$
y=\sin (x)\left(x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\pi}{2}+c_{1} \\
c_{1}=-\frac{\pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\sin (x) \pi}{2}+x \sin (x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sin (x) \pi}{2}+x \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{\sin (x) \pi}{2}+x \sin (x)
$$

Verified OK.

7.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y \cot (x)+\sin (x) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 207: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sin (x) \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sin (x)} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sin (x)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y \cot (x)+\sin (x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\csc (x) \cot (x) y \\
& S_{y}=\csc (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\csc (x) y=x+c_{1}
$$

Which simplifies to

$$
\csc (x) y=x+c_{1}
$$

Which gives

$$
y=\frac{x+c_{1}}{\csc (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y \cot (x)+\sin (x)$		$\frac{d S}{d R}=1$
	$S=\csc (x) y$	

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\pi}{2}+c_{1} \\
c_{1}=-\frac{\pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\sin (x) \pi}{2}+x \sin (x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sin (x) \pi}{2}+x \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\sin (x) \pi}{2}+x \sin (x)
$$

Verified OK.

7.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(y \cot (x)+\sin (x)) \mathrm{d} x \\
(-y \cot (x)-\sin (x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \cot (x)-\sin (x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y \cot (x)-\sin (x)) \\
& =-\cot (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-\cot (x))-(0)) \\
& =-\cot (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\cot (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (\sin (x))} \\
& =\csc (x)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\csc (x)(-y \cot (x)-\sin (x)) \\
& =-1-\csc (x) \cot (x) y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\csc (x)(1) \\
& =\csc (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(-1-\csc (x) \cot (x) y)+(\csc (x)) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-1-\csc (x) \cot (x) y \mathrm{~d} x \\
\phi & =-x+\csc (x) y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\csc (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\csc (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\csc (x)=\csc (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\csc (x) y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\csc (x) y
$$

The solution becomes

$$
y=\frac{x+c_{1}}{\csc (x)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\pi}{2}+c_{1} \\
c_{1}=-\frac{\pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\sin (x) \pi}{2}+x \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sin (x) \pi}{2}+x \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\frac{\sin (x) \pi}{2}+x \sin (x)
$$

Verified OK.

7.7.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y \cot (x)=\sin (x), y\left(\frac{\pi}{2}\right)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y \cot (x)+\sin (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y \cot (x)=\sin (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y \cot (x)\right)=\mu(x) \sin (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y \cot (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x) \cot (x)$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{\sin (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sin (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sin (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sin (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\sin (x)}$
$y=\sin (x)\left(\int 1 d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\sin (x)\left(x+c_{1}\right)$
- Use initial condition $y\left(\frac{\pi}{2}\right)=0$
$0=\frac{\pi}{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{\pi}{2}$
- \quad Substitute $c_{1}=-\frac{\pi}{2}$ into general solution and simplify
$y=\left(x-\frac{\pi}{2}\right) \sin (x)$
- \quad Solution to the IVP
$y=\left(x-\frac{\pi}{2}\right) \sin (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff (y(x),x)=cot(x)*y(x)+\operatorname{sin}(x),y(1/2*Pi) = 0],y(x), singsol=all)
```

$$
y(x)=\left(-\frac{\pi}{2}+x\right) \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 16
DSolve $\left[\left\{y^{\prime}[\mathrm{x}]==\operatorname{Cot}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]+\operatorname{Sin}[\mathrm{x}],\{\mathrm{y}[\mathrm{Pi} / 2]==0\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{2}(\pi-2 x) \sin (x)
$$

7.8 problem 12

7.8.1 Solving as separable ode . 1230
7.8.2 Solving as homogeneousTypeD2 ode 1232
7.8.3 Solving as differentialType ode 1234
7.8.4 Solving as first order ode lie symmetry lookup ode 1235
7.8.5 Solving as exact ode . 1239
7.8.6 Maple step by step solution . 1243

Internal problem ID [12693]
Internal file name [OUTPUT/11345_Friday_November_03_2023_06_30_48_AM_74629381/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode__lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
-y y^{\prime}=-x
$$

7.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x}{y}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y}} d y=x d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y}} d y & =\int x d x \\
\frac{y^{2}}{2} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}} \\
& y=-\sqrt{x^{2}+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x^{2}+2 c_{1}} \tag{1}\\
& y=-\sqrt{x^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 249: Slope field plot

Verification of solutions

$$
y=\sqrt{x^{2}+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{x^{2}+2 c_{1}}
$$

Verified OK.

7.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-u(x) x\left(u^{\prime}(x) x+u(x)\right)=-x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-1}{u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\ln (x)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\ln (x)+2 c_{2}\right) \\
& =-2 \ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-2 \ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{x^{2}} \\
& =\frac{c_{3}}{x^{2}}
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=\frac{c_{3}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x^{2}} \\
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
-(-y+x)(y+x)=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-(-y+x)(y+x)=c_{3} \tag{1}
\end{equation*}
$$

Figure 250: Slope field plot

Verification of solutions

$$
-(-y+x)(y+x)=c_{3}
$$

Verified OK.

7.8.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(x) d x=d\left(\frac{x^{2}}{2}\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{x^{2}}{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}}+c_{1} \\
& y=-\sqrt{x^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-\sqrt{x^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 251: Slope field plot
Verification of solutions

$$
y=\sqrt{x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-\sqrt{x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

7.8.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 210: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η				
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$				
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0				
quadrature ode	$y^{\prime}=f(x)$	0	1				
quadrature ode	$y^{\prime}=g(y)$	1	0				
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y				
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$				
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$				
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$				
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$					
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$				
$a_{1} b_{2}-a_{2} b_{1}$				$\frac{\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0
:---	:---	:---					

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x}{y}$		$\frac{d S}{d R}=R$
-		
	$R=y$	
	x^{2}	
	$S=\frac{x^{2}}{0}$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 252: Slope field plot

Verification of solutions

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

7.8.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 253: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

7.8.6 Maple step by step solution

Let's solve

$$
-y y^{\prime}=-x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int-y y^{\prime} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
-\frac{y^{2}}{2}=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{x^{2}-2 c_{1}}, y=-\sqrt{x^{2}-2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(x-y(x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{x^{2}+c_{1}} \\
& y(x)=-\sqrt{x^{2}+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.132 (sec). Leaf size: 35
DSolve $[x-y[x] * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x^{2}+2 c_{1}} \\
& y(x) \rightarrow \sqrt{x^{2}+2 c_{1}}
\end{aligned}
$$

7.9 problem 13

7.9.1 Solving as separable ode . 1245
7.9.2 Solving as linear ode . 1247
7.9.3 Solving as homogeneousTypeD2 ode 1248
7.9.4 Solving as first order ode lie symmetry lookup ode 1249
7.9.5 Solving as exact ode . 1253
7.9.6 Maple step by step solution . 1257

Internal problem ID [12694]
Internal file name [OUTPUT/11346_Friday_November_03_2023_06_30_49_AM_53449137/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y-y^{\prime} x=0
$$

7.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 254: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

7.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 255: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

7.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x-\left(u^{\prime}(x) x+u(x)\right) x=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =c_{2} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x \tag{1}
\end{equation*}
$$

Figure 256: Slope field plot

Verification of solutions

$$
y=c_{2} x
$$

Verified OK.

7.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 213: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow]{ }$
\cdots		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$
	$R=x$ S	
	$=\frac{y}{x}$	$\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow-R_{0 \rightarrow \rightarrow}}$
多多多夝早新：		$\xrightarrow{-2 \rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow}$
		$\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{+}$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Figure 257: Slope field plot

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

7.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{c_{1}} x \tag{1}
\end{equation*}
$$

Figure 258: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{c_{1}} x
$$

Verified OK.

7.9.6 Maple step by step solution

Let's solve

$$
y-y^{\prime} x=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

```
dsolve(y(x)-x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} x
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 14
DSolve[y[x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow 0
\end{aligned}
$$

7.10 problem 14

7.10.1 Solving as linear ode . 1259
7.10.2 Solving as homogeneousTypeD2 ode 1261
7.10.3 Solving as first order ode lie symmetry lookup ode 1262
7.10.4 Solving as exact ode . 1266
7.10.5 Maple step by step solution . 1271

Internal problem ID [12695]
Internal file name [OUTPUT/11347_Friday_November_03_2023_06_30_50_AM_28944007/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x-y=-x^{2}
$$

7.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=-x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=-x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)(-x) \\
\mathrm{d}\left(\frac{y}{x}\right) & =-1 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int-1 \mathrm{~d} x \\
& \frac{y}{x}=-x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x-x^{2}
$$

which simplifies to

$$
y=x\left(-x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(-x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 259: Slope field plot

Verification of solutions

$$
y=x\left(-x+c_{1}\right)
$$

Verified OK.

7.10.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) x-u(x) x=-x^{2}
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int-1 \mathrm{~d} x \\
& =-x+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x\left(-x+c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 260: Slope field plot

Verification of solutions

$$
y=x\left(-x+c_{2}\right)
$$

Verified OK.

7.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-x^{2}+y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 216: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-x^{2}+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=-x+c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=-x+c_{1}
$$

Which gives

$$
y=x\left(-x+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-x^{2}+y}{x}$		$\frac{d S}{d R}=-1$
	$\begin{aligned} & R=x \\ & S=y \end{aligned}$	
	$S=\frac{y}{x}$	
		antubivitizizit

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(-x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 261: Slope field plot

Verification of solutions

$$
y=x\left(-x+c_{1}\right)
$$

Verified OK.

7.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-x^{2}+y\right) \mathrm{d} x \\
\left(x^{2}-y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}-y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}-y\right) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-1)-(1)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(x^{2}-y\right) \\
& =\frac{x^{2}-y}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(x) \\
& =\frac{1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{2}-y}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}-y}{x^{2}} \mathrm{~d} x \\
\phi & =x+\frac{y}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x+\frac{y}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x+\frac{y}{x}
$$

The solution becomes

$$
y=x\left(-x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(-x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 262: Slope field plot

Verification of solutions

$$
y=x\left(-x+c_{1}\right)
$$

Verified OK.

7.10.5 Maple step by step solution

Let's solve
$y^{\prime} x-y=-x^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}-x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=-x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=-\mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-\mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-\mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-\mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int(-1) d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x\left(-x+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve((x^2-y(x))+x*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=x\left(c_{1}-x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 13
DSolve[($\left.x^{\wedge} 2-y[x]\right)+x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x\left(-x+c_{1}\right)
$$

7.11 problem 15

7.11.1 Solving as separable ode . 1273
7.11.2 Solving as first order ode lie symmetry lookup ode 1275
7.11.3 Solving as bernoulli ode . 1279
7.11.4 Solving as exact ode . 1282
7.11.5 Solving as riccati ode . 1286
7.11.6 Maple step by step solution . 1289

Internal problem ID [12696]
Internal file name [OUTPUT/11348_Friday_November_03_2023_06_30_51_AM_15510492/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x y(1-y)-2 y^{\prime}=0
$$

7.11.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x y(y-1)}{2}
\end{aligned}
$$

Where $f(x)=-\frac{x}{2}$ and $g(y)=y(y-1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y(y-1)} d y & =-\frac{x}{2} d x \\
\int \frac{1}{y(y-1)} d y & =\int-\frac{x}{2} d x
\end{aligned}
$$

$$
\ln (y-1)-\ln (y)=-\frac{x^{2}}{4}+c_{1}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)-\ln (y)}=\mathrm{e}^{-\frac{x^{2}}{4}+c_{1}}
$$

Which simplifies to

$$
\frac{y-1}{y}=c_{2} \mathrm{e}^{-\frac{x^{2}}{4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{-1+c_{2} \mathrm{e}^{-\frac{x^{2}}{4}}} \tag{1}
\end{equation*}
$$

Figure 263: Slope field plot

Verification of solutions

$$
y=-\frac{1}{-1+c_{2} \mathrm{e}^{-\frac{x^{2}}{4}}}
$$

Verified OK.

7.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x y(y-1)}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 219: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{2}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{2}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y(y-1)}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{x}{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y(y-1)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R(R-1)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R-1)-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{4}=\ln (y-1)-\ln (y)+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{4}=\ln (y-1)-\ln (y)+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}+c_{1}}}{-1+\mathrm{e}^{\frac{x^{2}}{4}+c_{1}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x y(y-1)}{2}$		$\frac{d S}{d R}=\frac{1}{R(R-1)}$
		$\longrightarrow \rightarrow-{ }^{4}$
$\cdots \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$	$R=y$	
T 4×4		$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm}$,
	$S=-\frac{x}{4}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\rightarrow \rightarrow \rightarrow \rightarrow- \pm \uparrow+{ }_{\square}$
4-4.		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}+c_{1}}}{-1+\mathrm{e}^{\frac{x^{2}}{4}+c_{1}}} \tag{1}
\end{equation*}
$$

Figure 264: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}+c_{1}}}{-1+\mathrm{e}^{\frac{x^{2}}{4}+c_{1}}}
$$

Verified OK.

7.11.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x y(y-1)}{2}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{x}{2} y-\frac{x}{2} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{x}{2} \\
f_{1}(x) & =-\frac{x}{2} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{x}{2 y}-\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x) x}{2}-\frac{x}{2} \\
w^{\prime} & =-\frac{1}{2} x w+\frac{1}{2} x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x}{2} \\
q(x) & =\frac{x}{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x) x}{2}=\frac{x}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{x}{2} d x} \\
& =\mathrm{e}^{\frac{x^{2}}{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{x}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x^{2}}{4}} w\right) & =\left(\mathrm{e}^{\frac{x^{2}}{4}}\right)\left(\frac{x}{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{x^{2}}{4}} w\right) & =\left(\frac{x \mathrm{e}^{\frac{x^{2}}{4}}}{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{x^{2}}{4}} w=\int \frac{x \mathrm{e}^{\frac{x^{2}}{4}}}{2} \mathrm{~d} x \\
& \mathrm{e}^{\frac{x^{2}}{4}} w=\mathrm{e}^{\frac{x^{2}}{4}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{x^{2}}{4}}$ results in

$$
w(x)=\mathrm{e}^{-\frac{x^{2}}{4}} \mathrm{e}^{\frac{x^{2}}{4}}+c_{1} \mathrm{e}^{-\frac{x^{2}}{4}}
$$

which simplifies to

$$
w(x)=1+c_{1} \mathrm{e}^{-\frac{x^{2}}{4}}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=1+c_{1} \mathrm{e}^{-\frac{x^{2}}{4}}
$$

Or

$$
y=\frac{1}{1+c_{1} \mathrm{e}^{-\frac{x^{2}}{4}}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{1+c_{1} \mathrm{e}^{-\frac{x^{2}}{4}}} \tag{1}
\end{equation*}
$$

Figure 265: Slope field plot

Verification of solutions

$$
y=\frac{1}{1+c_{1} \mathrm{e}^{-\frac{x^{2}}{4}}}
$$

Verified OK.

7.11.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2}{y(y-1)}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{2}{y(y-1)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{2}{y(y-1)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{2}{y(y-1)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2}{y(y-1)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2}{y(y-1)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{2}{y(y-1)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{2}{y(y-1)}\right) \mathrm{d} y \\
f(y) & =-2 \ln (y-1)+2 \ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-2 \ln (y-1)+2 \ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-2 \ln (y-1)+2 \ln (y)
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}+\frac{c_{1}}{2}}}{-1+\mathrm{e}^{\frac{x^{2}}{4}+\frac{c_{1}}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}+\frac{c_{1}}{2}}}{-1+\mathrm{e}^{\frac{x^{2}}{4}+\frac{c_{1}}{2}}} \tag{1}
\end{equation*}
$$

Figure 266: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}+\frac{c_{1}}{2}}}{-1+\mathrm{e}^{\frac{x^{2}}{4}+\frac{c_{1}}{2}}}
$$

Verified OK.

7.11.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x y(y-1)}{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{1}{2} x y^{2}+\frac{1}{2} x y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{x}{2}$ and $f_{2}(x)=-\frac{x}{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{x u}{2}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{2} \\
f_{1} f_{2} & =-\frac{x^{2}}{4} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{x u^{\prime \prime}(x)}{2}-\left(-\frac{1}{2}-\frac{x^{2}}{4}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\mathrm{e}^{\frac{x^{2}}{4}} c_{2}
$$

The above shows that

$$
u^{\prime}(x)=\frac{x \mathrm{e}^{\frac{x^{2}}{4}} c_{2}}{2}
$$

Using the above in (1) gives the solution

$$
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}} c_{2}}{c_{1}+\mathrm{e}^{\frac{x^{2}}{4}} c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}}}{c_{3}+\mathrm{e}^{\frac{x^{2}}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}}}{c_{3}+\mathrm{e}^{\frac{x^{2}}{4}}} \tag{1}
\end{equation*}
$$

Figure 267: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{x^{2}}{4}}}{c_{3}+\mathrm{e}^{\frac{x^{2}}{4}}}
$$

Verified OK.

7.11.6 Maple step by step solution

Let's solve

$$
x y(1-y)-2 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y(1-y)}=\frac{x}{2}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y(1-y)} d x=\int \frac{x}{2} d x+c_{1}
$$

- Evaluate integral

$$
-\ln (y-1)+\ln (y)=\frac{x^{2}}{4}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{e^{\frac{x^{2}}{4}+c_{1}}}{-1+\mathrm{e}^{\frac{x^{2}}{4}+c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(x*y(x)*(1-y(x))-2*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{1}{1+\mathrm{e}^{-\frac{x^{2}}{4}} c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.392 (sec). Leaf size: 41
DSolve $[x * y[x] *(1-y[x])-2 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{e^{\frac{x^{2}}{4}}}{e^{\frac{x^{2}}{4}}+e^{c_{1}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 1
\end{aligned}
$$

7.12 problem 16

7.12.1 Solving as separable ode . 1291
7.12.2 Solving as first order ode lie symmetry lookup ode 1293
7.12.3 Solving as bernoulli ode . 1297
7.12.4 Solving as exact ode . 1301
7.12.5 Maple step by step solution . 1304

Internal problem ID [12697]
Internal file name [OUTPUT/11349_Friday_November_03_2023_06_30_51_AM_42738902/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x\left(1-y^{3}\right)-3 y^{\prime} y^{2}=0
$$

7.12.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x\left(y^{3}-1\right)}{3 y^{2}}
\end{aligned}
$$

Where $f(x)=-\frac{x}{3}$ and $g(y)=\frac{y^{3}-1}{y^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{3}-1}{y^{2}}} d y & =-\frac{x}{3} d x \\
\int \frac{1}{\frac{y^{3}-1}{y^{2}}} d y & =\int-\frac{x}{3} d x
\end{aligned}
$$

$$
\frac{\ln \left(y^{3}-1\right)}{3}=-\frac{x^{2}}{6}+c_{1}
$$

Raising both side to exponential gives

$$
\left(y^{3}-1\right)^{\frac{1}{3}}=\mathrm{e}^{-\frac{x^{2}}{6}+c_{1}}
$$

Which simplifies to

$$
\left(y^{3}-1\right)^{\frac{1}{3}}=c_{2} \mathrm{e}^{-\frac{x^{2}}{6}}
$$

The solution is

$$
\left(y^{3}-1\right)^{\frac{1}{3}}=c_{2} \mathrm{e}^{-\frac{x^{2}}{6}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(y^{3}-1\right)^{\frac{1}{3}}=c_{2} \mathrm{e}^{-\frac{x^{2}}{6}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 268: Slope field plot
Verification of solutions

$$
\left(y^{3}-1\right)^{\frac{1}{3}}=c_{2} \mathrm{e}^{-\frac{x^{2}}{6}+c_{1}}
$$

Verified OK.

7.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x\left(y^{3}-1\right)}{3 y^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 222: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{3}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{3}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x\left(y^{3}-1\right)}{3 y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{x}{3} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y^{2}}{y^{3}-1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{2}}{R^{3}-1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left((R-1)\left(R^{2}+R+1\right)\right)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{6}=\frac{\ln \left((y-1)\left(y^{2}+y+1\right)\right)}{3}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{6}=\frac{\ln \left((y-1)\left(y^{2}+y+1\right)\right)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x\left(y^{3}-1\right)}{3 y^{2}}$		$\frac{d S}{d R}=\frac{R^{2}}{R^{3}-1}$
		\rightarrow
	$R=y$	$\rightarrow \rightarrow+a v a \rightarrow 0$
brbblbit 4 4 4 4 4 4 4		-
		$\rightarrow-4 \rightarrow-2 \times 0 \rightarrow 8$
	$S=-\frac{1}{6}$	$\rightarrow \rightarrow \rightarrow 0$
! 1.1		
1.		为
		\rightarrow 为

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{6}=\frac{\ln \left((y-1)\left(y^{2}+y+1\right)\right)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 269: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{6}=\frac{\ln \left((y-1)\left(y^{2}+y+1\right)\right)}{3}+c_{1}
$$

Verified OK.

7.12.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x\left(y^{3}-1\right)}{3 y^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{x}{3} y+\frac{x}{3} \frac{1}{y^{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{x}{3} \\
f_{1}(x) & =\frac{x}{3} \\
n & =-2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{2}}$ gives

$$
\begin{equation*}
y^{\prime} y^{2}=-\frac{x y^{3}}{3}+\frac{x}{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{3} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=3 y^{2} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{3} & =-\frac{w(x) x}{3}+\frac{x}{3} \\
w^{\prime} & =-x w+x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =x \\
q(x) & =x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+w(x) x=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int x d x} \\
& =\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x^{2}}{2}} w\right) & =\left(\mathrm{e}^{\frac{x^{2}}{2}}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{\frac{x^{2}}{2}} w\right) & =\left(x \mathrm{e}^{\frac{x^{2}}{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{x^{2}}{2}} w=\int x \mathrm{e}^{\frac{x^{2}}{2}} \mathrm{~d} x \\
& \mathrm{e}^{\frac{x^{2}}{2}} w=\mathrm{e}^{\frac{x^{2}}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{x^{2}}{2}}$ results in

$$
w(x)=\mathrm{e}^{\frac{x^{2}}{2}} \mathrm{e}^{-\frac{x^{2}}{2}}+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

which simplifies to

$$
w(x)=1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Replacing w in the above by y^{3} using equation (5) gives the final solution.

$$
y^{3}=1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}} \\
& y(x)=\frac{\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2} \\
& y(x)=-\frac{\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}} \tag{1}\\
& y=\frac{\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2} \tag{2}\\
& y=-\frac{\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2} \tag{3}
\end{align*}
$$

Figure 270: Slope field plot

Verification of solutions

$$
y=\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}}
$$

Verified OK.

$$
y=\frac{\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2}
$$

Verified OK.

$$
y=-\frac{\left(1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2}
$$

Verified OK.

7.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{3 y^{2}}{y^{3}-1}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{3 y^{2}}{y^{3}-1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{3 y^{2}}{y^{3}-1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{3 y^{2}}{y^{3}-1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{3 y^{2}}{y^{3}-1}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{3 y^{2}}{y^{3}-1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{3 y^{2}}{y^{3}-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{3 y^{2}}{y^{3}-1}\right) \mathrm{d} y \\
f(y) & =-\ln \left(y^{3}-1\right)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\ln \left(y^{3}-1\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\ln \left(y^{3}-1\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}-\ln \left(y^{3}-1\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 271: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}-\ln \left(y^{3}-1\right)=c_{1}
$$

Verified OK.

7.12.5 Maple step by step solution

Let's solve

$$
x\left(1-y^{3}\right)-3 y^{\prime} y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime} y^{2}}{1-y^{3}}=\frac{x}{3}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime} y^{2}}{1-y^{3}} d x=\int \frac{x}{3} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{\ln \left(y^{3}-1\right)}{3}=\frac{x^{2}}{6}+c_{1}
$$

- \quad Solve for y

$$
y=\left(1+\mathrm{e}^{-\frac{x^{2}}{2}-3 c_{1}}\right)^{\frac{1}{3}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 66

```
dsolve(x*(1-y(x)^3)-3*y(x)^2*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\left(\mathrm{e}^{-\frac{x^{2}}{2}} c_{1}+1\right)^{\frac{1}{3}} \\
& y(x)=-\frac{\left(\mathrm{e}^{-\frac{x^{2}}{2}} c_{1}+1\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2} \\
& y(x)=\frac{\left(\mathrm{e}^{-\frac{x^{2}}{2}} c_{1}+1\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.121 (sec). Leaf size: 111
DSolve[x*(1-y[x] 3$)-3 * y[x] \sim 2 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \sqrt[3]{1+e^{-\frac{x^{2}}{2}+3 c_{1}}} \\
& y(x) \rightarrow-\sqrt[3]{-1} \sqrt[3]{1+e^{-\frac{x^{2}}{2}+3 c_{1}}} \\
& y(x) \rightarrow(-1)^{2 / 3} \sqrt[3]{1+e^{-\frac{x^{2}}{2}+3 c_{1}}} \\
& y(x) \rightarrow 1 \\
& y(x) \rightarrow-\sqrt[3]{-1} \\
& y(x) \rightarrow(-1)^{2 / 3}
\end{aligned}
$$

7.13 problem 17

7.13.1 Solving as separable ode . 1307
7.13.2 Solving as linear ode . 1309
7.13.3 Solving as homogeneousTypeD2 ode 1311
7.13.4 Solving as first order ode lie symmetry lookup ode 1312
7.13.5 Solving as exact ode . 1316
7.13.6 Maple step by step solution . 1320

Internal problem ID [12698]
Internal file name [OUTPUT/11350_Friday_November_03_2023_06_30_53_AM_43134312/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.3.3, page 71
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(2 x-1) y+x(x+1) y^{\prime}=0
$$

7.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{(2 x-1) y}{x(x+1)}
\end{aligned}
$$

Where $f(x)=-\frac{2 x-1}{x(x+1)}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{2 x-1}{x(x+1)} d x \\
\int \frac{1}{y} d y & =\int-\frac{2 x-1}{x(x+1)} d x \\
\ln (y) & =-3 \ln (x+1)+\ln (x)+c_{1} \\
y & =\mathrm{e}^{-3 \ln (x+1)+\ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-3 \ln (x+1)+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{1} x}{(x+1)^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x}{(x+1)^{3}} \tag{1}
\end{equation*}
$$

Figure 272: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x}{(x+1)^{3}}
$$

Verified OK.

7.13.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-2 x+1}{x(x+1)} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-2 x+1) y}{x(x+1)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-2 x+1}{x(x+1)} d x} \\
& =\mathrm{e}^{3 \ln (x+1)-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(x+1)^{3}}{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{(x+1)^{3} y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{(x+1)^{3} y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{(x+1)^{3}}{x}$ results in

$$
y=\frac{c_{1} x}{(x+1)^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x}{(x+1)^{3}} \tag{1}
\end{equation*}
$$

Figure 273: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x}{(x+1)^{3}}
$$

Verified OK.

7.13.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
(2 x-1) u(x) x+x(x+1)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x+1}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x+1}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x+1} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x+1} d x \\
\ln (u) & =-3 \ln (x+1)+c_{2} \\
u & =\mathrm{e}^{-3 \ln (x+1)+c_{2}} \\
& =\frac{c_{2}}{(x+1)^{3}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =\frac{x c_{2}}{(x+1)^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x c_{2}}{(x+1)^{3}} \tag{1}
\end{equation*}
$$

Figure 274: Slope field plot

Verification of solutions

$$
y=\frac{x c_{2}}{(x+1)^{3}}
$$

Verified OK.

7.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{(2 x-1) y}{x(x+1)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 225: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-3 \ln (x+1)+\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 \ln (x+1)+\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{(x+1)^{3} y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{(2 x-1) y}{x(x+1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{(x+1)^{2} y(2 x-1)}{x^{2}} \\
S_{y} & =\frac{(x+1)^{3}}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{(x+1)^{3} y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{(x+1)^{3} y}{x}=c_{1}
$$

Which gives

$$
y=\frac{c_{1} x}{(x+1)^{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{(2 x-1) y}{x(x+1)}$		$d S$ $d R$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x}{(x+1)^{3}} \tag{1}
\end{equation*}
$$

Figure 275: Slope field plot
Verification of solutions

$$
y=\frac{c_{1} x}{(x+1)^{3}}
$$

Verified OK.

7.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{2 x-1}{x(x+1)}\right) \mathrm{d} x \\
\left(-\frac{2 x-1}{x(x+1)}\right) \mathrm{d} x+\left(-\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{2 x-1}{x(x+1)} \\
N(x, y) & =-\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x-1}{x(x+1)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{2 x-1}{x(x+1)} \mathrm{d} x \\
\phi & =-3 \ln (x+1)+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 \ln (x+1)+\ln (x)-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 \ln (x+1)+\ln (x)-\ln (y)
$$

The solution becomes

$$
y=\frac{x \mathrm{e}^{-c_{1}}}{(x+1)^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \mathrm{e}^{-c_{1}}}{(x+1)^{3}} \tag{1}
\end{equation*}
$$

Figure 276: Slope field plot

Verification of solutions

$$
y=\frac{x \mathrm{e}^{-c_{1}}}{(x+1)^{3}}
$$

Verified OK.

7.13.6 Maple step by step solution

Let's solve

$$
(2 x-1) y+x(x+1) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=-\frac{2 x-1}{x(x+1)}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int-\frac{2 x-1}{x(x+1)} d x+c_{1}$
- Evaluate integral
$\ln (y)=-3 \ln (x+1)+\ln (x)+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{c_{1} x}}{x^{3}+3 x^{2}+3 x+1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve $(y(x) *(2 * x-1)+x *(x+1) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{c_{1} x}{(1+x)^{3}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 19
DSolve $[\mathrm{y}[\mathrm{x}] *(2 * \mathrm{x}-1)+\mathrm{x} *(\mathrm{x}+1) * \mathrm{y}$ ' $[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1} x}{(x+1)^{3}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

8 Chapter 2. The Initial Value Problem. Exercises2.4.4, page 115
8.1 problem 1 1324
8.2 problem 2 1328
8.3 problem 3 (a) 1342
8.4 problem 3 (b) 1357
8.5 problem 4 (a) 1372
8.6 problem 4 (b) 1387
8.7 problem 4 (c) 1401
8.8 problem 5 (a) 1416
8.9 problem 5 (b) 1420
8.10 problem 5 (c) 1424
8.11 problem 6 (a) 1428
8.12 problem 6 (b) 1433
8.13 problem 6 (c) 1437
8.14 problem 7 (a) 1442
8.15 problem 7 (b) 1457
8.16 problem 7 (c) 1473
8.17 problem 7 (d) 1489
8.18 problem 8 (a) 1504
8.19 problem 8 (b) 1516
8.20 problem 8 (c) 1528
8.21 problem 8 (d) 1540
8.22 problem 9 (a) 1553
8.23 problem 9 (b) 1566
8.24 problem 9 (c) 1577
8.25 problem 9 (d) 1591
8.26 problem 9 (e) 1604
8.27 problem 10 (a) 1616
8.28 problem $10(\mathrm{~b})$ 1619
8.29 problem 10 (c) 1623
8.30 problem 11 (a) 1627
8.31 problem 11 (b) 1640
8.32 problem 11 (c) 1654
8.33 problem 11 (d) 1667
8.34 problem 12 (a) 1681
8.35 problem 12 (b) 1695
8.36 problem 12 (c) 1708
8.37 problem 13 (a) 1723
8.38 problem 13 (b) 1736
8.39 problem 13 (c) 1750
8.40 problem 13 (d) 1764
8.41 problem 14 (a) 1778
8.42 problem 14 (b) 1787
8.43 problem 14 (c) 1795
8.44 problem 14 (d) 1803
8.45 problem 14 (e) 1811

8.1 problem 1

8.1.1 Existence and uniqueness analysis 1324
8.1.2 Solving as quadrature ode . 1325
8.1.3 Maple step by step solution . 1326

Internal problem ID [12699]
Internal file name [OUTPUT/11351_Friday_November_03_2023_06_30_53_AM_27644608/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{1}{x-1}
$$

With initial conditions

$$
[y(0)=1]
$$

8.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{1}{x-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{x-1}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{1}{x-1}$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x-1} \mathrm{~d} x \\
& =\ln (x-1)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=i \pi+c_{1} \\
c_{1}=-i \pi+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (x-1)+1-i \pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x-1)+1-i \pi \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x-1)+1-i \pi
$$

Verified OK.

8.1.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\frac{1}{x-1}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{x-1} d x+c_{1}$
- Evaluate integral
$y=\ln (x-1)+c_{1}$
- \quad Solve for y
$y=\ln (x-1)+c_{1}$
- Use initial condition $y(0)=1$
$1=\mathrm{I} \pi+c_{1}$
- \quad Solve for c_{1}
$c_{1}=1-\mathrm{I} \pi$
- \quad Substitute $c_{1}=1-\mathrm{I} \pi$ into general solution and simplify
$y=\ln (x-1)+1-\mathrm{I} \pi$
- \quad Solution to the IVP
$y=\ln (x-1)+1-\mathrm{I} \pi$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve([diff $(y(x), x)=1 /(x-1), y(0)=1], y(x)$, singsol=all)

$$
y(x)=\ln (-1+x)+1-i \pi
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 16
DSolve[\{y' $[x]==1 /(x-1),\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \log (x-1)-i \pi+1
$$

8.2 problem 2

8.2.1 Existence and uniqueness analysis 1328
8.2.2 Solving as linear ode . 1329
8.2.3 Solving as first order ode lie symmetry lookup ode 1331
8.2.4 Solving as exact ode . 1335
8.2.5 Maple step by step solution . 1339

Internal problem ID [12700]
Internal file name [OUTPUT/11352_Friday_November_03_2023_06_30_54_AM_67993084/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=x
$$

With initial conditions

$$
[y(0)=0]
$$

8.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=x
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.2.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{-x}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{-x} y\right) & =\left(x \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} y=\int x \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} y=-(x+1) \mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
y=-\mathrm{e}^{x}(x+1) \mathrm{e}^{-x}+\mathrm{e}^{x} c_{1}
$$

which simplifies to

$$
y=\mathrm{e}^{x} c_{1}-x-1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-1+c_{1} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-1+\mathrm{e}^{x}-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+\mathrm{e}^{x}-x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-1+\mathrm{e}^{x}-x
$$

Verified OK.

8.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y+x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 229: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y+x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\mathrm{e}^{-x} y \\
S_{y} & =\mathrm{e}^{-x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-(R+1) \mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x} y=-(x+1) \mathrm{e}^{-x}+c_{1}
$$

Which simplifies to

$$
(x+y+1) \mathrm{e}^{-x}-c_{1}=0
$$

Which gives

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y+x$		$\frac{d S}{d R}=R \mathrm{e}^{-R}$
		$\xrightarrow{+}$
		: $+2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow$
	$R=x$	
$\square^{-4}+{ }^{\text {d }}$	$S=\mathrm{e}^{-x} y$	为
$1:+1$.		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		\rightarrow
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-1+c_{1} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-1+\mathrm{e}^{x}-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+\mathrm{e}^{x}-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-1+\mathrm{e}^{x}-x
$$

Verified OK.

8.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(y+x) \mathrm{d} x \\
(-y-x) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y-x \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y-x) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x}(-y-x) \\
& =-\mathrm{e}^{-x}(y+x)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x}(1) \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{-x}(y+x)\right)+\left(\mathrm{e}^{-x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{-x}(y+x) \mathrm{d} x \\
\phi & =(x+y+1) \mathrm{e}^{-x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(x+y+1) \mathrm{e}^{-x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(x+y+1) \mathrm{e}^{-x}
$$

The solution becomes

$$
y=-\left(x \mathrm{e}^{-x}+\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-1+c_{1} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-1+\mathrm{e}^{x}-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+\mathrm{e}^{x}-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-1+\mathrm{e}^{x}-x
$$

Verified OK.

8.2.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-y=x, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=y+x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y\right)=\mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x}$
$y=\frac{\int x \mathrm{e}^{-x} d x+c_{1}}{\mathrm{e}^{-x}}$
- Evaluate the integrals on the rhs
$y=\frac{-(x+1) \mathrm{e}^{-x}+c_{1}}{\mathrm{e}^{-x}}$
- Simplify
$y=\mathrm{e}^{x} c_{1}-x-1$
- Use initial condition $y(0)=0$
$0=-1+c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- Substitute $c_{1}=1$ into general solution and simplify
$y=-1+\mathrm{e}^{x}-x$
- Solution to the IVP
$y=-1+\mathrm{e}^{x}-x$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve([diff(y(x),x)=y(x)+x,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=-x-1+\mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 13
DSolve $\left[\left\{y^{\prime}[x]==y[x]+x,\{y[0]==0\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x+e^{x}-1
$$

8.3 problem 3 (a)

8.3.1 Existence and uniqueness analysis 1342
8.3.2 Solving as separable ode . 1343
8.3.3 Solving as linear ode . 1344
8.3.4 Solving as homogeneousTypeD2 ode 1346
8.3.5 Solving as first order ode lie symmetry lookup ode 1347
8.3.6 Solving as exact ode . 1351
8.3.7 Maple step by step solution . 1355

Internal problem ID [12701]
Internal file name [OUTPUT/11353_Friday_November_03_2023_06_30_54_AM_25771254/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 3 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y}{x}=0
$$

With initial conditions

$$
[y(-1)=1]
$$

8.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=0
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=-1$ is inside this domain. Hence solution exists and is unique.

8.3.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-x
$$

Verified OK.

8.3.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-x
$$

Verified OK.

8.3.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} x
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-c_{2} \\
& c_{2}=-1
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=-x
$$

Verified OK.

8.3.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 232: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
大vardy		\rightarrow
		$\xrightarrow{S(R)}$
		$\xrightarrow{\rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty} \rightarrow$	$S=\frac{y}{x}$	
	x	\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-c_{1}
$$

$$
c_{1}=-1
$$

Substituting c_{1} found above in the general solution gives

$$
y=-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-x
$$

Verified OK.

8.3.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{1}{x} \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\mathrm{e}^{c_{1}} \\
c_{1}=i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=-x
$$

Verified OK.

8.3.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x}=0, y(-1)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{1}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=\ln (x)+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{c_{1}} x$
- Use initial condition $y(-1)=1$
$1=-\mathrm{e}^{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=\mathrm{I} \pi$
- Substitute $c_{1}=\mathrm{I} \pi$ into general solution and simplify
$y=-x$
- \quad Solution to the IVP

$$
y=-x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

```
dsolve([diff(y(x),x)=y(x)/x,y(-1) = 1],y(x), singsol=all)
```

$$
y(x)=-x
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 8
DSolve[\{y' $[x]==y[x] / x,\{y[-1]==1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-x
$$

8.4 problem 3 (b)

8.4.1 Existence and uniqueness analysis 1357
8.4.2 Solving as separable ode . 1358
8.4.3 Solving as linear ode . 1359
8.4.4 Solving as homogeneousTypeD2 ode 1361
8.4.5 Solving as first order ode lie symmetry lookup ode 1362
8.4.6 Solving as exact ode . 1366
8.4.7 Maple step by step solution . 1370

Internal problem ID [12702]
Internal file name [OUTPUT/11354_Friday_November_03_2023_06_30_55_AM_48827140/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 3 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y}{x}=0
$$

With initial conditions

$$
[y(-1)=-1]
$$

8.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=0
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=-1$ is inside this domain. Hence solution exists and is unique.

8.4.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-c_{1} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x
$$

Verified OK.

8.4.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=c_{1} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-c_{1} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x
$$

Verified OK.

8.4.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} x
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-c_{2} \\
c_{2}=1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x
$$

Verified OK.

8.4.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 235: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=c_{1}
$$

Which gives

$$
y=c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		\rightarrow
		$\xrightarrow[{\rightarrow \rightarrow-S[R \mid \rightarrow \rightarrow} \rightarrow]{ }$
$\triangle \rightarrow$ 人xidy		$\rightarrow \rightarrow \rightarrow \rightarrow 2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 边
$\rightarrow \rightarrow \rightarrow->+1$	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
	$S=\frac{y}{x}$	
	$S=\frac{y}{x}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
-1=-c_{1}
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=x
$$

Verified OK.

8.4.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{1}{x} \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\mathrm{e}^{c_{1}} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=x
$$

Verified OK.

8.4.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x}=0, y(-1)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{1}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=\ln (x)+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{c_{1}} x$
- Use initial condition $y(-1)=-1$
$-1=-\mathrm{e}^{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=x$
- \quad Solution to the IVP
$y=x$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=y(x)/x,y(-1) = -1],y(x), singsol=all)
```

$$
y(x)=x
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 6
DSolve[\{y' $[x]==y[x] / x,\{y[-1]==-1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x
$$

8.5 problem 4 (a)

8.5.1 Existence and uniqueness analysis 1372
8.5.2 Solving as linear ode . 1373
8.5.3 Solving as first order ode lie symmetry lookup ode 1375
8.5.4 Solving as exact ode . 1379
8.5.5 Maple step by step solution . [1384]

Internal problem ID [12703]
Internal file name [OUTPUT/11355_Friday_November_03_2023_06_30_56_AM_16141346/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 4 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{-x^{2}+1}=\sqrt{x}
$$

With initial conditions

$$
\left[y\left(\frac{1}{2}\right)=1\right]
$$

8.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x^{2}-1} \\
& q(x)=\sqrt{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x^{2}-1}=\sqrt{x}
$$

The domain of $p(x)=\frac{1}{x^{2}-1}$ is

$$
\{-\infty \leq x<-1,-1<x<1,1<x \leq \infty\}
$$

And the point $x_{0}=\frac{1}{2}$ is inside this domain. The domain of $q(x)=\sqrt{x}$ is

$$
\{0 \leq x\}
$$

And the point $x_{0}=\frac{1}{2}$ is also inside this domain. Hence solution exists and is unique.

8.5.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x^{2}-1} d x} \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sqrt{x}) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sqrt{-x^{2}+1} y}{x+1}\right) & =\left(\frac{\sqrt{-x^{2}+1}}{x+1}\right)(\sqrt{x}) \\
\mathrm{d}\left(\frac{\sqrt{-x^{2}+1} y}{x+1}\right) & =\left(\frac{\sqrt{x} \sqrt{-x^{2}+1}}{x+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives
$\frac{\sqrt{-x^{2}+1} y}{x+1}=\int \frac{\sqrt{x} \sqrt{-x^{2}+1}}{x+1} \mathrm{~d} x$
$\frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-\frac{2}{2}}{\sqrt{x} \sqrt{-x^{2}+1}}$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{-x^{2}+1}}{x+1}$ results in
$y=\frac{2(x+1)\left(\sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-3 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }(\sqrt{x}\right.}{3\left(-x^{2}+1\right) \sqrt{x}}$
which simplifies to
$y=\frac{-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right.}{\sqrt{x}(-3+3 x)}$
Initial conditions are used to solve for c_{1}. Substituting $x=\frac{1}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{\sqrt{3}\left(4 i \sqrt{2} \operatorname{EllipticF}\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)-12 i \sqrt{2} \operatorname{EllipticE}\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)+\sqrt{2} \sqrt{3}+6 c_{1}\right)}{6}
$$

$c_{1}=-\frac{\left(4 i \sqrt{3} \sqrt{2} \text { EllipticF }\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)-12 i \sqrt{3} \sqrt{2} \text { EllipticE }\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)+3 \sqrt{2}-6\right) \sqrt{3}}{18}$
Substituting c_{1} found above in the general solution gives
$y=\frac{4 x^{3} \sqrt{-x^{2}+1}-4 i x^{\frac{5}{2}} \sqrt{2} \text { EllipticF }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+12 i x^{\frac{5}{2}} \sqrt{2} \text { EllipticE }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)-x^{\frac{5}{2}} \sqrt{3} \sqrt{2}-4 \sqrt{-x^{2}+}}{}$
Summary
The solution(s) found are the following
y
$=\frac{4 x^{3} \sqrt{-x^{2}+1}-4 i x^{\frac{5}{2}} \sqrt{2} \operatorname{EllipticF}\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+12 i x^{\frac{5}{2}} \sqrt{2} \operatorname{EllipticE}\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)-x^{\frac{5}{2}} \sqrt{3} \sqrt{2}-4 \sqrt{-x^{2}+1}}{}$
Verification of solutions
y
$=\underline{4 x^{3} \sqrt{-x^{2}+1}-4 i x^{\frac{5}{2}} \sqrt{2} \text { EllipticF }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+12 i x^{\frac{5}{2}} \sqrt{2} \text { EllipticE }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)-x^{\frac{5}{2}} \sqrt{3} \sqrt{2}-4 \sqrt{-x^{2}+1}}$

Verified OK.

8.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{x^{2}-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 238: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{x+1}{\sqrt{-x^{2}+1}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x+1}{\sqrt{-x^{2}+1}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{-x^{2}+1} y}{x+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{(x+1) \sqrt{-x^{2}+1}} \\
S_{y} & =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{(1-x) \sqrt{x}}{\sqrt{-x^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{(1-R) \sqrt{R}}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\frac{2 \sqrt{R+1} \sqrt{2-2 R} \sqrt{-R} \operatorname{EllipticF}\left(\sqrt{R+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{R+1} \sqrt{2-2 R} \sqrt{-R} \text { EllipticE }\left(\sqrt{R+1}, \frac{\sqrt{2}}{2}\right)-\frac{2 R^{3}}{3}+\frac{2 \digamma}{3}}{\sqrt{-R^{2}+1} \sqrt{R}} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in
$\frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-\frac{2}{2}}{\sqrt{x} \sqrt{-x^{2}+1}}$
Which simplifies to
$\frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-\frac{2}{2}}{\sqrt{x} \sqrt{-x^{2}+1}}$
Which gives
$y=-\underline{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right) x-6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }(\sqrt{x+1},}$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{x^{2}-1}$		$\frac{d S}{d R}=\frac{(1-R) \sqrt{R}}{\sqrt{-R^{2}+1}}$
$4{ }^{\text {4 }} \uparrow$		
$y(x) \quad \begin{aligned} & \text { ¢ }\end{aligned}$		14
	$R=x$	
	$S=\underline{\sqrt{-x^{2}+1} y}$	
	$x+1$	
-4 - A A A A A		

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{1}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{\sqrt{3}\left(4 i \sqrt{2} \operatorname{EllipticF}\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)-12 i \sqrt{2} \operatorname{EllipticE}\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)+\sqrt{2} \sqrt{3}+6 c_{1}\right)}{6}
$$

$c_{1}=-\frac{\left(4 i \sqrt{3} \sqrt{2} \text { EllipticF }\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)-12 i \sqrt{3} \sqrt{2} \text { EllipticE }\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)+3 \sqrt{2}-6\right) \sqrt{3}}{18}$
Substituting c_{1} found above in the general solution gives
$y=\underline{4 i \sqrt{2} x^{\frac{3}{2}} \sqrt{-x^{2}+1} \text { EllipticF }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+4 i \sqrt{2} \sqrt{x} \sqrt{-x^{2}+1} \text { EllipticF }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+4 \text { EllipticF }(\sqrt{x+}}$

Summary

The solution(s) found are the following
y
$=\underline{4 i \sqrt{2} x^{\frac{3}{2}} \sqrt{-x^{2}+1} \operatorname{EllipticF}\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+4 i \sqrt{2} \sqrt{x} \sqrt{-x^{2}+1} \text { EllipticF }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+4 \text { EllipticF }(\sqrt{x+1}}$

Verification of solutions

y
$=\underline{4 i \sqrt{2} x^{\frac{3}{2}} \sqrt{-x^{2}+1} \text { EllipticF }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+4 i \sqrt{2} \sqrt{x} \sqrt{-x^{2}+1} \text { EllipticF }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+4 \text { EllipticF }(\sqrt{x+1}}$,

Verified OK.

8.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{-x^{2}+1}+\sqrt{x}\right) \mathrm{d} x \\
\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y}{-x^{2}+1}-\sqrt{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \\
& =\frac{1}{x^{2}-1}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{-x^{2}+1}\right)-(0)\right) \\
& =\frac{1}{x^{2}-1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x^{2}-1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\operatorname{arctanh}(x)} \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \\
& =-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}(1) \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}}\right)+\left(\frac{\sqrt{-x^{2}+1}}{x+1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}
\end{array}=0
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}} \mathrm{~d} x \\
\phi & =\int_{\frac{1}{2}}^{x}-\frac{--a^{\frac{5}{2}}+\sqrt{-a}+y}{(-a+1) \sqrt{-a^{2}+1}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\int_{\frac{1}{2}}^{x}-\frac{1}{\left(_a+1\right) \sqrt{-_a^{2}+1}} d _a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sqrt{-x^{2}+1}}{x+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sqrt{-x^{2}+1}}{x+1}=-\left(\int_{\frac{1}{2}}^{x} \frac{1}{\left(_a+1\right) \sqrt{-_a^{2}+1}} d _a\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{\left(\int_{\frac{1}{2}}^{x} \frac{1}{(a+1) \sqrt{-_a^{2}+1}} d _a\right) x+\int_{\frac{1}{2}}^{x} \frac{1}{(\square a+1) \sqrt{-_a^{2}+1}} d _a+\sqrt{-x^{2}+1}}{x+1} \\
& =\frac{(x+1)\left(\int_{\frac{1}{2}}^{x} \frac{1}{(a+1) \sqrt{-a^{2}+1}} d _a\right)+\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{(x+1)\left(\int_{\frac{1}{2}}^{x} \frac{1}{(a+1) \sqrt{-\ldots a^{2}+1}} d _a\right)+\sqrt{-x^{2}+1}}{x+1}\right) \mathrm{d} y \\
f(y) & =\frac{\left((x+1)\left(\int_{\frac{1}{2}}^{x} \frac{1}{(a+1) \sqrt{-a^{2}+1}} d _a\right)+\sqrt{-x^{2}+1}\right) y}{x+1}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
\phi= & \int_{\frac{1}{2}}^{x}-\frac{-_a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{--a^{2}+1}} d _a \\
& +\frac{\left((x + 1) \left(\int_{\frac{1}{2}}^{x} \frac{1}{(a+1) \sqrt{-} a^{2}+1}\right.\right.}{\left.x+a)+\sqrt{-x^{2}+1}\right) y} \\
& +c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as
c_{1}

$$
\begin{aligned}
= & \int_{\frac{1}{2}}^{x}-\frac{--a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{-a^{2}+1}} d _a \\
& +\frac{\left((x+1)\left(\int_{\frac{1}{2}}^{x} \frac{1}{\lfloor a+1) \sqrt{--a^{2}+1}} d _a\right)+\sqrt{-x^{2}+1}\right) y}{x+1}
\end{aligned}
$$

The solution becomes
y

$$
=\frac{c_{1} x-x\left(\int_{\frac{1}{2}}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--} a^{2}+1} d _a\right)+x\left(\int_{\frac{1}{2}}^{x} \frac{\sqrt{-a}}{(a+1) \sqrt{-} a^{2}+1} d _a\right)+c_{1}-\left(\int_{\frac{1}{2}}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--a^{2}+1}} d _a\right)+\int}{\sqrt{-x^{2}+1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{1}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\sqrt{3} c_{1} \\
& c_{1}=\frac{\sqrt{3}}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{-3 x\left(\int_{\frac{1}{2}}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--a^{2}+1}} d _a\right)+3 x\left(\int_{\frac{1}{2}}^{x} \frac{\sqrt{\square a}}{(a+1) \sqrt{-} a^{2}+1} d _a\right)+\sqrt{3} x-3\left(\int_{\frac{1}{2}}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--a^{2}+1}} d _a\right)}{3 \sqrt{-x^{2}+1}}$
Summary
The solution(s) found are the following
y
(1)
$=\frac{-3 x\left(\int_{\frac{1}{2}}^{x} \frac{-a^{\frac{5}{2}}}{(\square a+1) \sqrt{-} a^{2}+1} d _a\right)+3 x\left(\int_{\frac{1}{2}}^{x} \frac{\sqrt{\bar{\square}}}{\left(a^{a+1) \sqrt{-} a^{2}+1}\right.} d _a\right)+\sqrt{3} x-3\left(\int_{\frac{1}{2}}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{-_} a^{2}+1} d _a\right)+}{3 \sqrt{-x^{2}+1}}$
Verification of solutions
y
$=\frac{-3 x\left(\int_{\frac{1}{2}}^{x} \frac{a^{\frac{5}{2}}}{(\square+1) \sqrt{-} a^{2}+1} d _a\right)+3 x\left(\int_{\frac{1}{2}}^{x} \frac{\sqrt{\overline{\boxed{a}}}}{\left(a^{a+1) \sqrt{-} a^{2}+1}\right.} d _a\right)+\sqrt{3} x-3\left(\int_{\frac{1}{2}}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{-} a^{2}+1} d _a\right)+}{3 \sqrt{-x^{2}+1}}$
Verified OK.

8.5.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{-x^{2}+1}=\sqrt{x}, y\left(\frac{1}{2}\right)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x^{2}-1}+\sqrt{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{x^{2}-1}=\sqrt{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-1}\right)=\mu(x) \sqrt{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x^{2}-1}$
- Solve to find the integrating factor
$\mu(x)=\frac{\sqrt{-(x-1)(x+1)}}{x+1}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sqrt{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sqrt{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sqrt{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\sqrt{-(x-1)(x+1)}}{x+1}$
$y=\frac{(x+1)\left(\int \frac{\sqrt{-(x-1)(x+1)} \sqrt{x}}{x+1} d x+c_{1}\right)}{\sqrt{-(x-1)(x+1)}}$
- Evaluate the integrals on the rhs

$$
y=\frac{(x+1)\left(-\frac{2 \sqrt{-(x-1)(x+1)}\left(\sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-3 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-x^{3}+x\right)}{3 \sqrt{x}\left(x^{2}-1\right)}+c_{1}\right)}{\sqrt{-(x-1)(x+1)}}
$$

- Simplify

$$
y=\frac{-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-3 c_{1} \sqrt{x} \sqrt{-x^{2}+1}+2 x^{3}-2 x}{3(x-1) \sqrt{x}}
$$

- Use initial condition $y\left(\frac{1}{2}\right)=1$

$$
1=-\frac{2\left(-\operatorname{IEllipticF}\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right) \sqrt{3}+3 \operatorname{IEllipticE}\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right) \sqrt{3}-\frac{3 c_{1} \sqrt{2} \sqrt{3} \sqrt{4}}{8}-\frac{3}{4}\right) \sqrt{2}}{3}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{\left(4 \mathrm{I} \sqrt{3} \sqrt{2} \operatorname{EllipticF}\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)-12 \mathrm{I} \sqrt{3} \sqrt{2} \operatorname{EllipticE}\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)+3 \sqrt{2}-6\right) \sqrt{3} \sqrt{4}}{36}
$$

- \quad Substitute $c_{1}=-\frac{\left(4 \mathrm{I} \sqrt{3} \sqrt{2} \text { EllipticF }\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)-12 \mathrm{I} \sqrt{3} \sqrt{2} \text { EllipticE }\left(\frac{\sqrt{2} \sqrt{3}}{2}, \frac{\sqrt{2}}{2}\right)+3 \sqrt{2}-6\right) \sqrt{3} \sqrt{4}}{36}$ into general solu

$$
y=\frac{2\left(-\sqrt{x+1}\left(-3 E l l i p t i c E\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+\operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)\right) \sqrt{-x} \sqrt{-2 x+2}+\frac{\sqrt{-x^{2}+1}\left(-12 \mathrm{I} \sqrt{2} \text { ElipticE }\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+8 \mathrm{IEllipticF}(\right.}{4}\right.}{3 \sqrt{x}(x-1)}
$$

- Solution to the IVP

$$
y=\frac{2\left(-\sqrt{x+1}\left(-3 E l l i p t i c E\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+\operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)\right) \sqrt{-x} \sqrt{-2 x+2}+\frac{\sqrt{-x^{2}+1}\left(-12 \mathrm{I} \sqrt{2} \operatorname{ElipticE}\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)+8 \mathrm{IEllipticF}(\right.}{4}\right.}{3 \sqrt{x}(x-1)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 1.969 (sec). Leaf size: 141
dsolve([diff $\left.(y(x), x)=y(x) /\left(1-x^{\wedge} 2\right)+\operatorname{sqrt}(x), y(1 / 2)=1\right], y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\left(12 i \sqrt{2} \operatorname{EllipticE}\left(\frac{\sqrt{6}}{2}, \frac{\sqrt{2}}{2}\right)-\sqrt{3} \sqrt{2}-8 i \operatorname{EllipticF}\left(\frac{\sqrt{3}}{2}, \sqrt{2}\right)+2 \sqrt{3}\right)(1+x)}{6 \sqrt{-x^{2}+1}} \\
& +\frac{-2 \sqrt{1+x} \sqrt{2-2 x} \sqrt{-x} \text { EllipticF }\left(\sqrt{1+x}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{1+x} \sqrt{2-2 x} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{1+x}, \frac{\sqrt{2}}{2}\right)}{\sqrt{x}(3 x-3)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.562 (sec). Leaf size: 215
DSolve[\{y' $\left.[x]==y[x] /\left(1-x^{\wedge} 2\right)+\operatorname{Sqrt}[x],\{y[1 / 2]==1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]
$y(x)$
$\rightarrow \underline{4 \sqrt{1-x^{2}} x^{2} \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{3}{4}, \frac{7}{4}, x^{2}\right)-4 \sqrt{1-x^{2}} x \text { Hypergeometric } 2 \mathrm{~F} 1\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, x^{2}\right)-\sqrt{2} \text { Hype }}$

8.6 problem 4 (b)

8.6.1 Solving as linear ode . 1387
8.6.2 Solving as first order ode lie symmetry lookup ode 1389
8.6.3 Solving as exact ode . 1394
8.6.4 Maple step by step solution . 1399

Internal problem ID [12704]
Internal file name [OUTPUT/11356_Friday_November_03_2023_06_30_59_AM_65093150/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 4 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{-x^{2}+1}=\sqrt{x}
$$

8.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x^{2}-1} \\
q(x) & =\sqrt{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x^{2}-1}=\sqrt{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x^{2}-1} d x} \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sqrt{x}) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sqrt{-x^{2}+1} y}{x+1}\right) & =\left(\frac{\sqrt{-x^{2}+1}}{x+1}\right)(\sqrt{x}) \\
\mathrm{d}\left(\frac{\sqrt{-x^{2}+1} y}{x+1}\right) & =\left(\frac{\sqrt{x} \sqrt{-x^{2}+1}}{x+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{\sqrt{-x^{2}+1} y}{x+1}=\int \frac{\sqrt{x} \sqrt{-x^{2}+1}}{x+1} \mathrm{~d} x \\
& \frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-}{\sqrt{x} \sqrt{-x^{2}+1}}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{-x^{2}+1}}{x+1}$ results in

$$
y=\frac{2(x+1)\left(\sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-3 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }(\sqrt{x}\right.}{3\left(-x^{2}+1\right) \sqrt{x}}
$$

which simplifies to

$$
y=\frac{-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right.}{\sqrt{x}(-3+3 x)}
$$

Summary

The solution(s) found are the following
y

$$
\begin{align*}
= & \frac{-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{\sqrt{x}(-3+3 x)} \tag{1}\\
& +\frac{c_{1}(x+1)}{\sqrt{-x^{2}+1}}
\end{align*}
$$

Figure 290: Slope field plot

Verification of solutions

y

$$
\begin{aligned}
= & \frac{-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{\sqrt{x}(-3+3 x)} \\
& +\frac{c_{1}(x+1)}{\sqrt{-x^{2}+1}}
\end{aligned}
$$

Verified OK.

8.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{\frac{5}{2}}-\sqrt{x}-y}{x^{2}-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 241: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{x+1}{\sqrt{-x^{2}+1}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x+1}{\sqrt{-x^{2}+1}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{-x^{2}+1} y}{x+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{\frac{5}{2}}-\sqrt{x}-y}{x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{(x+1) \sqrt{-x^{2}+1}} \\
S_{y} & =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{(1-x) \sqrt{x}}{\sqrt{-x^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{(1-R) \sqrt{R}}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives
$S(R)=\frac{\frac{2 \sqrt{R+1} \sqrt{2-2 R} \sqrt{-R} \operatorname{EllipticF}\left(\sqrt{R+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{R+1} \sqrt{2-2 R} \sqrt{-R} \text { EllipticE }\left(\sqrt{R+1}, \frac{\sqrt{2}}{2}\right)-\frac{2 R^{3}}{3}+\frac{2 I}{3}}{\sqrt{-R^{2}+1} \sqrt{R}}$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-\frac{2}{2}}{\sqrt{x} \sqrt{-x^{2}+1}}
$$

Which simplifies to

$$
\frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-\frac{2}{\sqrt{x} \sqrt{-x^{2}+1}}}{\sqrt{2}}
$$

Which gives

$$
y=-\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right) x-6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }(\sqrt{x+1},}{}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following
$y=$
(1)
$-\underline{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right) x-6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2},\right.}$

Figure 291: Slope field plot
Verification of solutions
$y=$

$$
-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right) x-6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right.
$$

Verified OK.

8.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{-x^{2}+1}+\sqrt{x}\right) \mathrm{d} x \\
\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y}{-x^{2}+1}-\sqrt{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \\
& =\frac{1}{x^{2}-1}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{-x^{2}+1}\right)-(0)\right) \\
& =\frac{1}{x^{2}-1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x^{2}-1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\operatorname{arctanh}(x)} \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \\
& =-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}(1) \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}}\right)+\left(\frac{\sqrt{-x^{2}+1}}{x+1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}} \mathrm{~d} x \\
\phi & =\int^{x}-\frac{-_a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{-a^{2}+1}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{x-1}{\sqrt{-x^{2}+1}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sqrt{-x^{2}+1}}{x+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sqrt{-x^{2}+1}}{x+1}=-\frac{x-1}{\sqrt{-x^{2}+1}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}-\frac{-_a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{-_a^{2}+1}} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}-\frac{-_a^{\frac{5}{2}}+\sqrt{\ldots} a+y}{\left(_a+1\right) \sqrt{-\ldots a^{2}+1}} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}-\frac{-_a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{-a^{2}+1}} d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 292: Slope field plot

Verification of solutions

$$
\int^{x}-\frac{--a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{-a^{2}+1}} d _a=c_{1}
$$

Verified OK.

8.6.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y}{-x^{2}+1}=\sqrt{x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x^{2}-1}+\sqrt{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x^{2}-1}=\sqrt{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-1}\right)=\mu(x) \sqrt{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x^{2}-1}$
- Solve to find the integrating factor
$\mu(x)=\frac{\sqrt{-(x-1)(x+1)}}{x+1}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sqrt{x} d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x) \sqrt{x} d x+c_{1}
$$

- \quad Solve for y
$y=\frac{\int \mu(x) \sqrt{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\sqrt{-(x-1)(x+1)}}{x+1}$

$$
y=\frac{(x+1)\left(\int \frac{\sqrt{-(x-1)(x+1)} \sqrt{x}}{x+1} d x+c_{1}\right)}{\sqrt{-(x-1)(x+1)}}
$$

- Evaluate the integrals on the rhs

- \quad Simplify

$$
y=\frac{-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-3 c_{1} \sqrt{x} \sqrt{-x^{2}+1}+2 x^{3}-2 x}{3(x-1) \sqrt{x}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 98

```
dsolve(diff(y(x),x)=y(x)/(1-x^2)+sqrt(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{(1+x) c_{1}}{\sqrt{-x^{2}+1}} \\
& +\frac{-2 \sqrt{1+x} \sqrt{2-2 x} \sqrt{-x} \text { EllipticF }\left(\sqrt{1+x}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{1+x} \sqrt{2-2 x} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{1+x}, \frac{\sqrt{2}}{2}\right)}{\sqrt{x}(3 x-3)}
\end{aligned}
$$

\checkmark Solution by Mathematica

Time used: 1.157 (sec). Leaf size: 100

$$
\begin{aligned}
& \text { DSolve }\left[\mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{y}[\mathrm{x}] /\left(1-\mathrm{x}^{\wedge} 2\right)+\text { Sqrt }[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True }\right] \\
& y(x) \\
& \rightarrow \frac{-\frac{2 x\left(-\sqrt{1-x^{2}} x \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{3}{4}, \frac{7}{4}, x^{2}\right)+\sqrt{1-x^{2}} \text { Hypergeometric2F1 }\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, x^{2}\right)+x^{2}-1\right)}{\sqrt{-((x-1) x)}}+3 c_{1} \sqrt{x+1}}{3 \sqrt{1-x}}
\end{aligned}
$$

8.7 problem 4 (c)

8.7.1 Existence and uniqueness analysis 1401
8.7.2 Solving as linear ode . 1402
8.7.3 Solving as first order ode lie symmetry lookup ode 1404
8.7.4 Solving as exact ode . 1408
8.7.5 Maple step by step solution . 1413

Internal problem ID [12705]
Internal file name [OUTPUT/11357_Friday_November_03_2023_06_31_01_AM_6823237/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 4 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{-x^{2}+1}=\sqrt{x}
$$

With initial conditions

$$
[y(2)=1]
$$

8.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x^{2}-1} \\
q(x) & =\sqrt{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x^{2}-1}=\sqrt{x}
$$

The domain of $p(x)=\frac{1}{x^{2}-1}$ is

$$
\{-\infty \leq x<-1,-1<x<1,1<x \leq \infty\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\sqrt{x}$ is

$$
\{0 \leq x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

8.7.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x^{2}-1} d x} \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sqrt{x}) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\sqrt{-x^{2}+1} y}{x+1}\right) & =\left(\frac{\sqrt{-x^{2}+1}}{x+1}\right)(\sqrt{x}) \\
\mathrm{d}\left(\frac{\sqrt{-x^{2}+1} y}{x+1}\right) & =\left(\frac{\sqrt{x} \sqrt{-x^{2}+1}}{x+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives
$\frac{\sqrt{-x^{2}+1} y}{x+1}=\int \frac{\sqrt{x} \sqrt{-x^{2}+1}}{x+1} \mathrm{~d} x$
$\frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-}{\sqrt{x} \sqrt{-x^{2}+1}}$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{-x^{2}+1}}{x+1}$ results in
$y=\frac{2(x+1)\left(\sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-3 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }(\sqrt{x}\right.}{3\left(-x^{2}+1\right) \sqrt{x}}$
which simplifies to
$y=\frac{-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right.}{\sqrt{x}(-3+3 x)}$
Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{\sqrt{2} \sqrt{3}\left(-3 i \sqrt{2} c_{1}+4 \sqrt{3}+4 \text { EllipticF }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)-12 \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)\right)}{6} \\
c_{1}=-\frac{i\left(2 \sqrt{3} \operatorname{EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}-6 \sqrt{3} \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+6 \sqrt{2}-3\right) \sqrt{3}}{9}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 x^{3} \sqrt{-x^{2}+1}-2 i x^{\frac{5}{2}} \sqrt{3} \sqrt{2}-2 i x^{\frac{5}{2}} \text { EllipticF }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+6 i x^{\frac{5}{2}} \text { EllipticE }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+i x^{\frac{5}{2}} \sqrt{3}-}{}
$$

Summary

The solution(s) found are the following
y
$=\frac{2 x^{3} \sqrt{-x^{2}+1}-2 i x^{\frac{5}{2}} \sqrt{3} \sqrt{2}-2 i x^{\frac{5}{2}} \text { EllipticF }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+6 i x^{\frac{5}{2}} \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+i x^{\frac{5}{2}} \sqrt{3}-2}{2}$

Verification of solutions

y
$=\frac{2 x^{3} \sqrt{-x^{2}+1}-2 i x^{\frac{5}{2}} \sqrt{3} \sqrt{2}-2 i x^{\frac{5}{2}} \operatorname{EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+6 i x^{\frac{5}{2}} \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+i x^{\frac{5}{2}} \sqrt{3}-2}{2}$

Verified OK.

8.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{x^{2}-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 244: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{x+1}{\sqrt{-x^{2}+1}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x+1}{\sqrt{-x^{2}+1}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{-x^{2}+1} y}{x+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{(x+1) \sqrt{-x^{2}+1}} \\
S_{y} & =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{(1-x) \sqrt{x}}{\sqrt{-x^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{(1-R) \sqrt{R}}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\frac{2 \sqrt{R+1} \sqrt{2-2 R} \sqrt{-R} \operatorname{EllipticF}\left(\sqrt{R+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{R+1} \sqrt{2-2 R} \sqrt{-R} \text { EllipticE }\left(\sqrt{R+1}, \frac{\sqrt{2}}{2}\right)-\frac{2 R^{3}}{3}+\frac{2 \digamma}{3}}{\sqrt{-R^{2}+1} \sqrt{R}} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in
$\frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-\frac{2}{2}}{\sqrt{x} \sqrt{-x^{2}+1}}$
Which simplifies to
$\frac{\sqrt{-x^{2}+1} y}{x+1}=\frac{\frac{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)}{3}-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-\frac{2}{2}}{\sqrt{x} \sqrt{-x^{2}+1}}$
Which gives
$y=-\underline{2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right) x-6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticE }(\sqrt{x+1},}$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{\sqrt{2} \sqrt{3}\left(-4 \operatorname{EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)+12 \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)-4 \sqrt{3}+3 i \sqrt{2} c_{1}\right)}{6} \\
c_{1}=-\frac{i\left(2 \sqrt{3} \operatorname{EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}-6 \sqrt{3} \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+6 \sqrt{2}-3\right) \sqrt{3}}{9}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\xrightarrow{-6 i x^{\frac{3}{2}} \sqrt{-x^{2}+1} \text { EllipticE }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+2 i x^{\frac{3}{2}} \sqrt{-x^{2}+1} \text { EllipticF }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}-6 i \sqrt{x} \sqrt{-x^{2}+1}}$

Summary

The solution(s) found are the following
y
$=\underline{-6 i x^{\frac{3}{2}} \sqrt{-x^{2}+1} \text { EllipticE }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+2 i x^{\frac{3}{2}} \sqrt{-x^{2}+1} \text { EllipticF }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}-6 i \sqrt{x} \sqrt{-x^{2}+1} \mathrm{E}}$

Verification of solutions

y
$=\underline{-6 i x^{\frac{3}{2}} \sqrt{-x^{2}+1} \text { EllipticE }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+2 i x^{\frac{3}{2}} \sqrt{-x^{2}+1} \text { EllipticF }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}-6 i \sqrt{x} \sqrt{-x^{2}+1} \mathrm{E}}$

Verified OK.

8.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{-x^{2}+1}+\sqrt{x}\right) \mathrm{d} x \\
\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y}{-x^{2}+1}-\sqrt{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \\
& =\frac{1}{x^{2}-1}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{-x^{2}+1}\right)-(0)\right) \\
& =\frac{1}{x^{2}-1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x^{2}-1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\operatorname{arctanh}(x)} \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}\left(-\frac{y}{-x^{2}+1}-\sqrt{x}\right) \\
& =-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}(1) \\
& =\frac{\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}}\right)+\left(\frac{\sqrt{-x^{2}+1}}{x+1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{-x^{\frac{5}{2}}+\sqrt{x}+y}{(x+1) \sqrt{-x^{2}+1}} \mathrm{~d} x \\
\phi & =\int_{2}^{x}-\frac{--a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{-a^{2}+1}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\int_{2}^{x}-\frac{1}{\left(_a+1\right) \sqrt{-_a^{2}+1}} d _a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sqrt{-x^{2}+1}}{x+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sqrt{-x^{2}+1}}{x+1}=-\left(\int_{2}^{x} \frac{1}{\left(_a+1\right) \sqrt{-_a^{2}+1}} d _a\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{\left(\int_{2}^{x} \frac{1}{(\square a+1) \sqrt{-_a^{2}+1}} d _a\right) x+\sqrt{-x^{2}+1}+\int_{2}^{x} \frac{1}{\left(\boxed{a+1) \sqrt{-a^{2}+1}} d _a\right.}}{x+1} \\
& =\frac{(x+1)\left(\int_{2}^{x} \frac{1}{(\square a+1) \sqrt{-\quad a^{2}+1}} d _a\right)+\sqrt{-x^{2}+1}}{x+1}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{(x+1)\left(\int_{2}^{x} \frac{1}{(a+1) \sqrt{--a^{2}+1}} d _a\right)+\sqrt{-x^{2}+1}}{x+1}\right) \mathrm{d} y \\
f(y) & =\frac{\left((x+1)\left(\int_{2}^{x} \frac{1}{(a+1) \sqrt{-} a^{2}+1} d _a\right)+\sqrt{-x^{2}+1}\right) y}{x+1}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
& \phi= \int_{2}^{x}-\frac{-_a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{-_a^{2}+1}} d _a \\
&\left.\left.+\frac{\left((x + 1) \left(\int_{2}^{x} \frac{1}{(a+1) \sqrt{-} a^{2}+1}\right.\right.}{} d _a\right)+\sqrt{-x^{2}+1}\right) y \\
& x+1
\end{aligned} c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as
c_{1}

$$
\begin{aligned}
= & \int_{2}^{x}-\frac{-_a^{\frac{5}{2}}+\sqrt{-a}+y}{\left(_a+1\right) \sqrt{-_a^{2}+1}} d _a \\
& +\frac{\left((x+1)\left(\int_{2}^{x} \frac{1}{(a+1) \sqrt{-_a^{2}+1}} d _a\right)+\sqrt{-x^{2}+1}\right) y}{x+1}
\end{aligned}
$$

The solution becomes
y
$=\frac{c_{1} x-x\left(\int_{2}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--a^{2}+1}} d _a\right)+x\left(\int_{2}^{x} \frac{\sqrt{\bar{a}}}{(a+1) \sqrt{-} a^{2}+1} d _a\right)+c_{1}-\left(\int_{2}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--} a^{2}+1} d _a\right)+\int}{\sqrt{-x^{2}+1}}$
Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-i \sqrt{3} c_{1} \\
c_{1}=\frac{i \sqrt{3}}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{i \sqrt{3} x+i \sqrt{3}-3 x\left(\int_{2}^{x} \frac{-a^{\frac{5}{2}}}{(a+1) \sqrt{-} a^{2}+1} d _a\right)+3 x\left(\int_{2}^{x} \frac{\sqrt{\overline{-a}}}{(a+1) \sqrt{-} a^{2}+1} d _a\right)-3\left(\int_{2}^{x} \frac{-a^{\frac{5}{2}}}{(a+1) \sqrt{-} a^{2}+1}\right.}{3 \sqrt{-x^{2}+1}}$
Summary
The solution(s) found are the following
y
$=\frac{i \sqrt{3} x+i \sqrt{3}-3 x\left(\int_{2}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--a^{2}+1}} d _a\right)+3 x\left(\int_{2}^{x} \frac{\sqrt{-a}}{(a+1) \sqrt{-} a^{2}+1} d _a\right)-3\left(\int_{2}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{-} a^{2}+1} d-\right.}{3 \sqrt{-x^{2}+1}}$
Verification of solutions
y
$=\frac{i \sqrt{3} x+i \sqrt{3}-3 x\left(\int_{2}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--a^{2}+1}} d _a\right)+3 x\left(\int_{2}^{x} \frac{\sqrt{-a}}{(a+1) \sqrt{-} a^{2}+1} d _a\right)-3\left(\int_{2}^{x} \frac{a^{\frac{5}{2}}}{(a+1) \sqrt{--a^{2}+1}} d-\right.}{3 \sqrt{-x^{2}+1}}$
Verified OK.

8.7.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{-x^{2}+1}=\sqrt{x}, y(2)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x^{2}-1}+\sqrt{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{x^{2}-1}=\sqrt{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-1}\right)=\mu(x) \sqrt{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x^{2}-1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x^{2}-1}$
- Solve to find the integrating factor
$\mu(x)=\frac{\sqrt{-(x-1)(x+1)}}{x+1}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sqrt{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sqrt{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sqrt{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\sqrt{-(x-1)(x+1)}}{x+1}$
$y=\frac{(x+1)\left(\int \frac{\sqrt{-(x-1)(x+1)} \sqrt{x}}{x+1} d x+c_{1}\right)}{\sqrt{-(x-1)(x+1)}}$
- Evaluate the integrals on the rhs
$y=\frac{(x+1)\left(-\frac{2 \sqrt{-(x-1)(x+1)}\left(\sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-3 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { ElipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-x^{3}+x\right)}{3 \sqrt{x}\left(x^{2}-1\right)}+c_{1}\right)}{\sqrt{-(x-1)(x+1)}}$
- Simplify
$y=\frac{-2 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{x+1} \sqrt{-2 x+2} \sqrt{-x} \text { ElipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)-3 c_{1} \sqrt{x} \sqrt{-x^{2}+1}+2 x^{3}-2 x}{3(x-1) \sqrt{x}}$
- Use initial condition $y(2)=1$
$1=\frac{\left(4 \sqrt{3} \operatorname{EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)-12 \sqrt{3} \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)-3 c_{1} \sqrt{2} \sqrt{-3}+12\right) \sqrt{2}}{6}$
- \quad Solve for c_{1}
$c_{1}=-\frac{\left(2 \sqrt{3} \operatorname{EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}-6 \sqrt{3} \text { EllipticE }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+6 \sqrt{2}-3\right) \sqrt{-3}}{9}$
- \quad Substitute $c_{1}=-\frac{\left(2 \sqrt{3} \operatorname{EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}-6 \sqrt{3} \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right) \sqrt{2}+6 \sqrt{2}-3\right) \sqrt{-3}}{9}$ into general solution and $y=-\frac{6\left(\frac{\sqrt{x+1}\left(-3 E l i p t i c E\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+\text { ElipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)\right) \sqrt{-x} \sqrt{-2 x+2}}{3}+1\left(\left(E l \text { ElipticE }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)-\frac{E \text { ElipticF }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)}{{ }^{2}}\right) \sqrt{2}+\frac{\sqrt{3}}{6}-\right.\right.}{\sqrt{x}(-3+3 x)}$
- \quad Solution to the IVP
$y=-\frac{6\left(\frac{\sqrt{x+1}\left(-3 \text { ElipticE }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)+\text { EllipticF }\left(\sqrt{x+1}, \frac{\sqrt{2}}{2}\right)\right) \sqrt{-x} \sqrt{-2 x+2}}{3}+1\left(\left(E \operatorname{ElipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)-\frac{\text { ElipticF }\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)}{3}\right) \sqrt{2}+\frac{\sqrt{3}}{6}-\right.\right.}{\sqrt{x}(-3+3 x)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.922 (sec). Leaf size: 136

```
dsolve([diff (y (x),x)=y(x)/(1-x^2)+sqrt(x),y(2) = 1],y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{i(1+x)\left(-1+\frac{2\left(\sqrt{3} \operatorname{EllipticF}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)-3 \sqrt{3} \operatorname{EllipticE}\left(\sqrt{3}, \frac{\sqrt{2}}{2}\right)+3\right) \sqrt{2}}{3}\right) \sqrt{3}}{3 \sqrt{-x^{2}+1}} \\
& +\frac{-2 \sqrt{1+x} \sqrt{2-2 x} \sqrt{-x} \operatorname{EllipticF}\left(\sqrt{1+x}, \frac{\sqrt{2}}{2}\right)+6 \sqrt{1+x} \sqrt{2-2 x} \sqrt{-x} \operatorname{EllipticE}\left(\sqrt{1+x}, \frac{\sqrt{2}}{2}\right)}{\sqrt{x}(3 x-3)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.121 (sec). Leaf size: 215
DSolve[\{y' $\left.[x]==y[x] /\left(1-x^{\wedge} 2\right)+\operatorname{Sqrt}[x],\{y[2]==1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]
$y(x)$
$\rightarrow \xrightarrow{2 \sqrt{1-x^{2}} x^{2} \text { Hypergeometric2F1 }\left(\frac{1}{2}, \frac{3}{4}, \frac{7}{4}, x^{2}\right)-2 \sqrt{1-x^{2}} x \text { Hypergeometric2F1 }\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}, x^{2}\right)-4 \sqrt{2} \text { Hyp }}$

8.8 problem 5 (a)

8.8.1 Existence and uniqueness analysis 1416
8.8.2 Solving as quadrature ode . 1417
8.8.3 Maple step by step solution . 1418

Internal problem ID [12706]
Internal file name [OUTPUT/11358_Friday_November_03_2023_06_31_03_AM_23906316/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 5 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{2}=0
$$

With initial conditions

$$
[y(-1)=1]
$$

8.8.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}\right) \\
& =2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.8.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}} d y & =x+c_{1} \\
-\frac{1}{y} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\frac{1}{x+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{1}{-1+c_{1}} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{x}
$$

Verified OK.

8.8.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}=0, y(-1)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=x+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{x+c_{1}}
$$

- Use initial condition $y(-1)=1$

$$
1=-\frac{1}{-1+c_{1}}
$$

- Solve for c_{1}

$$
c_{1}=0
$$

- Substitute $c_{1}=0$ into general solution and simplify $y=-\frac{1}{x}$
- Solution to the IVP

$$
y=-\frac{1}{x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 9

```
dsolve([diff(y(x),x)=y(x)^2,y(-1) = 1],y(x), singsol=all)
```

$$
y(x)=-\frac{1}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 10

DSolve $\left[\left\{y^{\prime}[x]==y[x] \sim 2,\{y[-1]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow-\frac{1}{x}
$$

8.9 problem 5 (b)

8.9.1 Existence and uniqueness analysis 1420
8.9.2 Solving as quadrature ode . 1421
8.9.3 Maple step by step solution . 1422

Internal problem ID [12707]
Internal file name [OUTPUT/11359_Friday_November_03_2023_06_31_04_AM_20545278/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 5 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{2}=0
$$

With initial conditions

$$
[y(-1)=0]
$$

8.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}\right) \\
& =2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

8.9.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}} d y & =x+c_{1} \\
-\frac{1}{y} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\frac{1}{x+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{1}{-1+c_{1}}
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=-\frac{1}{x+c_{1}}=y=0$ and Summary
this result satisfies the given initial condition. The solution(s) found are the following

$$
y=0
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

8.9.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{2}=0, y(-1)=0\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=x+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{x+c_{1}}
$$

- Use initial condition $y(-1)=0$

$$
0=-\frac{1}{-1+c_{1}}
$$

- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5
dsolve([diff $(y(x), x)=y(x) \wedge 2, y(-1)=0], y(x)$, singsol=all)

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6
DSolve[\{y' $[x]==y[x] \sim 2,\{y[-1]==0\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow 0
$$

8.10 problem 5 (c)

8.10.1 Existence and uniqueness analysis 1424
8.10.2 Solving as quadrature ode . 1425
8.10.3 Maple step by step solution . 1426

Internal problem ID [12708]
Internal file name [OUTPUT/11360_Friday_November_03_2023_06_31_04_AM_71305882/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 5 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{2}=0
$$

With initial conditions

$$
\left[y(1)=\frac{1}{2}\right]
$$

8.10.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}\right) \\
& =2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

8.10.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}} d y & =x+c_{1} \\
-\frac{1}{y} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\frac{1}{x+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=-\frac{1}{1+c_{1}} \\
c_{1}=-3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{x-3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x-3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{x-3}
$$

Verified OK.

8.10.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}=0, y(1)=\frac{1}{2}\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=x+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{x+c_{1}}
$$

- Use initial condition $y(1)=\frac{1}{2}$
$\frac{1}{2}=-\frac{1}{1+c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-3$
- Substitute $c_{1}=-3$ into general solution and simplify $y=-\frac{1}{x-3}$
- Solution to the IVP

$$
y=-\frac{1}{x-3}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve([diff(y(x),x)=y(x)^2,y(1) = 1/2],y(x), singsol=all)
```

$$
y(x)=-\frac{1}{-3+x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 12
DSolve[\{y' $[x]==y[x] \sim 2,\{y[1]==1 / 2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{3-x}
$$

8.11 problem 6 (a)

8.11.1 Existence and uniqueness analysis 1428
8.11.2 Solving as quadrature ode . 1429
8.11.3 Maple step by step solution . 1430

Internal problem ID [12709]
Internal file name [OUTPUT/11361_Friday_November_03_2023_06_31_05_AM_38277058/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 6 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{3}=0
$$

With initial conditions

$$
[y(-1)=1]
$$

8.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{3}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3}\right) \\
& =3 y^{2}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.11.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{3}} d y & =x+c_{1} \\
-\frac{1}{2 y^{2}} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\frac{1}{\sqrt{-2 c_{1}-2 x}} \\
& y_{2}=-\frac{1}{\sqrt{-2 c_{1}-2 x}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{1}{\sqrt{2-2 c_{1}}}
$$

Warning: Unable to solve for c_{1}. No particular solution can be found using given initial conditions for this solution. removing this solution as not valid. Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{\sqrt{2-2 c_{1}}} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{\sqrt{-2 x-1}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\sqrt{-2 x-1}} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{1}{\sqrt{-2 x-1}}
$$

Verified OK.

8.11.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{3}=0, y(-1)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{3}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{3}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{2 y^{2}}=x+c_{1}$
- \quad Solve for y
$\left\{y=\frac{1}{\sqrt{-2 c_{1}-2 x}}, y=-\frac{1}{\sqrt{-2 c_{1}-2 x}}\right\}$
- Use initial condition $y(-1)=1$
$1=\frac{1}{\sqrt{2-2 c_{1}}}$
- \quad Solve for c_{1}
$c_{1}=\frac{1}{2}$
- \quad Substitute $c_{1}=\frac{1}{2}$ into general solution and simplify

$$
y=\frac{1}{\sqrt{-2 x-1}}
$$

- Use initial condition $y(-1)=1$
$1=-\frac{1}{\sqrt{2-2 c_{1}}}$
- Solution does not satisfy initial condition
- \quad Solution to the IVP
$y=\frac{1}{\sqrt{-2 x-1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 11
dsolve([diff $(y(x), x)=y(x) \sim 3, y(-1)=1], y(x)$, singsol=all)

$$
y(x)=\frac{1}{\sqrt{-2 x-1}}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 14
DSolve $\left[\left\{y^{\prime}[x]==y[x] \sim 3,\{y[-1]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow \frac{1}{\sqrt{-2 x-1}}
$$

8.12 problem 6 (b)

8.12.1 Existence and uniqueness analysis 1433
8.12.2 Solving as quadrature ode . 1434
8.12.3 Maple step by step solution . 1435

Internal problem ID [12710]
Internal file name [OUTPUT/11362_Friday_November_03_2023_06_31_06_AM_42323688/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 6 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{3}=0
$$

With initial conditions

$$
[y(-1)=0]
$$

8.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{3}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3}\right) \\
& =3 y^{2}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

8.12.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{3}} d y & =x+c_{1} \\
-\frac{1}{2 y^{2}} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\frac{1}{\sqrt{-2 c_{1}-2 x}} \\
& y_{2}=-\frac{1}{\sqrt{-2 c_{1}-2 x}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{1}{\sqrt{2-2 c_{1}}}
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=-\frac{1}{\sqrt{-2 c_{1}-2 x}}=y=0$ and this result satisfies the given initial condition. Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{1}{\sqrt{2-2 c_{1}}}
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=\frac{1}{\sqrt{-2 c_{1}-2 x}}=y=0$ Summary
and this result satisfies the given initial condition. The solution(s) found are the following $y=0$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

8.12.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{3}=0, y(-1)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{3}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{3}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\frac{1}{2 y^{2}}=x+c_{1}$
- \quad Solve for y
$\left\{y=\frac{1}{\sqrt{-2 c_{1}-2 x}}, y=-\frac{1}{\sqrt{-2 c_{1}-2 x}}\right\}$
- Use initial condition $y(-1)=0$

$$
0=\frac{1}{\sqrt{2-2 c_{1}}}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(-1)=0$
$0=-\frac{1}{\sqrt{2-2 c_{1}}}$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=y(x)^3,y(-1) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6
DSolve[\{y' $[x]==y[x] \sim 3,\{y[-1]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 0
$$

8.13 problem 6 (c)

8.13.1 Existence and uniqueness analysis 1437
8.13.2 Solving as quadrature ode . 1438
8.13.3 Maple step by step solution . 1439

Internal problem ID [12711]
Internal file name [OUTPUT/11363_Friday_November_03_2023_06_31_07_AM_71430434/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 6 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{3}=0
$$

With initial conditions

$$
[y(-1)=-1]
$$

8.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{3}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3}\right) \\
& =3 y^{2}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

8.13.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{3}} d y & =x+c_{1} \\
-\frac{1}{2 y^{2}} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\frac{1}{\sqrt{-2 c_{1}-2 x}} \\
& y_{2}=-\frac{1}{\sqrt{-2 c_{1}-2 x}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{\sqrt{2-2 c_{1}}} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{\sqrt{-2 x-1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
-1=\frac{1}{\sqrt{2-2 c_{1}}}
$$

Warning: Unable to solve for c_{1}. No particular solution can be found using given initial

$$
\begin{aligned}
& \text { Summary } \\
& \text { The solution(s) found are the following }
\end{aligned}
$$ conditions for this solution. removing this solution as not valid.

$$
y=-
$$

Verification of solutions

$$
y=-\frac{1}{\sqrt{-2 x-1}}
$$

Verified OK.

8.13.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{3}=0, y(-1)=-1\right]$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{3}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{3}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{2 y^{2}}=x+c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{1}{\sqrt{-2 c_{1}-2 x}}, y=-\frac{1}{\sqrt{-2 c_{1}-2 x}}\right\}
$$

- Use initial condition $y(-1)=-1$ $-1=\frac{1}{\sqrt{2-2 c_{1}}}$
- Solution does not satisfy initial condition
- Use initial condition $y(-1)=-1$

$$
-1=-\frac{1}{\sqrt{2-2 c_{1}}}
$$

- Solve for c_{1}

$$
c_{1}=\frac{1}{2}
$$

- \quad Substitute $c_{1}=\frac{1}{2}$ into general solution and simplify

$$
y=-\frac{1}{\sqrt{-2 x-1}}
$$

- Solution to the IVP

$$
y=-\frac{1}{\sqrt{-2 x-1}}
$$

Maple trace

```
'Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13
dsolve([diff $(y(x), x)=y(x) \wedge 3, y(-1)=-1], y(x)$, singsol=all)

$$
y(x)=-\frac{1}{\sqrt{-2 x-1}}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 16
DSolve[\{y' $[x]==y[x] \sim 3,\{y[-1]==-1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{\sqrt{-2 x-1}}
$$

8.14 problem 7 (a)

8.14.1 Existence and uniqueness analysis 1442
8.14.2 Solving as separable ode . 1443
8.14.3 Solving as differentialType ode 1445
8.14.4 Solving as first order ode lie symmetry lookup ode 1447
8.14.5 Solving as exact ode . 1451
8.14.6 Maple step by step solution . 1455

Internal problem ID [12712]
Internal file name [OUTPUT/11364_Friday_November_03_2023_06_31_07_AM_48639018/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 7 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+\frac{3 x^{2}}{2 y}=0
$$

With initial conditions

$$
[y(-1)=1]
$$

8.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{3 x^{2}}{2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 x^{2}}{2 y}\right) \\
& =\frac{3 x^{2}}{2 y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.14.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{3 x^{2}}{2 y}
\end{aligned}
$$

Where $f(x)=-\frac{3 x^{2}}{2}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-\frac{3 x^{2}}{2} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int-\frac{3 x^{2}}{2} d x \\
\frac{y^{2}}{2} & =-\frac{x^{3}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-x^{3}+2 c_{1}} \\
& y=-\sqrt{-x^{3}+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\sqrt{2 c_{1}+1}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\sqrt{2 c_{1}+1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{-x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-x^{3}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\sqrt{-x^{3}}
$$

Verified OK.

8.14.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{3 x^{2}}{2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y) d y=\left(-3 x^{2}\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-3 x^{2}\right) d x=d\left(-x^{3}\right)
$$

Hence (2) becomes

$$
(2 y) d y=d\left(-x^{3}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{-x^{3}+c_{1}}+c_{1} \\
& y=-\sqrt{-x^{3}+c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\sqrt{1+c_{1}}+c_{1} \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{-x^{3}+3}+3
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\sqrt{1+c_{1}}+c_{1}
$$

$$
c_{1}=0
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{-x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x^{3}} \tag{1}\\
& y=-\sqrt{-x^{3}+3}+3 \tag{2}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{-x^{3}}
$$

Verified OK.

$$
y=-\sqrt{-x^{3}+3}+3
$$

Verified OK.

8.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x^{2}}{2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 253: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x y^{n}}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{2}{3 x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{2}{3 x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{3}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x^{2}}{2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{3 x^{2}}{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x^{2}}{2 y}$		$\frac{d S}{d R}=R$
tt $t^{2}+t$		
$\rightarrow+1$.		
	$R=y$	
	x^{3}	
$\cos ^{-4}+4{ }^{\text {a }}$	$S=-\frac{x^{3}}{0}$	${ }^{4}$
	$S=-\frac{x^{3}}{2}$	

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\frac{1}{2}+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}
$$

Solving for y from the above gives

$$
y=(-x)^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-x)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(-x)^{\frac{3}{2}}
$$

Verified OK.

8.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2 y}{3}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(-\frac{2 y}{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2} \\
& N(x, y)=-\frac{2 y}{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{2 y}{3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 y}{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 y}{3}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{2 y}{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{2 y}{3}\right) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-\frac{y^{2}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-\frac{y^{2}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{3}-\frac{y^{2}}{3}=0
$$

Solving for y from the above gives

$$
y=(-x)^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-x)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(-x)^{\frac{3}{2}}
$$

Verified OK.

8.14.6 Maple step by step solution

Let's solve
$\left[y^{\prime}+\frac{3 x^{2}}{2 y}=0, y(-1)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$y y^{\prime}=-\frac{3 x^{2}}{2}$
- Integrate both sides with respect to x
$\int y y^{\prime} d x=\int-\frac{3 x^{2}}{2} d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=-\frac{x^{3}}{2}+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{-x^{3}+2 c_{1}}, y=-\sqrt{-x^{3}+2 c_{1}}\right\}$
- Use initial condition $y(-1)=1$

$$
1=\sqrt{2 c_{1}+1}
$$

- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=\sqrt{-x^{3}}
$$

- Use initial condition $y(-1)=1$

$$
1=-\sqrt{2 c_{1}+1}
$$

- Solution does not satisfy initial condition
- \quad Solution to the IVP

$$
y=\sqrt{-x^{3}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff(y(x),x)=-3*x^2/(2*y(x)),y(-1) = 1],y(x), singsol=all)
```

$$
y(x)=(-x)^{\frac{3}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.144 (sec). Leaf size: 14

```
DSolve[{y'[x]==-3*x^2/(2*y[x]),{y[-1]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \sqrt{-x^{3}}
$$

8.15 problem 7 (b)

8.15.1 Existence and uniqueness analysis 1457
8.15.2 Solving as separable ode . 1458
8.15.3 Solving as differentialType ode 1460
8.15.4 Solving as first order ode lie symmetry lookup ode 1462
8.15.5 Solving as exact ode . 1467
8.15.6 Maple step by step solution . 1471

Internal problem ID [12713]
Internal file name [OUTPUT/11365_Friday_November_03_2023_06_31_08_AM_2515014/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 7 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+\frac{3 x^{2}}{2 y}=0
$$

With initial conditions

$$
\left[y(-1)=\frac{1}{2}\right]
$$

8.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{3 x^{2}}{2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{1}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 x^{2}}{2 y}\right) \\
& =\frac{3 x^{2}}{2 y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{1}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

8.15.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{3 x^{2}}{2 y}
\end{aligned}
$$

Where $f(x)=-\frac{3 x^{2}}{2}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-\frac{3 x^{2}}{2} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int-\frac{3 x^{2}}{2} d x \\
\frac{y^{2}}{2} & =-\frac{x^{3}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-x^{3}+2 c_{1}} \\
& y=-\sqrt{-x^{3}+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{2}=-\sqrt{2 c_{1}+1}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\sqrt{2 c_{1}+1} \\
c_{1}=-\frac{3}{8}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{-4 x^{3}-3}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{-4 x^{3}-3}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{-4 x^{3}-3}}{2}
$$

Verified OK.

8.15.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{3 x^{2}}{2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y) d y=\left(-3 x^{2}\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-3 x^{2}\right) d x=d\left(-x^{3}\right)
$$

Hence (2) becomes

$$
(2 y) d y=d\left(-x^{3}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{-x^{3}+c_{1}}+c_{1} \\
& y=-\sqrt{-x^{3}+c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=-\sqrt{1+c_{1}}+c_{1} \\
c_{1}=1+\frac{\sqrt{7}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\sqrt{-4 x^{3}+4+2 \sqrt{7}}}{2}+1+\frac{\sqrt{7}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\sqrt{1+c_{1}}+c_{1} \\
c_{1}=1-\frac{\sqrt{7}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{-4 x^{3}+4-2 \sqrt{7}}}{2}+1-\frac{\sqrt{7}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{-4 x^{3}+4-2 \sqrt{7}}}{2}+1-\frac{\sqrt{7}}{2} \tag{1}\\
& y=-\frac{\sqrt{-4 x^{3}+4+2 \sqrt{7}}}{2}+1+\frac{\sqrt{7}}{2} \tag{2}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{-4 x^{3}+4-2 \sqrt{7}}}{2}+1-\frac{\sqrt{7}}{2}
$$

Verified OK.

$$
y=-\frac{\sqrt{-4 x^{3}+4+2 \sqrt{7}}}{2}+1+\frac{\sqrt{7}}{2}
$$

Verified OK.

8.15.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x^{2}}{2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 256: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{2}{3 x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{2}{3 x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{3}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x^{2}}{2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{3 x^{2}}{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x^{2}}{2 y}$		$\frac{d S}{d R}=R$
$1.1 \pm \rightarrow 4 \rightarrow \infty$:1,
1.		Li 1
!		
	$R=y$	
边		
-4×4	$S=-\frac{x^{3}}{}$	
		发 1

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{2}=\frac{1}{8}+c_{1}
$$

$$
c_{1}=\frac{3}{8}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+\frac{3}{8}
$$

Solving for y from the above gives

$$
y=\frac{\sqrt{-4 x^{3}-3}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{-4 x^{3}-3}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{-4 x^{3}-3}}{2}
$$

Verified OK.

8.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2 y}{3}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(-\frac{2 y}{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2} \\
& N(x, y)=-\frac{2 y}{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{2 y}{3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 y}{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 y}{3}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{2 y}{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{2 y}{3}\right) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-\frac{y^{2}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-\frac{y^{2}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{4}=c_{1} \\
& c_{1}=\frac{1}{4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{3}-\frac{y^{2}}{3}=\frac{1}{4}
$$

Solving for y from the above gives

$$
y=\frac{\sqrt{-4 x^{3}-3}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{-4 x^{3}-3}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{-4 x^{3}-3}}{2}
$$

Verified OK.

8.15.6 Maple step by step solution

Let's solve
$\left[y^{\prime}+\frac{3 x^{2}}{2 y}=0, y(-1)=\frac{1}{2}\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$y y^{\prime}=-\frac{3 x^{2}}{2}$
- Integrate both sides with respect to x
$\int y y^{\prime} d x=\int-\frac{3 x^{2}}{2} d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=-\frac{x^{3}}{2}+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{-x^{3}+2 c_{1}}, y=-\sqrt{-x^{3}+2 c_{1}}\right\}$
- Use initial condition $y(-1)=\frac{1}{2}$
$\frac{1}{2}=\sqrt{2 c_{1}+1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{3}{8}$
- Substitute $c_{1}=-\frac{3}{8}$ into general solution and simplify
$y=\frac{\sqrt{-4 x^{3}-3}}{2}$
- Use initial condition $y(-1)=\frac{1}{2}$
$\frac{1}{2}=-\sqrt{2 c_{1}+1}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=\frac{\sqrt{-4 x^{3}-3}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

```
dsolve([diff(y(x),x)=-3*x^2/(2*y(x)),y(-1) = 1/2],y(x), singsol=all)
```

$$
y(x)=\frac{\sqrt{-4 x^{3}-3}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 20
DSolve[\{y' $\left.[x]==-3 * x^{\wedge} 2 /(2 * y[x]),\{y[-1]==1 / 2\}\right\}, y[x], x$, IncludeSingularSolutions $\rightarrow>$ True

$$
y(x) \rightarrow \frac{1}{2} \sqrt{-4 x^{3}-3}
$$

8.16 problem 7 (c)

8.16.1 Existence and uniqueness analysis 1473
8.16.2 Solving as separable ode . 1474
8.16.3 Solving as differentialType ode 1476
8.16.4 Solving as first order ode lie symmetry lookup ode 1478
8.16.5 Solving as exact ode . 1482
8.16.6 Maple step by step solution . 1486

Internal problem ID [12714]
Internal file name [OUTPUT/11366_Friday_November_03_2023_06_31_09_AM_64424057/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 7 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+\frac{3 x^{2}}{2 y}=0
$$

With initial conditions

$$
[y(-1)=0]
$$

8.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{3 x^{2}}{2 y}
\end{aligned}
$$

$f(x, y)$ is not defined at $y=0$ therefore existence and uniqueness theorem do not apply.

8.16.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{3 x^{2}}{2 y}
\end{aligned}
$$

Where $f(x)=-\frac{3 x^{2}}{2}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-\frac{3 x^{2}}{2} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int-\frac{3 x^{2}}{2} d x \\
\frac{y^{2}}{2} & =-\frac{x^{3}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-x^{3}+2 c_{1}} \\
& y=-\sqrt{-x^{3}+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\sqrt{2 c_{1}+1} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{-x^{3}-1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\sqrt{2 c_{1}+1}
$$

$$
c_{1}=-\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{-x^{3}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x^{3}-1} \tag{1}\\
& y=-\sqrt{-x^{3}-1} \tag{2}
\end{align*}
$$

(a) Solution plot

Verification of solutions

$$
y=\sqrt{-x^{3}-1}
$$

Verified OK.

$$
y=-\sqrt{-x^{3}-1}
$$

Verified OK.

8.16.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{3 x^{2}}{2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y) d y=\left(-3 x^{2}\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-3 x^{2}\right) d x=d\left(-x^{3}\right)
$$

Hence (2) becomes

$$
(2 y) d y=d\left(-x^{3}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{-x^{3}+c_{1}}+c_{1} \\
& y=-\sqrt{-x^{3}+c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\sqrt{1+c_{1}}+c_{1} \\
c_{1}=\frac{1}{2}+\frac{\sqrt{5}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\sqrt{-4 x^{3}+2+2 \sqrt{5}}}{2}+\frac{1}{2}+\frac{\sqrt{5}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\sqrt{1+c_{1}}+c_{1} \\
c_{1}=\frac{1}{2}-\frac{\sqrt{5}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{-4 x^{3}+2-2 \sqrt{5}}}{2}+\frac{1}{2}-\frac{\sqrt{5}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{-4 x^{3}+2-2 \sqrt{5}}}{2}+\frac{1}{2}-\frac{\sqrt{5}}{2} \tag{1}\\
& y=-\frac{\sqrt{-4 x^{3}+2+2 \sqrt{5}}}{2}+\frac{1}{2}+\frac{\sqrt{5}}{2} \tag{2}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{-4 x^{3}+2-2 \sqrt{5}}}{2}+\frac{1}{2}-\frac{\sqrt{5}}{2}
$$

Verified OK.

$$
y=-\frac{\sqrt{-4 x^{3}+2+2 \sqrt{5}}}{2}+\frac{1}{2}+\frac{\sqrt{5}}{2}
$$

Verified OK.

8.16.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x^{2}}{2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 259: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x y^{n}}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{2}{3 x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{2}{3 x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{3}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x^{2}}{2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{3 x^{2}}{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x^{2}}{2 y}$		$\frac{d S}{d R}=R$
tt $t^{2}+t$		
$\rightarrow+1$.		
	$R=y$	
	x^{3}	
$\cos ^{-4}+4{ }^{\text {a }}$	$S=-\frac{x^{3}}{0}$	${ }^{4}$
	$S=-\frac{x^{3}}{2}$	

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{1} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+\frac{1}{2}
$$

Solving for y from the above gives

$$
\begin{aligned}
& y=\sqrt{-x^{3}-1} \\
& y=-\sqrt{-x^{3}-1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x^{3}-1} \tag{1}\\
& y=-\sqrt{-x^{3}-1} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{-x^{3}-1}
$$

Verified OK.

$$
y=-\sqrt{-x^{3}-1}
$$

Verified OK.

8.16.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2 y}{3}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(-\frac{2 y}{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2} \\
& N(x, y)=-\frac{2 y}{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{2 y}{3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 y}{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 y}{3}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{2 y}{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{2 y}{3}\right) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-\frac{y^{2}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-\frac{y^{2}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{3}=c_{1} \\
& c_{1}=\frac{1}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{3}-\frac{y^{2}}{3}=\frac{1}{3}
$$

Solving for y from the above gives

$$
\begin{aligned}
& y=\sqrt{-x^{3}-1} \\
& y=-\sqrt{-x^{3}-1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x^{3}-1} \tag{1}\\
& y=-\sqrt{-x^{3}-1} \tag{2}
\end{align*}
$$

(b) Slope field plot

Verification of solutions

$$
y=\sqrt{-x^{3}-1}
$$

Verified OK.

$$
y=-\sqrt{-x^{3}-1}
$$

Verified OK.

8.16.6 Maple step by step solution

Let's solve
$\left[y^{\prime}+\frac{3 x^{2}}{2 y}=0, y(-1)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
y y^{\prime}=-\frac{3 x^{2}}{2}
$$

- Integrate both sides with respect to x
$\int y y^{\prime} d x=\int-\frac{3 x^{2}}{2} d x+c_{1}$
- Evaluate integral

$$
\frac{y^{2}}{2}=-\frac{x^{3}}{2}+c_{1}
$$

- \quad Solve for y
$\left\{y=\sqrt{-x^{3}+2 c_{1}}, y=-\sqrt{-x^{3}+2 c_{1}}\right\}$
- Use initial condition $y(-1)=0$
$0=\sqrt{2 c_{1}+1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{2}$
- Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify

$$
y=\sqrt{-x^{3}-1}
$$

- Use initial condition $y(-1)=0$
$0=-\sqrt{2 c_{1}+1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{2}$
- Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify
$y=-\sqrt{-x^{3}-1}$
- Solutions to the IVP

$$
\left\{y=\sqrt{-x^{3}-1}, y=-\sqrt{-x^{3}-1}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 27
dsolve([diff $\left.(y(x), x)=-3 * x^{\wedge} 2 /(2 * y(x)), y(-1)=0\right], y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{-x^{3}-1} \\
& y(x)=-\sqrt{-x^{3}-1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 33
DSolve[\{y' $\left.[x]==-3 * x^{\wedge} 2 /(2 * y[x]),\{y[-1]==0\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x^{3}-1} \\
& y(x) \rightarrow \sqrt{-x^{3}-1}
\end{aligned}
$$

8.17 problem 7 (d)

8.17.1 Existence and uniqueness analysis 1489
8.17.2 Solving as separable ode . 1490
8.17.3 Solving as differentialType ode 1492
8.17.4 Solving as first order ode lie symmetry lookup ode 1494
8.17.5 Solving as exact ode . 1498
8.17.6 Maple step by step solution . 1502

Internal problem ID [12715]
Internal file name [OUTPUT/11367_Friday_November_03_2023_06_31_11_AM_38011253/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 7 (d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+\frac{3 x^{2}}{2 y}=0
$$

With initial conditions

$$
[y(-1)=-1]
$$

8.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{3 x^{2}}{2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 x^{2}}{2 y}\right) \\
& =\frac{3 x^{2}}{2 y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

8.17.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{3 x^{2}}{2 y}
\end{aligned}
$$

Where $f(x)=-\frac{3 x^{2}}{2}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-\frac{3 x^{2}}{2} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int-\frac{3 x^{2}}{2} d x \\
\frac{y^{2}}{2} & =-\frac{x^{3}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-x^{3}+2 c_{1}} \\
& y=-\sqrt{-x^{3}+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\sqrt{2 c_{1}+1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{-x^{3}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
-1=\sqrt{2 c_{1}+1}
$$

Summary
Warning: Unable to solve for constant of integration. The solution(s) found are the following

$$
y=-\sqrt{-x^{3}}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=-\sqrt{-x^{3}}
$$

Verified OK.

8.17.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{3 x^{2}}{2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y) d y=\left(-3 x^{2}\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-3 x^{2}\right) d x=d\left(-x^{3}\right)
$$

Hence (2) becomes

$$
(2 y) d y=d\left(-x^{3}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{-x^{3}+c_{1}}+c_{1} \\
& y=-\sqrt{-x^{3}+c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\sqrt{1+c_{1}}+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{-x^{3}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
-1=\sqrt{1+c_{1}}+c_{1}
$$

$$
c_{1}=-1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{-x^{3}-1}-1
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x^{3}-1}-1 \tag{1}\\
& y=-\sqrt{-x^{3}} \tag{2}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{-x^{3}-1}-1
$$

Verified OK.

$$
y=-\sqrt{-x^{3}}
$$

Verified OK.

8.17.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x^{2}}{2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 262: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{2}{3 x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{2}{3 x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{3}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x^{2}}{2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{3 x^{2}}{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x^{2}}{2 y}$		$\frac{d S}{d R}=R$
tt $t^{2}+t$		
$\rightarrow+1$.		
	$R=y$	
	x^{3}	
$\cos ^{-4}+4{ }^{\text {a }}$	$S=-\frac{x^{3}}{0}$	${ }^{4}$
	$S=-\frac{x^{3}}{2}$	

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\frac{1}{2}+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{2}=\frac{y^{2}}{2}
$$

Solving for y from the above gives

$$
y=-(-x)^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-(-x)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-(-x)^{\frac{3}{2}}
$$

Verified OK.

8.17.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2 y}{3}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(-\frac{2 y}{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2} \\
& N(x, y)=-\frac{2 y}{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{2 y}{3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 y}{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 y}{3}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{2 y}{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{2 y}{3}\right) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-\frac{y^{2}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-\frac{y^{2}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{3}-\frac{y^{2}}{3}=0
$$

Solving for y from the above gives

$$
y=-(-x)^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-(-x)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-(-x)^{\frac{3}{2}}
$$

Verified OK.

8.17.6 Maple step by step solution

Let's solve
$\left[y^{\prime}+\frac{3 x^{2}}{2 y}=0, y(-1)=-1\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
y y^{\prime}=-\frac{3 x^{2}}{2}
$$

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int-\frac{3 x^{2}}{2} d x+c_{1}
$$

- Evaluate integral
$\frac{y^{2}}{2}=-\frac{x^{3}}{2}+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{-x^{3}+2 c_{1}}, y=-\sqrt{-x^{3}+2 c_{1}}\right\}$
- Use initial condition $y(-1)=-1$

$$
-1=\sqrt{2 c_{1}+1}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(-1)=-1$

$$
-1=-\sqrt{2 c_{1}+1}
$$

- \quad Solve for c_{1}
$c_{1}=0$
- Substitute $c_{1}=0$ into general solution and simplify

$$
y=-\sqrt{-x^{3}}
$$

- Solution to the IVP

$$
y=-\sqrt{-x^{3}}
$$

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 11

```
dsolve([diff(y(x),x)=-3*x^2/(2*y(x)),y(-1) = -1],y(x), singsol=all)
```

$$
y(x)=-(-x)^{\frac{3}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 16

```
DSolve[{y'[x]==-3*x^2/(2*y[x]),{y[-1]==-1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-\sqrt{-x^{3}}
$$

8.18 problem 8 (a)

8.18.1 Existence and uniqueness analysis 1504
8.18.2 Solving as separable ode . 1505
8.18.3 Solving as first order ode lie symmetry lookup ode 1506
8.18.4 Solving as exact ode . 1510
8.18.5 Maple step by step solution . 1513

Internal problem ID [12716]
Internal file name [OUTPUT/11368_Friday_November_03_2023_06_31_12_AM_81644714/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 8 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\sqrt{y}}{x}=0
$$

With initial conditions

$$
[y(-1)=1]
$$

8.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{\sqrt{y}}{x}\right) \\
& =\frac{1}{2 \sqrt{y} x}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.18.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\sqrt{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{y}} d y & =\int \frac{1}{x} d x \\
2 \sqrt{y} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
2 \sqrt{y}-\ln (x)-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-i \pi-c_{1}+2=0 \\
c_{1}=-i \pi+2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
2 \sqrt{y}-\ln (x)-2+i \pi=0
$$

Solving for y from the above gives

$$
y=-\frac{i \ln (x) \pi}{2}-i \pi-\frac{\pi^{2}}{4}+\frac{\ln (x)^{2}}{4}+\ln (x)+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i \ln (x) \pi}{2}-i \pi-\frac{\pi^{2}}{4}+\frac{\ln (x)^{2}}{4}+\ln (x)+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i \ln (x) \pi}{2}-i \pi-\frac{\pi^{2}}{4}+\frac{\ln (x)^{2}}{4}+\ln (x)+1
$$

Verified OK.

8.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\sqrt{y}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 265: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{y}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{y}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{R}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \sqrt{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which simplifies to

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which gives

$$
y=\frac{\ln (x)^{2}}{4}-\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{1}{4} \pi^{2}-\frac{1}{2} i c_{1} \pi+\frac{1}{4} c_{1}^{2}
$$

$$
c_{1}=i \pi-2
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{i \ln (x) \pi}{2}-i \pi-\frac{\pi^{2}}{4}+\frac{\ln (x)^{2}}{4}+\ln (x)+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i \ln (x) \pi}{2}-i \pi-\frac{\pi^{2}}{4}+\frac{\ln (x)^{2}}{4}+\ln (x)+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i \ln (x) \pi}{2}-i \pi-\frac{\pi^{2}}{4}+\frac{\ln (x)^{2}}{4}+\ln (x)+1
$$

Verified OK.

8.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{\sqrt{y}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{y}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{y}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=2 \sqrt{y}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=2 \sqrt{y}-\ln (x)
$$

The solution becomes

$$
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{1}{4} \pi^{2}+\frac{1}{2} i c_{1} \pi+\frac{1}{4} c_{1}^{2} \\
c_{1}=-i \pi-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\ln (x)^{2}}{4}-\frac{i \ln (x) \pi}{2}-\ln (x)-\frac{\pi^{2}}{4}+i \pi+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)^{2}}{4}-\frac{i \ln (x) \pi}{2}-\ln (x)-\frac{\pi^{2}}{4}+i \pi+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln (x)^{2}}{4}-\frac{i \ln (x) \pi}{2}-\ln (x)-\frac{\pi^{2}}{4}+i \pi+1
$$

Verified OK.

8.18.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{\sqrt{y}}{x}=0, y(-1)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}}=\frac{1}{x}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{y}} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral
$2 \sqrt{y}=\ln (x)+c_{1}$
- \quad Solve for y
$y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}$
- Use initial condition $y(-1)=1$
$1=-\frac{\pi^{2}}{4}+\frac{\mathrm{I} c_{1} \pi}{2}+\frac{c_{1}^{2}}{4}$
- \quad Solve for c_{1}
$c_{1}=(-\mathrm{I} \pi-2,2-\mathrm{I} \pi)$
- Substitute $c_{1}=(-\mathrm{I} \pi-2,2-\mathrm{I} \pi)$ into general solution and simplify

$$
y=\frac{\ln (x)^{2}}{4}-\frac{\mathrm{I} \ln (x) \pi}{2}-\ln (x)-\frac{\pi^{2}}{4}+\mathrm{I} \pi+1
$$

- Solution to the IVP

$$
y=\frac{\ln (x)^{2}}{4}-\frac{\mathrm{I} \ln (x) \pi}{2}-\ln (x)-\frac{\pi^{2}}{4}+\mathrm{I} \pi+1
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 29

```
dsolve([diff(y(x),x)=sqrt(y(x))/x,y(-1) = 1],y(x), singsol=all)
```

$$
y(x)=-\frac{i \pi \ln (x)}{2}-i \pi-\frac{\pi^{2}}{4}+\frac{\ln (x)^{2}}{4}+\ln (x)+1
$$

\checkmark Solution by Mathematica
Time used: 0.235 (sec). Leaf size: 43
DSolve[\{y' $[x]==$ Sqrt $[y[x]] / x,\{y[-1]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{4}(i \log (x)+\pi-2 i)^{2} \\
& y(x) \rightarrow-\frac{1}{4}(i \log (x)+\pi+2 i)^{2}
\end{aligned}
$$

8.19 problem 8 (b)

8.19.1 Existence and uniqueness analysis 1516
8.19.2 Solving as separable ode . 1517
8.19.3 Solving as first order ode lie symmetry lookup ode 1518
8.19.4 Solving as exact ode . 1522
8.19.5 Maple step by step solution . 1525

Internal problem ID [12717]
Internal file name [OUTPUT/11369_Friday_November_03_2023_06_31_13_AM_5762966/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 8 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\sqrt{y}}{x}=0
$$

With initial conditions

$$
[y(-1)=0]
$$

8.19.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{\sqrt{y}}{x}\right) \\
& =\frac{1}{2 \sqrt{y} x}
\end{aligned}
$$

$\frac{\partial f}{\partial y}$ is not defined at $y=0$ therefore existence and uniqueness theorem do not apply. Solution exist but not guaranteed to be unique.

8.19.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\sqrt{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{y}} d y & =\int \frac{1}{x} d x \\
2 \sqrt{y} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
2 \sqrt{y}-\ln (x)-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-i \pi-c_{1}=0 \\
c_{1}=-i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
2 \sqrt{y}-\ln (x)+i \pi=0
$$

Solving for y from the above gives

$$
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4}
$$

Verified OK.

8.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\sqrt{y}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 268: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{y}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{y}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{R}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \sqrt{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which simplifies to

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which gives

$$
y=\frac{\ln (x)^{2}}{4}-\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{1}{4} \pi^{2}-\frac{1}{2} i c_{1} \pi+\frac{1}{4} c_{1}^{2}
$$

$$
c_{1}=i \pi
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4}
$$

Verified OK.

8.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{\sqrt{y}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{y}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{y}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=2 \sqrt{y}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=2 \sqrt{y}-\ln (x)
$$

The solution becomes

$$
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\frac{1}{4} \pi^{2}+\frac{1}{2} i c_{1} \pi+\frac{1}{4} c_{1}^{2} \\
c_{1}=-i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4}
$$

Verified OK.

8.19.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{\sqrt{y}}{x}=0, y(-1)=0\right]
$$

- Highest derivative means the order of the ODE is 1
- Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sqrt{y}} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
2 \sqrt{y}=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

- Use initial condition $y(-1)=0$

$$
0=-\frac{\pi^{2}}{4}+\frac{\mathrm{I} c_{1} \pi}{2}+\frac{c_{1}^{2}}{4}
$$

- \quad Solve for c_{1}

$$
c_{1}=(-\mathrm{I} \pi,-\mathrm{I} \pi)
$$

- \quad Substitute $c_{1}=(-\mathrm{I} \pi,-\mathrm{I} \pi)$ into general solution and simplify

$$
y=-\frac{\ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{I} \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}-\frac{\pi^{2}}{4}
$$

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=sqrt(y(x))/x,y(-1) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 24
DSolve[\{y' $[x]==\operatorname{Sqrt}[y[x]] / x,\{y[-1]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\frac{1}{4}(\pi+i \log (x))^{2}
\end{aligned}
$$

8.20 problem 8 (c)

8.20.1 Existence and uniqueness analysis 1528
8.20.2 Solving as separable ode . 1529
8.20.3 Solving as first order ode lie symmetry lookup ode 1530
8.20.4 Solving as exact ode . 1534
8.20.5 Maple step by step solution . 1537

Internal problem ID [12718]
Internal file name [OUTPUT/11370_Friday_November_03_2023_06_31_14_AM_37716840/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 8 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\sqrt{y}}{x}=0
$$

With initial conditions

$$
[y(-1)=-1]
$$

8.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{0<x\}
$$

But the point $x_{0}=-1$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

8.20.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\sqrt{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{y}} d y & =\int \frac{1}{x} d x \\
2 \sqrt{y} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
2 \sqrt{y}-\ln (x)-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-i \pi-c_{1}+2 i=0 \\
c_{1}=-i \pi+2 i
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
2 \sqrt{y}-\ln (x)-2 i+i \pi=0
$$

Solving for y from the above gives

$$
y=\frac{\ln (x)^{2}}{4}+\frac{i(2-\pi) \ln (x)}{2}-\frac{(-2+\pi)^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)^{2}}{4}+\frac{i(2-\pi) \ln (x)}{2}-\frac{(-2+\pi)^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln (x)^{2}}{4}+\frac{i(2-\pi) \ln (x)}{2}-\frac{(-2+\pi)^{2}}{4}
$$

Verified OK.

8.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\sqrt{y}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 271: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{y}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{y}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{R}}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=2 \sqrt{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which simplifies to

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which gives

$$
y=\frac{\ln (x)^{2}}{4}-\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\sqrt{y}}{x}$		$\frac{d S}{d R}=\frac{1}{\sqrt{R}}$
		多分分がぜざ
\cdots－		$S(R)$
－－		
	$R=y$	
$-4 \quad-2 \quad{ }_{x}^{2}$	$S=\ln (x)$	$\begin{array}{lll}-4 & -2\end{array}$
－4．		

Initial conditions are used to solve for c_{1} ．Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration．

$$
-1=-\frac{1}{4} \pi^{2}-\frac{1}{2} i c_{1} \pi+\frac{1}{4} c_{1}^{2}
$$

$$
c_{1}=i \pi-2 i
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}+i \ln (x)-\frac{\pi^{2}}{4}+\pi-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}+i \ln (x)-\frac{\pi^{2}}{4}+\pi-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{i \ln (x) \pi}{2}+\frac{\ln (x)^{2}}{4}+i \ln (x)-\frac{\pi^{2}}{4}+\pi-1
$$

Verified OK.

8.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{\sqrt{y}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{y}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{y}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=2 \sqrt{y}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=2 \sqrt{y}-\ln (x)
$$

The solution becomes

$$
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{4} \pi^{2}+\frac{1}{2} i c_{1} \pi+\frac{1}{4} c_{1}^{2} \\
c_{1}=-i \pi-2 i
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\ln (x)^{2}}{4}-\frac{i \ln (x) \pi}{2}-i \ln (x)-\frac{\pi^{2}}{4}-\pi-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)^{2}}{4}-\frac{i \ln (x) \pi}{2}-i \ln (x)-\frac{\pi^{2}}{4}-\pi-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln (x)^{2}}{4}-\frac{i \ln (x) \pi}{2}-i \ln (x)-\frac{\pi^{2}}{4}-\pi-1
$$

Verified OK.

8.20.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{\sqrt{y}}{x}=0, y(-1)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sqrt{y}} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
2 \sqrt{y}=\ln (x)+c_{1}
$$

- \quad Solve for y
$y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}$
- Use initial condition $y(-1)=-1$
$-1=-\frac{\pi^{2}}{4}+\frac{\mathrm{I} c_{1} \pi}{2}+\frac{c_{1}^{2}}{4}$
- \quad Solve for c_{1}
$c_{1}=(-\mathrm{I} \pi-2 \mathrm{I}, 2 \mathrm{I}-\mathrm{I} \pi)$
- Substitute $c_{1}=(-\mathrm{I} \pi-2 \mathrm{I}, 2 \mathrm{I}-\mathrm{I} \pi)$ into general solution and simplify $y=\frac{\ln (x)^{2}}{4}+\frac{\mathrm{I}(-\pi-2) \ln (x)}{2}-\frac{(\pi+2)^{2}}{4}$
- \quad Solution to the IVP
$y=\frac{\ln (x)^{2}}{4}+\frac{\mathrm{I}(-\pi-2) \ln (x)}{2}-\frac{(\pi+2)^{2}}{4}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.093 (sec). Leaf size: 28

```
dsolve([diff(y(x),x)=sqrt(y(x))/x,y(-1) = -1],y(x), singsol=all)
```

$$
y(x)=\frac{\ln (x)^{2}}{4}+\frac{i(2-\pi) \ln (x)}{2}-\frac{(-2+\pi)^{2}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.151 (sec). Leaf size: 39
DSolve[\{y' $[x]==$ Sqrt $[y[x]] / x,\{y[-1]==-1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{4}(i \log (x)+\pi+2)^{2} \\
& y(x) \rightarrow-\frac{1}{4}(i \log (x)+\pi-2)^{2}
\end{aligned}
$$

8.21 problem 8 (d)

8.21.1 Existence and uniqueness analysis 1540
8.21.2 Solving as separable ode . 1541
8.21.3 Solving as first order ode lie symmetry lookup ode 1543
8.21.4 Solving as exact ode . 1547
8.21.5 Maple step by step solution . 1551

Internal problem ID [12719]
Internal file name [OUTPUT/11371_Friday_November_03_2023_06_31_16_AM_28112914/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 8 (d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\sqrt{y}}{x}=0
$$

With initial conditions

$$
[y(1)=1]
$$

8.21.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{\sqrt{y}}{x}\right) \\
& =\frac{1}{2 \sqrt{y} x}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.21.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sqrt{y}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\sqrt{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{y}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{y}} d y & =\int \frac{1}{x} d x \\
2 \sqrt{y} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
2 \sqrt{y}-\ln (x)-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2-c_{1}=0 \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
2 \sqrt{y}-\ln (x)-2=0
$$

Solving for y from the above gives

$$
y=\frac{(\ln (x)+2)^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(\ln (x)+2)^{2}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{(\ln (x)+2)^{2}}{4}
$$

Verified OK.

8.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\sqrt{y}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 274: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{y}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{y}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{R}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \sqrt{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which simplifies to

$$
\ln (x)=2 \sqrt{y}+c_{1}
$$

Which gives

$$
y=\frac{\ln (x)^{2}}{4}-\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\sqrt{y}}{x}$	$\begin{aligned} R & =y \\ S & =\ln (x) \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{c_{1}^{2}}{4} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\ln (x)^{2}}{4}+\ln (x)+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)^{2}}{4}+\ln (x)+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln (x)^{2}}{4}+\ln (x)+1
$$

Verified OK.

8.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{\sqrt{y}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{y}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{y}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{y}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{y}}\right) \mathrm{d} y \\
f(y) & =2 \sqrt{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=2 \sqrt{y}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=2 \sqrt{y}-\ln (x)
$$

The solution becomes

$$
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{c_{1}^{2}}{4} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\ln (x)^{2}}{4}-\ln (x)+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)^{2}}{4}-\ln (x)+1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)^{2}}{4}-\ln (x)+1
$$

Verified OK.

8.21.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{\sqrt{y}}{x}=0, y(1)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}}=\frac{1}{x}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{y}} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral

$$
2 \sqrt{y}=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\ln (x)^{2}}{4}+\frac{c_{1} \ln (x)}{2}+\frac{c_{1}^{2}}{4}
$$

- Use initial condition $y(1)=1$
$1=\frac{c_{1}^{2}}{4}$
- \quad Solve for c_{1}
$c_{1}=(-2,2)$
- \quad Substitute $c_{1}=(-2,2)$ into general solution and simplify $y=\frac{(\ln (x)-2)^{2}}{4}$
- \quad Solution to the IVP
$y=\frac{(\ln (x)-2)^{2}}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff(y(x),x)=sqrt(y(x))/x,y(1) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{(\ln (x)+2)^{2}}{4}
$$

Solution by Mathematica
Time used: 0.151 (sec). Leaf size: 29

```
DSolve[{y'[x]==Sqrt[y[x]]/x,{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}(\log (x)-2)^{2} \\
& y(x) \rightarrow \frac{1}{4}(\log (x)+2)^{2}
\end{aligned}
$$

8.22 problem 9 (a)

8.22.1 Existence and uniqueness analysis 1553
8.22.2 Solving as separable ode . 1554
8.22.3 Solving as first order ode lie symmetry lookup ode 1555
8.22.4 Solving as exact ode . 1560
8.22.5 Maple step by step solution . 1564

Internal problem ID [12720]
Internal file name [OUTPUT/11372_Friday_November_03_2023_06_31_17_AM_30341911/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 9 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-3 x y^{\frac{1}{3}}=0
$$

With initial conditions

$$
\left[y(-1)=\frac{3}{2}\right]
$$

8.22.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{3}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=\frac{3}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(3 x y^{\frac{1}{3}}\right) \\
& =\frac{x}{y^{\frac{2}{3}}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{3}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{0<y\}
$$

And the point $y_{0}=\frac{3}{2}$ is inside this domain. Therefore solution exists and is unique.

8.22.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

Where $f(x)=3 x$ and $g(y)=y^{\frac{1}{3}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{\frac{1}{3}}} d y & =3 x d x \\
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int 3 x d x \\
\frac{3 y^{\frac{2}{3}}}{2} & =\frac{3 x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{3}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{32^{\frac{1}{3}} 3^{\frac{2}{3}}}{4}-\frac{3}{2}-c_{1}=0 \\
c_{1}=\frac{32^{\frac{1}{3}} 3^{\frac{2}{3}}}{4}-\frac{3}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-\frac{32^{\frac{1}{3}} 3^{\frac{2}{3}}}{4}+\frac{3}{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-\frac{32^{\frac{1}{3}} 3^{\frac{2}{3}}}{4}+\frac{3}{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-\frac{32^{\frac{1}{3}} 3^{\frac{2}{3}}}{4}+\frac{3}{2}=0
$$

Verified OK.

8.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =3 x y^{\frac{1}{3}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 277: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{3 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{3 x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{3 x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x y^{\frac{1}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =3 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 R^{\frac{2}{3}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(9 x^{2}-6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=3 x y^{\frac{1}{3}}$		$\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}}$
	$R=y$	$S(R)$
	$S=\frac{3 x^{2}}{2}$	

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{3}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{3}{2}=\frac{\left(9-6 c_{1}\right)^{\frac{3}{2}}}{27} \\
& c_{1}=\frac{3}{2}-\frac{32^{\frac{1}{3}} 3^{\frac{2}{3}}}{4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(22^{\frac{1}{3}} 3^{\frac{2}{3}}+4 x^{2}-4\right)^{\frac{3}{2}}}{8}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(22^{\frac{1}{3}} 3^{\frac{2}{3}}+4 x^{2}-4\right)^{\frac{3}{2}}}{8} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(22^{\frac{1}{3}} 3^{\frac{2}{3}}+4 x^{2}-4\right)^{\frac{3}{2}}}{8}
$$

Verified OK.

8.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{3 y^{\frac{1}{3}}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{3 y^{\frac{1}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{3 y^{\frac{1}{3}}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{3 y^{\frac{1}{3}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y \\
f(y) & =\frac{y^{\frac{2}{3}}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}
$$

The solution becomes

$$
y=\left(x^{2}+2 c_{1}\right)^{\frac{3}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{3}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{3}{2}=\left(2 c_{1}+1\right)^{\frac{3}{2}} \\
& c_{1}=\frac{2^{\frac{1}{3}} 3^{\frac{2}{3}}}{4}-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(22^{\frac{1}{3}} 3^{\frac{2}{3}}+4 x^{2}-4\right)^{\frac{3}{2}}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(22^{\frac{1}{3}} 3^{\frac{2}{3}}+4 x^{2}-4\right)^{\frac{3}{2}}}{8} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(22^{\frac{1}{3}} 3^{\frac{2}{3}}+4 x^{2}-4\right)^{\frac{3}{2}}}{8}
$$

Verified OK.

8.22.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-3 x y^{\frac{1}{3}}=0, y(-1)=\frac{3}{2}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{\frac{1}{3}}}=3 x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d x=\int 3 x d x+c_{1}$
- Evaluate integral
$\frac{3 y^{\frac{2}{3}}}{2}=\frac{3 x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\frac{\left(9 x^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27}$
- Use initial condition $y(-1)=\frac{3}{2}$
$\frac{3}{2}=\frac{\left(6 c_{1}+9\right)^{\frac{3}{2}}}{27}$
- \quad Solve for c_{1}
$c_{1}=\frac{32^{\frac{1}{3} 3^{\frac{2}{3}}}}{4}-\frac{3}{2}$
- Substitute $c_{1}=\frac{32^{\frac{1}{3}} 3^{\frac{2}{3}}}{4}-\frac{3}{2}$ into general solution and simplify
$y=\frac{\left(2^{\frac{1}{3}} 3^{\frac{2}{3}}+2 x^{2}-2\right) \sqrt{22^{\frac{1}{3}} 3^{\frac{2}{3}}+4 x^{2}-4}}{4}$
- \quad Solution to the IVP
$y=\frac{\left(2^{\frac{1}{3}} 3^{\frac{2}{3}}+2 x^{2}-2\right) \sqrt{22^{\frac{1}{3}} 3^{\frac{2}{3}}+4 x^{2}-4}}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.64 (sec). Leaf size: 23

```
dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = 3/2],y(x), singsol=all)
```

$$
y(x)=\frac{\sqrt{23^{\frac{2}{3}} 2^{\frac{1}{3}}+4 x^{2}-4}\left(3^{\frac{2}{3}} 2^{\frac{1}{3}}+2 x^{2}-2\right)}{4}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.374 (sec). Leaf size: 36
DSolve[\{y' $[x]==3 * x * y[x] \sim(1 / 3),\{y[-1]==3 / 2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\left(2 x^{2}+\sqrt[3]{2} 3^{2 / 3}-2\right)^{3 / 2}}{2 \sqrt{2}}
$$

8.23 problem 9 (b)

8.23.1 Existence and uniqueness analysis 1566
8.23.2 Solving as separable ode . 1567
8.23.3 Solving as first order ode lie symmetry lookup ode 1568
8.23.4 Solving as exact ode . 1572
8.23.5 Maple step by step solution . 1575

Internal problem ID [12721]
Internal file name [OUTPUT/11373_Friday_November_03_2023_06_31_21_AM_53930963/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 9 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-3 x y^{\frac{1}{3}}=0
$$

With initial conditions

$$
[y(-1)=1]
$$

8.23.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(3 x y^{\frac{1}{3}}\right) \\
& =\frac{x}{y^{\frac{2}{3}}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.23.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

Where $f(x)=3 x$ and $g(y)=y^{\frac{1}{3}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{\frac{1}{3}}} d y & =3 x d x \\
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int 3 x d x \\
\frac{3 y^{\frac{2}{3}}}{2} & =\frac{3 x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-c_{1}=0 \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}=0
$$

Verified OK.

8.23.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 x y^{\frac{1}{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 280: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{3 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{3 x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{3 x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x y^{\frac{1}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =3 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 R^{\frac{2}{3}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(9 x^{2}-6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{\left(9-6 c_{1}\right)^{\frac{3}{2}}}{27} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{3}
$$

But this does not satisfy the initial conditions. Hence no solution can be found.
Verification of solutions N/A

8.23.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{3 y^{\frac{1}{3}}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{3 y^{\frac{1}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{3 y^{\frac{1}{3}}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{3 y^{\frac{1}{3}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y \\
f(y) & =\frac{y^{\frac{2}{3}}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}
$$

The solution becomes

$$
y=\left(x^{2}+2 c_{1}\right)^{\frac{3}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\left(2 c_{1}+1\right)^{\frac{3}{2}} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{3}
$$

But this does not satisfy the initial conditions. Hence no solution can be found.
Verification of solutions N/A

8.23.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-3 x y^{\frac{1}{3}}=0, y(-1)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{\frac{1}{3}}}=3 x
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d x=\int 3 x d x+c_{1}$
- Evaluate integral

$$
\frac{3 y^{\frac{2}{3}}}{2}=\frac{3 x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(9 x^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

- Use initial condition $y(-1)=1$

$$
1=\frac{\left(6 c_{1}+9\right)^{\frac{3}{2}}}{27}
$$

- \quad Solve for c_{1}
$c_{1}=0$
- Substitute $c_{1}=0$ into general solution and simplify

$$
y=\operatorname{csgn}(x) x^{3}
$$

- \quad Solution to the IVP

$$
y=\operatorname{csgn}(x) x^{3}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = 1],y(x), singsol=all)
```

$$
y(x)=-x^{3}
$$

\checkmark Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 12

```
DSolve[{y'[x]==3*x*y[x]^(1/3),{y[-1]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow\left(x^{2}\right)^{3 / 2}
$$

8.24 problem 9 (c)

8.24.1 Existence and uniqueness analysis 1577
8.24.2 Solving as separable ode . 1578
8.24.3 Solving as first order ode lie symmetry lookup ode 1580
8.24.4 Solving as exact ode . 1585
8.24.5 Maple step by step solution . 1589

Internal problem ID [12722]
Internal file name [OUTPUT/11374_Friday_November_03_2023_06_31_22_AM_48526193/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 9 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-3 x y^{\frac{1}{3}}=0
$$

With initial conditions

$$
\left[y(-1)=\frac{1}{2}\right]
$$

8.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{1}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(3 x y^{\frac{1}{3}}\right) \\
& =\frac{x}{y^{\frac{2}{3}}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{1}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{0<y\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

8.24.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

Where $f(x)=3 x$ and $g(y)=y^{\frac{1}{3}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{\frac{1}{3}}} d y & =3 x d x \\
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int 3 x d x \\
\frac{3 y^{\frac{2}{3}}}{2} & =\frac{3 x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{32^{\frac{1}{3}}}{4}-\frac{3}{2}-c_{1}=0 \\
c_{1}=\frac{32^{\frac{1}{3}}}{4}-\frac{3}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-\frac{32^{\frac{1}{3}}}{4}+\frac{3}{2}=0
$$

Solving for y from the above gives

$$
y=\frac{\left(2 x^{2}+2^{\frac{1}{3}}-2\right) \sqrt{4 x^{2}+22^{\frac{1}{3}}-4}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 x^{2}+2^{\frac{1}{3}}-2\right) \sqrt{4 x^{2}+22^{\frac{1}{3}}-4}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(2 x^{2}+2^{\frac{1}{3}}-2\right) \sqrt{4 x^{2}+22^{\frac{1}{3}}-4}}{4}
$$

Verified OK.

8.24.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 x y^{\frac{1}{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 283: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η				
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$				
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0				
quadrature ode	$y^{\prime}=f(x)$	0	1				
quadrature ode	$y^{\prime}=g(y)$	1	0				
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y				
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$				
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$				
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$				
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$					
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$				
$a_{1} b_{2}-a_{2} b_{1}$				$\frac{\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0
:---	:---	:---					

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{3 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{3 x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{3 x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x y^{\frac{1}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =3 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 R^{\frac{2}{3}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(9 x^{2}-6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=\frac{\left(9-6 c_{1}\right)^{\frac{3}{2}}}{27} \\
& c_{1}=\frac{3}{2}-\frac{32^{\frac{1}{3}}}{4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(4 x^{2}+22^{\frac{1}{3}}-4\right)^{\frac{3}{2}}}{8}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(4 x^{2}+22^{\frac{1}{3}}-4\right)^{\frac{3}{2}}}{8} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(4 x^{2}+22^{\frac{1}{3}}-4\right)^{\frac{3}{2}}}{8}
$$

Verified OK.

8.24.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{3 y^{\frac{1}{3}}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{3 y^{\frac{1}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{3 y^{\frac{1}{3}}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{3 y^{\frac{1}{3}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y \\
f(y) & =\frac{y^{\frac{2}{3}}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}
$$

The solution becomes

$$
y=\left(x^{2}+2 c_{1}\right)^{\frac{3}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=\left(2 c_{1}+1\right)^{\frac{3}{2}} \\
& c_{1}=\frac{2^{\frac{1}{3}}}{4}-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(4 x^{2}+22^{\frac{1}{3}}-4\right)^{\frac{3}{2}}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(4 x^{2}+22^{\frac{1}{3}}-4\right)^{\frac{3}{2}}}{8} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{\left(4 x^{2}+22^{\frac{1}{3}}-4\right)^{\frac{3}{2}}}{8}
$$

Verified OK.

8.24.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 x y^{\frac{1}{3}}=0, y(-1)=\frac{1}{2}\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{\frac{1}{3}}}=3 x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d x=\int 3 x d x+c_{1}$
- Evaluate integral
$\frac{3 y^{\frac{2}{3}}}{2}=\frac{3 x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\frac{\left(9 x^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27}$
- Use initial condition $y(-1)=\frac{1}{2}$
$\frac{1}{2}=\frac{\left(6 c_{1}+9\right)^{\frac{3}{2}}}{27}$
- \quad Solve for c_{1}
$c_{1}=\frac{32^{\frac{1}{3}}}{4}-\frac{3}{2}$
- \quad Substitute $c_{1}=\frac{32^{\frac{1}{3}}}{4}-\frac{3}{2}$ into general solution and simplify
$y=\frac{\left(2 x^{2}+2^{\frac{1}{3}}-2\right) \sqrt{4 x^{2}+22^{\frac{1}{3}}-4}}{4}$
- \quad Solution to the IVP
$y=\frac{\left(2 x^{2}+2^{\frac{1}{3}}-2\right) \sqrt{4 x^{2}+22^{\frac{1}{3}}-4}}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.266 (sec). Leaf size: 20

```
dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = 1/2],y(x), singsol=all)
```

$$
y(x)=\frac{\sqrt{4 x^{2}+22^{\frac{1}{3}}-4}\left(2 x^{2}+2^{\frac{1}{3}}-2\right)}{4}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.175 (sec). Leaf size: 30
DSolve[\{y' $[x]==3 * x * y[x] \sim(1 / 3),\{y[-1]==1 / 2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\left(2 x^{2}+\sqrt[3]{2}-2\right)^{3 / 2}}{2 \sqrt{2}}
$$

8.25 problem 9 (d)

8.25.1 Existence and uniqueness analysis 1591
8.25.2 Solving as separable ode . 1592
8.25.3 Solving as first order ode lie symmetry lookup ode 1594
8.25.4 Solving as exact ode . 1598
8.25.5 Maple step by step solution . 1602

Internal problem ID [12723]
Internal file name [OUTPUT/11375_Friday_November_03_2023_06_31_25_AM_2293591/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 9 (d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-3 x y^{\frac{1}{3}}=0
$$

With initial conditions

$$
[y(-1)=0]
$$

8.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(3 x y^{\frac{1}{3}}\right) \\
& =\frac{x}{y^{\frac{2}{3}}}
\end{aligned}
$$

$\frac{\partial f}{\partial y}$ is not defined at $y=0$ therefore existence and uniqueness theorem do not apply. Solution exist but not guaranteed to be unique.

8.25.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

Where $f(x)=3 x$ and $g(y)=y^{\frac{1}{3}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{\frac{1}{3}}} d y & =3 x d x \\
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int 3 x d x \\
\frac{3 y^{\frac{2}{3}}}{2} & =\frac{3 x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{3}{2}-c_{1}=0
$$

$$
c_{1}=-\frac{3}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}+\frac{3}{2}=0
$$

Solving for y from the above gives

$$
y=\left(x^{2}-1\right)^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2}-1\right)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\left(x^{2}-1\right)^{\frac{3}{2}}
$$

Verified OK.

8.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 x y^{\frac{1}{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 286: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{3 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{3 x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{3 x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x y^{\frac{1}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =3 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 R^{\frac{2}{3}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(9 x^{2}-6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\left(9-6 c_{1}\right)^{\frac{3}{2}}}{27} \\
c_{1}=\frac{3}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(x^{2}-1\right)^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2}-1\right)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(x^{2}-1\right)^{\frac{3}{2}}
$$

Verified OK.

8.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{3 y^{\frac{1}{3}}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{3 y^{\frac{1}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{3 y^{\frac{1}{3}}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{3 y^{\frac{1}{3}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y \\
f(y) & =\frac{y^{\frac{2}{3}}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}
$$

The solution becomes

$$
y=\left(x^{2}+2 c_{1}\right)^{\frac{3}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\left(2 c_{1}+1\right)^{\frac{3}{2}} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(x^{2}-1\right)^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2}-1\right)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(x^{2}-1\right)^{\frac{3}{2}}
$$

Verified OK.

8.25.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 x y^{\frac{1}{3}}=0, y(-1)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{\frac{1}{3}}}=3 x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d x=\int 3 x d x+c_{1}$
- Evaluate integral
$\frac{3 y^{\frac{2}{3}}}{2}=\frac{3 x^{2}}{2}+c_{1}$
- \quad Solve for y

$$
y=\frac{\left(9 x^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

- Use initial condition $y(-1)=0$
$0=\frac{\left(6 c_{1}+9\right)^{\frac{3}{2}}}{27}$
- \quad Solve for c_{1}

$$
c_{1}=-\frac{3}{2}
$$

- \quad Substitute $c_{1}=-\frac{3}{2}$ into general solution and simplify
$y=\left(x^{2}-1\right)^{\frac{3}{2}}$
- \quad Solution to the IVP

$$
y=\left(x^{2}-1\right)^{\frac{3}{2}}
$$

Maple trace

```
`Methods for first order ODEs:
    Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 19

$$
\begin{aligned}
& \text { DSolve }\left[\left\{\mathrm{y}^{\prime}[\mathrm{x}]==3 * \mathrm{x} * \mathrm{y}[\mathrm{x}] \sim(1 / 3),\{\mathrm{y}[-1]==0\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True }\right] \\
& \\
& \\
& y(x) \rightarrow 0 \\
& \\
& y(x) \rightarrow\left(x^{2}-1\right)^{3 / 2}
\end{aligned}
$$

8.26 problem 9 (e)

8.26.1 Existence and uniqueness analysis 1604
8.26.2 Solving as separable ode . 1605
8.26.3 Solving as first order ode lie symmetry lookup ode 1606
8.26.4 Solving as exact ode . 1610
8.26.5 Maple step by step solution . 1614

Internal problem ID [12724]
Internal file name [OUTPUT/11376_Friday_November_03_2023_06_31_27_AM_46204666/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 9 (e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-3 x y^{\frac{1}{3}}=0
$$

With initial conditions

$$
[y(-1)=-1]
$$

8.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{0 \leq y\}
$$

But the point $y_{0}=-1$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

8.26.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =3 x y^{\frac{1}{3}}
\end{aligned}
$$

Where $f(x)=3 x$ and $g(y)=y^{\frac{1}{3}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{\frac{1}{3}}} d y & =3 x d x \\
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int 3 x d x \\
\frac{3 y^{\frac{2}{3}}}{2} & =\frac{3 x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-\frac{9}{4}+\frac{3 i \sqrt{3}}{4}-c_{1}=0 \\
c_{1}=-\frac{9}{4}+\frac{3 i \sqrt{3}}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{3 x^{2}}{2}+\frac{9}{4}-\frac{3 i \sqrt{3}}{4}=0
$$

Solving for y from the above gives

$$
y=\frac{\left(i \sqrt{3}+2 x^{2}-3\right) \sqrt{2 i \sqrt{3}+4 x^{2}-6}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i \sqrt{3}+2 x^{2}-3\right) \sqrt{2 i \sqrt{3}+4 x^{2}-6}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i \sqrt{3}+2 x^{2}-3\right) \sqrt{2 i \sqrt{3}+4 x^{2}-6}}{4}
$$

Verified OK.

8.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =3 x y^{\frac{1}{3}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 289: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{3 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{3 x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{3 x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=3 x y^{\frac{1}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =3 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 R^{\frac{2}{3}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{3 x^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(9 x^{2}-6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-1 & =\frac{\left(9-6 c_{1}\right)^{\frac{3}{2}}}{27} \\
c_{1} & =\frac{9}{4}-\frac{3 i \sqrt{3}}{4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(2 i \sqrt{3}+4 x^{2}-6\right)^{\frac{3}{2}}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 i \sqrt{3}+4 x^{2}-6\right)^{\frac{3}{2}}}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(2 i \sqrt{3}+4 x^{2}-6\right)^{\frac{3}{2}}}{8}
$$

Verified OK.

8.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{3 y^{\frac{1}{3}}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{3 y^{\frac{1}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{3 y^{\frac{1}{3}}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{3 y^{\frac{1}{3}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{3 y^{\frac{1}{3}}}\right) \mathrm{d} y \\
f(y) & =\frac{y^{\frac{2}{3}}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{\frac{2}{3}}}{2}
$$

The solution becomes

$$
y=\left(x^{2}+2 c_{1}\right)^{\frac{3}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=\left(2 c_{1}+1\right)^{\frac{3}{2}} \\
& c_{1}=-\frac{3}{4}-\frac{i \sqrt{3}}{4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(4 x^{2}-6-2 i \sqrt{3}\right)^{\frac{3}{2}}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(4 x^{2}-6-2 i \sqrt{3}\right)^{\frac{3}{2}}}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(4 x^{2}-6-2 i \sqrt{3}\right)^{\frac{3}{2}}}{8}
$$

Verified OK.

8.26.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 x y^{\frac{1}{3}}=0, y(-1)=-1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{\frac{1}{3}}}=3 x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d x=\int 3 x d x+c_{1}$
- Evaluate integral
$\frac{3 y^{\frac{2}{3}}}{2}=\frac{3 x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\frac{\left(9 x^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27}$
- Use initial condition $y(-1)=-1$
$-1=\frac{\left(6 c_{1}+9\right)^{\frac{3}{2}}}{27}$
- \quad Solve for c_{1}
$c_{1}=\left(-\frac{9}{4}+\frac{3 \mathrm{I} \sqrt{3}}{4},-\frac{9}{4}-\frac{3 \mathrm{I} \sqrt{3}}{4}\right)$
- Substitute $c_{1}=\left(-\frac{9}{4}+\frac{3 \mathrm{I} \sqrt{3}}{4},-\frac{9}{4}-\frac{3 \mathrm{I} \sqrt{3}}{4}\right)$ into general solution and simplify
$y=\frac{\left(\mathrm{I} \sqrt{3}+2 x^{2}-3\right) \sqrt{2 \mathrm{I} \sqrt{3}+4 x^{2}-6}}{4}$
- Solution to the IVP
$y=\frac{\left(\mathrm{I} \sqrt{3}+2 x^{2}-3\right) \sqrt{2 \mathrm{I} \sqrt{3}+4 x^{2}-6}}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

```
dsolve([diff(y(x),x)=3*x*y(x)^(1/3),y(-1) = -1],y(x), singsol=all)
```

$$
y(x)=x^{3}
$$

\checkmark Solution by Mathematica
Time used: 0.175 (sec). Leaf size: 67
DSolve[\{y' $[x]==3 * x * y[x] \sim(1 / 3),\{y[-1]==-1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\left(2 x^{2}-i \sqrt{3}-3\right)^{3 / 2}}{2 \sqrt{2}} \\
& y(x) \rightarrow \frac{\left(2 x^{2}+i \sqrt{3}-3\right)^{3 / 2}}{2 \sqrt{2}}
\end{aligned}
$$

8.27 problem 10 (a)

8.27.1 Existence and uniqueness analysis 1616
8.27.2 Solving as quadrature ode . 1617

Internal problem ID [12725]
Internal file name [OUTPUT/11377_Friday_November_03_2023_06_31_29_AM_539436/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 10 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\sqrt{(y+2)(y-1)}=0
$$

With initial conditions

$$
[y(0)=0]
$$

8.27.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\sqrt{(y+2)(y-1)}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{1 \leq y \leq \infty,-\infty \leq y \leq-2\}
$$

But the point $y_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

8.27.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{(y+2)(y-1)}} d y & =\int d x \\
\ln \left(y+\frac{1}{2}+\sqrt{y^{2}+y-2}\right) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\frac{1}{2}+\sqrt{y^{2}+y-2}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y+\frac{1}{2}+\sqrt{y^{2}+y-2}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{4 c_{2}^{2}-4 c_{2}+9}{8 c_{2}} \\
c_{2}=\frac{1}{2}-i \sqrt{2}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{4 i \mathrm{e}^{-x} \mathrm{e}^{2 x} \sqrt{2}-4 i \mathrm{e}^{-x} \mathrm{e}^{x} \sqrt{2}+7 \mathrm{e}^{-x} \mathrm{e}^{2 x}+2 \mathrm{e}^{-x} \mathrm{e}^{x}-9 \mathrm{e}^{-x}}{-4+8 i \sqrt{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 i \mathrm{e}^{-x} \mathrm{e}^{2 x} \sqrt{2}-4 i \mathrm{e}^{-x} \mathrm{e}^{x} \sqrt{2}+7 \mathrm{e}^{-x} \mathrm{e}^{2 x}+2 \mathrm{e}^{-x} \mathrm{e}^{x}-9 \mathrm{e}^{-x}}{-4+8 i \sqrt{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{4 i \mathrm{e}^{-x} \mathrm{e}^{2 x} \sqrt{2}-4 i \mathrm{e}^{-x} \mathrm{e}^{x} \sqrt{2}+7 \mathrm{e}^{-x} \mathrm{e}^{2 x}+2 \mathrm{e}^{-x} \mathrm{e}^{x}-9 \mathrm{e}^{-x}}{-4+8 i \sqrt{2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 1.031 (sec). Leaf size: 34
dsolve $([\operatorname{diff}(y(x), x)=\operatorname{sqrt}((y(x)+2) *(y(x)-1)), y(0)=0], y(x)$, singsol=all)

$$
y(x)=\frac{i \mathrm{e}^{x} \sqrt{2}}{2}-\frac{i \sqrt{2} \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{4}-\frac{1}{2}+\frac{\mathrm{e}^{-x}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 45
DSolve[\{y' $[x]==\operatorname{Sqrt}[(y[x]+2) *(y[x]-1)],\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{4} e^{-x}\left(e^{x}-1\right)\left((1+2 i \sqrt{2}) e^{x}-1+2 i \sqrt{2}\right)
$$

8.28 problem 10 (b)

8.28.1 Existence and uniqueness analysis 1619
8.28.2 Solving as quadrature ode . 1620
8.28.3 Maple step by step solution . 1621

Internal problem ID [12726]
Internal file name [OUTPUT/11378_Friday_November_03_2023_06_31_31_AM_61785116/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 10 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-\sqrt{(y+2)(y-1)}=0
$$

With initial conditions

$$
[y(0)=1]
$$

8.28.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\sqrt{(y+2)(y-1)}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{1 \leq y \leq \infty,-\infty \leq y \leq-2\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(\sqrt{(y+2)(y-1)}) \\
& =\frac{2 y+1}{2 \sqrt{(y+2)(y-1)}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty \leq y<-2,-2<y<1,1<y \leq \infty\}
$$

But the point $y_{0}=1$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

8.28.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{(y+2)(y-1)}} d y & =\int d x \\
\ln \left(y+\frac{1}{2}+\sqrt{y^{2}+y-2}\right) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\frac{1}{2}+\sqrt{y^{2}+y-2}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y+\frac{1}{2}+\sqrt{y^{2}+y-2}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{4 c_{2}^{2}-4 c_{2}+9}{8 c_{2}} \\
c_{2}=\frac{3}{2}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{3 \mathrm{e}^{x}}{4}-\frac{1}{2}+\frac{3 \mathrm{e}^{-x}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \mathrm{e}^{x}}{4}-\frac{1}{2}+\frac{3 \mathrm{e}^{-x}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{3 \mathrm{e}^{x}}{4}-\frac{1}{2}+\frac{3 \mathrm{e}^{-x}}{4}
$$

Verified OK.

8.28.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-\sqrt{(y+2)(y-1)}=0, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{(y+2)(y-1)}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{(y+2)(y-1)}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\ln \left(y+\frac{1}{2}+\sqrt{-2+y^{2}+y}\right)=x+c_{1}$
- \quad Solve for y

$$
y=\frac{4\left(\mathrm{e}^{x+c_{1}}\right)^{2}-4 \mathrm{e}^{x+c_{1}}+9}{8 \mathrm{e}^{x+c_{1}}}
$$

- Use initial condition $y(0)=1$

$$
1=\frac{4\left(e^{c_{1}}\right)^{2}-4 e^{c_{1}}+9}{8 \mathrm{e}^{c_{1}}}
$$

- \quad Solve for c_{1}
$c_{1}=\ln \left(\frac{3}{2}\right)$
- \quad Substitute $c_{1}=\ln \left(\frac{3}{2}\right)$ into general solution and simplify

$$
y=\frac{3 \mathrm{e}^{x}}{4}-\frac{1}{2}+\frac{3 \mathrm{e}^{-x}}{4}
$$

- Solution to the IVP

$$
y=\frac{3 \mathrm{e}^{x}}{4}-\frac{1}{2}+\frac{3 \mathrm{e}^{-x}}{4}
$$

Maple trace
'Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 5
dsolve $([\operatorname{diff}(y(x), x)=\operatorname{sqrt}((y(x)+2) *(y(x)-1)), y(0)=1], y(x)$, singsol=all)

$$
y(x)=1
$$

Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 23
DSolve[\{y' $[x]==\operatorname{Sqrt}[(y[x]+2) *(y[x]-1)],\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{4}\left(3 e^{-x}+3 e^{x}-2\right)
$$

8.29 problem 10 (c)

8.29.1 Existence and uniqueness analysis 1623
8.29.2 Solving as quadrature ode . 1624
8.29.3 Maple step by step solution . 1625

Internal problem ID [12727]
Internal file name [OUTPUT/11379_Friday_November_03_2023_06_31_32_AM_295468/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 10 (c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-\sqrt{(y+2)(y-1)}=0
$$

With initial conditions

$$
[y(0)=-3]
$$

8.29.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\sqrt{(y+2)(y-1)}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{1 \leq y \leq \infty,-\infty \leq y \leq-2\}
$$

And the point $y_{0}=-3$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(\sqrt{(y+2)(y-1)}) \\
& =\frac{2 y+1}{2 \sqrt{(y+2)(y-1)}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty \leq y<-2,-2<y<1,1<y \leq \infty\}
$$

And the point $y_{0}=-3$ is inside this domain. Therefore solution exists and is unique.

8.29.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{(y+2)(y-1)}} d y & =\int d x \\
\ln \left(y+\frac{1}{2}+\sqrt{y^{2}+y-2}\right) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\frac{1}{2}+\sqrt{y^{2}+y-2}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y+\frac{1}{2}+\sqrt{y^{2}+y-2}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-3=\frac{4 c_{2}^{2}-4 c_{2}+9}{8 c_{2}} \\
c_{2}=-\frac{9}{2}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\frac{9 \mathrm{e}^{x}}{4}-\frac{1}{2}-\frac{\mathrm{e}^{-x}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{9 \mathrm{e}^{x}}{4}-\frac{1}{2}-\frac{\mathrm{e}^{-x}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{9 \mathrm{e}^{x}}{4}-\frac{1}{2}-\frac{\mathrm{e}^{-x}}{4}
$$

Verified OK.

8.29.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-\sqrt{(y+2)(y-1)}=0, y(0)=-3\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{\sqrt{(y+2)(y-1)}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{(y+2)(y-1)}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\ln \left(y+\frac{1}{2}+\sqrt{-2+y^{2}+y}\right)=x+c_{1}$
- \quad Solve for y

$$
y=\frac{4\left(\mathrm{e}^{x+c_{1}}\right)^{2}-4 \mathrm{e}^{x+c_{1}}+9}{8 \mathrm{e}^{x+c_{1}}}
$$

- Use initial condition $y(0)=-3$

$$
-3=\frac{4\left(\mathrm{e}^{c_{1}}\right)^{2}-4 \mathrm{e}^{c_{1}}+9}{8 \mathrm{e}^{c_{1}}}
$$

- \quad Solve for c_{1}
$c_{1}=\left(\ln \left(\frac{9}{2}\right)+\mathrm{I} \pi, \mathrm{I} \pi-\ln (2)\right)$
- \quad Substitute $c_{1}=\left(\ln \left(\frac{9}{2}\right)+\mathrm{I} \pi, \mathrm{I} \pi-\ln (2)\right)$ into general solution and simplify $y=-\frac{9 \mathrm{e}^{x}}{4}-\frac{1}{2}-\frac{\mathrm{e}^{-x}}{4}$
- Solution to the IVP

$$
y=-\frac{9 \mathrm{e}^{x}}{4}-\frac{1}{2}-\frac{\mathrm{e}^{-x}}{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.234 (sec). Leaf size: 16

```
dsolve([diff(y(x),x)=sqrt((y(x)+2)*( y(x)-1)),y(0) = -3],y(x), singsol=all)
```

$$
y(x)=-\frac{\mathrm{e}^{x}}{4}-\frac{1}{2}-\frac{9 \mathrm{e}^{-x}}{4}
$$

Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 23

```
DSolve[{y'[x]==Sqrt [(y[x]+2)*( y[x]-1)],{y[0]==-3}},y[x],x,IncludeSingularSolutions -> True
```

$$
y(x) \rightarrow \frac{1}{4}\left(-9 e^{-x}-e^{x}-2\right)
$$

8.30 problem 11 (a)

8.30.1 Existence and uniqueness analysis 1627
8.30.2 Solving as homogeneousTypeD2 ode 1628
8.30.3 Solving as differentialType ode 1629
8.30.4 Solving as first order ode lie symmetry calculated ode 1631
8.30.5 Solving as exact ode . 1636

Internal problem ID [12728]
Internal file name [OUTPUT/11380_Friday_November_03_2023_06_31_33_AM_788875/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 11 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}-\frac{y}{y-x}=0
$$

With initial conditions

$$
[y(1)=2]
$$

8.30.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y}{y-x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{x<2 \vee 2<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{y-x}\right) \\
& =\frac{1}{y-x}-\frac{y}{(y-x)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{x<2 \vee 2<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

8.30.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{u(x) x}{u(x) x-x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(u-2)}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u(u-2)}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u-2)}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u(u-2)}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u(u-2))}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u(u-2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u(u-2)}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y\left(\frac{y}{x}-2\right)}{x}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y(-2 x+y)}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{3} \mathrm{e}^{c_{2}}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration.

Verification of solutions N/A

8.30.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{y}{y-x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-y) d y=(-x) d y+(-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-y) d x=d(-x y)
$$

Hence (2) becomes

$$
(-y) d y=d(-x y)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=x+\sqrt{x^{2}-2 c_{1}}+c_{1} \\
& y=x-\sqrt{x^{2}-2 c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=1-\sqrt{-2 c_{1}+1}+c_{1}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=1+\sqrt{-2 c_{1}+1}+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 x
$$

Verified OK. \{positive\}

8.30.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}+\frac{y\left(b_{3}-a_{2}\right)}{y-x}-\frac{y^{2} a_{3}}{(y-x)^{2}}-\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(y-x)^{2}} \tag{5E}\\
\quad-\left(\frac{1}{y-x}-\frac{y}{(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\frac{2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}}{(-y+x)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-a_{2} v_{2}^{2}-2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{2}^{2}-a_{1} v_{2}+b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{1} v_{1}+\left(-a_{2}-2 a_{3}+b_{2}+b_{3}\right) v_{2}^{2}-a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-a_{1} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
-a_{2}-2 a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y}{y-x}\right)(x) \\
& =\frac{2 x y-y^{2}}{-y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x y-y^{2}}{-y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y(-2 x+y))}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{2 x-y} \\
S_{y} & =\frac{-y+x}{y(2 x-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
-\infty=c_{1}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration.
Verification of solutions N/A

8.30.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-x) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y \mathrm{~d} x \\
\phi & =-x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y-x$. Therefore equation (4) becomes

$$
\begin{equation*}
y-x=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x y+\frac{1}{2} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x y+\frac{1}{2} y^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-x y+\frac{1}{2} y^{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-y x+\frac{y^{2}}{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-y x+\frac{y^{2}}{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 7

```
dsolve([diff (y (x),x)=y(x)/(y(x)-x),y(1) = 2],y(x), singsol=all)
```

$$
y(x)=2 x
$$

\checkmark Solution by Mathematica
Time used: 0.838 (sec). Leaf size: 14
DSolve[\{y' $[x]==y[x] /(y[x]-x),\{y[1]==2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{x^{2}}+x
$$

8.31 problem 11 (b)

8.31.1 Existence and uniqueness analysis 1640
8.31.2 Solving as homogeneousTypeD2 ode 1641
8.31.3 Solving as differentialType ode 1642
8.31.4 Solving as first order ode lie symmetry calculated ode 1644
8.31.5 Solving as exact ode . 1649

Internal problem ID [12729]
Internal file name [OUTPUT/11381_Friday_November_03_2023_06_31_35_AM_3677167/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 11 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}-\frac{y}{y-x}=0
$$

With initial conditions

$$
[y(1)=1]
$$

8.31.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y}{y-x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{x<1 \vee 1<x\}
$$

But the point $x_{0}=1$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

8.31.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{u(x) x}{u(x) x-x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(u-2)}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u(u-2)}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u-2)}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u(u-2)}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u(u-2))}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u(u-2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u(u-2)}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y\left(\frac{y}{x}-2\right)}{x}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y(-2 x+y)}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\frac{\ln \left(-\frac{1}{c_{3}^{2}}\right)}{2}$. Hence the solution becomes Initial conditions are used to solve for c_{3}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
i=c_{3} \sqrt{-\frac{1}{c_{3}^{2}}}
$$

Since $\lim _{c_{1} \rightarrow \infty}$ gives $\sqrt{\frac{y(-2 x+y)}{x^{2}}}=\frac{c_{3} \sqrt{-\frac{1}{c_{3}^{2}}}}{x}=\sqrt{\frac{y(-2 x+y)}{x^{2}}}=\frac{i}{x}$ and this result satisfies the Summary
The solution(s) found are the following given initial condition.

$$
\sqrt{\frac{y(-2 x+y)}{x^{2}}}=\frac{i}{x}
$$

Verification of solutions

$$
\sqrt{\frac{y(-2 x+y)}{x^{2}}}=\frac{i}{x}
$$

Verified OK.

8.31.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{y}{y-x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-y) d y=(-x) d y+(-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-y) d x=d(-x y)
$$

Hence (2) becomes

$$
(-y) d y=d(-x y)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=x+\sqrt{x^{2}-2 c_{1}}+c_{1} \\
& y=x-\sqrt{x^{2}-2 c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=1-\sqrt{-2 c_{1}+1}+c_{1} \\
c_{1}=\sqrt{2}-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x-\sqrt{x^{2}-2 \sqrt{2}+2}+\sqrt{2}-1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=1+\sqrt{-2 c_{1}+1}+c_{1} \\
c_{1}=-\sqrt{2}-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x+\sqrt{x^{2}+2 \sqrt{2}+2}-\sqrt{2}-1
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x+\sqrt{x^{2}+2 \sqrt{2}+2}-\sqrt{2}-1 \tag{1}\\
& y=x-\sqrt{x^{2}-2 \sqrt{2}+2}+\sqrt{2}-1 \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x+\sqrt{x^{2}+2 \sqrt{2}+2}-\sqrt{2}-1
$$

Verified OK.

$$
y=x-\sqrt{x^{2}-2 \sqrt{2}+2}+\sqrt{2}-1
$$

Verified OK.

8.31.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}+\frac{y\left(b_{3}-a_{2}\right)}{y-x}-\frac{y^{2} a_{3}}{(y-x)^{2}}-\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(y-x)^{2}} \tag{5E}\\
-\left(\frac{1}{y-x}-\frac{y}{(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\frac{2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}}{(-y+x)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-a_{2} v_{2}^{2}-2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{2}^{2}-a_{1} v_{2}+b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{1} v_{1}+\left(-a_{2}-2 a_{3}+b_{2}+b_{3}\right) v_{2}^{2}-a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-a_{1} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
-a_{2}-2 a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y}{y-x}\right)(x) \\
& =\frac{2 x y-y^{2}}{-y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x y-y^{2}}{-y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y(-2 x+y))}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{2 x-y} \\
S_{y} & =\frac{-y+x}{y(2 x-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{y-x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow 4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$ 他
$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow-1}$	$S=\frac{\ln (y)}{\ln (-2 x+y}$	
边	$S=\frac{-}{2}+\frac{}{2}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{i \pi}{2}=c_{1}
$$

$$
c_{1}=\frac{i \pi}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=\frac{i \pi}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=\frac{i \pi}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=\frac{i \pi}{2}
$$

Verified OK.

8.31.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-x) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y \mathrm{~d} x \\
\phi & =-x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y-x$. Therefore equation (4) becomes

$$
\begin{equation*}
y-x=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x y+\frac{1}{2} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x y+\frac{1}{2} y^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{1}{2}=c_{1} \\
& c_{1}=-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-x y+\frac{1}{2} y^{2}=-\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-y x+\frac{y^{2}}{2}=-\frac{1}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-y x+\frac{y^{2}}{2}=-\frac{1}{2}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

```
dsolve([diff (y(x),x)=y(x)/(y(x)-x),y(1) = 1],y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=x-\sqrt{x^{2}-1} \\
& y(x)=x+\sqrt{x^{2}-1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.129 (sec). Leaf size: 33
DSolve[\{y' $[x]==y[x] /(y[x]-x),\{y[1]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x-\sqrt{x^{2}-1} \\
& y(x) \rightarrow \sqrt{x^{2}-1}+x
\end{aligned}
$$

8.32 problem 11 (c)

8.32.1 Existence and uniqueness analysis 1654
8.32.2 Solving as homogeneousTypeD2 ode 1655
8.32.3 Solving as differentialType ode 1656
8.32.4 Solving as first order ode lie symmetry calculated ode 1658
8.32.5 Solving as exact ode . 1663

Internal problem ID [12730]
Internal file name [OUTPUT/11382_Friday_November_03_2023_06_31_37_AM_29318325/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 11 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}-\frac{y}{y-x}=0
$$

With initial conditions

$$
[y(1)=0]
$$

8.32.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y}{y-x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{y-x}\right) \\
& =\frac{1}{y-x}-\frac{y}{(y-x)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

8.32.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{u(x) x}{u(x) x-x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(u-2)}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{(u-2) u}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{(u-2) u}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{(u-2) u}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u(u-2))}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u(u-2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u(u-2)}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y\left(\frac{y}{x}-2\right)}{x}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y(-2 x+y)}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{3} \mathrm{e}^{c_{2}}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration.

Verification of solutions N/A

8.32.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{y}{y-x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-y) d y=(-x) d y+(-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-y) d x=d(-x y)
$$

Hence (2) becomes

$$
(-y) d y=d(-x y)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=x+\sqrt{x^{2}-2 c_{1}}+c_{1} \\
& y=x-\sqrt{x^{2}-2 c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=1-\sqrt{-2 c_{1}+1}+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=1+\sqrt{-2 c_{1}+1}+c_{1} \\
c_{1}=-4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x+\sqrt{x^{2}+8}-4
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x+\sqrt{x^{2}+8}-4 \tag{1}\\
& y=0 \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x+\sqrt{x^{2}+8}-4
$$

Verified OK. \{positive\}

$$
y=0
$$

Verified OK. \{positive\}

8.32.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}+\frac{y\left(b_{3}-a_{2}\right)}{y-x}-\frac{y^{2} a_{3}}{(y-x)^{2}}-\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(y-x)^{2}} \tag{5E}\\
-\left(\frac{1}{y-x}-\frac{y}{(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\frac{2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}}{(-y+x)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-a_{2} v_{2}^{2}-2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{2}^{2}-a_{1} v_{2}+b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{1} v_{1}+\left(-a_{2}-2 a_{3}+b_{2}+b_{3}\right) v_{2}^{2}-a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-a_{1} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
-a_{2}-2 a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y}{y-x}\right)(x) \\
& =\frac{2 x y-y^{2}}{-y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x y-y^{2}}{-y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y(-2 x+y))}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{2 x-y} \\
S_{y} & =\frac{-y+x}{y(2 x-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
-\infty=c_{1}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration.
Verification of solutions N/A

8.32.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-x) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y \mathrm{~d} x \\
\phi & =-x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y-x$. Therefore equation (4) becomes

$$
\begin{equation*}
y-x=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x y+\frac{1}{2} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x y+\frac{1}{2} y^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-x y+\frac{1}{2} y^{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-y x+\frac{y^{2}}{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-y x+\frac{y^{2}}{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff (y (x),x)=y(x)/(y(x)-x),y(1) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve[\{y' $[x]==y[x] /(y[x]-x),\{y[1]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 0
$$

8.33 problem 11 (d)

8.33.1 Existence and uniqueness analysis 1667
8.33.2 Solving as homogeneousTypeD2 ode 1668
8.33.3 Solving as differentialType ode 1670
8.33.4 Solving as first order ode lie symmetry calculated ode 1672
8.33.5 Solving as exact ode . 1677

Internal problem ID [12731]
Internal file name [OUTPUT/11383_Friday_November_03_2023_06_31_39_AM_99472337/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 11 (d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}-\frac{y}{y-x}=0
$$

With initial conditions

$$
[y(1)=-1]
$$

8.33.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y}{y-x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{x<-1 \vee-1<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{y-x}\right) \\
& =\frac{1}{y-x}-\frac{y}{(y-x)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{x<-1 \vee-1<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

8.33.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{u(x) x}{u(x) x-x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(u-2)}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{(u-2) u}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{(u-2) u}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{(u-2) u}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u(u-2))}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u(u-2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u(u-2)}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)(u(x)-2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y\left(\frac{y}{x}-2\right)}{x}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y(-2 x+y)}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\frac{\ln \left(\frac{3}{c_{3}^{2}}\right)}{2}$. Hence the solution becomes Initial conditions are used to solve for c_{3}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\sqrt{3}=c_{3} \sqrt{3} \sqrt{\frac{1}{c_{3}^{2}}}
$$

This solution is valid for any c_{3}. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y(-2 x+y)}{x^{2}}}=\frac{c_{3} \sqrt{3} \sqrt{\frac{1}{c_{3}^{2}}}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{\frac{y(-2 x+y)}{x^{2}}}=\frac{c_{3} \sqrt{3} \sqrt{\frac{1}{c_{3}^{2}}}}{x}
$$

Verified OK.

8.33.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{y}{y-x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-y) d y=(-x) d y+(-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-y) d x=d(-x y)
$$

Hence (2) becomes

$$
(-y) d y=d(-x y)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=x+\sqrt{x^{2}-2 c_{1}}+c_{1} \\
& y=x-\sqrt{x^{2}-2 c_{1}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=1-\sqrt{-2 c_{1}+1}+c_{1} \\
c_{1}=\sqrt{6}-3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x-\sqrt{x^{2}-2 \sqrt{6}+6}+\sqrt{6}-3
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=1+\sqrt{-2 c_{1}+1}+c_{1} \\
c_{1}=-\sqrt{6}-3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x+\sqrt{x^{2}+2 \sqrt{6}+6}-\sqrt{6}-3
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=x+\sqrt{x^{2}+2 \sqrt{6}+6}-\sqrt{6}-3 \tag{1}\\
& y=x-\sqrt{x^{2}-2 \sqrt{6}+6}+\sqrt{6}-3 \tag{2}
\end{align*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=x+\sqrt{x^{2}+2 \sqrt{6}+6}-\sqrt{6}-3
$$

Verified OK. \{positive\}

$$
y=x-\sqrt{x^{2}-2 \sqrt{6}+6}+\sqrt{6}-3
$$

Verified OK. \{positive\}

8.33.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{y-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}+\frac{y\left(b_{3}-a_{2}\right)}{y-x}-\frac{y^{2} a_{3}}{(y-x)^{2}}-\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(y-x)^{2}} \tag{5E}\\
\quad-\left(\frac{1}{y-x}-\frac{y}{(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\frac{2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}}{(-y+x)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
2 x^{2} b_{2}-2 x y b_{2}-y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+x b_{1}-y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-a_{2} v_{2}^{2}-2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{2}^{2}-a_{1} v_{2}+b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{1} v_{1}+\left(-a_{2}-2 a_{3}+b_{2}+b_{3}\right) v_{2}^{2}-a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-a_{1} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
-a_{2}-2 a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y}{y-x}\right)(x) \\
& =\frac{2 x y-y^{2}}{-y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x y-y^{2}}{-y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y(-2 x+y))}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{y-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{2 x-y} \\
S_{y} & =\frac{-y+x}{y(2 x-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{y-x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
$\rightarrow \rightarrow$ 边	$S=\frac{\ln (y)}{\ln (-2 x+}$	
Nax	$S=\frac{2}{2}+\frac{2}{}$	
-		

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& i \pi+\frac{\ln (3)}{2}=c_{1} \\
& c_{1}=i \pi+\frac{\ln (3)}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=i \pi+\frac{\ln (3)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=i \pi+\frac{\ln (3)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y)}{2}+\frac{\ln (-2 x+y)}{2}=i \pi+\frac{\ln (3)}{2}
$$

Verified OK.

8.33.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-x) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(y-x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y \mathrm{~d} x \\
\phi & =-x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y-x$. Therefore equation (4) becomes

$$
\begin{equation*}
y-x=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x y+\frac{1}{2} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x y+\frac{1}{2} y^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{3}{2}=c_{1} \\
& c_{1}=\frac{3}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-x y+\frac{1}{2} y^{2}=\frac{3}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-y x+\frac{y^{2}}{2}=\frac{3}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-y x+\frac{y^{2}}{2}=\frac{3}{2}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(y(x),x)=y(x)/(y(x)-x),y(1) = -1],y(x), singsol=all)
```

$$
y(x)=x-\sqrt{x^{2}+3}
$$

\checkmark Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 18
DSolve[\{y' $[x]==y[x] /(y[x]-x),\{y[1]==-1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x-\sqrt{x^{2}+3}
$$

8.34 problem 12 (a)

8.34.1 Existence and uniqueness analysis 1681
8.34.2 Solving as homogeneousTypeD2 ode 1682
8.34.3 Solving as first order ode lie symmetry calculated ode 1683
8.34.4 Solving as exact ode . 1689

Internal problem ID [12732]
Internal file name [OUTPUT/11384_Friday_November_03_2023_06_31_41_AM_99448235/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 12 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y^{\prime}-\frac{x y}{x^{2}+y^{2}}=0
$$

With initial conditions

$$
[y(0)=1]
$$

8.34.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x y}{x^{2}+y^{2}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x y}{x^{2}+y^{2}}\right) \\
& =\frac{x}{x^{2}+y^{2}}-\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.34.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2} u(x)}{x^{2}+u(x)^{2} x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}}{x\left(u^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{3}}{u^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =\int-\frac{1}{x} d x \\
-\frac{1}{2 u^{2}}+\ln (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{2 u(x)^{2}}+\ln (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& -\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\text { undefined }=0
$$

Summary
The solution(s) found are the following
This shows that no solution exist.

$$
-\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verification of solutions

$$
-\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Warning, solution could not be verified

8.34.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x y}{x^{2}+y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{x y\left(b_{3}-a_{2}\right)}{x^{2}+y^{2}}-\frac{x^{2} y^{2} a_{3}}{\left(x^{2}+y^{2}\right)^{2}}-\left(\frac{y}{x^{2}+y^{2}}-\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{x}{x^{2}+y^{2}}-\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{-3 x^{2} y^{2} b_{2}+2 x y^{3} a_{2}-2 x y^{3} b_{3}+y^{4} a_{3}-y^{4} b_{2}+x^{3} b_{1}-x^{2} y a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
3 x^{2} y^{2} b_{2}-2 x y^{3} a_{2}+2 x y^{3} b_{3}-y^{4} a_{3}+y^{4} b_{2}-x^{3} b_{1}+x^{2} y a_{1}+x y^{2} b_{1}-y^{3} a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{2} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+3 b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4}+2 b_{3} v_{1} v_{2}^{3}+a_{1} v_{1}^{2} v_{2}-a_{1} v_{2}^{3}-b_{1} v_{1}^{3}+b_{1} v_{1} v_{2}^{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-b_{1} v_{1}^{3}+3 b_{2} v_{1}^{2} v_{2}^{2}+a_{1} v_{1}^{2} v_{2}+\left(-2 a_{2}+2 b_{3}\right) v_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}+\left(-a_{3}+b_{2}\right) v_{2}^{4}-a_{1} v_{2}^{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
3 b_{2} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
-a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x y}{x^{2}+y^{2}}\right)(x) \\
& =\frac{y^{3}}{x^{2}+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{x^{2}+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2 y^{2}}+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{y^{2}} \\
S_{y} & =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{2 \ln (y) y^{2}-x^{2}}{2 y^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{2 \ln (y) y^{2}-x^{2}}{2 y^{2}}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\text { Lambertw }\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$		$\frac{d S}{d R}=0$
ご		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
\rightarrow	$R=x$	
	S $2 \ln (y) y^{2}-x^{2}$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\mathrm{e}^{c_{1}} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{\frac{x^{2}}{\text { LambertW }\left(x^{2}\right)}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{\frac{x^{2}}{\text { LambertW }\left(x^{2}\right)}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{\frac{x^{2}}{\text { LambertW }\left(x^{2}\right)}}
$$

Verified OK.

8.34.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y^{2}\right) \mathrm{d} y & =(x y) \mathrm{d} x \\
(-x y) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x y \\
& N(x, y)=x^{2}+y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x y) \\
& =-x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+y^{2}}((-x)-(2 x)) \\
& =-\frac{3 x}{x^{2}+y^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{x y}((2 x)-(-x)) \\
& =-\frac{3}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{3}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (y)} \\
& =\frac{1}{y^{3}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{3}}(-x y) \\
& =-\frac{x}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{3}}\left(x^{2}+y^{2}\right) \\
& =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{x}{y^{2}}\right)+\left(\frac{x^{2}+y^{2}}{y^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{y^{2}} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2 y^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2}+y^{2}}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{y^{3}}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2 y^{2}}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2 y^{2}}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\operatorname{LambertW}\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\mathrm{e}^{c_{1}}
$$

$$
c_{1}=0
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{\frac{x^{2}}{\operatorname{LambertW}\left(x^{2}\right)}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{\frac{x^{2}}{\operatorname{LambertW}\left(x^{2}\right)}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\sqrt{\frac{x^{2}}{\text { LambertW }\left(x^{2}\right)}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 1.75 (sec). Leaf size: 11

```
dsolve([diff(y(x),x)=x*y(x)/(x^2+y(x)^2),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\sqrt{\frac{x^{2}}{\operatorname{LambertW}\left(x^{2}\right)}}
$$

\checkmark Solution by Mathematica
Time used: 10.851 (sec). Leaf size: 15
DSolve[\{y' $\left.[x]==x * y[x] /\left(x^{\wedge} 2+y[x] \sim 2\right),\{y[0]==1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x}{\sqrt{W\left(x^{2}\right)}}
$$

8.35 problem 12 (b)

8.35.1 Existence and uniqueness analysis 1695
8.35.2 Solving as homogeneousTypeD2 ode 1696
8.35.3 Solving as first order ode lie symmetry calculated ode 1697
8.35.4 Solving as exact ode . 1702

Internal problem ID [12733]
Internal file name [OUTPUT/11385_Friday_November_03_2023_06_31_48_AM_49211186/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 12 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y^{\prime}-\frac{x y}{x^{2}+y^{2}}=0
$$

With initial conditions

$$
[y(0)=0]
$$

8.35.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x y}{x^{2}+y^{2}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x y}{x^{2}+y^{2}}\right) \\
& =\frac{x}{x^{2}+y^{2}}-\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{x<0 \vee 0<x\}
$$

But the point $x_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

8.35.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2} u(x)}{x^{2}+u(x)^{2} x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}}{x\left(u^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{3}}{u^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =\int-\frac{1}{x} d x \\
-\frac{1}{2 u^{2}}+\ln (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{2 u(x)^{2}}+\ln (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& -\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
-\infty=0
$$

Summary
The solution(s) found are the following
This shows that no solution exist.

$$
-\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verification of solutions

$$
-\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

8.35.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x y}{x^{2}+y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{x y\left(b_{3}-a_{2}\right)}{x^{2}+y^{2}}-\frac{x^{2} y^{2} a_{3}}{\left(x^{2}+y^{2}\right)^{2}}-\left(\frac{y}{x^{2}+y^{2}}-\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{x}{x^{2}+y^{2}}-\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{-3 x^{2} y^{2} b_{2}+2 x y^{3} a_{2}-2 x y^{3} b_{3}+y^{4} a_{3}-y^{4} b_{2}+x^{3} b_{1}-x^{2} y a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
3 x^{2} y^{2} b_{2}-2 x y^{3} a_{2}+2 x y^{3} b_{3}-y^{4} a_{3}+y^{4} b_{2}-x^{3} b_{1}+x^{2} y a_{1}+x y^{2} b_{1}-y^{3} a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{2} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+3 b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4}+2 b_{3} v_{1} v_{2}^{3}+a_{1} v_{1}^{2} v_{2}-a_{1} v_{2}^{3}-b_{1} v_{1}^{3}+b_{1} v_{1} v_{2}^{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-b_{1} v_{1}^{3}+3 b_{2} v_{1}^{2} v_{2}^{2}+a_{1} v_{1}^{2} v_{2}+\left(-2 a_{2}+2 b_{3}\right) v_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}+\left(-a_{3}+b_{2}\right) v_{2}^{4}-a_{1} v_{2}^{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
3 b_{2} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
-a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x y}{x^{2}+y^{2}}\right)(x) \\
& =\frac{y^{3}}{x^{2}+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{x^{2}+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2 y^{2}}+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{y^{2}} \\
S_{y} & =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{2 \ln (y) y^{2}-x^{2}}{2 y^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{2 \ln (y) y^{2}-x^{2}}{2 y^{2}}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\text { Lambertw }\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$		$\frac{d S}{d R}=0$
ご		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
\rightarrow	$R=x$	
	S $2 \ln (y) y^{2}-x^{2}$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\mathrm{e}^{c_{1}}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration.

Verification of solutions N/A

8.35.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y^{2}\right) \mathrm{d} y & =(x y) \mathrm{d} x \\
(-x y) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x y \\
N(x, y) & =x^{2}+y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x y) \\
& =-x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+y^{2}}((-x)-(2 x)) \\
& =-\frac{3 x}{x^{2}+y^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{x y}((2 x)-(-x)) \\
& =-\frac{3}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{3}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (y)} \\
& =\frac{1}{y^{3}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{3}}(-x y) \\
& =-\frac{x}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{3}}\left(x^{2}+y^{2}\right) \\
& =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{x}{y^{2}}\right)+\left(\frac{x^{2}+y^{2}}{y^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{y^{2}} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2 y^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2}+y^{2}}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{y^{3}}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2 y^{2}}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2 y^{2}}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\mathrm{e}^{c_{1}}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration.

Verification of solutions N/A
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=x*y(x)/(x^2+y(x)^2),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve[\{y' $\left.[x]==x * y[x] /\left(x^{\wedge} 2+y[x] \sim 2\right),\{y[0]==0\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 0
$$

8.36 problem 12 (c)

8.36.1 Existence and uniqueness analysis 1708
8.36.2 Solving as homogeneousTypeD2 ode 1709
8.36.3 Solving as first order ode lie symmetry calculated ode 1711
8.36.4 Solving as exact ode . 1716

Internal problem ID [12734]
Internal file name [OUTPUT/11386_Friday_November_03_2023_06_31_54_AM_18794178/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 12 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y^{\prime}-\frac{x y}{x^{2}+y^{2}}=0
$$

With initial conditions

$$
[y(0)=-1]
$$

8.36.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x y}{x^{2}+y^{2}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x y}{x^{2}+y^{2}}\right) \\
& =\frac{x}{x^{2}+y^{2}}-\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

8.36.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2} u(x)}{x^{2}+u(x)^{2} x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}}{x\left(u^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{3}}{u^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =\int-\frac{1}{x} d x \\
-\frac{1}{2 u^{2}}+\ln (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{2 u(x)^{2}}+\ln (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& -\frac{x^{2}}{2 y^{2}}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
i \pi-c_{2}=0 \\
c_{2}=i \pi
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
\frac{-2 i \pi y^{2}+2 \ln (x) y^{2}+2 \ln \left(\frac{y}{x}\right) y^{2}-x^{2}}{2 y^{2}}=0
$$

The above simplifies to

$$
-2 i \pi y^{2}+2 \ln (x) y^{2}+2 \ln \left(\frac{y}{x}\right) y^{2}-x^{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2 i \pi y^{2}+2 y^{2} \ln (x)+2 \ln \left(\frac{y}{x}\right) y^{2}-x^{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-2 i \pi y^{2}+2 y^{2} \ln (x)+2 \ln \left(\frac{y}{x}\right) y^{2}-x^{2}=0
$$

Warning, solution could not be verified

8.36.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x y}{x^{2}+y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{x y\left(b_{3}-a_{2}\right)}{x^{2}+y^{2}}-\frac{x^{2} y^{2} a_{3}}{\left(x^{2}+y^{2}\right)^{2}}-\left(\frac{y}{x^{2}+y^{2}}-\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{x}{x^{2}+y^{2}}-\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{-3 x^{2} y^{2} b_{2}+2 x y^{3} a_{2}-2 x y^{3} b_{3}+y^{4} a_{3}-y^{4} b_{2}+x^{3} b_{1}-x^{2} y a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
3 x^{2} y^{2} b_{2}-2 x y^{3} a_{2}+2 x y^{3} b_{3}-y^{4} a_{3}+y^{4} b_{2}-x^{3} b_{1}+x^{2} y a_{1}+x y^{2} b_{1}-y^{3} a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{2} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+3 b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4}+2 b_{3} v_{1} v_{2}^{3}+a_{1} v_{1}^{2} v_{2}-a_{1} v_{2}^{3}-b_{1} v_{1}^{3}+b_{1} v_{1} v_{2}^{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-b_{1} v_{1}^{3}+3 b_{2} v_{1}^{2} v_{2}^{2}+a_{1} v_{1}^{2} v_{2}+\left(-2 a_{2}+2 b_{3}\right) v_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}+\left(-a_{3}+b_{2}\right) v_{2}^{4}-a_{1} v_{2}^{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
3 b_{2} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
-a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x y}{x^{2}+y^{2}}\right)(x) \\
& =\frac{y^{3}}{x^{2}+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{x^{2}+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2 y^{2}}+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{y^{2}} \\
S_{y} & =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 \ln (y) y^{2}-x^{2}}{2 y^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{2 \ln (y) y^{2}-x^{2}}{2 y^{2}}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\text { LambertW }\left(\mathrm{e}^{-2 c_{1} x^{2}}\right)}{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow ~}$
-		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{\text { a }}$ +
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2 \rightarrow \rightarrow]{ }$
\rightarrow	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
	$2 \ln (y) y^{2}-x^{2}$	
为	$S=\frac{\ln (y) y^{2}-y^{2}}{2 y^{2}}$	
		$\xrightarrow{+2} \xrightarrow{2} \xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\mathrm{e}^{c_{1}} \\
c_{1}=i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{\frac{x^{2}}{\operatorname{LambertW}\left(x^{2}\right)}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sqrt{\frac{x^{2}}{\operatorname{LambertW}\left(x^{2}\right)}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\sqrt{\frac{x^{2}}{\text { LambertW }\left(x^{2}\right)}}
$$

Verified OK.

8.36.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y^{2}\right) \mathrm{d} y & =(x y) \mathrm{d} x \\
(-x y) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x y \\
& N(x, y)=x^{2}+y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x y) \\
& =-x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+y^{2}}((-x)-(2 x)) \\
& =-\frac{3 x}{x^{2}+y^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{x y}((2 x)-(-x)) \\
& =-\frac{3}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{3}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (y)} \\
& =\frac{1}{y^{3}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{3}}(-x y) \\
& =-\frac{x}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{3}}\left(x^{2}+y^{2}\right) \\
& =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{x}{y^{2}}\right)+\left(\frac{x^{2}+y^{2}}{y^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{y^{2}} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2 y^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2}+y^{2}}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{y^{3}}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2 y^{2}}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2 y^{2}}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(\mathrm{e}^{\left.-2 c_{1} x^{2}\right)}\right.}{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\mathrm{e}^{c_{1}} \\
c_{1}=i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{\frac{x^{2}}{\operatorname{LambertW}\left(x^{2}\right)}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sqrt{\frac{x^{2}}{\text { LambertW }\left(x^{2}\right)}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\sqrt{\frac{x^{2}}{\text { LambertW }\left(x^{2}\right)}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.875 (sec). Leaf size: 13
dsolve([diff $\left.(y(x), x)=x * y(x) /\left(x^{\wedge} 2+y(x)^{\wedge} 2\right), y(0)=-1\right], y(x)$, singsol=all)

$$
y(x)=-\sqrt{\frac{x^{2}}{\text { LambertW }\left(x^{2}\right)}}
$$

\checkmark Solution by Mathematica
Time used: 0.443 (sec). Leaf size: 16
DSolve[\{y' $\left.[x]==x * y[x] /\left(x^{\wedge} 2+y[x] \sim 2\right),\{y[0]==-1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{x}{\sqrt{W\left(x^{2}\right)}}
$$

8.37 problem 13 (a)

8.37.1 Existence and uniqueness analysis 1723
8.37.2 Solving as separable ode . 1724
8.37.3 Solving as first order ode lie symmetry lookup ode 1726
8.37.4 Solving as exact ode . 1730
8.37.5 Maple step by step solution . 1734

Internal problem ID [12735]
Internal file name [OUTPUT/11387_Friday_November_03_2023_06_31_58_AM_6006130/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 13 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x \sqrt{1-y^{2}}=0
$$

With initial conditions

$$
[y(0)=1]
$$

8.37.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =x \sqrt{-y^{2}+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(x \sqrt{-y^{2}+1}\right) \\
& =-\frac{x y}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

$\frac{\partial f}{\partial y}$ is not defined at $y=1$ therefore existence and uniqueness theorem do not apply. Solution exist but not guaranteed to be unique.

8.37.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x \sqrt{-y^{2}+1}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-y^{2}+1}} d y & =x d x \\
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int x d x \\
\arcsin (y) & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\sin \left(c_{1}\right)
$$

$$
c_{1}=\frac{\pi}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

8.37.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x \sqrt{-y^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 294: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x \sqrt{-y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arcsin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which gives

$$
y=-\sin \left(-\frac{x^{2}}{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x \sqrt{-y^{2}+1}$	$\begin{aligned} R & =y \\ S & =\frac{x^{2}}{2} \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\sin \left(c_{1}\right) \\
c_{1}=-\frac{\pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

8.37.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =\arcsin (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\arcsin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\arcsin (y)
$$

The solution becomes

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\sin \left(c_{1}\right) \\
c_{1}=\frac{\pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

8.37.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-x \sqrt{1-y^{2}}=0, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{1-y^{2}}}=x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int x d x+c_{1}$
- Evaluate integral $\arcsin (y)=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

- Use initial condition $y(0)=1$

$$
1=\sin \left(c_{1}\right)
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{\pi}{2}
$$

- \quad Substitute $c_{1}=\frac{\pi}{2}$ into general solution and simplify

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

- Solution to the IVP

$$
y=\cos \left(\frac{x^{2}}{2}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=x*sqrt(1-y(x)^2),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=1
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 6

```
DSolve[{y'[x]==x*Sqrt[1-y[x] 2],{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 1
$$

8.38 problem 13 (b)

8.38.1 Existence and uniqueness analysis 1736
8.38.2 Solving as separable ode . 1737
8.38.3 Solving as first order ode lie symmetry lookup ode 1739
8.38.4 Solving as exact ode . 1743
8.38.5 Maple step by step solution . 1747

Internal problem ID [12736]
Internal file name [OUTPUT/11388_Friday_November_03_2023_06_31_59_AM_72333973/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 13 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x \sqrt{1-y^{2}}=0
$$

With initial conditions

$$
\left[y(0)=\frac{9}{10}\right]
$$

8.38.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =x \sqrt{-y^{2}+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{9}{10}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{9}{10}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(x \sqrt{-y^{2}+1}\right) \\
& =-\frac{x y}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{9}{10}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{9}{10}$ is inside this domain. Therefore solution exists and is unique.

8.38.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x \sqrt{-y^{2}+1}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-y^{2}+1}} d y & =x d x \\
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int x d x \\
\arcsin (y) & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=\frac{9}{10}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{9}{10}=\sin \left(c_{1}\right) \\
c_{1}=\arcsin \left(\frac{9}{10}\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)
$$

Verified OK.

8.38.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x \sqrt{-y^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 297: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x \sqrt{-y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arcsin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which gives

$$
y=-\sin \left(-\frac{x^{2}}{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x \sqrt{-y^{2}+1}$	$\begin{aligned} R & =y \\ S & =\frac{x^{2}}{2} \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=\frac{9}{10}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{9}{10}=-\sin \left(c_{1}\right) \\
c_{1}=-\arcsin \left(\frac{9}{10}\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)
$$

Verified OK.

8.38.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =\arcsin (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\arcsin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\arcsin (y)
$$

The solution becomes

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=\frac{9}{10}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{9}{10}=\sin \left(c_{1}\right) \\
c_{1}=\arcsin \left(\frac{9}{10}\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)
$$

Verified OK.

8.38.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-x \sqrt{1-y^{2}}=0, y(0)=\frac{9}{10}\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{1-y^{2}}}=x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int x d x+c_{1}$
- Evaluate integral

$$
\arcsin (y)=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

- Use initial condition $y(0)=\frac{9}{10}$

$$
\frac{9}{10}=\sin \left(c_{1}\right)
$$

- \quad Solve for c_{1}
$c_{1}=\arcsin \left(\frac{9}{10}\right)$
- \quad Substitute $c_{1}=\arcsin \left(\frac{9}{10}\right)$ into general solution and simplify $y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)$
- Solution to the IVP
$y=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 13

```
dsolve([diff(y(x),x)=x*sqrt(1-y(x)~2),y(0) = 9/10],y(x), singsol=all)
```

$$
y(x)=\sin \left(\frac{x^{2}}{2}+\arcsin \left(\frac{9}{10}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.368 (sec). Leaf size: 43
DSolve[\{y' $[x]==x *$ Sqrt $[1-y[x] \sim 2],\{y[0]==9 / 10\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \cos \left(\frac{1}{2}\left(4 \arctan \left(\frac{1}{\sqrt{19}}\right)+x^{2}\right)\right) \\
& y(x) \rightarrow \cos \left(\frac{1}{2}\left(x^{2}-4 \arctan \left(\frac{1}{\sqrt{19}}\right)\right)\right)
\end{aligned}
$$

8.39 problem 13 (c)

8.39.1 Existence and uniqueness analysis 1750
8.39.2 Solving as separable ode . 1751
8.39.3 Solving as first order ode lie symmetry lookup ode 1753
8.39.4 Solving as exact ode . 1757
8.39.5 Maple step by step solution . 1761

Internal problem ID [12737]
Internal file name [OUTPUT/11389_Friday_November_03_2023_06_32_05_AM_78469741/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 13 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x \sqrt{1-y^{2}}=0
$$

With initial conditions

$$
\left[y(0)=\frac{1}{2}\right]
$$

8.39.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =x \sqrt{-y^{2}+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{1}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(x \sqrt{-y^{2}+1}\right) \\
& =-\frac{x y}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{1}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

8.39.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x \sqrt{-y^{2}+1}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-y^{2}+1}} d y & =x d x \\
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int x d x \\
\arcsin (y) & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\sin \left(c_{1}\right) \\
c_{1}=\frac{\pi}{6}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)
$$

Verified OK.

8.39.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x \sqrt{-y^{2}+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 300: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x \sqrt{-y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arcsin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which gives

$$
y=-\sin \left(-\frac{x^{2}}{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x \sqrt{-y^{2}+1}$	$\begin{aligned} & R=y \\ & S=\frac{x^{2}}{2} \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=-\sin \left(c_{1}\right) \\
c_{1}=-\frac{\pi}{6}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)
$$

Verified OK.

8.39.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =\arcsin (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\arcsin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\arcsin (y)
$$

The solution becomes

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\sin \left(c_{1}\right) \\
c_{1}=\frac{\pi}{6}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)
$$

Verified OK.

8.39.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-x \sqrt{1-y^{2}}=0, y(0)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{\sqrt{1-y^{2}}}=x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int x d x+c_{1}$
- Evaluate integral
$\arcsin (y)=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

- Use initial condition $y(0)=\frac{1}{2}$
$\frac{1}{2}=\sin \left(c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=\frac{\pi}{6}$
- \quad Substitute $c_{1}=\frac{\pi}{6}$ into general solution and simplify
$y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)$
- \quad Solution to the IVP
$y=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 14
dsolve([diff $(y(x), x)=x * \operatorname{sqrt}(1-y(x) \sim 2), y(0)=1 / 2], y(x)$, singsol=all)

$$
y(x)=\sin \left(\frac{x^{2}}{2}+\frac{\pi}{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.215 (sec). Leaf size: 33
DSolve[\{y' $[x]==x *$ Sqrt $[1-y[x] \sim 2],\{y[0]==1 / 2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \sin \left(\frac{1}{6}\left(\pi-3 x^{2}\right)\right) \\
& y(x) \rightarrow \sin \left(\frac{1}{6}\left(3 x^{2}+\pi\right)\right)
\end{aligned}
$$

8.40 problem 13 (d)

8.40.1 Existence and uniqueness analysis 1764
8.40.2 Solving as separable ode . 1765
8.40.3 Solving as first order ode lie symmetry lookup ode 1767
8.40.4 Solving as exact ode . 1771
8.40.5 Maple step by step solution . 1775

Internal problem ID [12738]
Internal file name [OUTPUT/11390_Friday_November_03_2023_06_32_09_AM_1705554/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 13 (d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x \sqrt{1-y^{2}}=0
$$

With initial conditions

$$
[y(0)=0]
$$

8.40.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =x \sqrt{-y^{2}+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(x \sqrt{-y^{2}+1}\right) \\
& =-\frac{x y}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

8.40.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x \sqrt{-y^{2}+1}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-y^{2}+1}} d y & =x d x \\
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int x d x \\
\arcsin (y) & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\sin \left(c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

8.40.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x \sqrt{-y^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 303: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x \sqrt{-y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arcsin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\arcsin (y)+c_{1}
$$

Which gives

$$
y=-\sin \left(-\frac{x^{2}}{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x \sqrt{-y^{2}+1}$	$\begin{aligned} R & =y \\ S & =\frac{x^{2}}{2} \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\sin \left(c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

8.40.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =\arcsin (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\arcsin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\arcsin (y)
$$

The solution becomes

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\sin \left(c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\frac{x^{2}}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

Verified OK.

8.40.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-x \sqrt{1-y^{2}}=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{1-y^{2}}}=x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int x d x+c_{1}$
- Evaluate integral $\arcsin (y)=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y

$$
y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)
$$

- Use initial condition $y(0)=0$

$$
0=\sin \left(c_{1}\right)
$$

- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

- \quad Solution to the IVP

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 10

```
dsolve([diff(y(x),x)=x*sqrt(1-y(x)^2),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\sin \left(\frac{x^{2}}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 27
DSolve[\{y' $[x]==x *$ Sqrt $[1-y[x] \sim 2],\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
& y(x) \rightarrow-\sin \left(\frac{x^{2}}{2}\right) \\
& y(x) \rightarrow \sin \left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

8.41 problem 14 (a)

8.41.1 Existence and uniqueness analysis 1778
8.41.2 Solving as first order ode lie symmetry calculated ode 1779

Internal problem ID [12739]
Internal file name [OUTPUT/11391_Friday_November_03_2023_06_32_10_AM_36940351/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 14 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y^{\prime}-\frac{\sqrt{x^{2}+4 y}}{2}=-\frac{x}{2}
$$

With initial conditions

$$
[y(0)=1]
$$

8.41.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right) \\
& =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.41.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)\left(b_{3}-a_{2}\right)-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)^{2} a_{3} \tag{5E}\\
& -\left(-\frac{1}{2}+\frac{x}{2 \sqrt{x^{2}+4 y}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{x b_{2}+y b_{3}+b_{1}}{\sqrt{x^{2}+4 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+\sqrt{x^{2}+4 y} x^{2} a_{3}-2 x^{3} a_{3}-4 \sqrt{x^{2}+4 y} x a_{2}+2 \sqrt{x^{2}+4 y} x b_{3}-2 \sqrt{x^{2}+4 y} y a_{3}+4 x^{2} a_{2}-}{4 \sqrt{x^{2}+4 y}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}+2 x^{3} a_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \tag{6E}\\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+6 x y a_{3} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+2\left(x^{2}+4 y\right) x a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}-2\left(x^{2}+4 y\right) a_{2} \tag{6E}\\
& +2\left(x^{2}+4 y\right) b_{3}+4 \sqrt{x^{2}+4 y} x a_{2}-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-2 x^{2} a_{2} \\
& -2 x y a_{3}+2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{3} a_{3}-2 \sqrt{x^{2}+4 y} x^{2} a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+6 x y a_{3}-2 \sqrt{x^{2}+4 y} y a_{3}-2 x a_{1}-4 x b_{2} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+4 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+4 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}-4 v_{1}^{2} a_{2}+4 v_{3} v_{1} a_{2}+6 v_{1} v_{2} a_{3}-2 v_{3} v_{2} a_{3}+2 v_{1}^{2} b_{3} \tag{7E}\\
& \quad-2 v_{3} v_{1} b_{3}-2 v_{1} a_{1}+2 v_{3} a_{1}-8 v_{2} a_{2}-4 v_{1} b_{2}+4 b_{2} v_{3}+4 v_{2} b_{3}-4 b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1}^{2}+6 v_{1} v_{2} a_{3}+\left(4 a_{2}-2 b_{3}\right) v_{1} v_{3} \tag{8E}\\
& \quad+\left(-2 a_{1}-4 b_{2}\right) v_{1}-2 v_{3} v_{2} a_{3}+\left(-8 a_{2}+4 b_{3}\right) v_{2}+\left(2 a_{1}+4 b_{2}\right) v_{3}-4 b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
6 a_{3} & =0 \\
-4 b_{1} & =0 \\
-2 a_{1}-4 b_{2} & =0 \\
2 a_{1}+4 b_{2} & =0 \\
-8 a_{2}+4 b_{3} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
4 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-2 b_{2} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 \\
& \eta=x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)(-2) \\
& =\sqrt{x^{2}+4 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x^{2}+4 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{x^{2}+4 y}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{2 \sqrt{x^{2}+4 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which gives

$$
y=c_{1}^{2}+c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}$		$\frac{d S}{d R}=\frac{1}{2}$
		パジアジ
		$\rightarrow 1$
		S ${ }^{\prime}$ R $)^{\prime}$
	$R=x$	
	$\sqrt{x^{2}+4 y}$	こご
${ }_{\text {fotat }}$	2	
¢ ${ }_{\text {¢ }}^{4}$		
t		

Initial conditions are used to solve for c_{1} ．Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration．

$$
\begin{gathered}
1=c_{1}^{2} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=1-x
$$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=1-x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1-x
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 2 linear symmetries. Trying reduction of order 1st order, trying the canonical coordinates of the invariance group <- 1st order, canonical coordinates successful`
\checkmark Solution by Maple
Time used: 0.359 (sec). Leaf size: 15

```
dsolve([diff (y(x),x)=(-x+sqrt (x^2+4*y(x)))/2,y(0) = 1],y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=1-x \\
& y(x)=1+x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.443 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}[x]==\left(-x+\operatorname{Sqrt}\left[x^{\wedge} 2+4 * y[x]\right]\right) / 2,\{y[0]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow 1-x \\
& y(x) \rightarrow x+1
\end{aligned}
$$

8.42 problem 14 (b)

8.42.1 Existence and uniqueness analysis 1787
8.42.2 Solving as first order ode lie symmetry calculated ode 1788

Internal problem ID [12740]
Internal file name [OUTPUT/11392_Friday_November_03_2023_06_32_12_AM_32103521/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 14 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y^{\prime}-\frac{\sqrt{x^{2}+4 y}}{2}=-\frac{x}{2}
$$

With initial conditions

$$
[y(0)=0]
$$

8.42.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{x<0 \vee 0<x\}
$$

But the point $x_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

8.42.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)\left(b_{3}-a_{2}\right)-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)^{2} a_{3} \tag{5E}\\
& -\left(-\frac{1}{2}+\frac{x}{2 \sqrt{x^{2}+4 y}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{x b_{2}+y b_{3}+b_{1}}{\sqrt{x^{2}+4 y}}=0
\end{align*}
$$

Putting the above in normal form gives
$-\frac{\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+\sqrt{x^{2}+4 y} x^{2} a_{3}-2 x^{3} a_{3}-4 \sqrt{x^{2}+4 y} x a_{2}+2 \sqrt{x^{2}+4 y} x b_{3}-2 \sqrt{x^{2}+4 y} y a_{3}+4 x^{2} a_{2}-}{4 \sqrt{x^{2}+4 y}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}+2 x^{3} a_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \tag{6E}\\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+6 x y a_{3} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+2\left(x^{2}+4 y\right) x a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}-2\left(x^{2}+4 y\right) a_{2} \tag{6E}\\
& +2\left(x^{2}+4 y\right) b_{3}+4 \sqrt{x^{2}+4 y} x a_{2}-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-2 x^{2} a_{2} \\
& -2 x y a_{3}+2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{3} a_{3}-2 \sqrt{x^{2}+4 y} x^{2} a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+6 x y a_{3}-2 \sqrt{x^{2}+4 y} y a_{3}-2 x a_{1}-4 x b_{2} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+4 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+4 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}-4 v_{1}^{2} a_{2}+4 v_{3} v_{1} a_{2}+6 v_{1} v_{2} a_{3}-2 v_{3} v_{2} a_{3}+2 v_{1}^{2} b_{3} \tag{7E}\\
& \quad-2 v_{3} v_{1} b_{3}-2 v_{1} a_{1}+2 v_{3} a_{1}-8 v_{2} a_{2}-4 v_{1} b_{2}+4 b_{2} v_{3}+4 v_{2} b_{3}-4 b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1}^{2}+6 v_{1} v_{2} a_{3}+\left(4 a_{2}-2 b_{3}\right) v_{1} v_{3} \tag{8E}\\
& \quad+\left(-2 a_{1}-4 b_{2}\right) v_{1}-2 v_{3} v_{2} a_{3}+\left(-8 a_{2}+4 b_{3}\right) v_{2}+\left(2 a_{1}+4 b_{2}\right) v_{3}-4 b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
6 a_{3} & =0 \\
-4 b_{1} & =0 \\
-2 a_{1}-4 b_{2} & =0 \\
2 a_{1}+4 b_{2} & =0 \\
-8 a_{2}+4 b_{3} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
4 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-2 b_{2} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-2 \\
\eta & =x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)(-2) \\
& =\sqrt{x^{2}+4 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x^{2}+4 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{x^{2}+4 y}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{2 \sqrt{x^{2}+4 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only．This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying．This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which gives

$$
y=c_{1}^{2}+c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}$		$\frac{d S}{d R}=\frac{1}{2}$
		ございごさ
	$R=x$	
	$\sqrt{x^{2}+4 y}$	
9foft－2．		
¢99\％		
－		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1}^{2} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 2 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

```
dsolve([diff(y(x),x)=(-x+sqrt(x^2+4*y(x)))/2,y(0) = 0],y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=-\frac{x^{2}}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.287 (sec). Leaf size: 6
DSolve $\left[\left\{y^{\prime}[x]==\left(-x+\operatorname{Sqrt}\left[x^{\wedge} 2+4 * y[x]\right]\right) / 2,\{y[0]==0\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 0
$$

8.43 problem 14 (c)

8.43.1 Existence and uniqueness analysis 1795
8.43.2 Solving as first order ode lie symmetry calculated ode 1796

Internal problem ID [12741]
Internal file name [OUTPUT/11393_Friday_November_03_2023_06_32_13_AM_7445606/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 14 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y^{\prime}-\frac{\sqrt{x^{2}+4 y}}{2}=-\frac{x}{2}
$$

With initial conditions

$$
[y(0)=-1]
$$

8.43.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{2 \leq x \leq \infty,-\infty \leq x \leq-2\}
$$

But the point $x_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

8.43.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)\left(b_{3}-a_{2}\right)-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)^{2} a_{3} \tag{5E}\\
& -\left(-\frac{1}{2}+\frac{x}{2 \sqrt{x^{2}+4 y}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{x b_{2}+y b_{3}+b_{1}}{\sqrt{x^{2}+4 y}}=0
\end{align*}
$$

Putting the above in normal form gives
$-\frac{\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+\sqrt{x^{2}+4 y} x^{2} a_{3}-2 x^{3} a_{3}-4 \sqrt{x^{2}+4 y} x a_{2}+2 \sqrt{x^{2}+4 y} x b_{3}-2 \sqrt{x^{2}+4 y} y a_{3}+4 x^{2} a_{2}-}{4 \sqrt{x^{2}+4 y}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}+2 x^{3} a_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \tag{6E}\\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+6 x y a_{3} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+2\left(x^{2}+4 y\right) x a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}-2\left(x^{2}+4 y\right) a_{2} \tag{6E}\\
& +2\left(x^{2}+4 y\right) b_{3}+4 \sqrt{x^{2}+4 y} x a_{2}-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-2 x^{2} a_{2} \\
& -2 x y a_{3}+2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{3} a_{3}-2 \sqrt{x^{2}+4 y} x^{2} a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+6 x y a_{3}-2 \sqrt{x^{2}+4 y} y a_{3}-2 x a_{1}-4 x b_{2} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+4 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+4 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}-4 v_{1}^{2} a_{2}+4 v_{3} v_{1} a_{2}+6 v_{1} v_{2} a_{3}-2 v_{3} v_{2} a_{3}+2 v_{1}^{2} b_{3} \tag{7E}\\
& \quad-2 v_{3} v_{1} b_{3}-2 v_{1} a_{1}+2 v_{3} a_{1}-8 v_{2} a_{2}-4 v_{1} b_{2}+4 b_{2} v_{3}+4 v_{2} b_{3}-4 b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1}^{2}+6 v_{1} v_{2} a_{3}+\left(4 a_{2}-2 b_{3}\right) v_{1} v_{3} \tag{8E}\\
& \quad+\left(-2 a_{1}-4 b_{2}\right) v_{1}-2 v_{3} v_{2} a_{3}+\left(-8 a_{2}+4 b_{3}\right) v_{2}+\left(2 a_{1}+4 b_{2}\right) v_{3}-4 b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
6 a_{3} & =0 \\
-4 b_{1} & =0 \\
-2 a_{1}-4 b_{2} & =0 \\
2 a_{1}+4 b_{2} & =0 \\
-8 a_{2}+4 b_{3} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
4 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-2 b_{2} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-2 \\
\eta & =x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)(-2) \\
& =\sqrt{x^{2}+4 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x^{2}+4 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{x^{2}+4 y}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{2 \sqrt{x^{2}+4 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only．This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying．This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which gives

$$
y=c_{1}^{2}+c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}$		$\frac{d S}{d R}=\frac{1}{2}$
		ございごさ
	$R=x$	
	$\sqrt{x^{2}+4 y}$	
9foft－2．		
¢99\％		
－		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{1}^{2} \\
& c_{1}=-i
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i x-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i x-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i x-1
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 2 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`
```

\checkmark Solution by Maple
Time used: 0.25 (sec). Leaf size: 19

```
dsolve([diff (y(x),x)=(-x+sqrt( (x^2+4*y(x)))/2,y(0) = -1],y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-i x-1 \\
& y(x)=i x-1
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.293 (sec). Leaf size: 23
DSolve $\left[\left\{y^{\prime}[x]==\left(-x+S q r t\left[x^{\wedge} 2+4 * y[x]\right]\right) / 2,\{y[0]==-1\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-1-i x \\
& y(x) \rightarrow-1+i x
\end{aligned}
$$

8.44 problem 14 (d)

8.44.1 Solving as first order ode lie symmetry calculated ode 1803

Internal problem ID [12742]
Internal file name [OUTPUT/11394_Friday_November_03_2023_06_32_14_AM_95329720/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 14 (d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_1st_order, _with_linear_symmetries], _Clairaut]
```

$$
y^{\prime}-\frac{\sqrt{x^{2}+4 y}}{2}=-\frac{x}{2}
$$

With initial conditions

$$
\left[y(1)=-\frac{1}{5}\right]
$$

8.44.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)\left(b_{3}-a_{2}\right)-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)^{2} a_{3} \tag{5E}\\
& -\left(-\frac{1}{2}+\frac{x}{2 \sqrt{x^{2}+4 y}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{x b_{2}+y b_{3}+b_{1}}{\sqrt{x^{2}+4 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+\sqrt{x^{2}+4 y} x^{2} a_{3}-2 x^{3} a_{3}-4 \sqrt{x^{2}+4 y} x a_{2}+2 \sqrt{x^{2}+4 y} x b_{3}-2 \sqrt{x^{2}+4 y} y a_{3}+4 x^{2} a_{2}-}{4 \sqrt{x^{2}+4 y}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}+2 x^{3} a_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \tag{6E}\\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+6 x y a_{3} \\
& \quad+2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+2\left(x^{2}+4 y\right) x a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}-2\left(x^{2}+4 y\right) a_{2} \tag{6E}\\
& +2\left(x^{2}+4 y\right) b_{3}+4 \sqrt{x^{2}+4 y} x a_{2}-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-2 x^{2} a_{2} \\
& -2 x y a_{3}+2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{3} a_{3}-2 \sqrt{x^{2}+4 y} x^{2} a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+6 x y a_{3}-2 \sqrt{x^{2}+4 y} y a_{3}-2 x a_{1}-4 x b_{2} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+4 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+4 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}-4 v_{1}^{2} a_{2}+4 v_{3} v_{1} a_{2}+6 v_{1} v_{2} a_{3}-2 v_{3} v_{2} a_{3}+2 v_{1}^{2} b_{3} \tag{7E}\\
& \quad-2 v_{3} v_{1} b_{3}-2 v_{1} a_{1}+2 v_{3} a_{1}-8 v_{2} a_{2}-4 v_{1} b_{2}+4 b_{2} v_{3}+4 v_{2} b_{3}-4 b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1}^{2}+6 v_{1} v_{2} a_{3}+\left(4 a_{2}-2 b_{3}\right) v_{1} v_{3} \tag{8E}\\
& \quad+\left(-2 a_{1}-4 b_{2}\right) v_{1}-2 v_{3} v_{2} a_{3}+\left(-8 a_{2}+4 b_{3}\right) v_{2}+\left(2 a_{1}+4 b_{2}\right) v_{3}-4 b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
6 a_{3} & =0 \\
-4 b_{1} & =0 \\
-2 a_{1}-4 b_{2} & =0 \\
2 a_{1}+4 b_{2} & =0 \\
-8 a_{2}+4 b_{3} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
4 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-2 b_{2} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-2 \\
\eta & =x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)(-2) \\
& =\sqrt{x^{2}+4 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x^{2}+4 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{x^{2}+4 y}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{2 \sqrt{x^{2}+4 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which gives

$$
y=c_{1}^{2}+c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}$		$\frac{d S}{d R}=\frac{1}{2}$
		- シ
+ 4 + 4		
	$R=x$	
	$S=\sqrt{x^{2}+4 y}$	
	$S=\frac{\sqrt{x} \text { a }}{2}$	
-4 -4		
+ ${ }_{4}^{4}$ -		

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-\frac{1}{5}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-\frac{1}{5}=c_{1}^{2}+c_{1} \\
c_{1}=-\frac{1}{2}-\frac{\sqrt{5}}{10}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3}{10}+\frac{\sqrt{5}}{10}-\frac{x}{2}-\frac{\sqrt{5} x}{10}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3}{10}+\frac{\sqrt{5}}{10}-\frac{x}{2}-\frac{\sqrt{5} x}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{3}{10}+\frac{\sqrt{5}}{10}-\frac{x}{2}-\frac{\sqrt{5} x}{10}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 2 linear symmetries. Trying reduction of order 1st order, trying the canonical coordinates of the invariance group <- 1st order, canonical coordinates successful`
\checkmark Solution by Maple
Time used: 0.969 (sec). Leaf size: 69
dsolve([diff $\left.(y(x), x)=\left(-x+\operatorname{sqrt}\left(x^{\wedge} 2+4 * y(x)\right)\right) / 2, y(1)=-1 / 5\right], y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{(-1+x) \sqrt{5}}{10}-\frac{x}{2}+\frac{3}{10} \\
& y(x)=\frac{(\sqrt{5}-5)(-5+\sqrt{5}+10 x)}{100} \\
& y(x)=-\frac{2^{\frac{1}{3}}(50+20 \sqrt{5})^{\frac{1}{3}}\left(2^{\frac{1}{3}} x-\frac{(50+20 \sqrt{5})^{\frac{1}{3}}}{5}\right)}{10}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.301 (sec). Leaf size: 51
DSolve $\left[\left\{y^{\prime}[x]==\left(-x+\operatorname{Sqrt}\left[x^{\wedge} 2+4 * y[x]\right]\right) / 2,\{y[1]==-2 / 10\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ Tru

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{100}(5+\sqrt{5})(-10 x+\sqrt{5}+5) \\
& y(x) \rightarrow \frac{1}{100}(\sqrt{5}-5)(10 x+\sqrt{5}-5)
\end{aligned}
$$

8.45 problem 14 (e)

8.45.1 Existence and uniqueness analysis 1811
8.45.2 Solving as first order ode lie symmetry calculated ode 1812

Internal problem ID [12743]
Internal file name [OUTPUT/11395_Friday_November_03_2023_06_32_17_AM_92906540/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number: 14 (e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y^{\prime}-\frac{\sqrt{x^{2}+4 y}}{2}=-\frac{x}{2}
$$

With initial conditions

$$
\left[y(1)=-\frac{1}{4}\right]
$$

8.45.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-\frac{1}{4}$ is

$$
\{1 \leq x \leq \infty,-\infty \leq x \leq-1\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\left\{-\frac{1}{4} \leq y\right\}
$$

And the point $y_{0}=-\frac{1}{4}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right) \\
& =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-\frac{1}{4}$ is

$$
\{-\infty \leq x<-1,1<x \leq \infty\}
$$

But the point $x_{0}=1$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

8.45.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)\left(b_{3}-a_{2}\right)-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)^{2} a_{3} \tag{5E}\\
& -\left(-\frac{1}{2}+\frac{x}{2 \sqrt{x^{2}+4 y}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{x b_{2}+y b_{3}+b_{1}}{\sqrt{x^{2}+4 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+\sqrt{x^{2}+4 y} x^{2} a_{3}-2 x^{3} a_{3}-4 \sqrt{x^{2}+4 y} x a_{2}+2 \sqrt{x^{2}+4 y} x b_{3}-2 \sqrt{x^{2}+4 y} y a_{3}+4 x^{2} a_{2}-}{4 \sqrt{x^{2}+4 y}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}+2 x^{3} a_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \tag{6E}\\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+6 x y a_{3} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+4 y\right)^{\frac{3}{2}} a_{3}+2\left(x^{2}+4 y\right) x a_{3}-\sqrt{x^{2}+4 y} x^{2} a_{3}-2\left(x^{2}+4 y\right) a_{2} \tag{6E}\\
& +2\left(x^{2}+4 y\right) b_{3}+4 \sqrt{x^{2}+4 y} x a_{2}-2 \sqrt{x^{2}+4 y} x b_{3}+2 \sqrt{x^{2}+4 y} y a_{3}-2 x^{2} a_{2} \\
& -2 x y a_{3}+2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-2 x a_{1}-4 x b_{2}-4 y b_{3}-4 b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{3} a_{3}-2 \sqrt{x^{2}+4 y} x^{2} a_{3}-4 x^{2} a_{2}+2 x^{2} b_{3}+4 \sqrt{x^{2}+4 y} x a_{2} \\
& \quad-2 \sqrt{x^{2}+4 y} x b_{3}+6 x y a_{3}-2 \sqrt{x^{2}+4 y} y a_{3}-2 x a_{1}-4 x b_{2} \\
& +2 \sqrt{x^{2}+4 y} a_{1}+4 b_{2} \sqrt{x^{2}+4 y}-8 y a_{2}+4 y b_{3}-4 b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+4 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+4 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}-4 v_{1}^{2} a_{2}+4 v_{3} v_{1} a_{2}+6 v_{1} v_{2} a_{3}-2 v_{3} v_{2} a_{3}+2 v_{1}^{2} b_{3} \tag{7E}\\
& \quad-2 v_{3} v_{1} b_{3}-2 v_{1} a_{1}+2 v_{3} a_{1}-8 v_{2} a_{2}-4 v_{1} b_{2}+4 b_{2} v_{3}+4 v_{2} b_{3}-4 b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1}^{2}+6 v_{1} v_{2} a_{3}+\left(4 a_{2}-2 b_{3}\right) v_{1} v_{3} \tag{8E}\\
& \quad+\left(-2 a_{1}-4 b_{2}\right) v_{1}-2 v_{3} v_{2} a_{3}+\left(-8 a_{2}+4 b_{3}\right) v_{2}+\left(2 a_{1}+4 b_{2}\right) v_{3}-4 b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
6 a_{3} & =0 \\
-4 b_{1} & =0 \\
-2 a_{1}-4 b_{2} & =0 \\
2 a_{1}+4 b_{2} & =0 \\
-8 a_{2}+4 b_{3} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
4 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-2 b_{2} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 \\
& \eta=x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}\right)(-2) \\
& =\sqrt{x^{2}+4 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x^{2}+4 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\sqrt{x^{2}+4 y}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{2 \sqrt{x^{2}+4 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{2}+4 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\sqrt{x^{2}+4 y}}{2}=\frac{x}{2}+c_{1}
$$

Which gives

$$
y=c_{1}^{2}+c_{1} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2}$		$\frac{d S}{d R}=\frac{1}{2}$
	$R=x$	
${ }_{\text {a }}$	$S=\underline{\sqrt{x^{2}+4 y}}$	-
	2	
-2		
+9ft		
- 4		
\% 1 -		が,

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-\frac{1}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-\frac{1}{4}=c_{1}^{2}+c_{1} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{4}-\frac{x}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{4}-\frac{x}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{4}-\frac{x}{2}
$$

Verified OK.
Maple trace

[^0]\checkmark Solution by Maple
Time used: 8.516 (sec). Leaf size: 17
dsolve $\left(\left[\operatorname{diff}(y(x), x)=\left(-x+\operatorname{sqrt}\left(x^{\wedge} 2+4 * y(x)\right)\right) / 2, y(1)=-1 / 4\right], y(x)\right.$, singsol=all)
\[

$$
\begin{aligned}
& y(x)=-\frac{x^{2}}{4} \\
& y(x)=\frac{1}{4}-\frac{x}{2}
\end{aligned}
$$
\]

\checkmark Solution by Mathematica
Time used: 0.282 (sec). Leaf size: 14
DSolve $\left[\left\{y^{\prime}[x]==\left(-x+\operatorname{Sqrt}\left[x^{\wedge} 2+4 * y[x]\right]\right) / 2,\{y[1]==-1 / 4\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ True

$$
y(x) \rightarrow \frac{1}{4}(1-2 x)
$$

9 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
9.1 problem 1 1821
9.2 problem 2 1837
9.3 problem 3 1848
9.4 problem 4 1869
9.5 problem 5 1890
9.6 problem 6 1901
9.7 problem 7 1905
9.8 problem 8 1915
9.9 problem 9 1925
9.10 problem 10 1942
9.11 problem 13 1947
9.12 problem 14 1960
9.13 problem 15 1967
9.14 problem 16 1993
9.15 problem 17 2009
9.16 problem 18 2022

9.1 problem 1

9.1.1 Existence and uniqueness analysis 1821
9.1.2 Solving as second order linear constant coeff ode 1822
9.1.3 Solving using Kovacic algorithm 1827
9.1.4 Maple step by step solution . 1833

Internal problem ID [12744]
Internal file name [OUTPUT/11396_Friday_November_03_2023_06_32_19_AM_14196107/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
3 y^{\prime \prime}-2 y^{\prime}+4 y=x
$$

With initial conditions

$$
\left[y(-1)=2, y^{\prime}(-1)=3\right]
$$

9.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{2}{3} \\
q(x) & =\frac{4}{3} \\
F & =\frac{x}{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{2 y^{\prime}}{3}+\frac{4 y}{3}=\frac{x}{3}
$$

The domain of $p(x)=-\frac{2}{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The domain of $q(x)=\frac{4}{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is also inside this domain. The domain of $F=\frac{x}{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is also inside this domain. Hence solution exists and is unique.

9.1.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=3, B=-2, C=4, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
3 y^{\prime \prime}-2 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=3, B=-2, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
3 \lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
3 \lambda^{2}-2 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=3, B=-2, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(3)} \pm \frac{1}{(2)(3)} \sqrt{-2^{2}-(4)(3)(4)} \\
& =\frac{1}{3} \pm \frac{i \sqrt{11}}{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3}+\frac{i \sqrt{11}}{3} \\
& \lambda_{2}=\frac{1}{3}-\frac{i \sqrt{11}}{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3}+\frac{i \sqrt{11}}{3} \\
& \lambda_{2}=\frac{1}{3}-\frac{i \sqrt{11}}{3}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=\frac{1}{3}$ and $\beta=\frac{\sqrt{11}}{3}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{\frac{x}{3}}\left(c_{1} \cos \left(\frac{\sqrt{11} x}{3}\right)+c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{\frac{x}{3}}\left(c_{1} \cos \left(\frac{\sqrt{11} x}{3}\right)+c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right), \mathrm{e}^{\frac{x}{3}} \sin \left(\frac{\sqrt{11} x}{3}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{2} x+4 A_{1}-2 A_{2}=x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{8}, A_{2}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x}{4}+\frac{1}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{\frac{x}{3}}\left(c_{1} \cos \left(\frac{\sqrt{11} x}{3}\right)+c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)\right)\right)+\left(\frac{x}{4}+\frac{1}{8}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x}{3}}\left(c_{1} \cos \left(\frac{\sqrt{11} x}{3}\right)+c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)\right)+\frac{x}{4}+\frac{1}{8} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=-1$ in the above gives

$$
\begin{equation*}
2=\mathrm{e}^{-\frac{1}{3}} \cos \left(\frac{\sqrt{11}}{3}\right) c_{1}-\mathrm{e}^{-\frac{1}{3}} \sin \left(\frac{\sqrt{11}}{3}\right) c_{2}-\frac{1}{8} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\mathrm{e}^{\frac{x}{3}}\left(c_{1} \cos \left(\frac{\sqrt{11} x}{3}\right)+c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)\right)}{3}+\mathrm{e}^{\frac{x}{3}}\left(-\frac{c_{1} \sqrt{11} \sin \left(\frac{\sqrt{11} x}{3}\right)}{3}+\frac{c_{2} \sqrt{11} \cos \left(\frac{\sqrt{11} x}{3}\right)}{3}\right)+\frac{1}{4}
$$

substituting $y^{\prime}=3$ and $x=-1$ in the above gives

$$
\begin{equation*}
3=\frac{\mathrm{e}^{-\frac{1}{3}}\left(c_{2} \sqrt{11}+c_{1}\right) \cos \left(\frac{\sqrt{11}}{3}\right)}{3}+\frac{1}{4}+\frac{\mathrm{e}^{-\frac{1}{3}}\left(\sqrt{11} c_{1}-c_{2}\right) \sin \left(\frac{\sqrt{11}}{3}\right)}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{\left(17 \sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)+49 \sin \left(\frac{\sqrt{11}}{3}\right)\right) \mathrm{e}^{\frac{1}{3}} \sqrt{11}}{88} \\
& c_{2}=\frac{\left(-17 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+49 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \mathrm{e}^{\frac{1}{3}} \sqrt{11}}{88}
\end{aligned}
$$

Substituting these values back in above solution results in
$y=\frac{1}{8}+\frac{x}{4}+\frac{17 \cos \left(\frac{\sqrt{11} x}{3}\right) \cos \left(\frac{\sqrt{11}}{3}\right) \mathrm{e}^{\frac{x}{3}+\frac{1}{3}}}{8}+\frac{49 \cos \left(\frac{\sqrt{11} x}{3}\right) \sin \left(\frac{\sqrt{11}}{3}\right) \sqrt{11} \mathrm{e}^{\frac{x}{3}+\frac{1}{3}}}{88}-\frac{17 \sin \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}+\frac{1}{3}} \mathrm{~S}}{8}$
Which simplifies to

$$
\begin{aligned}
y & =\frac{\left(\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49\left(\sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right) \sin \left(\frac{\sqrt{11} x}{3}\right)\right) \mathrm{e}^{\frac{2}{3}}}{88} \\
& +\frac{x}{4}+\frac{1}{8}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y & \frac{\left(\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49\left(\sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right) \sin \left(\frac{\sqrt{11} x}{3}\right)\right) \mathrm{e}^{\frac{3}{3}}}{88} \\
& +\frac{x}{4}+\frac{1}{8}
\end{aligned}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
\begin{aligned}
y & \frac{\left(\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49\left(\sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right) \sin \left(\frac{\sqrt{11} x}{3}\right)\right) \mathrm{e}^{\frac{3}{3}}}{88} \\
& +\frac{x}{4}+\frac{1}{8}
\end{aligned}
$$

Verified OK.

9.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
3 y^{\prime \prime}-2 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=3 \\
& B=-2 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-11}{9} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-11 \\
& t=9
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{11 z(x)}{9} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 306: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{11}{9}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{11} x}{3}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{3} d x} \\
& =z_{1} e^{\frac{x}{3}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{3} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{2 x}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{3 \sqrt{11} \tan \left(\frac{\sqrt{11} x}{3}\right)}{11}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)\right)+c_{2}\left(\mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)\left(\frac{3 \sqrt{11} \tan \left(\frac{\sqrt{11} x}{3}\right)}{11}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
3 y^{\prime \prime}-2 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)+\frac{3 c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}} \sqrt{11}}{11}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right), \frac{3 \sin \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}} \sqrt{11}}{11}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{2} x+4 A_{1}-2 A_{2}=x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{8}, A_{2}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x}{4}+\frac{1}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)+\frac{3 c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}} \sqrt{11}}{11}\right)+\left(\frac{x}{4}+\frac{1}{8}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)+\frac{3 c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}} \sqrt{11}}{11}+\frac{x}{4}+\frac{1}{8} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=-1$ in the above gives

$$
\begin{equation*}
2=\mathrm{e}^{-\frac{1}{3}} \cos \left(\frac{\sqrt{11}}{3}\right) c_{1}-\frac{3 \mathrm{e}^{-\frac{1}{3}} \sin \left(\frac{\sqrt{11}}{3}\right) c_{2} \sqrt{11}}{11}-\frac{1}{8} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)}{3}-\frac{c_{1} \mathrm{e}^{\frac{x}{3}} \sqrt{11} \sin \left(\frac{\sqrt{11} x}{3}\right)}{3}+c_{2} \cos \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}}+\frac{c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}} \sqrt{11}}{11}+\frac{1}{4}$
substituting $y^{\prime}=3$ and $x=-1$ in the above gives

$$
\begin{equation*}
3=\frac{\mathrm{e}^{-\frac{1}{3}}\left(c_{1}+3 c_{2}\right) \cos \left(\frac{\sqrt{11}}{3}\right)}{3}+\frac{1}{4}+\frac{\sqrt{11} \mathrm{e}^{-\frac{1}{3}}\left(c_{1}-\frac{3 c_{2}}{11}\right) \sin \left(\frac{\sqrt{11}}{3}\right)}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \mathrm{e}^{\frac{1}{3}}}{88} \\
& c_{2}=\frac{\left(-17 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+49 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \mathrm{e}^{\frac{1}{3}}}{24}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{8}+\frac{x}{4}+\frac{17 \cos \left(\frac{\sqrt{11} x}{3}\right) \cos \left(\frac{\sqrt{11}}{3}\right) \mathrm{e}^{\frac{x}{3}+\frac{1}{3}}}{8}+\frac{49 \cos \left(\frac{\sqrt{11} x}{3}\right) \sin \left(\frac{\sqrt{11}}{3}\right) \sqrt{11} \mathrm{e}^{\frac{x}{3}+\frac{1}{3}}}{88}-\frac{17 \sin \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}+\frac{1}{3}} \mathrm{~s}}{8}
$$

Which simplifies to

$$
\begin{aligned}
& y \frac{\left(\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49\left(\sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right) \sin \left(\frac{\sqrt{11} x}{3}\right)\right) \mathrm{e}^{\frac{2}{3}}}{88} \\
& \quad+\frac{x}{4}+\frac{1}{8}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y & \frac{\left(\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49\left(\sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right) \sin \left(\frac{\sqrt{11} x}{3}\right)\right) \mathrm{e}^{\frac{3}{3}}}{88} \\
& +\frac{x}{4}+\frac{1}{8}
\end{aligned}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
\begin{aligned}
y & =\frac{\left(\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49\left(\sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right) \sin \left(\frac{\sqrt{11} x}{3}\right)\right) \mathrm{e}^{\frac{2}{3}}}{88} \\
& +\frac{x}{4}+\frac{1}{8}
\end{aligned}
$$

Verified OK.

9.1.4 Maple step by step solution

Let's solve

$$
\left[3 y^{\prime \prime}-2 y^{\prime}+4 y=x, y(-1)=2,\left.y^{\prime}\right|_{\{x=-1\}}=3\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 y^{\prime}}{3}-\frac{4 y}{3}+\frac{x}{3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{2 y^{\prime}}{3}+\frac{4 y}{3}=\frac{x}{3}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-\frac{2}{3} r+\frac{4}{3}=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{\left(\frac{2}{3}\right) \pm\left(\sqrt{-\frac{44}{9}}\right)}{2}
$$

- Roots of the characteristic polynomial

$$
r=\left(\frac{1}{3}-\frac{\mathrm{I} \sqrt{11}}{3}, \frac{1}{3}+\frac{\mathrm{I} \sqrt{11}}{3}\right)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{\frac{x}{3}} \sin \left(\frac{\sqrt{11} x}{3}\right)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)+\mathrm{e}^{\frac{x}{3}} c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{x}{3}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right) & \mathrm{e}^{\frac{x}{3}} \sin \left(\frac{\sqrt{11} x}{3}\right) \\
\frac{\mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)}{3}-\frac{\sin \left(\frac{\sqrt{11} x}{3}\right) \mathrm{e}^{\frac{x}{3}} \sqrt{11}}{3} & \frac{\mathrm{e}^{\frac{x}{3}} \sin \left(\frac{\sqrt{11} x}{3}\right)}{3}+\frac{\mathrm{e}^{\frac{x}{3} \sqrt{11} \cos \left(\frac{\sqrt{11} x}{3}\right)}}{3}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{11} \mathrm{e}^{\frac{2 x}{3}}}{3}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{\frac{x}{3}} \sqrt{11}\left(\cos \left(\frac{\sqrt{11} x}{3}\right)\left(\int x \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{\sqrt{11} x}{3}\right) d x\right)-\sin \left(\frac{\sqrt{11} x}{3}\right)\left(\int x \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right) d x\right)\right)}{11}$
- Compute integrals $y_{p}(x)=\frac{x}{4}+\frac{1}{8}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)+\mathrm{e}^{\frac{x}{3}} c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)+\frac{x}{4}+\frac{1}{8}$
Check validity of solution $y=c_{1} \mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)+\mathrm{e}^{\frac{x}{3}} c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)+\frac{x}{4}+\frac{1}{8}$
- Use initial condition $y(-1)=2$
$2=\mathrm{e}^{-\frac{1}{3}} \cos \left(\frac{\sqrt{11}}{3}\right) c_{1}-\mathrm{e}^{-\frac{1}{3}} \sin \left(\frac{\sqrt{11}}{3}\right) c_{2}-\frac{1}{8}$
- Compute derivative of the solution

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{3}} \cos \left(\frac{\sqrt{11} x}{3}\right)}{3}-\frac{c_{1} \mathrm{e}^{\frac{x}{3}} \sqrt{11} \sin \left(\frac{\sqrt{11} x}{3}\right)}{3}+\frac{\mathrm{e}^{\frac{x}{3}} c_{2} \sin \left(\frac{\sqrt{11} x}{3}\right)}{3}+\frac{\mathrm{e}^{\frac{x}{3}} c_{2} \sqrt{11} \cos \left(\frac{\sqrt{11} x}{3}\right)}{3}+\frac{1}{4}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=-1\}}=3$
$3=\frac{1}{4}+\frac{\mathrm{e}^{-\frac{1}{3}} c_{1} \sin \left(\frac{\sqrt{11}}{3}\right) \sqrt{11}}{3}+\frac{\mathrm{e}^{-\frac{1}{3}} \cos \left(\frac{\sqrt{11}}{3}\right) c_{1}}{3}+\frac{c_{2} \mathrm{e}^{-\frac{1}{3}} \cos \left(\frac{\sqrt{11}}{3}\right) \sqrt{11}}{3}-\frac{\mathrm{e}^{-\frac{1}{3} \sin \left(\frac{\sqrt{11}}{3}\right) c_{2}}}{3}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{\left(17 \sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)+49 \sin \left(\frac{\sqrt{11}}{3}\right)\right) \sqrt{11}}{88 \mathrm{e}^{-\frac{1}{3}}\left(\cos \left(\frac{\sqrt{11}}{3}\right)^{2}+\sin \left(\frac{\sqrt{11}}{3}\right)^{2}\right)}, c_{2}=\frac{\sqrt{11}\left(-17 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+49 \cos \left(\frac{\sqrt{11}}{3}\right)\right)}{88 \mathrm{e}^{-\frac{1}{3}}\left(\cos \left(\frac{\sqrt{11}}{3}\right)^{2}+\sin \left(\frac{\sqrt{11}}{3}\right)^{2}\right)}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49\left(\sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right) \sin \left(\frac{\sqrt{11} x}{3}\right)\right) \mathrm{e}^{\frac{x}{3}+\frac{1}{3}}}{88}+\frac{x}{4}+\frac{1}{8}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(\left(49 \sqrt{11} \sin \left(\frac{\sqrt{11}}{3}\right)+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49\left(\sqrt{11} \cos \left(\frac{\sqrt{11}}{3}\right)-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right) \sin \left(\frac{\sqrt{11} x}{3}\right)\right) \mathrm{e}^{\frac{x}{3}+\frac{1}{3}}}{88}+\frac{x}{4}+\frac{1}{8}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.266 (sec). Leaf size: 85

$$
\begin{aligned}
& \text { dsolve }([3 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+4 * \mathrm{y}(\mathrm{x})=\mathrm{x}, \mathrm{y}(-1)=2, \mathrm{D}(\mathrm{y})(-1)=3], \mathrm{y}(\mathrm{x}), \text { singsol=all) } \\
& y(x) \\
& =\frac{\left(\left(49 \sin \left(\frac{\sqrt{11}}{3}\right) \sqrt{11}+187 \cos \left(\frac{\sqrt{11}}{3}\right)\right) \cos \left(\frac{\sqrt{11} x}{3}\right)+49 \sin \left(\frac{\sqrt{11} x}{3}\right)\left(\cos \left(\frac{\sqrt{11}}{3}\right) \sqrt{11}-\frac{187 \sin \left(\frac{\sqrt{11}}{3}\right)}{49}\right)\right) \mathrm{e}^{\frac{2}{3}}}{88} \\
& \quad+\frac{x}{4}+\frac{1}{8}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 67
DSolve $[\{3 * y$ ' ' $[x]-2 * y$ ' $[x]+4 * y[x]==x,\{y[-1]==2, y$ ' $[-1]==3\}\}, y[x], x$, IncludeSingularSolutions $->$
$y(x) \rightarrow \frac{1}{88}\left(22 x+49 \sqrt{11} e^{\frac{x+1}{3}} \sin \left(\frac{1}{3} \sqrt{11}(x+1)\right)+187 e^{\frac{x+1}{3}} \cos \left(\frac{1}{3} \sqrt{11}(x+1)\right)+11\right)$

9.2 problem 2

9.2.1 Maple step by step solution . 1843

Internal problem ID [12745]
Internal file name [OUTPUT/11397_Friday_November_03_2023_06_32_22_AM_11601804/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 2.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_missing_y" Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
x y^{\prime \prime \prime}+y^{\prime} x=4
$$

With initial conditions

$$
\left[y(1)=0, y^{\prime}(1)=1, y^{\prime \prime}(1)=-1\right]
$$

Since y is missing from the ode then we can use the substitution $y^{\prime}=v(x)$ to reduce the order by one. The ODE becomes

$$
v^{\prime \prime}(x) x+v(x) x=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
v(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
v(x)=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
v(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

But since $y^{\prime}=v(x)$ then we now need to solve the ode $y^{\prime}=c_{1} \cos (x)+c_{2} \sin (x)$. Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \cos (x)+c_{2} \sin (x) \mathrm{d} x \\
& =\sin (x) c_{1}-c_{2} \cos (x)+c_{3}
\end{aligned}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
x y^{\prime \prime \prime}+y^{\prime} x=0
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
1 & \cos (x) & \sin (x) \\
0 & -\sin (x) & \cos (x) \\
0 & -\cos (x) & -\sin (x)
\end{array}\right] \\
|W| & =\cos (x)^{2}+\sin (x)^{2}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=1
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right] \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ll}
1 & \sin (x) \\
0 & \cos (x)
\end{array}\right] \\
& =\cos (x) \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
1 & \cos (x) \\
0 & -\sin (x)
\end{array}\right] \\
& =-\sin (x)
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(4)(1)}{(x)(1)} d x \\
& =\int \frac{4}{x} d x \\
& =\int\left(\frac{4}{x}\right) d x \\
& =4 \ln (x) \\
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(4)(\cos (x))}{(x)(1)} d x \\
& =-\int \frac{4 \cos (x)}{x} d x \\
& =-\int\left(\frac{4 \cos (x)}{x}\right) d x \\
& =-4 \operatorname{Ci}(x) \\
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{(4)(-\sin (x))}{(x)(1)} d x \\
& =\int \frac{-4 \sin (x)}{x} d x \\
& =\int\left(-\frac{4 \sin (x)}{x}\right) d x \\
& =-4 \operatorname{Si}(x)
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =(4 \ln (x)) \\
& +(-4 \mathrm{Ci}(x))(\cos (x)) \\
& +(-4 \operatorname{Si}(x))(\sin (x))
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=4 \ln (x)-4 \mathrm{Ci}(x) \cos (x)-4 \mathrm{Si}(x) \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =(y \\
& \left.=\sin (x) c_{1}-c_{2} \cos (x)+c_{3}\right)+(4 \ln (x)-4 \mathrm{Ci}(x) \cos (x)-4 \mathrm{Si}(x) \sin (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\sin (x) c_{1}-c_{2} \cos (x)+c_{3}+4 \ln (x)-4 \mathrm{Ci}(x) \cos (x)-4 \mathrm{Si}(x) \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\left(-c_{2}-4 \mathrm{Ci}(1)\right) \cos (1)+\left(c_{1}-4 \mathrm{Si}(1)\right) \sin (1)+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=c_{1} \cos (x)+c_{2} \sin (x)+\frac{4}{x}-\frac{4 \cos (x)^{2}}{x}+4 \mathrm{Ci}(x) \sin (x)-\frac{4 \sin (x)^{2}}{x}-4 \operatorname{Si}(x) \cos (x)$ substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\left(c_{1}-4 \mathrm{Si}(1)\right) \cos (1)+\sin (1)\left(c_{2}+4 \mathrm{Ci}(1)\right) \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives
$y^{\prime \prime}=-\sin (x) c_{1}+c_{2} \cos (x)-\frac{4}{x^{2}}+\frac{4 \cos (x)^{2}}{x^{2}}+4 \mathrm{Ci}(x) \cos (x)+\frac{4 \sin (x)^{2}}{x^{2}}+4 \operatorname{Si}(x) \sin (x)$
substituting $y^{\prime \prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=\left(c_{2}+4 \mathrm{Ci}(1)\right) \cos (1)-\left(c_{1}-4 \mathrm{Si}(1)\right) \sin (1) \tag{3A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\sin (1)+\cos (1)+4 \mathrm{Si}(1) \\
& c_{2}=\sin (1)-\cos (1)-4 \mathrm{Ci}(1) \\
& c_{3}=-1
\end{aligned}
$$

Substituting these values back in above solution results in
$y=-1+4 \cos (x) \mathrm{Ci}(1)+4 \sin (x) \operatorname{Si}(1)+4 \ln (x)-4 \mathrm{Ci}(x) \cos (x)-4 \operatorname{Si}(x) \sin (x)+\cos (x) \cos (1)-$ Which simplifies to

$$
\begin{aligned}
y= & (4 \mathrm{Ci}(1)-4 \mathrm{Ci}(x)+\cos (1)-\sin (1)) \cos (x) \\
& +(4 \mathrm{Si}(1)-4 \mathrm{Si}(x)+\cos (1)+\sin (1)) \sin (x)+4 \ln (x)-1
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & (4 \mathrm{Ci}(1)-4 \mathrm{Ci}(x)+\cos (1)-\sin (1)) \cos (x) \tag{1}\\
& +(4 \mathrm{Si}(1)-4 \mathrm{Si}(x)+\cos (1)+\sin (1)) \sin (x)+4 \ln (x)-1
\end{align*}
$$

Figure 354: Solution plot

Verification of solutions

$$
\begin{aligned}
y= & (4 \mathrm{Ci}(1)-4 \mathrm{Ci}(x)+\cos (1)-\sin (1)) \cos (x) \\
& +(4 \mathrm{Si}(1)-4 \mathrm{Si}(x)+\cos (1)+\sin (1)) \sin (x)+4 \ln (x)-1
\end{aligned}
$$

Verified OK.

9.2.1 Maple step by step solution

Let's solve

$$
\left[x y^{\prime \prime \prime}+y^{\prime} x=4, y(1)=0,\left.y^{\prime}\right|_{\{x=1\}}=1,\left.y^{\prime \prime}\right|_{\{x=1\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{y^{\prime} x-4}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}+y^{\prime}=\frac{4}{x}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-\frac{y_{2}(x) x-4}{x}
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-\frac{y_{2}(x) x-4}{x}\right]
$$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=\left[\begin{array}{c}
c_{3} \sin (x)-c_{2} \cos (x)+c_{1} \\
c_{3} \cos (x)+c_{2} \sin (x) \\
-c_{3} \sin (x)+c_{2} \cos (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=c_{3} \sin (x)-c_{2} \cos (x)+c_{1}$
- Use the initial condition $y(1)=0$
$0=c_{3} \sin (1)-c_{2} \cos (1)+c_{1}$
- Calculate the 1st derivative of the solution
$y^{\prime}=c_{3} \cos (x)+c_{2} \sin (x)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=1$

$$
1=c_{3} \cos (1)+c_{2} \sin (1)
$$

- \quad Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=-c_{3} \sin (x)+c_{2} \cos (x)
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=1\}}=-1$

$$
-1=-c_{3} \sin (1)+c_{2} \cos (1)
$$

- \quad Solve for the unknown coefficients

$$
\left\{c_{1}=-1, c_{2}=\frac{\sin (1)-\cos (1)}{\sin (1)^{2}+\cos (1)^{2}}, c_{3}=\frac{\sin (1)+\cos (1)}{\sin (1)^{2}+\cos (1)^{2}}\right\}
$$

- \quad Solution to the IVP

$$
y=-1+(-\sin (1)+\cos (1)) \cos (x)+(\sin (1)+\cos (1)) \sin (x)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -(_b(_a)*_a-4)/_a, _b(_a)`
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        <- constant coefficients successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
```

\checkmark Solution by Maple
Time used: 0.171 (sec). Leaf size: 49
dsolve $([x * \operatorname{diff}(y(x), x \$ 3)+x * \operatorname{diff}(y(x), x)=4, y(1)=0, D(y)(1)=1,(D @ @ 2)(y)(1)=-1], y(x)$,

$$
\begin{aligned}
y(x)= & (4 \mathrm{Ci}(1)-4 \mathrm{Ci}(x)+\cos (1)-\sin (1)) \cos (x) \\
& +(4 \mathrm{Si}(1)-4 \mathrm{Si}(x)+\cos (1)+\sin (1)) \sin (x)+4 \ln (x)-1
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.184 (sec). Leaf size: 85
DSolve $\left[\left\{x * y\right.\right.$ ' ' ' $[x]+x * y$ ' $[x]==4,\left\{y[1]==0, y^{\prime}[1]==1, y^{\prime}\right.$ ' $\left.\left.[1]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
\begin{aligned}
y(x) \rightarrow & -4 \operatorname{CosIntegral}(x) \cos (x)+4 \operatorname{CosIntegral}(1) \cos (x)-2 \operatorname{sinc}(1) \cos (2-x) \\
& -6 \operatorname{sinc}(1) \cos (x)+8 \operatorname{sinc}(1) \cos (1)-4 \operatorname{Si}(x) \sin (x)+4 \operatorname{Si}(1) \sin (x)+4 \log (x) \\
& +\sin (1-x)+\sin (3-x)+3 \sin (x+1)+\cos (1-x)-1-4 \sin (2)
\end{aligned}
$$

9.3 problem 3

9.3.1 Existence and uniqueness analysis 1848
9.3.2 Solving as second order ode missing y ode 1849
9.3.3 Solving as second order ode non constant coeff transformation on B ode \qquad
9.3.4 Solving using Kovacic algorithm 1857
9.3.5 Maple step by step solution . 1866

Internal problem ID [12746]
Internal file name [OUTPUT/11398_Friday_November_03_2023_06_32_23_AM_45606230/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 3 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_ode_missing_y", "second_order__ode__non__constant__coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x(x-3) y^{\prime \prime}+3 y^{\prime}=x^{2}
$$

With initial conditions

$$
\left[y(1)=0, y^{\prime}(1)=1\right]
$$

9.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{3}{x^{2}-3 x} \\
q(x) & =0 \\
F & =\frac{x^{2}}{x^{2}-3 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{x^{2}-3 x}=\frac{x^{2}}{x^{2}-3 x}
$$

The domain of $p(x)=\frac{3}{x^{2}-3 x}$ is

$$
\{-\infty \leq x<0,0<x<3,3<x \leq \infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $F=\frac{x^{2}}{x^{2}-3 x}$ is

$$
\{-\infty \leq x<0,0<x<3,3<x \leq \infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

9.3.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(x^{2}-3 x\right) p^{\prime}(x)+3 p(x)-x^{2}=0
$$

Which is now solve for $p(x)$ as first order ode.
Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x(x-3)} d x} \\
& =\mathrm{e}^{\ln (x-3)-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{x-3}{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(\frac{x}{x-3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x-3) p}{x}\right) & =\left(\frac{x-3}{x}\right)\left(\frac{x}{x-3}\right) \\
\mathrm{d}\left(\frac{(x-3) p}{x}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{(x-3) p}{x}=\int \mathrm{d} x \\
& \frac{(x-3) p}{x}=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{x-3}{x}$ results in

$$
p(x)=\frac{x^{2}}{x-3}+\frac{c_{1} x}{x-3}
$$

which simplifies to

$$
p(x)=\frac{x\left(x+c_{1}\right)}{x-3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{1}{2}-\frac{c_{1}}{2} \\
c_{1}=-3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
p(x)=x
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=x
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{~d} x \\
& =\frac{x^{2}}{2}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{1}{2}+c_{2} \\
c_{2}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{x^{2}}{2}-\frac{1}{2}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 355: Solution plot

Verification of solutions

$$
y=\frac{x^{2}}{2}-\frac{1}{2}
$$

Verified OK.

9.3.3 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2}-3 x \\
& B=3 \\
& C=0 \\
& F=x^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}-3 x\right)(0)+(3)(0)+(0)(3) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
3 x^{2}-9 x v^{\prime \prime}+(9) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(3 x^{2}-9 x\right) u^{\prime}(x)+9 u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x(x-3)}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x(x-3)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x(x-3)} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x(x-3)} d x \\
\ln (u) & =-\ln (x-3)+\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x-3)+\ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\ln (x-3)+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x}{x-3}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1} x}{x-3}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1} x}{x-3} \mathrm{~d} x \\
& =c_{1}(x+3 \ln (x-3))+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(3)\left(c_{1}(x+3 \ln (x-3))+c_{2}\right) \\
& =3 c_{1}(x+3 \ln (x-3))+3 c_{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=3 \\
& y_{2}=9 \ln (x-3)+3 x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
3 & 9 \ln (x-3)+3 x \\
\frac{d}{d x}(3) & \frac{d}{d x}(9 \ln (x-3)+3 x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
3 & 9 \ln (x-3)+3 x \\
0 & \frac{9}{x-3}+3
\end{array}\right|
$$

Therefore

$$
W=(3)\left(\frac{9}{x-3}+3\right)-(9 \ln (x-3)+3 x)(0)
$$

Which simplifies to

$$
W=\frac{9 x}{x-3}
$$

Which simplifies to

$$
W=\frac{9 x}{x-3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{(9 \ln (x-3)+3 x) x^{2}}{\frac{9\left(x^{2}-3 x\right) x}{x-3}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(\frac{x}{3}+\ln (x-3)\right) d x
$$

Hence

$$
u_{1}=-\frac{x^{2}}{6}-\ln (x-3)(x-3)+x-3
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{3 x^{2}}{\frac{9\left(x^{2}-3 x\right) x}{x-3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{3} d x
$$

Hence

$$
u_{2}=\frac{x}{3}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{2}}{2}-3 \ln (x-3)(x-3)+3 x-9+\frac{x(9 \ln (x-3)+3 x)}{3}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(3 c_{1}(x+3 \ln (x-3))+3 c_{2}\right)+\left(\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9\right) \\
& =-9+9\left(1+c_{1}\right) \ln (x-3)+\frac{x^{2}}{2}+3\left(1+c_{1}\right) x+3 c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-9+9\left(1+c_{1}\right) \ln (x-3)+\frac{x^{2}}{2}+3\left(1+c_{1}\right) x+3 c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-\frac{11}{2}+9\left(1+c_{1}\right) \ln (2)+9 i c_{1} \pi+9 i \pi+3 c_{1}+3 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{9 c_{1}+9}{x-3}+x+3+3 c_{1}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{3 c_{1}}{2}-\frac{1}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{17}{6}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}}{2}-\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 356: Solution plot

Verification of solutions

$$
y=\frac{x^{2}}{2}-\frac{1}{2}
$$

Verified OK.

9.3.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(x^{2}-3 x\right) y^{\prime \prime}+3 y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}-3 x \\
& B=3 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{27-12 x}{4\left(x^{2}-3 x\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=27-12 x \\
& t=4\left(x^{2}-3 x\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{27-12 x}{4\left(x^{2}-3 x\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 309: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-1 \\
& =3
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(x^{2}-3 x\right)^{2}$. There is a pole at $x=3$ of order 2 . There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}-\frac{1}{6(x-3)}-\frac{1}{4(x-3)^{2}}+\frac{1}{6 x}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=3$ let b be the coefficient of $\frac{1}{(x-3)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $3>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{27-12 x}{4\left(x^{2}-3 x\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
3	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
3	0	0	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=0$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =0-(0) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+\frac{1}{2 x-6}+(0) \\
& =-\frac{1}{2 x}+\frac{1}{2 x-6} \\
& =\frac{3}{2 x(x-3)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}+\frac{1}{2 x-6}\right)(0)+\left(\left(\frac{1}{2 x^{2}}-\frac{1}{2(x-3)^{2}}\right)+\left(-\frac{1}{2 x}+\frac{1}{2 x-6}\right)^{2}-\left(\frac{27-12 x}{4\left(x^{2}-3 x\right)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x}+\frac{1}{2 x-6}\right) d x} \\
& =\frac{\sqrt{x-3}}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{x^{2}-3 x} d x} \\
& =z_{1} e^{-\frac{\ln (x-3)}{2}+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{\sqrt{x}}{\sqrt{x-3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{x^{2}-3 x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x-3)+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x+3 \ln (x-3))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x+3 \ln (x-3)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\left(x^{2}-3 x\right) y^{\prime \prime}+3 y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}+c_{2}(x+3 \ln (x-3))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x+3 \ln (x-3)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & x+3 \ln (x-3) \\
\frac{d}{d x}(1) & \frac{d}{d x}(x+3 \ln (x-3))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & x+3 \ln (x-3) \\
0 & 1+\frac{3}{x-3}
\end{array}\right|
$$

Therefore

$$
W=(1)\left(1+\frac{3}{x-3}\right)-(x+3 \ln (x-3))(0)
$$

Which simplifies to

$$
W=\frac{x}{x-3}
$$

Which simplifies to

$$
W=\frac{x}{x-3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{(x+3 \ln (x-3)) x^{2}}{\frac{\left(x^{2}-3 x\right) x}{x-3}} d x
$$

Which simplifies to

$$
u_{1}=-\int(x+3 \ln (x-3)) d x
$$

Hence

$$
u_{1}=-\frac{x^{2}}{2}-3 \ln (x-3)(x-3)+3 x-9
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}}{\frac{\left(x^{2}-3 x\right) x}{x-3}} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-9-\frac{x^{2}}{2}-3 \ln (x-3)(x-3)+3 x+x(x+3 \ln (x-3))
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2}(x+3 \ln (x-3))\right)+\left(\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2}(x+3 \ln (x-3))+\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-\frac{11}{2}+3\left(c_{2}+3\right) \ln (2)+3 i c_{2} \pi+9 i \pi+c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2}\left(1+\frac{3}{x-3}\right)+x+\frac{9}{x-3}+3
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{1}{2}-\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{17}{2} \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}}{2}-\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 357: Solution plot

Verification of solutions

$$
y=\frac{x^{2}}{2}-\frac{1}{2}
$$

Verified OK.

9.3.5 Maple step by step solution

Let's solve

$$
\left[\left(x^{2}-3 x\right) y^{\prime \prime}+3 y^{\prime}=x^{2}, y(1)=0,\left.y^{\prime}\right|_{\{x=1\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Make substitution $u=y^{\prime}$ to reduce order of ODE
$\left(x^{2}-3 x\right) u^{\prime}(x)+3 u(x)=x^{2}$
- Isolate the derivative
$u^{\prime}(x)=-\frac{3 u(x)}{x(x-3)}+\frac{x}{x-3}$
- Group terms with $u(x)$ on the lhs of the ODE and the rest on the rhs of the ODE $u^{\prime}(x)+\frac{3 u(x)}{x(x-3)}=\frac{x}{x-3}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(u^{\prime}(x)+\frac{3 u(x)}{x(x-3)}\right)=\frac{\mu(x) x}{x-3}
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) u(x))$

$$
\mu(x)\left(u^{\prime}(x)+\frac{3 u(x)}{x(x-3)}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)
$$

- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{3 \mu(x)}{x(x-3)}$
- \quad Solve to find the integrating factor

$$
\mu(x)=\frac{x-3}{x}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int \frac{\mu(x) x}{x-3} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) u(x)=\int \frac{\mu(x) x}{x-3} d x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\frac{\int \frac{\mu(x) x}{x-3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{x-3}{x}$
$u(x)=\frac{x\left(\int 1 d x+c_{1}\right)}{x-3}$
- Evaluate the integrals on the rhs
$u(x)=\frac{x\left(x+c_{1}\right)}{x-3}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\frac{x\left(x+c_{1}\right)}{x-3}$
- \quad Make substitution $u=y^{\prime}$
$y^{\prime}=\frac{x\left(x+c_{1}\right)}{x-3}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{x\left(x+c_{1}\right)}{x-3} d x+c_{2}$
- Compute integrals
$y=\frac{x^{2}}{2}+c_{1} x+3 x+\left(3 c_{1}+9\right) \ln (x-3)+c_{2}$
Check validity of solution $y=\frac{x^{2}}{2}+c_{1} x+3 x+\left(3 c_{1}+9\right) \ln (x-3)+c_{2}$
- Use initial condition $y(1)=0$
$0=\frac{7}{2}+c_{1}+\left(3 c_{1}+9\right)(\ln (2)+\mathrm{I} \pi)+c_{2}$
- Compute derivative of the solution
$y^{\prime}=x+c_{1}+3+\frac{3 c_{1}+9}{x-3}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=1$
$1=-\frac{1}{2}-\frac{c_{1}}{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-3, c_{2}=-\frac{1}{2}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{x^{2}}{2}-\frac{1}{2}
$$

- \quad Solution to the IVP
$y=\frac{x^{2}}{2}-\frac{1}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(-_a^2+3*_b(_a))/(_a*(-3+_a)), _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve([x*(x-3)*diff (y(x),x$2)+3*diff (y(x),x)=x^2,y(1) = 0, D(y)(1) = 1],y(x), singsol=all)
```

$$
y(x)=-\frac{1}{2}+\frac{x^{2}}{2}
$$

Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 14
DSolve $\left[\left\{x *(x-3) * y{ }^{\prime \prime}[x]+3 * y^{\prime}[x]==x^{\wedge} 2,\left\{y[1]==0, y^{\prime}[1]==1\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ I

$$
y(x) \rightarrow \frac{1}{2}\left(x^{2}-1\right)
$$

9.4 problem 4

9.4.1 Existence and uniqueness analysis 1869
9.4.2 Solving as second order ode missing y ode 1870
9.4.3 Solving as second order ode non constant coeff transformation on B ode

1873
9.4.4 Solving using Kovacic algorithm 1878
9.4.5 Maple step by step solution . 1887

Internal problem ID [12747]
Internal file name [OUTPUT/11399_Friday_November_03_2023_06_32_24_AM_67661546/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_ode_missing_y", "second_order__ode__non__constant__coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x(x-3) y^{\prime \prime}+3 y^{\prime}=x^{2}
$$

With initial conditions

$$
\left[y(5)=0, y^{\prime}(5)=1\right]
$$

9.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{3}{x^{2}-3 x} \\
q(x) & =0 \\
F & =\frac{x^{2}}{x^{2}-3 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{x^{2}-3 x}=\frac{x^{2}}{x^{2}-3 x}
$$

The domain of $p(x)=\frac{3}{x^{2}-3 x}$ is

$$
\{-\infty \leq x<0,0<x<3,3<x \leq \infty\}
$$

And the point $x_{0}=5$ is inside this domain. The domain of $F=\frac{x^{2}}{x^{2}-3 x}$ is

$$
\{-\infty \leq x<0,0<x<3,3<x \leq \infty\}
$$

And the point $x_{0}=5$ is also inside this domain. Hence solution exists and is unique.

9.4.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(x^{2}-3 x\right) p^{\prime}(x)+3 p(x)-x^{2}=0
$$

Which is now solve for $p(x)$ as first order ode.
Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x(x-3)} d x} \\
& =\mathrm{e}^{\ln (x-3)-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{x-3}{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(\frac{x}{x-3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x-3) p}{x}\right) & =\left(\frac{x-3}{x}\right)\left(\frac{x}{x-3}\right) \\
\mathrm{d}\left(\frac{(x-3) p}{x}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{(x-3) p}{x}=\int \mathrm{d} x \\
& \frac{(x-3) p}{x}=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{x-3}{x}$ results in

$$
p(x)=\frac{x^{2}}{x-3}+\frac{c_{1} x}{x-3}
$$

which simplifies to

$$
p(x)=\frac{x\left(x+c_{1}\right)}{x-3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=5$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{25}{2}+\frac{5 c_{1}}{2} \\
c_{1}=-\frac{23}{5}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
p(x)=\frac{x(5 x-23)}{5 x-15}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{x(5 x-23)}{5 x-15}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x(5 x-23)}{5 x-15} \mathrm{~d} x \\
& =\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=5$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=\frac{9}{2}-\frac{24 \ln (2)}{5}+c_{2} \\
& c_{2}=-\frac{9}{2}+\frac{24 \ln (2)}{5}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5} \tag{1}
\end{equation*}
$$

Figure 358: Solution plot

Verification of solutions

$$
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5}
$$

Verified OK.

9.4.3 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2}-3 x \\
& B=3 \\
& C=0 \\
& F=x^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}-3 x\right)(0)+(3)(0)+(0)(3) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
3 x^{2}-9 x v^{\prime \prime}+(9) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(3 x^{2}-9 x\right) u^{\prime}(x)+9 u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x(x-3)}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x(x-3)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x(x-3)} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x(x-3)} d x \\
\ln (u) & =-\ln (x-3)+\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x-3)+\ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\ln (x-3)+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x}{x-3}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1} x}{x-3}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1} x}{x-3} \mathrm{~d} x \\
& =c_{1}(x+3 \ln (x-3))+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(3)\left(c_{1}(x+3 \ln (x-3))+c_{2}\right) \\
& =3 c_{1}(x+3 \ln (x-3))+3 c_{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=3 \\
& y_{2}=9 \ln (x-3)+3 x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
3 & 9 \ln (x-3)+3 x \\
\frac{d}{d x}(3) & \frac{d}{d x}(9 \ln (x-3)+3 x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
3 & 9 \ln (x-3)+3 x \\
0 & \frac{9}{x-3}+3
\end{array}\right|
$$

Therefore

$$
W=(3)\left(\frac{9}{x-3}+3\right)-(9 \ln (x-3)+3 x)(0)
$$

Which simplifies to

$$
W=\frac{9 x}{x-3}
$$

Which simplifies to

$$
W=\frac{9 x}{x-3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{(9 \ln (x-3)+3 x) x^{2}}{\frac{9\left(x^{2}-3 x\right) x}{x-3}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(\frac{x}{3}+\ln (x-3)\right) d x
$$

Hence

$$
u_{1}=-\frac{x^{2}}{6}-\ln (x-3)(x-3)+x-3
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{3 x^{2}}{\frac{9\left(x^{2}-3 x\right) x}{x-3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{3} d x
$$

Hence

$$
u_{2}=\frac{x}{3}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{2}}{2}-3 \ln (x-3)(x-3)+3 x-9+\frac{x(9 \ln (x-3)+3 x)}{3}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(3 c_{1}(x+3 \ln (x-3))+3 c_{2}\right)+\left(\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9\right) \\
& =-9+9\left(1+c_{1}\right) \ln (x-3)+\frac{x^{2}}{2}+3\left(1+c_{1}\right) x+3 c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-9+9\left(1+c_{1}\right) \ln (x-3)+\frac{x^{2}}{2}+3\left(1+c_{1}\right) x+3 c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=5$ in the above gives

$$
\begin{equation*}
0=\frac{37}{2}+9\left(1+c_{1}\right) \ln (2)+15 c_{1}+3 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{9 c_{1}+9}{x-3}+x+3+3 c_{1}
$$

substituting $y^{\prime}=1$ and $x=5$ in the above gives

$$
\begin{equation*}
1=\frac{15 c_{1}}{2}+\frac{25}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{23}{15} \\
& c_{2}=\frac{8 \ln (2)}{5}+\frac{3}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5} \tag{1}
\end{equation*}
$$

Figure 359: Solution plot

Verification of solutions

$$
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5}
$$

Verified OK.

9.4.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
\left(x^{2}-3 x\right) y^{\prime \prime}+3 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}-3 x \\
& B=3 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{27-12 x}{4\left(x^{2}-3 x\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=27-12 x \\
& t=4\left(x^{2}-3 x\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{27-12 x}{4\left(x^{2}-3 x\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 311: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-1 \\
& =3
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(x^{2}-3 x\right)^{2}$. There is a pole at $x=3$ of order 2 . There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 3 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 3 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}-\frac{1}{6(x-3)}-\frac{1}{4(x-3)^{2}}+\frac{1}{6 x}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=3$ let b be the coefficient of $\frac{1}{(x-3)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $3>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{27-12 x}{4\left(x^{2}-3 x\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
3	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
3	0	0	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=0$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =0-(0) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+\frac{1}{2 x-6}+(0) \\
& =-\frac{1}{2 x}+\frac{1}{2 x-6} \\
& =\frac{3}{2 x(x-3)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}+\frac{1}{2 x-6}\right)(0)+\left(\left(\frac{1}{2 x^{2}}-\frac{1}{2(x-3)^{2}}\right)+\left(-\frac{1}{2 x}+\frac{1}{2 x-6}\right)^{2}-\left(\frac{27-12 x}{4\left(x^{2}-3 x\right)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x}+\frac{1}{2 x-6}\right) d x} \\
& =\frac{\sqrt{x-3}}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{x^{2}-3 x} d x} \\
& =z_{1} e^{-\frac{\ln (x-3)}{2}+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{\sqrt{x}}{\sqrt{x-3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{x^{2}-3 x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x-3)+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x+3 \ln (x-3))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x+3 \ln (x-3)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\left(x^{2}-3 x\right) y^{\prime \prime}+3 y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}+c_{2}(x+3 \ln (x-3))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x+3 \ln (x-3)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & x+3 \ln (x-3) \\
\frac{d}{d x}(1) & \frac{d}{d x}(x+3 \ln (x-3))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & x+3 \ln (x-3) \\
0 & 1+\frac{3}{x-3}
\end{array}\right|
$$

Therefore

$$
W=(1)\left(1+\frac{3}{x-3}\right)-(x+3 \ln (x-3))(0)
$$

Which simplifies to

$$
W=\frac{x}{x-3}
$$

Which simplifies to

$$
W=\frac{x}{x-3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{(x+3 \ln (x-3)) x^{2}}{\frac{\left(x^{2}-3 x\right) x}{x-3}} d x
$$

Which simplifies to

$$
u_{1}=-\int(x+3 \ln (x-3)) d x
$$

Hence

$$
u_{1}=-\frac{x^{2}}{2}-3 \ln (x-3)(x-3)+3 x-9
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}}{\frac{\left(x^{2}-3 x\right) x}{x-3}} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-9-\frac{x^{2}}{2}-3 \ln (x-3)(x-3)+3 x+x(x+3 \ln (x-3))
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2}(x+3 \ln (x-3))\right)+\left(\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2}(x+3 \ln (x-3))+\frac{x^{2}}{2}+9 \ln (x-3)+3 x-9 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=5$ in the above gives

$$
\begin{equation*}
0=\frac{37}{2}+3\left(c_{2}+3\right) \ln (2)+c_{1}+5 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2}\left(1+\frac{3}{x-3}\right)+x+\frac{9}{x-3}+3
$$

substituting $y^{\prime}=1$ and $x=5$ in the above gives

$$
\begin{equation*}
1=\frac{5 c_{2}}{2}+\frac{25}{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{24 \ln (2)}{5}+\frac{9}{2} \\
& c_{2}=-\frac{23}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5} \tag{1}
\end{equation*}
$$

Figure 360: Solution plot

Verification of solutions

$$
y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5}
$$

Verified OK.

9.4.5 Maple step by step solution

Let's solve

$$
\left[\left(x^{2}-3 x\right) y^{\prime \prime}+3 y^{\prime}=x^{2}, y(5)=0,\left.y^{\prime}\right|_{\{x=5\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
\left(x^{2}-3 x\right) u^{\prime}(x)+3 u(x)=x^{2}
$$

- Isolate the derivative

$$
u^{\prime}(x)=-\frac{3 u(x)}{x(x-3)}+\frac{x}{x-3}
$$

- Group terms with $u(x)$ on the lhs of the ODE and the rest on the rhs of the ODE $u^{\prime}(x)+\frac{3 u(x)}{x(x-3)}=\frac{x}{x-3}$
- \quad The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(u^{\prime}(x)+\frac{3 u(x)}{x(x-3)}\right)=\frac{\mu(x) x}{x-3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) u(x))$
$\mu(x)\left(u^{\prime}(x)+\frac{3 u(x)}{x(x-3)}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)$
- \quad Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{3 \mu(x)}{x(x-3)}$
- \quad Solve to find the integrating factor

$$
\mu(x)=\frac{x-3}{x}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int \frac{\mu(x) x}{x-3} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) u(x)=\int \frac{\mu(x) x}{x-3} d x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\frac{\int \frac{\mu(x) x}{x-3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{x-3}{x}$
$u(x)=\frac{x\left(\int 1 d x+c_{1}\right)}{x-3}$
- Evaluate the integrals on the rhs
$u(x)=\frac{x\left(x+c_{1}\right)}{x-3}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\frac{x\left(x+c_{1}\right)}{x-3}$
- \quad Make substitution $u=y^{\prime}$
$y^{\prime}=\frac{x\left(x+c_{1}\right)}{x-3}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{x\left(x+c_{1}\right)}{x-3} d x+c_{2}$
- Compute integrals
$y=\frac{x^{2}}{2}+c_{1} x+3 x+\left(3 c_{1}+9\right) \ln (x-3)+c_{2}$
Check validity of solution $y=\frac{x^{2}}{2}+c_{1} x+3 x+\left(3 c_{1}+9\right) \ln (x-3)+c_{2}$
- Use initial condition $y(5)=0$
$0=\frac{55}{2}+5 c_{1}+\left(3 c_{1}+9\right) \ln (2)+c_{2}$
- Compute derivative of the solution
$y^{\prime}=x+c_{1}+3+\frac{3 c_{1}+9}{x-3}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=5\}}=1$
$1=\frac{25}{2}+\frac{5 c_{1}}{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{23}{5}, c_{2}=-\frac{9}{2}+\frac{24 \ln (2)}{5}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5}$
- \quad Solution to the IVP
$y=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (x-3)}{5}-\frac{9}{2}+\frac{24 \ln (2)}{5}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(-_a^2+3*_b(_a))/(_a*(-3+_a)), _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 24
dsolve $\left(\left[x *(x-3) * \operatorname{diff}(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)=x^{\wedge} 2, y(5)=0, D(y)(5)=1\right], y(x)\right.$, singsol=all)

$$
y(x)=\frac{x^{2}}{2}-\frac{8 x}{5}-\frac{24 \ln (-3+x)}{5}+\frac{24 \ln (2)}{5}-\frac{9}{2}
$$

Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 29
DSolve $\left[\left\{x *(x-3) * y{ }^{\prime \prime}[x]+3 * y^{\prime}[x]==x^{\wedge} 2,\left\{y[5]==0, y^{\prime}[5]==1\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ I

$$
y(x) \rightarrow \frac{1}{10}\left(5 x^{2}-16 x-48 \log (x-3)-45+48 \log (2)\right)
$$

9.5 problem 5

9.5.1 Existence and uniqueness analysis 1890
9.5.2 Solving as second order bessel ode ode 1891

Internal problem ID [12748]
Internal file name [OUTPUT/11400_Friday_November_03_2023_06_32_25_AM_18586947/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
\sqrt{1-x} y^{\prime \prime}-4 y=\sin (x)
$$

With initial conditions

$$
\left[y(-2)=3, y^{\prime}(-2)=-1\right]
$$

9.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-\frac{4}{\sqrt{1-x}} \\
F & =\frac{\sin (x)}{\sqrt{1-x}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{4 y}{\sqrt{1-x}}=\frac{\sin (x)}{\sqrt{1-x}}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is inside this domain. The domain of $q(x)=-\frac{4}{\sqrt{1-x}}$ is

$$
\{x<1\}
$$

And the point $x_{0}=-2$ is also inside this domain. The domain of $F=\frac{\sin (x)}{\sqrt{1-x}}$ is

$$
\{x<1\}
$$

And the point $x_{0}=-2$ is also inside this domain. Hence solution exists and is unique.

9.5.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
y^{\prime \prime} x^{2}-4 y x^{\frac{3}{2}}=x^{\frac{3}{2}} \sin (x) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE and y_{p} is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
y^{\prime \prime} x^{2}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
y^{\prime \prime} x^{2}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{8 i}{3} \\
n & =\frac{2}{3} \\
\gamma & =\frac{3}{4}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \text { BesselJ }\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \\
& y_{2}=\sqrt{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) & \sqrt{x} \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \\
\frac{d}{d x}\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\right) & \frac{d}{d x}\left(\sqrt{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{gathered}
\sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \\
\frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{2 \sqrt{x}}+2 i x^{\frac{1}{4}}\left(\operatorname{BesselJ}\left(-\frac{1}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)+\frac{i \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{4 x^{\frac{3}{4}}}\right)
\end{gathered} \frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{2 \sqrt{x}}+2 i x^{\frac{1}{4}}(\operatorname{BesselY}(\right.
$$

Therefore

$$
\begin{aligned}
& W=\left(\sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\right)\left(\frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{2 \sqrt{x}}\right. \\
&\left.+2 i x^{\frac{1}{4}}\left(\operatorname{BesselY}\left(-\frac{1}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)+\frac{i \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{4 x^{\frac{3}{4}}}\right)\right) \\
&-\left(\sqrt{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\right)\left(\frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{2 \sqrt{x}}\right. \\
&\left.+2 i x^{\frac{1}{4}}\left(\operatorname{BesselJ}\left(-\frac{1}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)+\frac{i \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{4 x^{\frac{3}{4}}}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W=2 i x^{\frac{3}{4}}\left(\operatorname { B e s s e l J } \left(\frac{2}{3}\right.\right. & \left., \frac{8 i x^{\frac{3}{4}}}{3}\right) \operatorname{BesselY}\left(-\frac{1}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \\
& \left.-\operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{3}{2 \pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2} \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \sin (x)}{\frac{3 x^{2}}{2 \pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \sin (x) \pi}{3} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{2 \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) \pi}{3} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2} \operatorname{Bessel} J\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \sin (x)}{\frac{3 x^{2}}{2 \pi}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2 \operatorname{Bessel} J\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \sin (x) \pi}{3} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{2 \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) \pi}{3} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{2 \pi\left(\int_{0}^{x} \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right)}{3} \\
& u_{2}=\frac{2 \pi\left(\int_{0}^{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right)}{3}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{2 \pi\left(\int_{0}^{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{3} \\
& +\frac{2 \pi\left(\int_{0}^{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \sqrt{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{2 \pi \sqrt{x}\left(\left(\int_{0}^{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)-\left(\int_{0}^{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \operatorname{Bess}\right.}{3}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\right) \\
& +\left(-\frac{2 \pi \sqrt{x}\left(\left(\int_{0}^{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)-\left(\int_{0}^{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right)\right.}{3}\right.
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
$y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)-\frac{2 \pi \sqrt{x}\left(\left(\int_{0}^{x} \operatorname{Bessel} Y\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \mathrm{E}\right.}{}$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=-2$ in the above gives

$$
3=\frac{2 i \sqrt{2}\left(\pi \operatorname{BesselJ}\left(\frac{2}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)\left(\int_{-2}^{0} \operatorname{BesselY}\left(\frac{2}{3},\left(-\frac{4}{3}-\frac{4 i}{3}\right)(-\alpha)^{\frac{3}{4}} \sqrt{2}\right) \sin (\alpha) d \alpha\right)-\pi \operatorname{Bessel} Y\right.}{(1 \mathrm{~A})}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{2 \sqrt{x}}+2 i c_{1} x^{\frac{1}{4}}\left(\operatorname{BesselJ}\left(-\frac{1}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)+\frac{i \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{4 x^{\frac{3}{4}}}\right)+\frac{c_{2} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{2 \sqrt{x}}
$$

substituting $y^{\prime}=-1$ and $x=-2$ in the above gives
$-1=\left(-\frac{2}{3}+\frac{2 i}{3}\right) 2^{\frac{3}{4}}\left(\pi\left(\int_{-2}^{0} \operatorname{Bessel} Y\left(\frac{2}{3},\left(-\frac{4}{3}-\frac{4 i}{3}\right)(-\alpha)^{\frac{3}{4}} \sqrt{2}\right) \sin (\alpha) d \alpha\right) \operatorname{BesselJ}\left(-\frac{1}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right.\right.\right.$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives
$c_{1}=\frac{2 \pi\left(3 i 2^{\frac{3}{4}}-32^{\frac{3}{4}}\right) \operatorname{BesselY}\left(-\frac{1}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)}{3}+\frac{2 i \pi \sqrt{2} \operatorname{BesselY}\left(\frac{2}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)}{3}-\frac{2 \pi\left(\int_{-2}^{0} \operatorname{Besse}\right.}{3}+\frac{2 \pi\left(-3 i 2^{\frac{3}{4}}+32^{\frac{3}{4}}\right) \operatorname{BesselJ}\left(-\frac{1}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)}{3}-\frac{2 i \pi \sqrt{2} \operatorname{BesselJ}\left(\frac{2}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)}{3}+\frac{2 \pi\left(\int_{-2}^{0} \operatorname{Bess}\right.}{c_{2}=\frac{2}{}}=\frac{2}{}$
Substituting these values back in above solution results in
$y=-2 i \sqrt{x}$ BesselY $\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \pi 2^{\frac{3}{4}} \operatorname{BesselJ}\left(-\frac{1}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)+2 i \sqrt{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \pi 2^{\frac{3}{4}}$ Bes

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y=2\left(\frac{\operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\left(\int_{-2}^{0} \operatorname{BesselJ}\left(\frac{2}{3},\left(-\frac{4}{3}-\frac{4 i}{3}\right)(-\alpha)^{\frac{3}{4}} \sqrt{2}\right) \sin (\alpha) d \alpha\right)}{3}\right. \\
&-\frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\left(\int_{-2}^{0} \operatorname{BesselY}\left(\frac{2}{3},\left(-\frac{4}{3}-\frac{4 i}{3}\right)(-\alpha)^{\frac{3}{4}} \sqrt{2}\right) \sin (\alpha) d \alpha\right)}{3} \\
&+\frac{\left(\int_{0}^{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{3} \\
&-\frac{\left(\int_{0}^{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{3} \\
&+\left.\frac{i \sqrt{2} \operatorname{BesselY}\left(\frac{2}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)}{3}\right) \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \\
&-\operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\left((-1+i) 2^{\frac{3}{4}} \operatorname{BesselJ}\left(-\frac{1}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)\right. \\
&\left.+\frac{i \sqrt{2} \operatorname{BesselY}\left(-\frac{1}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)}{3}\right) \\
&\left.+\frac{1}{3}\right) \\
&
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& y=2\left(\frac{\operatorname{Bessel} Y\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\left(\int_{-2}^{0} \operatorname{BesselJ}\left(\frac{2}{3},\left(-\frac{4}{3}-\frac{4 i}{3}\right)(-\alpha)^{\frac{3}{4}} \sqrt{2}\right) \sin (\alpha) d \alpha\right)}{3}\right. \\
& -\frac{\operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\left(\int_{-2}^{0} \operatorname{BesselY}\left(\frac{2}{3},\left(-\frac{4}{3}-\frac{4 i}{3}\right)(-\alpha)^{\frac{3}{4}} \sqrt{2}\right) \sin (\alpha) d \alpha\right)}{3} \\
& +\frac{\left(\int_{0}^{x} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{3} \\
& -\frac{\left(\int_{0}^{x} \operatorname{BesselY}\left(\frac{2}{3}, \frac{8 i \alpha^{\frac{3}{4}}}{3}\right) \sin (\alpha) d \alpha\right) \operatorname{BesselJ}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)}{3} \\
& +\left((-1+i) 2^{\frac{3}{4}} \operatorname{Bessel} Y\left(-\frac{1}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)\right. \\
& \left.+\frac{i \sqrt{2} \operatorname{BesselY}\left(\frac{2}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)}{3}\right) \text { BesselJ }\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right) \\
& -\operatorname{Bessel}\left(\frac{2}{3}, \frac{8 i x^{\frac{3}{4}}}{3}\right)\left((-1+i) 2^{\frac{3}{4}} \operatorname{BesselJ}\left(-\frac{1}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)\right. \\
& \left.\left.+\frac{i \sqrt{2} \operatorname{BesselJ}\left(\frac{2}{3},\left(-\frac{8}{3}-\frac{8 i}{3}\right) 2^{\frac{1}{4}}\right)}{3}\right)\right) \sqrt{x} \pi
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying an equivalence, under non-integer power transformations,
        to LODEs admitting Liouvillian solutions.
        -> Trying a Liouvillian solution using Kovacics algorithm
        <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Whittaker
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the OF1 ODE
        <- Whittaker successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.843 (sec). Leaf size: 185

```
dsolve([sqrt(1-x)*diff (y (x),x$2)-4*y(x)=sin(x),y(-2) = 3, D(y)(-2) = -1],y(x), singsol=all)
y(x)
```


X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{Sqrt [1-x]*y' $\left.[x]-4 * y[x]==\operatorname{Sin}[x],\left\{y[-2]==3, y^{\prime}[-2]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutio

Not solved

9.6 problem 6

$$
\text { 9.6.1 Existence and uniqueness analysis } 1901
$$

Internal problem ID [12749]
Internal file name [OUTPUT/11401_Friday_November_03_2023_06_32_33_AM_59301967/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
Unable to solve or complete the solution.

$$
\left(x^{2}-4\right) y^{\prime \prime}+y \ln (x)=x \mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(1)=1, y^{\prime}(1)=2\right]
$$

9.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{\ln (x)}{x^{2}-4} \\
F & =\frac{x \mathrm{e}^{x}}{x^{2}-4}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{\ln (x) y}{x^{2}-4}=\frac{x \mathrm{e}^{x}}{x^{2}-4}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{\ln (x)}{x^{2}-4}$ is

$$
\{0<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=1$ is also inside this domain. The domain of $F=\frac{x \mathrm{e}^{x}}{x^{2}-4}$ is

$$
\{-\infty \leq x<-2,-2<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in }x\mathrm{ and }y(x
-> Try solving first the homogeneous part of the ODE
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
        -> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
    <- unable to find a useful change of variables
        trying symmetries linear in x and y(x)
        trying to convert to a linear ODE with constant coefficients
        trying to convert to an ODE of Bessel type
        -> trying reduction of order to Riccati
            trying Riccati sub-methods:
                trying Riccati_symmetries
                -> trying a symmetry pattern of the form [F(x)*G(y), 0]
            -> trying a symmetry pattern of the form [0, F(x)*G(y)]
            -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---
, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5`
```

X Solution by Maple
dsolve $\left(\left[\left(x^{\wedge} 2-4\right) * \operatorname{diff}(y(x), x \$ 2)+\ln (x) * y(x)=x * \exp (x), y(1)=1, D(y)(1)=2\right], y(x)\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{\left(x^{\wedge} 2-4\right) * y{ }^{\prime} \cdot[x]+\log [x] * y[x]==x * \operatorname{Exp}[x],\left\{y[1]==1, y^{\prime}[1]==2\right\}\right\}, y[x], x\right.$, IncludeSingularSolut

Not solved

9.7 problem 7

9.7.1 Solving as second order linear constant coeff ode 1905
9.7.2 Solving as second order ode can be made integrable ode 1907
9.7.3 Solving using Kovacic algorithm 1909
9.7.4 Maple step by step solution . 1913

Internal problem ID [12750]
Internal file name [OUTPUT/11402_Friday_November_03_2023_06_32_34_AM_69342231/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"
Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y=0
$$

9.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 361: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

9.7.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\sqrt{y^{2}+2 c_{1}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
y+\sqrt{y^{2}+2 c_{1}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}} \tag{2}
\end{align*}
$$

Figure 362: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}}
$$

Verified OK.

9.7.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 313: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 363: Slope field plot

Verification of solutions

$$
y=\frac{c_{2} \mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

9.7.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 20

```
DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{x}+c_{2} e^{-x}
$$

9.8 problem 8

9.8.1 Solving as second order linear constant coeff ode 1915
9.8.2 Solving as second order ode can be made integrable ode 1917
9.8.3 Solving using Kovacic algorithm 1919
9.8.4 Maple step by step solution . 1923

Internal problem ID [12751]
Internal file name [OUTPUT/11403_Friday_November_03_2023_06_32_34_AM_64520764/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y=0
$$

9.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Figure 364: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Verified OK.

9.8.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{2} \tag{1}\\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{3}+x \tag{2}
\end{align*}
$$

Figure 365: Slope field plot

Verification of solutions

$$
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{2}
$$

Verified OK.

$$
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{3}+x
$$

Verified OK.

9.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 315: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Figure 366: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Verified OK.

9.8.4 Maple step by step solution

Let's solve
$y^{\prime \prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(x),x$2)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (x)+c_{2} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 16

```
DSolve[y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} \cos (x)+c_{2} \sin (x)
$$

9.9 problem 9

$$
\text { 9.9.1 Solving as second order euler ode ode } 1925
$$

9.9.2 Solving as second order change of variable on x method 2 ode . 1926
9.9.3 Solving as second order change of variable on y method 2 ode . 1929
9.9.4 Solving as second order ode non constant coeff transformation on B ode

1931
9.9.5 Solving using Kovacic algorithm 1933
9.9.6 Maple step by step solution . 1939

Internal problem ID [12752]
Internal file name [OUTPUT/11404_Friday_November_03_2023_06_32_35_AM_34093328/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 9 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime} x^{2}+2 y^{\prime} x-2 y=0
$$

9.9.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+2 x r x^{r-1}-2 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+2 r x^{r}-2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+2 r-2=0
$$

Or

$$
\begin{equation*}
r^{2}+r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x
$$

Verified OK.

9.9.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+2 y^{\prime} x-2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{x^{2}}}{\frac{1}{x^{4}}} \\
& =-2 x^{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 x^{2} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
-2 x^{2}=-\frac{2}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-2 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau}+c_{2} \tau^{2}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{-c_{1} x^{3}+c_{2}}{x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{1} x^{3}+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-c_{1} x^{3}+c_{2}}{x^{2}}
$$

Verified OK.

9.9.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+2 y^{\prime} x-2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}-\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{4 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{4 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{4 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{4 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{4}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{4}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{4}{x} d x \\
\ln (u) & =-4 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-4 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{4}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x \\
& =\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x
$$

Verified OK.

9.9.4 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=2 x \\
& C=-2 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(2 x)(2)+(-2)(2 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
2 x^{3} v^{\prime \prime}+\left(8 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
2 x^{2}\left(u^{\prime}(x) x+4 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{4 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{4}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{4}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{4}{x} d x \\
\ln (u) & =-4 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-4 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{4}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{4}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{4}} \mathrm{~d} x \\
& =-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(2 x)\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) \\
& =\frac{6 c_{2} x^{3}-2 c_{1}}{3 x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{6 c_{2} x^{3}-2 c_{1}}{3 x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{6 c_{2} x^{3}-2 c_{1}}{3 x^{2}}
$$

Verified OK.

9.9.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}+2 y^{\prime} x-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 317: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{2}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{2}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{2}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	2	-1

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(0) \\
& =-\frac{1}{x} \\
& =-\frac{1}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{x}\right)(0)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}\right)^{2}-\left(\frac{2}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{3}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{3}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x}{3}
$$

Verified OK.

9.9.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+2 y^{\prime} x-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{2 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{2 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}+2 y^{\prime} x-2 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t) x^{2}\right) x^{2}+2 \frac{d}{d t} y(t)-2 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-2 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial
$(r+2)(r-1)=0$
- Roots of the characteristic polynomial

$$
r=(-2,1)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- $\quad 2 \mathrm{nd}$ solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}
$$

- Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x
$$

- Simplify

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{3}+c_{2}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 16
DSolve[$x^{\wedge} 2 * y^{\prime \prime}[\mathrm{x}]+2 * x * y$ ' $[\mathrm{x}]-2 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{c_{1}}{x^{2}}+c_{2} x
$$

9.10 problem 10

9.10.1 Solving as second order ode missing x ode 1942
9.10.2 Maple step by step solution . 1944

Internal problem ID [12753]
Internal file name [OUTPUT/11405_Friday_November_03_2023_06_32_36_AM_25067696/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
    _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
```

$$
2 y y^{\prime \prime}-y^{\prime 2}=0
$$

9.10.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
2 y p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p}{2 y}
\end{aligned}
$$

Where $f(y)=\frac{1}{2 y}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =\frac{1}{2 y} d y \\
\int \frac{1}{p} d p & =\int \frac{1}{2 y} d y \\
\ln (p) & =\frac{\ln (y)}{2}+c_{1} \\
p & =\mathrm{e}^{\frac{\ln (y)}{2}+c_{1}} \\
& =c_{1} \sqrt{y}
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=c_{1} \sqrt{y}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{c_{1} \sqrt{y}} d y & =\int d x \\
\frac{2 \sqrt{y}}{c_{1}} & =x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{4} c_{1}^{2} c_{2}^{2}+\frac{1}{2} c_{2} c_{1}^{2} x+\frac{1}{4} c_{1}^{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{4} c_{1}^{2} c_{2}^{2}+\frac{1}{2} c_{2} c_{1}^{2} x+\frac{1}{4} c_{1}^{2} x^{2}
$$

Verified OK.

9.10.2 Maple step by step solution

Let's solve
$2 y y^{\prime \prime}-y^{2}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE
$2 y u(y)\left(\frac{d}{d y} u(y)\right)-u(y)^{2}=0$
- Separate variables

$$
\frac{d}{d y} u(y)=\frac{1}{u(y)}=\frac{1}{2 y}
$$

- Integrate both sides with respect to y
$\int \frac{\frac{d}{d y} u(y)}{u(y)} d y=\int \frac{1}{2 y} d y+c_{1}$
- Evaluate integral
$\ln (u(y))=\frac{\ln (y)}{2}+c_{1}$
- \quad Solve for $u(y)$
$\left\{u(y)=\frac{\sqrt{\mathrm{e}^{-2 c_{1}} y}}{\mathrm{e}^{-2 c_{1}}}, u(y)=-\frac{\sqrt{\mathrm{e}^{-2 c_{1}} y}}{\mathrm{e}^{-2 c_{1}}}\right\}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=\frac{\sqrt{\mathrm{e}^{-2 c_{1}} y}}{\mathrm{e}^{-2 c_{1}}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$ $y^{\prime}=\frac{\sqrt{\mathrm{e}^{-2 c_{1}} y}}{\mathrm{e}^{-2 c_{1}}}$
- Separate variables

$$
\frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 c_{1}} y}}=\frac{1}{\mathrm{e}^{-2 c_{1}}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 c_{1} y}}} d x=\int \frac{1}{\mathrm{e}^{-2 c_{1}}} d x+c_{2}$
- Evaluate integral
$\frac{2 \sqrt{\mathrm{e}^{-2 c_{1}} y}}{\mathrm{e}^{-2 c_{1}}}=\frac{x}{\mathrm{e}^{-2 c_{1}}}+c_{2}$
- \quad Solve for y
$y=\frac{c_{2}^{2}\left(\mathrm{e}^{-2 c_{1}}\right)^{2}+2 c_{2} \mathrm{e}^{-2 c_{1}} x+x^{2}}{4 \mathrm{e}^{-2 c_{1}}}$
- \quad Solve 2 nd ODE for $u(y)$
$u(y)=-\frac{\sqrt{\mathrm{e}^{-2 c_{1}}}}{\mathrm{e}^{-2 c_{1}}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=-\frac{\sqrt{\mathrm{e}^{-2 c_{1}} y}}{\mathrm{e}^{-2 c_{1}}}$
- Separate variables
$\frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 c_{1} y}}}=-\frac{1}{\mathrm{e}^{-2 c_{1}}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 c_{1} y}}} d x=\int-\frac{1}{\mathrm{e}^{-2 c_{1}}} d x+c_{2}$
- Evaluate integral

$$
\frac{2 \sqrt{\mathrm{e}^{-2 c_{1} y}}}{\mathrm{e}^{-2 c_{1}}}=-\frac{x}{\mathrm{e}^{-2 c_{1}}}+c_{2}
$$

- \quad Solve for y
$y=\frac{c_{2}^{2}\left(\mathrm{e}^{-2 c_{1}}\right)^{2}-2 c_{2} \mathrm{e}^{-2 c_{1}} x+x^{2}}{4 \mathrm{e}^{-2 c_{1}}}$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`
\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 17
dsolve($2 * y(x) * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x) \sim 2=0, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\left(c_{1} x+c_{2}\right)^{2}}{4}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 29
DSolve[2*y $[x] * y$ '' $[x]-(y '[x]) \sim 2==0, y[x], x$, IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\left(c_{1} x+2 c_{2}\right)^{2}}{4 c_{2}} \\
& y(x) \rightarrow \text { Indeterminate }
\end{aligned}
$$

9.11 problem 13

9.11.1 Existence and uniqueness analysis 1947
9.11.2 Solving as second order linear constant coeff ode 1948
9.11.3 Solving as second order ode can be made integrable ode 1950
9.11.4 Solving using Kovacic algorithm 1954
9.11.5 Maple step by step solution . 1958

Internal problem ID [12754]
Internal file name [OUTPUT/11406_Friday_November_03_2023_06_32_36_AM_70321041/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

9.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.11.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=-\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Verified OK.

9.11.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\sqrt{y^{2}+2 c_{1}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
y+\sqrt{y^{2}+2 c_{1}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=c_{5} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{c_{3}^{2}-2 c_{1}}{2 c_{3}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{3} \mathrm{e}^{x}-\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{c_{3}^{2}+2 c_{1}}{2 c_{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{3}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-x}\left(\mathrm{e}^{2 x}-1\right)}{2}
$$

Which simplifies to

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Looking at the Second solution

$$
\begin{equation*}
y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{-2 c_{1} c_{5}^{2}+1}{2 c_{5}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} c_{5} \mathrm{e}^{x}+\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{-2 c_{1} c_{5}^{2}-1}{2 c_{5}} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{5}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{5}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-x}\left(\mathrm{e}^{2 x}-1\right)}{2}
$$

Which simplifies to

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \tag{1}\\
& y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \tag{2}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Verified OK.

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Verified OK.

9.11.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 320: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{c_{2}}{2}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{2} \mathrm{e}^{x}}{2}-c_{1} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{c_{2}}{2}-c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Verified OK.

9.11.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

\square
Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{2}, c_{2}=\frac{1}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([diff(y(x),x$2)-y(x)=0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
$$

Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 21

```
DSolve[{y''[x]-y[x]==0,{y[0]==0, y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{2} e^{-x}\left(e^{2 x}-1\right)
$$

9.12 problem 14

9.12.1 Maple step by step solution . 1962

Internal problem ID [12755]
Internal file name [OUTPUT/11407_Friday_November_03_2023_06_32_38_AM_49937730/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 14.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+y^{\prime}=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-1\right]
$$

The characteristic equation is

$$
\lambda^{3}+\lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =i \\
\lambda_{3} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2}+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=i \mathrm{e}^{i x} c_{2}-i \mathrm{e}^{-i x} c_{3}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=i\left(c_{2}-c_{3}\right) \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=-\mathrm{e}^{i x} c_{2}-\mathrm{e}^{-i x} c_{3}
$$

substituting $y^{\prime \prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-c_{2}-c_{3} \tag{3A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =0 \\
c_{2} & =\frac{1}{2} \\
c_{3} & =\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) \tag{1}
\end{equation*}
$$

Figure 370: Solution plot

Verification of solutions

$$
y=\cos (x)
$$

Verified OK.

9.12.1 Maple step by step solution

Let's solve
$\left[y^{\prime \prime \prime}+y^{\prime}=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=-1\right]$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$ $y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-y_{2}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-y_{2}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=\left[\begin{array}{c}
c_{3} \sin (x)-c_{2} \cos (x)+c_{1} \\
c_{3} \cos (x)+c_{2} \sin (x) \\
-c_{3} \sin (x)+c_{2} \cos (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=c_{3} \sin (x)-c_{2} \cos (x)+c_{1}
$$

- Use the initial condition $y(0)=1$

$$
1=c_{1}-c_{2}
$$

- Calculate the 1st derivative of the solution

$$
y^{\prime}=c_{3} \cos (x)+c_{2} \sin (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=c_{3}$
- Calculate the 2nd derivative of the solution

$$
y^{\prime \prime}=-c_{3} \sin (x)+c_{2} \cos (x)
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=-1$
$-1=c_{2}$
- Solve for the unknown coefficients
$\left\{c_{1}=0, c_{2}=-1, c_{3}=0\right\}$
- \quad Solution to the IVP

$$
y=\cos (x)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 6
dsolve $([\operatorname{diff}(y(x), x \$ 3)+\operatorname{diff}(y(x), x)=0, y(0)=1, D(y)(0)=0,(D @ @ 2)(y)(0)=-1], y(x)$, singso

$$
y(x)=\cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 7
DSolve $\left[\left\{y\right.\right.$ '' ' $[x]+y$ ' $[x]==0,\left\{y[0]==1, y^{\prime}[0]==0, y\right.$ ' $\left.\left.[0]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ I

$$
y(x) \rightarrow \cos (x)
$$

9.13 problem 15

9.13.1 Existence and uniqueness analysis 1968
9.13.2 Solving as second order euler ode ode 1968
9.13.3 Solving as second order change of variable on x method 2 ode . 1970
9.13.4 Solving as second order change of variable on x method 1 ode . 1974
9.13.5 Solving as second order change of variable on y method 2 ode . 1976
9.13.6 Solving as second order ode non constant coeff transformation on B ode . 1980
9.13.7 Solving using Kovacic algorithm 1983
9.13.8 Maple step by step solution . 1989

Internal problem ID [12756]
Internal file name [OUTPUT/11408_Friday_November_03_2023_06_32_38_AM_13755880/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime} x^{2}-y^{\prime} x+y=0
$$

With initial conditions

$$
\left[y(1)=2, y^{\prime}(1)=-1\right]
$$

9.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =\frac{1}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

9.13.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-r+1=0
$$

Or

$$
\begin{equation*}
r^{2}-2 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x+c_{2} x \ln (x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x+c_{2} x \ln (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+\ln (x) c_{2}+c_{2}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-3 x \ln (x)+2 x
$$

Which simplifies to

$$
y=(-3 \ln (x)+2) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-3 \ln (x)+2) x \tag{1}
\end{equation*}
$$

Figure 371: Solution plot

Verification of solutions

$$
y=(-3 \ln (x)+2) x
$$

Verified OK.

9.13.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}-y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{\ln (x)} d x \\
& =\int x d x \\
& =\frac{x^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{x^{2}}}{x^{2}} \\
& =\frac{1}{x^{4}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{x^{4}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{1}{x^{4}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} x\left(c_{1}-c_{2} \ln (2)+2 \ln (x) c_{2}\right)}{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{\sqrt{2} x\left(c_{1}-c_{2} \ln (2)+2 \ln (x) c_{2}\right)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=\frac{\left(c_{1}-c_{2} \ln (2)\right) \sqrt{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\sqrt{2}\left(c_{1}-c_{2} \ln (2)+2 \ln (x) c_{2}\right)}{2}+\sqrt{2} c_{2}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=\frac{\left(-c_{2} \ln (2)+c_{1}+2 c_{2}\right) \sqrt{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{(3 \ln (2)-4) \sqrt{2}}{2} \\
& c_{2}=-\frac{3 \sqrt{2}}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-3 x \ln (x)+2 x
$$

Which simplifies to

$$
y=(-3 \ln (x)+2) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-3 \ln (x)+2) x \tag{1}
\end{equation*}
$$

Figure 372: Solution plot

Verification of solutions

$$
y=(-3 \ln (x)+2) x
$$

Verified OK.
9.13.4 Solving as second order change of variable on x method 1 ode In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}-y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{1}{x} \frac{\sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

9.13.5 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}-y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x^{2}}+\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \\
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x \\
& =\left(c_{1} \ln (x)+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} \ln (x)+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+c_{1} \ln (x)+c_{2}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-3 x \ln (x)+2 x
$$

Which simplifies to

$$
y=(-3 \ln (x)+2) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-3 \ln (x)+2) x \tag{1}
\end{equation*}
$$

Figure 373: Solution plot

Verification of solutions

$$
y=(-3 \ln (x)+2) x
$$

Verified OK.

9.13.6 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=-x \\
& C=1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(-x)(-1)+(1)(-x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-x^{3} v^{\prime \prime}+\left(-x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-x^{2}\left(u^{\prime}(x) x+u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(-x)\left(c_{1} \ln (x)+c_{2}\right) \\
& =-\left(c_{1} \ln (x)+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\left(c_{1} \ln (x)+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=-c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1}-c_{1} \ln (x)-c_{2}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=-c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-3 x \ln (x)+2 x
$$

Which simplifies to

$$
y=(-3 \ln (x)+2) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-3 \ln (x)+2) x \tag{1}
\end{equation*}
$$

Figure 374: Solution plot

Verification of solutions

$$
y=(-3 \ln (x)+2) x
$$

Verified OK.

9.13.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}-y^{\prime} x+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 323: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}(x(\ln (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x+c_{2} x \ln (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+\ln (x) c_{2}+c_{2}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-3 x \ln (x)+2 x
$$

Which simplifies to

$$
y=(-3 \ln (x)+2) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-3 \ln (x)+2) x \tag{1}
\end{equation*}
$$

Figure 375: Solution plot

Verification of solutions

$$
y=(-3 \ln (x)+2) x
$$

Verified OK.

9.13.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}-y^{\prime} x+y=0, y(1)=2,\left.y^{\prime}\right|_{\{x=1\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{x}-\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}-y^{\prime} x+y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-\frac{d}{d t} y(t)+y(t)=0
$$

- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)+y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-2 r+1=0$
- Factor the characteristic polynomial
$(r-1)^{2}=0$
- Root of the characteristic polynomial

$$
r=1
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence
$y_{2}(t)=t \mathrm{e}^{t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} x+c_{2} x \ln (x)$
- Simplify
$y=x\left(c_{1}+\ln (x) c_{2}\right)$
Check validity of solution $y=x\left(c_{1}+\ln (x) c_{2}\right)$
- Use initial condition $y(1)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=c_{1}+\ln (x) c_{2}+c_{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=-1$
$-1=c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=-3\right\}$
- Substitute constant values into general solution and simplify
$y=(-3 \ln (x)+2) x$
- \quad Solution to the IVP
$y=(-3 \ln (x)+2) x$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([x~2*\operatorname{diff}(y(x),x$2)-x*diff (y(x),x)+y(x)=0,y(1) = 2, D(y)(1) = -1],y(x), singsol=all)
```

$$
y(x)=x(2-3 \ln (x))
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 13
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime} '[x]-x * y '[x]+y[x]==0,\left\{y[1]==2, y^{\prime}[1]==-1\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ T

$$
y(x) \rightarrow x(2-3 \log (x))
$$

9.14 problem 16

9.14.1 Existence and uniqueness analysis 1993
9.14.2 Solving as second order linear constant coeff ode 1994
9.14.3 Solving as second order ode can be made integrable ode 1998
9.14.4 Solving using Kovacic algorithm 2000
9.14.5 Maple step by step solution . 2005

Internal problem ID [12757]
Internal file name [OUTPUT/11409_Friday_November_03_2023_06_32_40_AM_99045612/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-4 y=31
$$

With initial conditions

$$
\left[y(0)=-9, y^{\prime}(0)=6\right]
$$

9.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-4 \\
F & =31
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y=31
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=31$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.14.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=31$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1}=31
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{31}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{31}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-\frac{31}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}-\frac{31}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-9$ and $x=0$ in the above gives

$$
\begin{equation*}
-9=c_{1}+c_{2}-\frac{31}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-2 c_{2} \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=2 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{7}{8} \\
& c_{2}=-\frac{17}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{31}{4}+\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{31}{4}+\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{31}{4}+\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8}
$$

Verified OK.

9.14.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-4 y y^{\prime}-31 y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-4 y y^{\prime}-31 y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-2 y^{2}-31 y=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{4 y^{2}+62 y+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{4 y^{2}+62 y+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{4 y^{2}+2 c_{1}+62 y}} d y & =\int d x \\
\frac{\ln \left(\frac{(4 y+31) \sqrt{4}}{4}+\sqrt{4 y^{2}+2 c_{1}+62 y}\right) \sqrt{4}}{4} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(\frac{(4 y+31) \sqrt{4}}{4}+\sqrt{4 y^{2}+2 c_{1}+62 y}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{\sqrt{2} \sqrt{4 y+31+2 \sqrt{4 y^{2}+2 c_{1}+62 y}}}{2}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{4 y^{2}+2 c_{1}+62 y}} d y & =\int d x \\
-\frac{\ln \left(\frac{(4 y+31) \sqrt{4}}{4}+\sqrt{4 y^{2}+2 c_{1}+62 y}\right) \sqrt{4}}{4} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(\frac{(4 y+31) \sqrt{4}}{4}+\sqrt{4 y^{2}+2 c_{1}+62 y}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{\sqrt{2}}{\sqrt{4 y+31+2 \sqrt{4 y^{2}+2 c_{1}+62 y}}}=c_{5} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
y=\frac{\left(4 \mathrm{e}^{4 x} c_{3}^{4}-124 \mathrm{e}^{2 x} c_{3}^{2}-8 c_{1}+961\right) \mathrm{e}^{-2 x}}{16 c_{3}^{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-9$ and $x=0$ in the above gives

$$
\begin{equation*}
-9=\frac{4 c_{3}^{4}-124 c_{3}^{2}-8 c_{1}+961}{16 c_{3}^{2}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\left(16 \mathrm{e}^{4 x} c_{3}^{4}-248 \mathrm{e}^{2 x} c_{3}^{2}\right) \mathrm{e}^{-2 x}}{16 c_{3}^{2}}-\frac{\left(4 \mathrm{e}^{4 x} c_{3}^{4}-124 \mathrm{e}^{2 x} c_{3}^{2}-8 c_{1}+961\right) \mathrm{e}^{-2 x}}{8 c_{3}^{2}}
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=\frac{4 c_{3}^{4}+8 c_{1}-961}{8 c_{3}^{2}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of integrations.

Looking at the Second solution

$$
\begin{equation*}
y=-\frac{\left(8 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-961 c_{5}^{4} \mathrm{e}^{4 x}+124 c_{5}^{2} \mathrm{e}^{2 x}-4\right) \mathrm{e}^{-2 x}}{16 c_{5}^{2}} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-9$ and $x=0$ in the above gives

$$
\begin{equation*}
-9=\frac{4+\left(-8 c_{1}+961\right) c_{5}^{4}-124 c_{5}^{2}}{16 c_{5}^{2}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\frac{\left(32 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-3844 c_{5}^{4} \mathrm{e}^{4 x}+248 c_{5}^{2} \mathrm{e}^{2 x}\right) \mathrm{e}^{-2 x}}{16 c_{5}^{2}}+\frac{\left(8 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-961 c_{5}^{4} \mathrm{e}^{4 x}+124 c_{5}^{2} \mathrm{e}^{2 x}-4\right) \mathrm{e}^{-2 x}}{8 c_{5}^{2}}$
substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=\frac{-4+\left(-8 c_{1}+961\right) c_{5}^{4}}{8 c_{5}^{2}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{5}\right\}$. Warning, unable to solve for constants of integrations.

Verification of solutions N/A

9.14.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 325: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{4}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1}=31
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{31}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{31}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right)+\left(-\frac{31}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}-\frac{31}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-9$ and $x=0$ in the above gives

$$
\begin{equation*}
-9=c_{1}+\frac{c_{2}}{4}-\frac{31}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{2}
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=-2 c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{17}{8} \\
& c_{2}=\frac{7}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{31}{4}+\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{31}{4}+\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{31}{4}+\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8}
$$

Verified OK.

9.14.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y=31, y(0)=-9,\left.y^{\prime}\right|_{\{x=0\}}=6\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial $r=(-2,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=31\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\ -2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{31 \mathrm{e}^{-2 x}\left(\int \mathrm{e}^{2 x} d x\right)}{4}+\frac{31 \mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x} d x\right)}{4}$
- Compute integrals
$y_{p}(x)=-\frac{31}{4}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}-\frac{31}{4}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}-\frac{31}{4}$
- Use initial condition $y(0)=-9$
$-9=c_{1}+c_{2}-\frac{31}{4}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=6$

$$
6=-2 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{17}{8}, c_{2}=\frac{7}{8}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{31}{4}+\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8}
$$

- \quad Solution to the IVP

$$
y=-\frac{31}{4}+\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8}
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful-
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18
dsolve([diff $(y(x), x \$ 2)-4 * y(x)=31, y(0)=-9, D(y)(0)=6], y(x)$, singsol=all)

$$
y(x)=\frac{7 \mathrm{e}^{2 x}}{8}-\frac{17 \mathrm{e}^{-2 x}}{8}-\frac{31}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 25
DSolve[\{y''[x]-4*y[x]==31,\{y[0]==-9,y'[0]==6\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{8}\left(-17 e^{-2 x}+7 e^{2 x}-62\right)
$$

9.15 problem 17

9.15.1 Existence and uniqueness analysis 2009
9.15.2 Solving as second order linear constant coeff ode 2010
9.15.3 Solving using Kovacic algorithm 2014
9.15.4 Maple step by step solution . 2019

Internal problem ID [12758]
Internal file name [OUTPUT/11410_Friday_November_03_2023_06_32_42_AM_5773826/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+9 y=27 x+18
$$

With initial conditions

$$
\left[y(0)=23, y^{\prime}(0)=21\right]
$$

9.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =9 \\
F & =27 x+18
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=27 x+18
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=27 x+18$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.15.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=27 x+18$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{2} x+9 A_{1}=27 x+18
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x+2
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+(3 x+2)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+3 x+2 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=23$ and $x=0$ in the above gives

$$
\begin{equation*}
23=c_{1}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)+3
$$

substituting $y^{\prime}=21$ and $x=0$ in the above gives

$$
\begin{equation*}
21=3+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=21 \\
& c_{2}=6
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2+21 \cos (3 x)+6 \sin (3 x)+3 x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2+21 \cos (3 x)+6 \sin (3 x)+3 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2+21 \cos (3 x)+6 \sin (3 x)+3 x
$$

Verified OK.

9.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 327: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{2} x+9 A_{1}=27 x+18
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x+2
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+(3 x+2)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+3 x+2 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=23$ and $x=0$ in the above gives

$$
\begin{equation*}
23=c_{1}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 x)+c_{2} \cos (3 x)+3
$$

substituting $y^{\prime}=21$ and $x=0$ in the above gives

$$
\begin{equation*}
21=c_{2}+3 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=21 \\
& c_{2}=18
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2+21 \cos (3 x)+6 \sin (3 x)+3 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2+21 \cos (3 x)+6 \sin (3 x)+3 x \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=2+21 \cos (3 x)+6 \sin (3 x)+3 x
$$

Verified OK.

9.15.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=27 x+18, y(0)=23,\left.y^{\prime}\right|_{\{x=0\}}=21\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=27 x+18\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-3 \cos (3 x)\left(\int \sin (3 x)(3 x+2) d x\right)+3 \sin (3 x)\left(\int \cos (3 x)(3 x+2) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=3 x+2
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+3 x+2$
Check validity of solution $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+3 x+2$
- Use initial condition $y(0)=23$

$$
23=c_{1}+2
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)+3
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=21$
$21=3+3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=21, c_{2}=6\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=2+21 \cos (3 x)+6 \sin (3 x)+3 x
$$

- \quad Solution to the IVP

$$
y=2+21 \cos (3 x)+6 \sin (3 x)+3 x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve([diff(y(x),x$2)+9*y(x)=27*x+18,y(0) = 23, D(y)(0) = 21],y(x), singsol=all)
```

$$
y(x)=6 \sin (3 x)+21 \cos (3 x)+3 x+2
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 22
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+9 * y[x]==27 * x+18,\left\{y[0]==23, y^{\prime}[0]==21\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow 3 x+6 \sin (3 x)+21 \cos (3 x)+2
$$

9.16 problem 18

9.16.1 Existence and uniqueness analysis 2023
9.16.2 Solving as second order euler ode ode 2023
9.16.3 Solving as second order change of variable on x method 2 ode . 2028
9.16.4 Solving as second order change of variable on x method 1 ode . 2035
9.16.5 Solving as second order change of variable on y method 2 ode . 2040
9.16.6 Solving using Kovacic algorithm 2047

Internal problem ID [12759]
Internal file name [OUTPUT/11411_Friday_November_03_2023_06_32_42_AM_32058958/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=-3 x-\frac{3}{x}
$$

With initial conditions

$$
\left[y(1)=3, y^{\prime}(1)=-6\right]
$$

9.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =-\frac{4}{x^{2}} \\
F & =\frac{-3 x-\frac{3}{x}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{4 y}{x^{2}}=\frac{-3 x-\frac{3}{x}}{x^{2}}
$$

The domain of $p(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-\frac{4}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. The domain of $F=\frac{-3 x-\frac{3}{x}}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

9.16.2 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-4, f(x)=-3 x-\frac{3}{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-4=0
$$

Or

$$
\begin{equation*}
r^{2}-4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Next, we find the particular solution to the ODE

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=-3 x-\frac{3}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{4}{x}
$$

Which simplifies to

$$
W=\frac{4}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2}\left(-3 x-\frac{3}{x}\right)}{4 x} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{3 x^{2}}{4}-\frac{3}{4}\right) d x
$$

Hence

$$
u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{-3 x-\frac{3}{x}}{x^{2}}}{4 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-3 x^{2}-3}{4 x^{4}} d x
$$

Hence

$$
u_{2}=\frac{1}{4 x^{3}}+\frac{3}{4 x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x \\
& u_{2}=\frac{3 x^{2}+1}{4 x^{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\frac{1}{4} x^{3}+\frac{3}{4} x}{x^{2}}+\frac{3 x^{2}+1}{4 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}+1}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{c_{2} x^{4}+x^{3}+c_{1}+x}{x^{2}}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{2} x^{4}+x^{3}+c_{1}+x}{x^{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2}+2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{4 c_{2} x^{3}+3 x^{2}+1}{x^{2}}-\frac{2\left(c_{2} x^{4}+x^{3}+c_{1}+x\right)}{x^{3}}
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=-2 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{4}-x^{3}-x-2}{x^{2}}
$$

Which simplifies to

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 380: Solution plot

Verification of solutions

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Verified OK.

9.16.3 Solving as second order change of variable on x method 2 ode

 This is second order non-homogeneous ODE. Let the solution be$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+2 \\
\lambda_{2}=-2
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{4}{x}
$$

Which simplifies to

$$
W=\frac{4}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2}\left(-3 x-\frac{3}{x}\right)}{4 x} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{3 x^{2}}{4}-\frac{3}{4}\right) d x
$$

Hence

$$
u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{-3 x-\frac{3}{x}}{x^{2}}}{4 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-3 x^{2}-3}{4 x^{4}} d x
$$

Hence

$$
u_{2}=\frac{1}{4 x^{3}}+\frac{3}{4 x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x \\
& u_{2}=\frac{3 x^{2}+1}{4 x^{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\frac{1}{4} x^{3}+\frac{3}{4} x}{x^{2}}+\frac{3 x^{2}+1}{4 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}+1}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x^{4}+c_{2}}{x^{2}}\right)+\left(\frac{x^{2}+1}{x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}+\frac{x^{2}+1}{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2}+2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=4 c_{1} x-\frac{2\left(c_{1} x^{4}+c_{2}\right)}{x^{3}}+2-\frac{x^{2}+1}{x^{2}}
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=2 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{4}-x^{3}-x-2}{x^{2}}
$$

Which simplifies to

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 381: Solution plot

Verification of solutions

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Verified OK.

9.16.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-4, f(x)=-3 x-\frac{3}{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=-3 x-\frac{3}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{4}{x}
$$

Which simplifies to

$$
W=\frac{4}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2}\left(-3 x-\frac{3}{x}\right)}{4 x} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{3 x^{2}}{4}-\frac{3}{4}\right) d x
$$

Hence

$$
u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{-3 x-\frac{3}{x}}{x^{2}}}{4 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-3 x^{2}-3}{4 x^{4}} d x
$$

Hence

$$
u_{2}=\frac{1}{4 x^{3}}+\frac{3}{4 x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x \\
& u_{2}=\frac{3 x^{2}+1}{4 x^{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\frac{1}{4} x^{3}+\frac{3}{4} x}{x^{2}}+\frac{3 x^{2}+1}{4 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}+1}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))\right)+\left(\frac{x^{2}+1}{x}\right) \\
& =\frac{x^{2}+1}{x}+c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{4}+2 x^{3}+2 x-i c_{2}+c_{1}}{2 x^{2}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{\left(i c_{2}+c_{1}\right) x^{4}+2 x^{3}+2 x-i c_{2}+c_{1}}{2 x^{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{4\left(i c_{2}+c_{1}\right) x^{3}+6 x^{2}+2}{2 x^{2}}-\frac{\left(i c_{2}+c_{1}\right) x^{4}+2 x^{3}+2 x-i c_{2}+c_{1}}{x^{3}}
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=2 i c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 382: Solution plot

Verification of solutions

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Verified OK.

9.16.5 Solving as second order change of variable on y method 2 ode

 This is second order non-homogeneous ODE. In standard form the ODE is$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-4, f(x)=-3 x-\frac{3}{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{x} d x \\
\ln (u) & =-5 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{5}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{4 x^{4}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \\
& =\frac{4 c_{2} x^{4}-c_{1}}{4 x^{2}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=-3 x-\frac{3}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{2} \\
-\frac{2}{x^{3}} & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{4}{x}
$$

Which simplifies to

$$
W=\frac{4}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2}\left(-3 x-\frac{3}{x}\right)}{4 x} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{3 x^{2}}{4}-\frac{3}{4}\right) d x
$$

Hence

$$
u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{-3 x-\frac{3}{x}}{x^{2}}}{4 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-3 x^{2}-3}{4 x^{4}} d x
$$

Hence

$$
u_{2}=\frac{1}{4 x^{3}}+\frac{3}{4 x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x \\
& u_{2}=\frac{3 x^{2}+1}{4 x^{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\frac{1}{4} x^{3}+\frac{3}{4} x}{x^{2}}+\frac{3 x^{2}+1}{4 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}+1}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}\right)+\left(\frac{x^{2}+1}{x}\right) \\
& =\frac{x^{2}+1}{x}+\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{-4 c_{2} x^{4}-4 x^{3}+c_{1}-4 x}{4 x^{2}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{-4 c_{2} x^{4}-4 x^{3}+c_{1}-4 x}{4 x^{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=-\frac{c_{1}}{4}+c_{2}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{-4 c_{2} x^{4}-4 x^{3}+c_{1}-4 x}{2 x^{3}}-\frac{-16 c_{2} x^{3}-12 x^{2}-4}{4 x^{2}}
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=\frac{c_{1}}{2}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-8 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{4}-x^{3}-x-2}{x^{2}}
$$

Which simplifies to

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 383: Solution plot

Verification of solutions

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Verified OK.

9.16.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} x^{2}+y^{\prime} x-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{15}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=15 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 329: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{15}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{15}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{15}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+(-)(0) \\
& =-\frac{3}{2 x} \\
& =-\frac{3}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(-\frac{3}{2 x}\right)^{2}-\left(\frac{15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{4}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{x^{2}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{2}}{4} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{x^{2}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{2}}{4} \\
-\frac{2}{x^{3}} & \frac{x}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(\frac{x}{2}\right)-\left(\frac{x^{2}}{4}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{2}\left(-3 x-\frac{3}{x}\right)}{4}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{3 x^{2}}{4}-\frac{3}{4}\right) d x
$$

Hence

$$
u_{1}=\frac{1}{4} x^{3}+\frac{3}{4} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{-3 x-\frac{3}{x}}{x^{2}}}{x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-3 x^{2}-3}{x^{4}} d x
$$

Hence

$$
u_{2}=\frac{1}{x^{3}}+\frac{3}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\frac{1}{4} x^{3}+\frac{3}{4} x}{x^{2}}+\frac{\left(\frac{1}{x^{3}}+\frac{3}{x}\right) x^{2}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}+1}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}\right)+\left(\frac{x^{2}+1}{x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}+\frac{x^{2}+1}{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+\frac{c_{2}}{4}+2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 c_{1}}{x^{3}}+\frac{c_{2} x}{2}+2-\frac{x^{2}+1}{x^{2}}
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=-2 c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{4}-x^{3}-x-2}{x^{2}}
$$

Which simplifies to

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 384: Solution plot
Verification of solutions

$$
y=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 19

```
dsolve([x^2*diff (y(x),x$2)+x*diff (y(x),x)-4*y(x)=-3*x-3/x,y(1) = 3, D(y)(1) = -6],y(x), sing
```

$$
y(x)=\frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 20
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]+x * y\right.\right.$ ' $[x]-4 * y[x]==-3 * x-3 / x,\{y[1]==3, y$ ' $\left.[1]==-6\}\right\}, y[x], x$, IncludeSingularSolut

$$
y(x) \rightarrow \frac{-x^{4}+x^{3}+x+2}{x^{2}}
$$

10 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
10.1 problem 1 2058
10.2 problem 2 2066
10.3 problem 3 2071
10.4 problem 4 2077
10.5 problem 5 2084
10.6 problem 6 2086
10.7 problem 7 2092
10.8 problem 8 2099
10.9 problem 9 2106
10.10problem 10 2114
10.11problem 11 2117
10.12problem 17 2125
10.13problem 18 2127
10.14problem 19 2129

10.1 problem 1

10.1.1 Solving as second order linear constant coeff ode 2058
10.1.2 Solving using Kovacic algorithm 2060
10.1.3 Maple step by step solution . 2064

Internal problem ID [12760]
Internal file name [OUTPUT/11412_Friday_November_03_2023_06_32_45_AM_28043090/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
4 y^{\prime \prime}+4 y^{\prime}-3 y=0
$$

10.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=4, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+4 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=4, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{4^{2}-(4)(4)(-3)} \\
& =-\frac{1}{2} \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+1 \\
& \lambda_{2}=-\frac{1}{2}-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{\left(-\frac{3}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 385: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Verified OK.

10.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
4 y^{\prime \prime}+4 y^{\prime}-3 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=4 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 330: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\frac{1}{2} \frac{4}{4} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3 x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3 x}{2}}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{\mathrm{e}^{\frac{x}{2}} c_{2}}{2} \tag{1}
\end{equation*}
$$

Figure 386: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{\mathrm{e}^{\frac{x}{2}} c_{2}}{2}
$$

Verified OK.

10.1.3 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}+4 y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-y^{\prime}+\frac{3 y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}-\frac{3 y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}+r-\frac{3}{4}=0
$$

- Factor the characteristic polynomial
$\frac{(2 r+3)(2 r-1)}{4}=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{3}{2}, \frac{1}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}$
- $\quad 2 \mathrm{nd}$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\mathrm{e}^{\frac{x}{2}} c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve(4*diff(y(x),x$2)+4*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(\mathrm{e}^{2 x} c_{1}+c_{2}\right) \mathrm{e}^{-\frac{3 x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 24
DSolve[4*y''[x]+4*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-3 x / 2}\left(c_{2} e^{2 x}+c_{1}\right)
$$

10.2 problem 2

10.2.1 Maple step by step solution . 2067

Internal problem ID [12761]
Internal file name [OUTPUT/11413_Friday_November_03_2023_06_32_46_AM_10799578/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 2.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+6 y^{\prime}-4 y=0
$$

The characteristic equation is

$$
\lambda^{3}-4 \lambda^{2}+6 \lambda-4=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =1-i \\
\lambda_{3} & =1+i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{(1+i) x} \\
& y_{3}=\mathrm{e}^{(1-i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}
$$

Verified OK.

10.2.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime}-4 y^{\prime \prime}+6 y^{\prime}-4 y=0$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=4 y_{3}(x)-6 y_{2}(x)+4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=4 y_{3}(x)-6 y_{2}(x)+4 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -6 & 4
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -6 & 4
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[1-\mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[1+\mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} \\
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored $\left[1-\mathrm{I},\left[\begin{array}{c}\frac{\mathrm{I}}{2} \\ \frac{1}{2}+\frac{\mathrm{I}}{2} \\ 1\end{array}\right]\right]$
- Solution from eigenpair

$$
\mathrm{e}^{(1-\mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\mathrm{I}}{2}(\cos (x)-\mathrm{I} \sin (x)) \\
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\sin (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{2} \\
-\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\sin (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
\cos (x)
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{2} \\
-\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
-\sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{c_{1} \mathrm{e}^{2 x}}{4}+\frac{\mathrm{e}^{x}\left(c_{3} \cos (x)+c_{2} \sin (x)\right)}{2}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$3)-4*diff (y (x),x$2)+6*diff (y (x),x)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{x} \sin (x)+c_{3} \cos (x) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 26

$$
\begin{gathered}
\text { DSolve } \mathrm{y} \text { ''' }[\mathrm{x}]-4 * \mathrm{y} \text { '' }[\mathrm{x}]+6 * \mathrm{y} \text { ' }[\mathrm{x}]-4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True] } \\
y(x) \rightarrow e^{x}\left(c_{3} e^{x}+c_{2} \cos (x)+c_{1} \sin (x)\right)
\end{gathered}
$$

10.3 problem 3

$$
\text { 10.3.1 Maple step by step solution . } 2072
$$

Internal problem ID [12762]
Internal file name [OUTPUT/11414_Friday_November_03_2023_06_32_46_AM_85835499/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 3.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-16 y=0
$$

The characteristic equation is

$$
\lambda^{4}-16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=2 i \\
& \lambda_{4}=-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{2 i x} \\
& y_{4}=\mathrm{e}^{-2 i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

Verified OK.

10.3.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}-16 y=0$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=16 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=16 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{3} \sin (2 x)}{8}-\frac{c_{4} \cos (2 x)}{8} \\
-\frac{c_{3} \cos (2 x)}{4}+\frac{c_{4} \sin (2 x)}{4} \\
\frac{c_{3} \sin (2 x)}{2}+\frac{c_{4} \cos (2 x)}{2} \\
c_{3} \cos (2 x)-c_{4} \sin (2 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{c_{1} \mathrm{e}^{-2 x}}{8}+\frac{c_{2} \mathrm{e}^{2 x}}{8}-\frac{c_{4} \cos (2 x)}{8}-\frac{c_{3} \sin (2 x)}{8}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$4)-16*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{-2 x} c_{2}+c_{3} \sin (2 x)+c_{4} \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 36

```
DSolve[y''''[x]-16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{2 x}+c_{3} e^{-2 x}+c_{2} \cos (2 x)+c_{4} \sin (2 x)
$$

10.4 problem 4

10.4.1 Maple step by step solution . 2078

Internal problem ID [12763]
Internal file name [OUTPUT/11415_Friday_November_03_2023_06_32_46_AM_60972317/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 4.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{4}+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=\sqrt{2}+i \sqrt{2} \\
& \lambda_{2}=-\sqrt{2}+i \sqrt{2} \\
& \lambda_{3}=-\sqrt{2}-i \sqrt{2} \\
& \lambda_{4}=\sqrt{2}-i \sqrt{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(\sqrt{2}-i \sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(\sqrt{2}-i \sqrt{2}) x} \\
& y_{2}=\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} \\
& y_{3}=\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} \\
& y_{4}=\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{(\sqrt{2}-i \sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{(\sqrt{2}-i \sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4}
$$

Verified OK.

10.4.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}+16 y=0$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=-16 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs $\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-16 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$-\sqrt{2}-\mathrm{I} \sqrt{2}$,	$\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}}$ $\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}}$ $\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}}$ 1		$\sqrt{2}+\mathrm{I} \sqrt{2}$,	$\frac{1}{(-\sqrt{2}+\mathrm{I} \sqrt{2})^{3}}$ $\frac{1}{(-\sqrt{2}+\mathrm{I} \sqrt{2})^{2}}$ $\frac{1}{-\sqrt{2}+\mathrm{I} \sqrt{2}}$ 1	$\sqrt{2}-\mathrm{I} \sqrt{2}$,	$\begin{aligned} & \frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\ & \frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\ & \frac{1}{\sqrt{2}-\mathrm{I} \sqrt{2}} \end{aligned}$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\sqrt{2}-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\sqrt{2}-\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\sqrt{2} x} \cdot(\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)) \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\mathrm{e}^{-\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
-\frac{\sin (\sqrt{2} x)}{4} \\
-\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
\cos (\sqrt{2} x)
\end{array}\right], \vec{y}_{2}(x)=\mathrm{e}^{-\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}-\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
-\frac{\cos (\sqrt{2} x)}{4} \\
\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
-\sin (\sqrt{2} x)
\end{array}\right]\right.
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\sqrt{2}-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{(\sqrt{2}-\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{\sqrt{2} x} \cdot(\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)) \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{\sqrt{2}-\mathrm{I} \sqrt{2}} \\
\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{\sqrt{2} x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
\frac{\sin (\sqrt{2} x)}{4} \\
\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
\cos (\sqrt{2} x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
\frac{\cos (\sqrt{2} x)}{4} \\
\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}-\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
-\sin (\sqrt{2} x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
-\frac{\sin (\sqrt{2} x)}{4} \\
-\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
\cos (\sqrt{2} x)
\end{array}\right]+c_{2} \mathrm{e}^{-\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}-\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
-\frac{\cos (\sqrt{2} x)}{4} \\
\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
-\sin (\sqrt{2} x)
\end{array}\right]+c_{3} \mathrm{e}^{\sqrt{2} x}
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\sqrt{2}\left(\left(\left(c_{1}+c_{2}\right) \cos (\sqrt{2} x)+\sin (\sqrt{2} x)\left(c_{1}-c_{2}\right)\right) \mathrm{e}^{-\sqrt{2} x}-\left(\left(c_{3}-c_{4}\right) \cos (\sqrt{2} x)-\sin (\sqrt{2} x)\left(c_{3}+c_{4}\right)\right) \mathrm{e}^{\sqrt{2} x}\right)}{16}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 65

```
dsolve(diff(y(x),x$4)+16*y(x)=0,y(x), singsol=all)
```

$y(x)=-c_{1} \mathrm{e}^{-x \sqrt{2}} \sin (x \sqrt{2})-c_{2} \mathrm{e}^{x \sqrt{2}} \sin (x \sqrt{2})+c_{3} \mathrm{e}^{-x \sqrt{2}} \cos (x \sqrt{2})+c_{4} \mathrm{e}^{x \sqrt{2}} \cos (x \sqrt{2})$
\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 67
DSolve[y'''' $[x]+16 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-\sqrt{2} x}\left(\left(c_{1} e^{2 \sqrt{2} x}+c_{2}\right) \cos (\sqrt{2} x)+\left(c_{4} e^{2 \sqrt{2} x}+c_{3}\right) \sin (\sqrt{2} x)\right)
$$

10.5 problem 5

Internal problem ID [12764]
Internal file name [OUTPUT/11416_Friday_November_03_2023_06_32_46_AM_52274915/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 5.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}+8 y^{\prime \prime}-8 y^{\prime}+4 y=0
$$

The characteristic equation is

$$
\lambda^{4}-4 \lambda^{3}+8 \lambda^{2}-8 \lambda+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1-i \\
\lambda_{2} & =1+i \\
\lambda_{3} & =1-i \\
\lambda_{4} & =1+i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(1+i) x} c_{1}+x \mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}+x \mathrm{e}^{(1-i) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(1+i) x} \\
& y_{2}=x \mathrm{e}^{(1+i) x} \\
& y_{3}=\mathrm{e}^{(1-i) x} \\
& y_{4}=x \mathrm{e}^{(1-i) x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{(1+i) x} c_{1}+x \mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}+x \mathrm{e}^{(1-i) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{(1+i) x} c_{1}+x \mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}+x \mathrm{e}^{(1-i) x} c_{4}
$$

Verified OK.
Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$4)-4*diff(y(x),x$3)+8*\operatorname{diff}(y(x),x$2)-8*\operatorname{diff}(y(x),x)+4*y(x)=0,y(x), singso
```

$$
y(x)=\left(\left(c_{4} x+c_{2}\right) \cos (x)+\sin (x)\left(c_{3} x+c_{1}\right)\right) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 30
DSolve[y''''[x]-4*y'''[x]+8*y''[x]-8*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True

$$
y(x) \rightarrow e^{x}\left(\left(c_{4} x+c_{3}\right) \cos (x)+\left(c_{2} x+c_{1}\right) \sin (x)\right)
$$

10.6 problem 6

10.6.1 Maple step by step solution

2087
Internal problem ID [12765]
Internal file name [OUTPUT/11417_Friday_November_03_2023_06_32_46_AM_81255054/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 6.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-8 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{4}-8 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2 \\
& \lambda_{3}=i \sqrt{3}-1 \\
& \lambda_{4}=-i \sqrt{3}-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{3}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{(i \sqrt{3}-1) x} \\
& y_{4}=\mathrm{e}^{(-i \sqrt{3}-1) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{3}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{3}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{4}
$$

Verified OK.

10.6.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}-8 y^{\prime}=0$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=8 y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs $\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=8 y_{2}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 8 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 8 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right],\left[-\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{3}} \\ \frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\ \frac{1}{-\mathrm{I} \sqrt{3}-1} \\ 1\end{array}\right]\right],\left[\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}\frac{1}{(\mathrm{I} \sqrt{3}-1)^{3}} \\ \frac{1}{(\mathrm{I} \sqrt{3}-1)^{2}} \\ \frac{1}{\mathrm{I} \sqrt{3}-1} \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{3}} \\
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\mathrm{I} \sqrt{3}-1) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{3}} \\
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-x} \cdot(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{3}} \\
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-\mathrm{I} \sqrt{3}-1)^{3}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{-\mathrm{I} \sqrt{3}-1} \\
\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sqrt{3} \sin (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sqrt{3} \sin (\sqrt{3} x)}{4} \\
\cos (\sqrt{3} x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\sin (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x) \sqrt{3}}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\cos (\sqrt{3} x) \sqrt{3}}{4}+\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sqrt{3} \sin (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sqrt{3} \sin (\sqrt{3} x)}{4} \\
\cos (\sqrt{3} x)
\end{array}\right]+c_{4} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\sin (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x) \sqrt{3}}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\cos (\sqrt{3} x) \sqrt{3}}{4}+\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{c_{2} \mathrm{e}^{2 x}}{8}+\frac{c_{3} \mathrm{e}^{-x} \cos (\sqrt{3} x)}{8}-\frac{c_{4} \mathrm{e}^{-x} \sin (\sqrt{3} x)}{8}+c_{1}
$$

Maple trace
-Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36
dsolve(diff $(y(x), x \$ 4)-8 * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{-x} \sin (\sqrt{3} x)+c_{4} \mathrm{e}^{-x} \cos (\sqrt{3} x)
$$

\checkmark Solution by Mathematica
Time used: 0.658 (sec). Leaf size: 70
DSolve[y'''' $[x]-8 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{4} e^{-x}\left(2 c_{1} e^{3 x}-\left(c_{2}+\sqrt{3} c_{3}\right) \cos (\sqrt{3} x)+\left(\sqrt{3} c_{2}-c_{3}\right) \sin (\sqrt{3} x)\right)+c_{4}
$$

10.7 problem 7

10.7.1 Maple step by step solution . 2093

Internal problem ID [12766]
Internal file name [OUTPUT/11418_Friday_November_03_2023_06_32_47_AM_53036301/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 7.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
36 y^{\prime \prime \prime \prime}-12 y^{\prime \prime \prime}-11 y^{\prime \prime}+2 y^{\prime}+y=0
$$

The characteristic equation is

$$
36 \lambda^{4}-12 \lambda^{3}-11 \lambda^{2}+2 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{3} \\
\lambda_{2} & =-\frac{1}{3} \\
\lambda_{3} & =\frac{1}{2} \\
\lambda_{4} & =\frac{1}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-\frac{x}{3}}+x \mathrm{e}^{-\frac{x}{3}} c_{2}+\mathrm{e}^{\frac{x}{2}} c_{3}+x \mathrm{e}^{\frac{x}{2}} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{-\frac{x}{3}} \\
y_{2} & =x \mathrm{e}^{-\frac{x}{3}} \\
y_{3} & =\mathrm{e}^{\frac{x}{2}} \\
y_{4} & =\mathrm{e}^{\frac{x}{2}} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+x \mathrm{e}^{-\frac{x}{3}} c_{2}+\mathrm{e}^{\frac{x}{2}} c_{3}+x \mathrm{e}^{\frac{x}{2}} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+x \mathrm{e}^{-\frac{x}{3}} c_{2}+\mathrm{e}^{\frac{x}{2}} c_{3}+x \mathrm{e}^{\frac{x}{2}} c_{4}
$$

Verified OK.

10.7.1 Maple step by step solution

Let's solve

$$
36 y^{\prime \prime \prime \prime}-12 y^{\prime \prime \prime}-11 y^{\prime \prime}+2 y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

- Isolate 4th derivative

$$
y^{\prime \prime \prime \prime}=\frac{y^{\prime \prime \prime}}{3}+\frac{11 y^{\prime \prime}}{36}-\frac{y^{\prime}}{18}-\frac{y}{36}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime \prime}-\frac{y^{\prime \prime \prime}}{3}-\frac{11 y^{\prime \prime}}{36}+\frac{y^{\prime}}{18}+\frac{y}{36}=0$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=\frac{y_{4}(x)}{3}+\frac{11 y_{3}(x)}{36}-\frac{y_{2}(x)}{18}-\frac{y_{1}(x)}{36}$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=\frac{y_{4}(x)}{3}+\frac{11 y_{3}(x)}{36}-\frac{y_{2}(x)}{18}-\frac{y_{1}(x)}{36}\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{1}{36} & -\frac{1}{18} & \frac{11}{36} & \frac{1}{3}
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{1}{36} & -\frac{1}{18} & \frac{11}{36} & \frac{1}{3}
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-\frac{1}{3},\left[\begin{array}{c}
-27 \\
9 \\
-3 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue $-\frac{1}{3}$

$$
\vec{y}_{1}(x)=\mathrm{e}^{-\frac{x}{3}} \cdot\left[\begin{array}{c}
-27 \\
9 \\
-3 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-\frac{1}{3}$ is the eigenvalue, $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue $-\frac{1}{3}$

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{1}{36} & -\frac{1}{18} & \frac{11}{36} & \frac{1}{3}
\end{array}\right]--\frac{1}{3} \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-27 \\
9 \\
-3 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-81 \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue $-\frac{1}{3}$

$$
\vec{y}_{2}(x)=\mathrm{e}^{-\frac{x}{3}} \cdot\left(x \cdot\left[\begin{array}{c}
-27 \\
9 \\
-3 \\
1
\end{array}\right]+\left[\begin{array}{c}
-81 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[\frac{1}{2},\left[\begin{array}{c}
8 \\
4 \\
2 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue $\frac{1}{2}$

$$
\vec{y}_{3}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{l}
8 \\
4 \\
2 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=\frac{1}{2}$ is the eigenvalue, an $\vec{y}_{4}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{4}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{4}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue $\frac{1}{2}$

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{1}{36} & -\frac{1}{18} & \frac{11}{36} & \frac{1}{3}
\end{array}\right]-\frac{1}{2} \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
8 \\
4 \\
2 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-16 \\ 0 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue $\frac{1}{2}$
$\vec{y}_{4}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left(x \cdot\left[\begin{array}{l}8 \\ 4 \\ 2 \\ 1\end{array}\right]+\left[\begin{array}{c}-16 \\ 0 \\ 0 \\ 0\end{array}\right]\right)$
- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-\frac{x}{3}} \cdot\left[\begin{array}{c}
-27 \\
9 \\
-3 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{x}{3}} \cdot\left(x \cdot\left[\begin{array}{c}
-27 \\
9 \\
-3 \\
1
\end{array}\right]+\left[\begin{array}{c}
-81 \\
0 \\
0 \\
0
\end{array}\right]\right)+\mathrm{e}^{\frac{x}{2}} c_{3} \cdot\left[\begin{array}{l}
8 \\
4 \\
2 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{\frac{x}{2}} \cdot\left(x \cdot\left[\begin{array}{l}
8 \\
4 \\
2 \\
1
\end{array}\right]\right.
$$

- First component of the vector is the solution to the ODE

$$
y=-27 \mathrm{e}^{-\frac{x}{3}}\left(\frac{8\left((-x+2) c_{4}-c_{3}\right) \mathrm{e}^{\frac{5 x}{6}}}{27}+c_{2}(x+3)+c_{1}\right)
$$

Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve ($36 * \operatorname{diff}(y(x), x \$ 4)-12 * \operatorname{diff}(y(x), x \$ 3)-11 * \operatorname{diff}(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+y(x)=0, y(x), \quad \sin$

$$
y(x)=\left(\left(c_{4} x+c_{3}\right) \mathrm{e}^{\frac{5 x}{6}}+c_{2} x+c_{1}\right) \mathrm{e}^{-\frac{x}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 41

$$
y(x) \rightarrow e^{-x / 3}\left(c_{3} e^{5 x / 6}+x\left(c_{4} e^{5 x / 6}+c_{2}\right)+c_{1}\right)
$$

10.8 problem 8

10.8.1 Maple step by step solution . 2100

Internal problem ID [12767]
Internal file name [OUTPUT/11419_Friday_November_03_2023_06_32_47_AM_75314869/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 8.
ODE order: 5.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{(5)}-3 y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{5}-3 \lambda^{4}+3 \lambda^{3}-3 \lambda^{2}+2 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=1 \\
& \lambda_{3}=2 \\
& \lambda_{4}=i \\
& \lambda_{5}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{i x} c_{4}+\mathrm{e}^{-i x} c_{5}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x} \\
& y_{4}=\mathrm{e}^{i x} \\
& y_{5}=\mathrm{e}^{-i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{i x} c_{4}+\mathrm{e}^{-i x} c_{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{i x} c_{4}+\mathrm{e}^{-i x} c_{5}
$$

Verified OK.

10.8.1 Maple step by step solution

Let's solve
$y^{(5)}-3 y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0$

- Highest derivative means the order of the ODE is 5 $y^{(5)}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$ $y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Define new variable $y_{5}(x)$

$$
y_{5}(x)=y^{\prime \prime \prime \prime}
$$

- Isolate for $y_{5}^{\prime}(x)$ using original ODE
$y_{5}^{\prime}(x)=3 y_{5}(x)-3 y_{4}(x)+3 y_{3}(x)-2 y_{2}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{5}(x)=y_{4}^{\prime}(x), y_{5}^{\prime}(x)=3 y_{5}(x)-3 y_{4}(x)+3 y_{3}(x)-\right.$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x) \\
y_{5}(x)
\end{array}\right]
$$

- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & -2 & 3 & -3 & 3\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix
$A=\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & -2 & 3 & -3 & 3\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
1 \\
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
1 \\
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored $\left[-\mathrm{I},\left[\begin{array}{c}1 \\ -\mathrm{I} \\ -1 \\ \mathrm{I} \\ 1\end{array}\right]\right]$
- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
1 \\
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
1 \\
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\cos (x)-\mathrm{I} \sin (x) \\
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{4}(x)=\left[\begin{array}{c}
\cos (x) \\
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{5}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}(x)+c_{5} \vec{y}_{5}(x)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{1}+c_{4} \cos (x)-c_{5} \sin (x) \\
-c_{4} \sin (x)-c_{5} \cos (x) \\
-c_{4} \cos (x)+c_{5} \sin (x) \\
c_{4} \sin (x)+c_{5} \cos (x) \\
c_{4} \cos (x)-c_{5} \sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{2 x} c_{3}}{16}-c_{5} \sin (x)+c_{4} \cos (x)+c_{1}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 24
dsolve (diff $(y(x), x \$ 5)-3 * \operatorname{diff}(y(x), x \$ 4)+3 * \operatorname{diff}(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)=0, y$

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{2 x}+c_{4} \sin (x)+c_{5} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 36

$$
y(x) \rightarrow c_{3} e^{x}+\frac{1}{2} c_{4} e^{2 x}-c_{2} \cos (x)+c_{1} \sin (x)+c_{5}
$$

10.9 problem 9

10.9.1 Maple step by step solution . 2107

Internal problem ID [12768]
Internal file name [OUTPUT/11420_Friday_November_03_2023_06_32_47_AM_78862228/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 9 .
ODE order: 5.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{(5)}-y^{\prime \prime \prime \prime}+y^{\prime \prime \prime}+35 y^{\prime \prime}+16 y^{\prime}-52 y=0
$$

The characteristic equation is

$$
\lambda^{5}-\lambda^{4}+\lambda^{3}+35 \lambda^{2}+16 \lambda-52=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2-3 i \\
& \lambda_{3}=2+3 i \\
& \lambda_{4}=-2 \\
& \lambda_{5}=-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{(2-3 i) x} c_{4}+\mathrm{e}^{(2+3 i) x} c_{5}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{x} \\
& y_{4}=\mathrm{e}^{(2-3 i) x} \\
& y_{5}=\mathrm{e}^{(2+3 i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{(2-3 i) x} c_{4}+\mathrm{e}^{(2+3 i) x} c_{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{(2-3 i) x} c_{4}+\mathrm{e}^{(2+3 i) x} c_{5}
$$

Verified OK.

10.9.1 Maple step by step solution

Let's solve
$y^{(5)}-y^{\prime \prime \prime \prime}+y^{\prime \prime \prime}+35 y^{\prime \prime}+16 y^{\prime}-52 y=0$

- Highest derivative means the order of the ODE is 5 $y^{(5)}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Define new variable $y_{5}(x)$

$$
y_{5}(x)=y^{\prime \prime \prime \prime}
$$

- Isolate for $y_{5}^{\prime}(x)$ using original ODE
$y_{5}^{\prime}(x)=y_{5}(x)-y_{4}(x)-35 y_{3}(x)-16 y_{2}(x)+52 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{5}(x)=y_{4}^{\prime}(x), y_{5}^{\prime}(x)=y_{5}(x)-y_{4}(x)-35 y_{3}(x)-\right.$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x) \\
y_{5}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
52 & -16 & -35 & -1 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
52 & -16 & -35 & -1 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[2-3 \mathrm{I},\left[\begin{array}{c}
-\frac{119}{28561}-\frac{1201}{28561} \\
-\frac{46}{2197}+\frac{91}{2197} \\
-\frac{5}{169}+\frac{121}{169} \\
\frac{2}{13}+\frac{31}{13} \\
1
\end{array}\right]\right],\left[2+3 \mathrm{I},\left[\begin{array}{c}
-\frac{119}{2566} \\
-\frac{46}{2192} \\
-\frac{5}{164} \\
\frac{2}{13}
\end{array}\right]\left[\begin{array}{c}
\\
\hline
\end{array}\right.\right.\right.
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 2

$$
\vec{y}_{1}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-2$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -2

$$
\left(\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
52 & -16 & -35 & -1 & 1
\end{array}\right]-(-2) \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}\frac{1}{32} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue -2

$$
\vec{y}_{2}(x)=\mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{32} \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-3 \mathrm{I},\left[\begin{array}{c}
-\frac{119}{28561}-\frac{120 \mathrm{I}}{28561} \\
-\frac{46}{2197}+\frac{9 \mathrm{I}}{2197} \\
-\frac{5}{169}+\frac{12 \mathrm{I}}{169} \\
\frac{2}{13}+\frac{3 \mathrm{I}}{13} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(2-3 \mathrm{I}) x} \cdot\left[\begin{array}{c}
-\frac{119}{28561}-\frac{120 \mathrm{I}}{28561} \\
-\frac{46}{2197}+\frac{9 \mathrm{I}}{2197} \\
-\frac{5}{169}+\frac{12 \mathrm{I}}{169} \\
\frac{2}{13}+\frac{3 \mathrm{I}}{13} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos
$\mathrm{e}^{2 x} \cdot(\cos (3 x)-\mathrm{I} \sin (3 x)) \cdot\left[\begin{array}{c}-\frac{119}{28561}-\frac{120 \mathrm{I}}{28561} \\ -\frac{46}{2197}+\frac{9 \mathrm{I}}{2197} \\ -\frac{5}{169}+\frac{12 \mathrm{I}}{169} \\ \frac{2}{13}+\frac{3 \mathrm{I}}{13} \\ 1\end{array}\right]$
- Simplify expression

$$
\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\left(-\frac{119}{28561}-\frac{120 \mathrm{I}}{28561}\right)(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\left(-\frac{46}{2197}+\frac{9 \mathrm{I}}{2197}\right)(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\left(-\frac{5}{169}+\frac{12 \mathrm{I}}{169}\right)(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\left(\frac{2}{13}+\frac{3 \mathrm{I}}{13}\right)(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\cos (3 x)-\mathrm{I} \sin (3 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{4}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
-\frac{119 \cos (3 x)}{28561}-\frac{120 \sin (3 x)}{28561} \\
-\frac{46 \cos (3 x)}{2197}+\frac{9 \sin (3 x)}{297} \\
-\frac{5 \cos (3 x)}{169}+\frac{12 \sin (3 x)}{169} \\
\frac{2 \cos (3 x)}{13}+\frac{3 \sin (3 x)}{13} \\
\cos (3 x)
\end{array}\right], \vec{y}_{5}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{119 \sin (3 x)}{28561}-\frac{120 \cos (3 x)}{28561} \\
\frac{46 \sin (3 x)}{2197}+\frac{9 \cos (3 x)}{297} \\
\frac{5 \sin (3 x)}{169}+\frac{12 \cos (3 x)}{169} \\
-\frac{2 \sin (3 x)}{13}+\frac{3 \cos (3 x)}{13} \\
-\sin (3 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}(x)+c_{5} \vec{y}_{5}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{32} \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{4} \cdot\left[\begin{array}{c}
-\frac{119 \cos (3 x)}{28561} \\
-\frac{46 \cos (3 x)}{2197} \\
-\frac{5 \cos (3 x)}{169} \\
\frac{2 \cos (3 x)}{13}+ \\
\cos
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\mathrm{e}^{-2 x}\left(\frac{16\left(\left(-119 c_{4}-120 c_{5}\right) \cos (3 x)-120 \sin (3 x)\left(c_{4}-\frac{119 c_{5}}{120}\right)\right) \mathrm{e}^{4 x}}{28561}+16 c_{3} \mathrm{e}^{3 x}+\left(x+\frac{1}{2}\right) c_{2}+c_{1}\right)}{16}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 40

```
dsolve(diff(y(x),x$5)-diff(y(x),x$4)+diff (y (x),x$3)+35*diff (y (x),x$2)+16*diff (y (x),x)-52*y(x
```

$$
y(x)=\left(c_{4} \mathrm{e}^{4 x} \sin (3 x)+c_{5} \mathrm{e}^{4 x} \cos (3 x)+c_{1} \mathrm{e}^{3 x}+c_{3} x+c_{2}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 50
DSolve[y'' ' ' ' $[x]-y$ ' ' ' ' $[x]+y$ ' ' ' $[x]+35 * y$ ' ' $[x]+16 * y$ ' $[x]-52 * y[x]==0, y[x], x$, IncludeSingularSoluti

$$
y(x) \rightarrow e^{-2 x}\left(c_{4} x+c_{5} e^{3 x}+c_{2} e^{4 x} \cos (3 x)+c_{1} e^{4 x} \sin (3 x)+c_{3}\right)
$$

10.10 problem 10

Internal problem ID [12769]
Internal file name [OUTPUT/11421_Friday_November_03_2023_06_32_47_AM_79775332/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 10.
ODE order: 8.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{(8)}+8 y^{\prime \prime \prime \prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{8}+8 \lambda^{4}+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1-i \\
& \lambda_{2}=1+i \\
& \lambda_{3}=-1-i \\
& \lambda_{4}=-1+i \\
& \lambda_{5}=1-i \\
& \lambda_{6}=1+i \\
& \lambda_{7}=-1-i \\
& \lambda_{8}=-1+i
\end{aligned}
$$

Therefore the homogeneous solution is
$y_{h}(x)=\mathrm{e}^{(1+i) x} c_{1}+x \mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}+x \mathrm{e}^{(1-i) x} c_{4}+\mathrm{e}^{(-1+i) x} c_{5}+x \mathrm{e}^{(-1+i) x} c_{6}+\mathrm{e}^{(-1-i) x} c_{7}+x \mathrm{e}^{(-1-i) x} c_{8}$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(1+i) x} \\
& y_{2}=x \mathrm{e}^{(1+i) x} \\
& y_{3}=\mathrm{e}^{(1-i) x} \\
& y_{4}=x \mathrm{e}^{(1-i) x} \\
& y_{5}=\mathrm{e}^{(-1+i) x} \\
& y_{6}=x \mathrm{e}^{(-1+i) x} \\
& y_{7}=\mathrm{e}^{(-1-i) x} \\
& y_{8}=x \mathrm{e}^{(-1-i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{(1+i) x} c_{1}+x \mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}+x \mathrm{e}^{(1-i) x} c_{4} \tag{1}\\
& +\mathrm{e}^{(-1+i) x} c_{5}+x \mathrm{e}^{(-1+i) x} c_{6}+\mathrm{e}^{(-1-i) x} c_{7}+x \mathrm{e}^{(-1-i) x} c_{8}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{(1+i) x} c_{1}+x \mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}+x \mathrm{e}^{(1-i) x} c_{4} \\
& +\mathrm{e}^{(-1+i) x} c_{5}+x \mathrm{e}^{(-1+i) x} c_{6}+\mathrm{e}^{(-1-i) x} c_{7}+x \mathrm{e}^{(-1-i) x} c_{8}
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 47

```
dsolve(diff(y(x),x$8)+8*diff(y(x),x$4)+16*y(x)=0,y(x), singsol=all)
```

$y(x)=\left(\left(c_{4} x+c_{2}\right) \cos (x)+\sin (x)\left(c_{3} x+c_{1}\right)\right) \mathrm{e}^{-x}+\mathrm{e}^{x}\left(\left(c_{8} x+c_{6}\right) \cos (x)+\sin (x)\left(c_{7} x+c_{5}\right)\right)$
\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 66
DSolve $[\mathrm{D}[\mathrm{y}[\mathrm{x}],\{\mathrm{x}, 8\}]+8 * \mathrm{y}$ ' ' ' ' $[\mathrm{x}]+16 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(\left(c_{4} x+c_{7} e^{2 x}+c_{8} e^{2 x} x+c_{3}\right) \cos (x)+\left(c_{2} x+c_{5} e^{2 x}+c_{6} e^{2 x} x+c_{1}\right) \sin (x)\right)
$$

10.11 problem 11

10.11.1 Solving as second order linear constant coeff ode 2117
10.11.2 Solving as second order ode can be made integrable ode 2119
10.11.3 Solving using Kovacic algorithm 2120
10.11.4 Maple step by step solution . 2123

Internal problem ID [12770]
Internal file name [OUTPUT/11422_Friday_November_03_2023_06_32_48_AM_76405819/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+\alpha y=0
$$

10.11.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=\alpha$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\alpha \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\alpha=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=\alpha$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(\alpha)} \\
& = \pm \sqrt{-\alpha}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\sqrt{-\alpha} \\
& \lambda_{2}=-\sqrt{-\alpha}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\sqrt{-\alpha} \\
& \lambda_{2}=-\sqrt{-\alpha}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(\sqrt{-\alpha}) x}+c_{2} e^{(-\sqrt{-\alpha}) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\sqrt{-\alpha} x}+c_{2} \mathrm{e}^{-\sqrt{-\alpha} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-\alpha} x}+c_{2} \mathrm{e}^{-\sqrt{-\alpha} x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-\alpha} x}+c_{2} \mathrm{e}^{-\sqrt{-\alpha} x}
$$

Verified OK.

10.11.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+\alpha y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+\alpha y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{\alpha y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-\alpha y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-\alpha y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-\alpha y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{\sqrt{\alpha} y}{\sqrt{-\alpha y^{2}+2 c_{1}}}\right)}{\sqrt{\alpha}} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-\alpha y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{\sqrt{\alpha} y}{\sqrt{-\alpha y^{2}+2 c_{1}}}\right)}{\sqrt{\alpha}} & =c_{3}+x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
\frac{\arctan \left(\frac{\sqrt{\alpha} y}{\sqrt{-\alpha y^{2}+2 c_{1}}}\right)}{\sqrt{\alpha}} & =x+c_{2} \tag{1}\\
-\frac{\arctan \left(\frac{\sqrt{\alpha} y}{\sqrt{-\alpha y^{2}+2 c_{1}}}\right)}{\sqrt{\alpha}} & =c_{3}+x \tag{2}
\end{align*}
$$

Verification of solutions

$$
\frac{\arctan \left(\frac{\sqrt{\alpha} y}{\sqrt{-\alpha y^{2}+2 c_{1}}}\right)}{\sqrt{\alpha}}=x+c_{2}
$$

Verified OK.

$$
-\frac{\arctan \left(\frac{\sqrt{\alpha} y}{\sqrt{-\alpha y^{2}+2 c_{1}}}\right)}{\sqrt{\alpha}}=c_{3}+x
$$

Verified OK.

10.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+\alpha y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=\alpha
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-\alpha}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-\alpha \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=(-\alpha) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 339: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\alpha$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\sqrt{-\alpha} x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{-\alpha} x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\sqrt{-\alpha} x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
& y_{2}=y_{1} \int \frac{1}{y_{1}^{2}} d x \\
&=\mathrm{e}^{\sqrt{-\alpha} x} \int \frac{1}{\mathrm{e}^{2 \sqrt{-\alpha} x}} d x \\
&=\mathrm{e}^{\sqrt{ }-\alpha} x \\
&
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-\alpha} x}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-\alpha} x}\left(-\frac{\mathrm{e}^{-2 \sqrt{-\alpha} x}}{2 \sqrt{-\alpha}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-\alpha} x}-\frac{c_{2} \mathrm{e}^{-\sqrt{-\alpha} x}}{2 \sqrt{-\alpha}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-\alpha} x}-\frac{c_{2} \mathrm{e}^{-\sqrt{-\alpha} x}}{2 \sqrt{-\alpha}}
$$

Verified OK.

10.11.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+\alpha y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+\alpha=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4 \alpha})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(\sqrt{-\alpha},-\sqrt{-\alpha})
$$

- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\sqrt{-\alpha} x}$
- $\quad 2 \mathrm{nd}$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-\sqrt{-\alpha} x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-\alpha} x}+c_{2} \mathrm{e}^{-\sqrt{-\alpha} x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve(diff(y(x),x$2)+alpha*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (\sqrt{\alpha} x)+c_{2} \cos (\sqrt{\alpha} x)
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 28

```
DSolve[y''[x] +a*y[x]==0,y[x],x, IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} \cos (\sqrt{a} x)+c_{2} \sin (\sqrt{a} x)
$$

10.12 problem 17

Internal problem ID [12771]
Internal file name [OUTPUT/11423_Friday_November_03_2023_06_32_48_AM_73742763/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 17.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+(-3-4 i) y^{\prime \prime}+(-4+12 i) y^{\prime}+12 y=0
$$

The characteristic equation is

$$
\lambda^{3}-4 i \lambda^{2}-3 \lambda^{2}+12 i \lambda-4 \lambda+12=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2 i \\
& \lambda_{3}=2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{2 i x} c_{2}+x \mathrm{e}^{2 i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{3 x} \\
& y_{2}=\mathrm{e}^{2 i x} \\
& y_{3}=x \mathrm{e}^{2 i x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{2 i x} c_{2}+x \mathrm{e}^{2 i x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{2 i x} c_{2}+x \mathrm{e}^{2 i x} c_{3}
$$

Verified OK.
Maple trace
-Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22
dsolve $(\operatorname{diff}(y(x), x \$ 3)-(3+4 * I) * \operatorname{diff}(y(x), x \$ 2)-(4-12 * I) * \operatorname{diff}(y(x), x)+12 * y(x)=0, y(x), \quad$ singsol $=a$

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{2 i x}+c_{1} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 29
DSolve $[y$ '' ' $[x]-(3+4 * I) * y$ ' $\quad[x]-(4-12 * I) * y$ ' $[x]+12 * y[x]==0, y[x], x$, IncludeSingularSolutions $->~ T$

$$
y(x) \rightarrow e^{2 i x}\left(c_{2} x+c_{1}\right)+c_{3} e^{3 x}
$$

10.13 problem 18

Internal problem ID [12772]
Internal file name [OUTPUT/11424_Friday_November_03_2023_06_32_48_AM_49111732/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 18.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+(-3-i) y^{\prime \prime \prime}+(4+3 i) y^{\prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{4}-i \lambda^{3}-3 \lambda^{3}+3 i \lambda^{2}+4 \lambda^{2}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=1+2 i \\
& \lambda_{4}=2-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{2} x+c_{1}+\mathrm{e}^{(2-i) x} c_{3}+\mathrm{e}^{(1+2 i) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=\mathrm{e}^{(2-i) x} \\
& y_{4}=\mathrm{e}^{(1+2 i) x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+\mathrm{e}^{(2-i) x} c_{3}+\mathrm{e}^{(1+2 i) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x+c_{1}+\mathrm{e}^{(2-i) x} c_{3}+\mathrm{e}^{(1+2 i) x} c_{4}
$$

Verified OK.
Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 25
dsolve(diff $(y(x), x \$ 4)-(3+I) * \operatorname{diff}(y(x), x \$ 3)+(4+3 * I) * \operatorname{diff}(y(x), x \$ 2)=0, y(x), \quad$ singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{(1+2 i) x}+c_{2} \mathrm{e}^{(2-i) x}+c_{3}+c_{4} x
$$

\checkmark Solution by Mathematica
Time used: 0.156 (sec). Leaf size: 46

$$
y(x) \rightarrow\left(-\frac{3}{25}-\frac{4 i}{25}\right) c_{1} e^{(1+2 i) x}+\left(\frac{3}{25}+\frac{4 i}{25}\right) c_{2} e^{(2-i) x}+c_{4} x+c_{3}
$$

10.14 problem 19

10.14.1 Existence and uniqueness analysis 2129
10.14.2 Solving as quadrature ode . 2130
10.14.3 Maple step by step solution . 2130

Internal problem ID [12773]
Internal file name [OUTPUT/11425_Friday_November_03_2023_06_32_49_AM_49345908/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-i y=0
$$

With initial conditions

$$
[y(0)=1]
$$

10.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-i \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-i y=0
$$

The domain of $p(x)=-i$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. Hence solution exists and is unique.

10.14.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
& \int-\frac{i}{y} d y=\int d x \\
& -i \ln (y)=x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-i \ln (y)}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y^{-i}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{2}^{i} \\
& c_{2}=1
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\left(\mathrm{e}^{x}\right)^{i}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\mathrm{e}^{x}\right)^{i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\mathrm{e}^{x}\right)^{i}
$$

Verified OK.

10.14.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\mathrm{I} y=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Separate variables

$$
\frac{y^{\prime}}{y}=\mathrm{I}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \mathrm{I} d x+c_{1}$
- Evaluate integral
$\ln (y)=\mathrm{I} x+c_{1}$
- Use initial condition $y(0)=1$
$0=c_{1}$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$\ln (y)=\mathrm{I} x$
- Solution to the IVP

$$
\ln (y)=\mathrm{I} x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9
dsolve([diff $(y(x), x)-I * y(x)=0, y(0)=1], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{i x}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 12
DSolve[\{y' $[x]-I * y[x]==0,\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{i x}
$$

11 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218
11.1 problem 1 2134
11.2 problem 2 2138
11.3 problem 3 2144
11.4 problem 4 2148
11.5 problem 5 2152
11.6 problem 6 2162
11.7 problem 7 2171

11.1 problem 1

Internal problem ID [12774]
Internal file name [OUTPUT/11426_Friday_November_03_2023_06_32_50_AM_61348493/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218
Problem number: 1.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}-6 y^{\prime \prime \prime}+13 y^{\prime \prime}-12 y^{\prime}+4 y=2 \mathrm{e}^{x}-4 \mathrm{e}^{2 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-6 y^{\prime \prime \prime}+13 y^{\prime \prime}-12 y^{\prime}+4 y=0
$$

The characteristic equation is

$$
\lambda^{4}-6 \lambda^{3}+13 \lambda^{2}-12 \lambda+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=1 \\
& \lambda_{3}=2 \\
& \lambda_{4}=2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+x \mathrm{e}^{2 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x} \\
& y_{4}=\mathrm{e}^{2 x} x
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-6 y^{\prime \prime \prime}+13 y^{\prime \prime}-12 y^{\prime}+4 y=2 \mathrm{e}^{x}-4 \mathrm{e}^{2 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{x}-4 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, \mathrm{e}^{2 x} x, \mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

Since $x \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x} x\right\}\right]
$$

Since $\mathrm{e}^{2 x} x$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{x}\right\},\left\{x^{2} \mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{x}+A_{2} x^{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+2 A_{2} \mathrm{e}^{2 x}=2 \mathrm{e}^{x}-4 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x^{2} \mathrm{e}^{x}-2 x^{2} \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+x \mathrm{e}^{2 x} c_{4}\right)+\left(x^{2} \mathrm{e}^{x}-2 x^{2} \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{4} x+c_{3}\right) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{x}-2 x^{2} \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{4} x+c_{3}\right) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{x}-2 x^{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{4} x+c_{3}\right) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{x}-2 x^{2} \mathrm{e}^{2 x}
$$

Verified OK.

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 37
dsolve(diff $(y(x), x \$ 4)-6 * \operatorname{diff}(y(x), x \$ 3)+13 * \operatorname{diff}(y(x), x \$ 2)-12 * \operatorname{diff}(y(x), x)+4 * y(x)=2 * \exp (x)-4 * e$

$$
y(x)=\left(-2 x^{2}+\left(c_{4}+8\right) x+c_{2}-12\right) \mathrm{e}^{2 x}+\left(x^{2}+\left(c_{3}+4\right) x+c_{1}+6\right) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.187 (sec). Leaf size: 41
DSolve [y''''[x]-6*y'' $[\mathrm{x}]+13 * y$ ' ' $[\mathrm{x}]-12 * y$ ' $[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==2 * \operatorname{Exp}[\mathrm{x}]-4 * \operatorname{Exp}[2 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingu

$$
y(x) \rightarrow e^{x}\left(x^{2}+e^{x}\left(-2 x^{2}+\left(8+c_{4}\right) x-12+c_{3}\right)+\left(4+c_{2}\right) x+6+c_{1}\right)
$$

11.2 problem 2

Internal problem ID [12775]
Internal file name [OUTPUT/11427_Friday_November_03_2023_06_32_50_AM_27271063/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218
Problem number: 2.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_y]]

$$
y^{\prime \prime \prime \prime}+4 y^{\prime \prime}=24 x^{2}-6 x+14+32 \cos (2 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+4 y^{\prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{4}+4 \lambda^{2}=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =0 \\
\lambda_{3} & =2 i \\
\lambda_{4} & =-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{2} x+c_{1}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=\mathrm{e}^{2 i x} \\
& y_{4}=\mathrm{e}^{-2 i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+4 y^{\prime \prime}=24 x^{2}-6 x+14+32 \cos (2 x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
1 & x & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
0 & 1 & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
0 & 0 & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x} \\
0 & 0 & -8 i \mathrm{e}^{2 i x} & 8 i \mathrm{e}^{-2 i x}
\end{array}\right] \\
&|W|=-64 i \mathrm{e}^{2 i x} \mathrm{e}^{-2 i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=-64 i
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{ccc}
x & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
1 & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
0 & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
&=-16 i x \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccc}
1 & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
0 & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
0 & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =-16 i \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ccc}
1 & x & \mathrm{e}^{-2 i x} \\
0 & 1 & -2 i \mathrm{e}^{-2 i x} \\
0 & 0 & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =-4 \mathrm{e}^{-2 i x}
\end{aligned} \\
& W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
1 & x & \mathrm{e}^{2 i x} \\
0 & 1 & 2 i \mathrm{e}^{2 i x} \\
0 & 0 & -4 \mathrm{e}^{2 i x}
\end{array}\right] \\
&=-4 \mathrm{e}^{2 i x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{\left(24 x^{2}-6 x+14+32 \cos (2 x)\right)(-16 i x)}{(1)(-64 i)} d x \\
& =-\int \frac{-16 i\left(24 x^{2}-6 x+14+32 \cos (2 x)\right) x}{-64 i} d x \\
& =-\int\left(\frac{\left(7+12 x^{2}-3 x+16 \cos (2 x)\right) x}{2}\right) d x \\
& =-\frac{3 x^{4}}{2}-2 \cos (2 x)-4 \sin (2 x) x+\frac{x^{3}}{2}-\frac{7 x^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& U_{2}=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(24 x^{2}-6 x+14+32 \cos (2 x)\right)(-16 i)}{(1)(-64 i)} d x \\
& =\int \frac{-16 i\left(24 x^{2}-6 x+14+32 \cos (2 x)\right)}{-64 i} d x \\
& =\int\left(6 x^{2}-\frac{3 x}{2}+\frac{7}{2}+8 \cos (2 x)\right) d x \\
& =\frac{7 x}{2}-\frac{3 x^{2}}{4}+2 x^{3}+4 \sin (2 x) \\
& U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(24 x^{2}-6 x+14+32 \cos (2 x)\right)\left(-4 \mathrm{e}^{-2 i x}\right)}{(1)(-64 i)} d x \\
& =-\int \frac{-4\left(24 x^{2}-6 x+14+32 \cos (2 x)\right) \mathrm{e}^{-2 i x}}{-64 i} d x \\
& =-\int\left(-\frac{i\left(7+12 x^{2}-3 x+16 \cos (2 x)\right) \mathrm{e}^{-2 i x}}{8}\right) d x \\
& =-\frac{\left(24 x^{2}-24 i x-6 x+3 i+2\right) \mathrm{e}^{-2 i x}}{32}+i x-\frac{\mathrm{e}^{-4 i x}}{4} \\
& =-\frac{\left(24 x^{2}-24 i x-6 x+3 i+2\right) \mathrm{e}^{-2 i x}}{32}+i x-\frac{\mathrm{e}^{-4 i x}}{4} \\
& U_{4}=(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(24 x^{2}-6 x+14+32 \cos (2 x)\right)\left(-4 \mathrm{e}^{2 i x}\right)}{(1)(-64 i)} d x \\
& =\int \frac{-4\left(24 x^{2}-6 x+14+32 \cos (2 x)\right) \mathrm{e}^{2 i x}}{-64 i} d x \\
& =\int\left(-\frac{i\left(7+12 x^{2}-3 x+16 \cos (2 x)\right) \mathrm{e}^{2 i x}}{8}\right) d x \\
& =-i x-\frac{\mathrm{e}^{4 i x}}{4}-\frac{\left(24 x^{2}+24 i x-6 x-3 i+2\right) \mathrm{e}^{2 i x}}{32} \\
& =-i x-\frac{\mathrm{e}^{4 i x}}{4}-\frac{\left(24 x^{2}+24 i x-6 x-3 i+2\right) \mathrm{e}^{2 i x}}{32}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-\frac{3 x^{4}}{2}-2 \cos (2 x)-4 \sin (2 x) x+\frac{x^{3}}{2}-\frac{7 x^{2}}{4}\right) \\
& +\left(\frac{7 x}{2}-\frac{3 x^{2}}{4}+2 x^{3}+4 \sin (2 x)\right)(x) \\
& +\left(-\frac{\left(24 x^{2}-24 i x-6 x+3 i+2\right) \mathrm{e}^{-2 i x}}{32}+i x-\frac{\mathrm{e}^{-4 i x}}{4}\right)\left(\mathrm{e}^{2 i x}\right) \\
& +\left(-i x-\frac{\mathrm{e}^{4 i x}}{4}-\frac{\left(24 x^{2}+24 i x-6 x-3 i+2\right) \mathrm{e}^{2 i x}}{32}\right)\left(\mathrm{e}^{-2 i x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{x^{2}}{4}+\frac{x^{4}}{2}+\frac{3 x}{8}-\frac{x^{3}}{4}-\frac{1}{8}-\frac{5 \cos (2 x)}{2}-2 \sin (2 x) x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}\right)+\left(\frac{x^{2}}{4}+\frac{x^{4}}{2}+\frac{3 x}{8}-\frac{x^{3}}{4}-\frac{1}{8}-\frac{5 \cos (2 x)}{2}-2 \sin (2 x) x\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{2} x+c_{1}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}+\frac{x^{2}}{4}+\frac{x^{4}}{2}+\frac{3 x}{8}-\frac{x^{3}}{4}-\frac{1}{8}-\frac{5 \cos (2 x)}{2}-2 \sin (2 x)(x)
$$

Verification of solutions

$$
y=c_{2} x+c_{1}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}+\frac{x^{2}}{4}+\frac{x^{4}}{2}+\frac{3 x}{8}-\frac{x^{3}}{4}-\frac{1}{8}-\frac{5 \cos (2 x)}{2}-2 \sin (2 x) x
$$

Verified OK.

Maple trace
$`$ Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = 24*_a^2+32*cos(2*_a)-4*_b(_a)
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 48
dsolve(diff $(y(x), x \$ 4)+4 * \operatorname{diff}(y(x), x \$ 2)=24 * x^{\wedge} 2-6 * x+14+32 * \cos (2 * x), y(x)$, singsol $\left.=a l l\right)$

$$
y(x)=\frac{\left(-c_{1}-10\right) \cos (2 x)}{4}+\frac{\left(-8 x-c_{2}\right) \sin (2 x)}{4}+\frac{x^{4}}{2}-\frac{x^{3}}{4}+\frac{x^{2}}{4}+c_{3} x+c_{4}
$$

\checkmark Solution by Mathematica
Time used: 1.052 (sec). Leaf size: 54
DSolve[y''''[x]+4*y''[x]==24*x^2-6*x+14+32*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{4}\left(2 x^{4}-x^{3}+x^{2}+4 c_{4} x-\left(12+c_{1}\right) \cos (2 x)-\left(8 x+c_{2}\right) \sin (2 x)+4 c_{3}\right)
$$

11.3 problem 3

Internal problem ID [12776]
Internal file name [OUTPUT/11428_Friday_November_03_2023_06_32_51_AM_25526768/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218
Problem number: 3 .
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=3+\cos (2 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{2}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i \\
& \lambda_{3}=i \\
& \lambda_{4}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i x} \\
& y_{2}=x \mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=x \mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=3+\cos (2 x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3+\cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{i x}, x \mathrm{e}^{-i x}, \mathrm{e}^{i x}, \mathrm{e}^{-i x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{2} \cos (2 x)+9 A_{3} \sin (2 x)+A_{1}=3+\cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=\frac{1}{9}, A_{3}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3+\frac{\cos (2 x)}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}\right)+\left(3+\frac{\cos (2 x)}{9}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+3+\frac{\cos (2 x)}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+3+\frac{\cos (2 x)}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+3+\frac{\cos (2 x)}{9}
$$

Verified OK.
Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 28
dsolve(diff $(y(x), x \$ 4)+2 * \operatorname{diff}(y(x), x \$ 2)+y(x)=3+\cos (2 * x), y(x)$, singsol=all)

$$
y(x)=3+\frac{\cos (2 x)}{9}+\left(c_{4} x+c_{1}\right) \cos (x)+\left(c_{3} x+c_{2}\right) \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 36
DSolve[y''''[x]+2*y''[x]+y[x]==3+Cos[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{9} \cos (2 x)+\left(c_{2} x+c_{1}\right) \cos (x)+c_{3} \sin (x)+c_{4} x \sin (x)+3
$$

11.4 problem 4

Internal problem ID [12777]
Internal file name [OUTPUT/11429_Friday_November_03_2023_06_32_51_AM_75044440/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218
Problem number: 4.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_y]]

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}+3 y^{\prime \prime}-y^{\prime}=6 x-20-120 x^{2} \mathrm{e}^{x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}+3 y^{\prime \prime}-y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{4}-3 \lambda^{3}+3 \lambda^{2}-\lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1 \\
& \lambda_{4}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=x \mathrm{e}^{x} \\
& y_{4}=x^{2} \mathrm{e}^{x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}+3 y^{\prime \prime}-y^{\prime}=6 x-20-120 x^{2} \mathrm{e}^{x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
6 x-20-120 x^{2} \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1, x\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}\right\}\right]
$$

Since $x \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\},\left\{x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}, x^{4} \mathrm{e}^{x}\right\}\right]
$$

Since $x^{2} \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\},\left\{x^{3} \mathrm{e}^{x}, x^{4} \mathrm{e}^{x}, \mathrm{e}^{x} x^{5}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} x^{2}+A_{1} x+A_{3} x^{3} \mathrm{e}^{x}+A_{4} x^{4} \mathrm{e}^{x}+A_{5} \mathrm{e}^{x} x^{5}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 120 A_{5} \mathrm{e}^{x} x+24 A_{4} x \mathrm{e}^{x}+60 A_{5} \mathrm{e}^{x} x^{2}-A_{1}+6 A_{2}-2 A_{2} x+6 A_{3} \mathrm{e}^{x}+24 A_{4} \mathrm{e}^{x} \\
& \quad=6 x-20-120 x^{2} \mathrm{e}^{x}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=-3, A_{3}=-40, A_{4}=10, A_{5}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-3 x^{2}+2 x-40 x^{3} \mathrm{e}^{x}+10 x^{4} \mathrm{e}^{x}-2 \mathrm{e}^{x} x^{5}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4}\right)+\left(-3 x^{2}+2 x-40 x^{3} \mathrm{e}^{x}+10 x^{4} \mathrm{e}^{x}-2 \mathrm{e}^{x} x^{5}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{x}+c_{1}-3 x^{2}+2 x-40 x^{3} \mathrm{e}^{x}+10 x^{4} \mathrm{e}^{x}-2 \mathrm{e}^{x} x^{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{x}+c_{1}-3 x^{2}+2 x-40 x^{3} \mathrm{e}^{x}+10 x^{4} \mathrm{e}^{x}-2 \mathrm{e}^{x} x^{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{x}+c_{1}-3 x^{2}+2 x-40 x^{3} \mathrm{e}^{x}+10 x^{4} \mathrm{e}^{x}-2 \mathrm{e}^{x} x^{5}
$$

Verified OK.

Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = -120*_a~2*exp(_a) -
Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful

Solution by Maple
Time used: 0.0 (sec). Leaf size: 56

$$
\begin{aligned}
y(x)= & \left(-2 x^{5}+10 x^{4}-40 x^{3}+\left(c_{3}+120\right) x^{2}+\left(c_{2}-2 c_{3}-240\right) x+c_{1}-c_{2}+2 c_{3}+240\right) \mathrm{e}^{x} \\
& -3 x^{2}+2 x+c_{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.569 (sec). Leaf size: 65
DSolve[y''''[x]-3*y'' $[x]+3 * y$ ' $[x]-y$ ' $[x]==6 * x-20-120 * x \wedge 2 * \operatorname{Exp}[x], y[x], x$, IncludeSingularSoluti

$$
\begin{aligned}
y(x) \rightarrow & -3 x^{2} \\
& +e^{x}\left(-2 x^{5}+10 x^{4}-40 x^{3}+\left(120+c_{3}\right) x^{2}+\left(-240+c_{2}-2 c_{3}\right) x+240+c_{1}-c_{2}+2 c_{3}\right) \\
& +2 x+c_{4}
\end{aligned}
$$

11.5 problem 5

11.5.1 Maple step by step solution

2156
Internal problem ID [12778]
Internal file name [OUTPUT/11430_Friday_November_03_2023_06_32_52_AM_71108883/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218
Problem number: 5.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+21 y^{\prime}-26 y=36 \mathrm{e}^{2 x} \sin (3 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+21 y^{\prime}-26 y=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+21 \lambda-26=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=2-3 i \\
& \lambda_{3}=2+3 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(2-3 i) x} c_{2}+\mathrm{e}^{(2+3 i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{(2-3 i) x} \\
& y_{3}=\mathrm{e}^{(2+3 i) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+21 y^{\prime}-26 y=36 \mathrm{e}^{2 x} \sin (3 x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
\mathrm{e}^{2 x} & \mathrm{e}^{(2-3 i) x} & \mathrm{e}^{(2+3 i) x} \\
2 \mathrm{e}^{2 x} & (2-3 i) \mathrm{e}^{(2-3 i) x} & (2+3 i) \mathrm{e}^{(2+3 i) x} \\
4 \mathrm{e}^{2 x} & (-5-12 i) \mathrm{e}^{(2-3 i) x} & (-5+12 i) \mathrm{e}^{(2+3 i) x}
\end{array}\right] \\
|W| & =54 i \mathrm{e}^{2 x} \mathrm{e}^{(2-3 i) x} \mathrm{e}^{(2+3 i) x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=54 i \mathrm{e}^{6 x}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{(2-3 i) x} & \mathrm{e}^{(2+3 i) x} \\
(2-3 i) \mathrm{e}^{(2-3 i) x} & (2+3 i) \mathrm{e}^{(2+3 i) x}
\end{array}\right] \\
&=6 i \mathrm{e}^{4 x} \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{(2+3 i) x} \\
2 \mathrm{e}^{2 x} & (2+3 i) \mathrm{e}^{(2+3 i) x}
\end{array}\right] \\
& =3 i \mathrm{e}^{(4+3 i) x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{(2-3 i) x} \\
2 \mathrm{e}^{2 x} & (2-3 i) \mathrm{e}^{(2-3 i) x}
\end{array}\right] \\
& =-3 i \mathrm{e}^{(4-3 i) x}
\end{aligned}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(36 \mathrm{e}^{2 x} \sin (3 x)\right)\left(6 i \mathrm{e}^{4 x}\right)}{(1)\left(54 i \mathrm{e}^{6 x}\right)} d x \\
& =\int \frac{216 i \mathrm{e}^{2 x} \sin (3 x) \mathrm{e}^{4 x}}{54 i \mathrm{e}^{6 x}} d x \\
& =\int(4 \sin (3 x)) d x \\
& =-\frac{4 \cos (3 x)}{3}
\end{aligned}
$$

$$
\begin{aligned}
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(36 \mathrm{e}^{2 x} \sin (3 x)\right)\left(3 i \mathrm{e}^{(4+3 i) x}\right)}{(1)\left(54 i \mathrm{e}^{6 x}\right)} d x \\
& =-\int \frac{108 i \mathrm{e}^{2 x} \sin (3 x) \mathrm{e}^{(4+3 i) x}}{54 i \mathrm{e}^{6 x}} d x \\
& =-\int\left(2 \sin (3 x) \mathrm{e}^{3 i x}\right) d x \\
& =-\frac{-\frac{2 i \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)}{3}+i x \mathrm{e}^{3 i x}+2 x \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)-i x \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)^{2}}{1+\tan \left(\frac{3 x}{2}\right)^{2}} \\
& =-\frac{-\frac{2 i \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)}{3}+i x \mathrm{e}^{3 i x}+2 x \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)-i x \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)^{2}}{1+\tan \left(\frac{3 x}{2}\right)^{2}} \\
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(36 \mathrm{e}^{2 x} \sin (3 x)\right)\left(-3 i \mathrm{e}^{(4-3 i) x}\right)}{(1)\left(54 i \mathrm{e}^{6 x}\right)} d x \\
& =\int \frac{-108 i \mathrm{e}^{2 x} \sin (3 x) \mathrm{e}^{(4-3 i) x}}{54 i \mathrm{e}^{6 x}} d x \\
& =\int\left(-2 \sin (3 x) \mathrm{e}^{-3 i x}\right) d x \\
& =\frac{-\frac{2 i e^{-3 i x} \tan \left(\frac{3 x}{2}\right)}{3}+i x \mathrm{e}^{-3 i x}-2 x \mathrm{e}^{-3 i x} \tan \left(\frac{3 x}{2}\right)-i x \mathrm{e}^{-3 i x} \tan \left(\frac{3 x}{2}\right)^{2}}{1+\tan \left(\frac{3 x}{2}\right)^{2}} \\
& =\frac{-\frac{2 i \mathrm{e}^{-3 i x} \tan \left(\frac{3 x}{2}\right)}{3}+i x \mathrm{e}^{-3 i x}-2 x \mathrm{e}^{-3 i x} \tan \left(\frac{3 x}{2}\right)-i x \mathrm{e}^{-3 i x} \tan \left(\frac{3 x}{2}\right)^{2}}{1+\tan \left(\frac{3 x}{2}\right)^{2}}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-\frac{4 \cos (3 x)}{3}\right)\left(\mathrm{e}^{2 x}\right) \\
& +\left(-\frac{-\frac{2 i \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)}{3}+i x \mathrm{e}^{3 i x}+2 x \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)-i x \mathrm{e}^{3 i x} \tan \left(\frac{3 x}{2}\right)^{2}}{1+\tan \left(\frac{3 x}{2}\right)^{2}}\right)\left(\mathrm{e}^{(2-3 i) x}\right) \\
& +\left(\frac{-\frac{2 i \mathrm{e}^{-3 i x} \tan \left(\frac{3 x}{2}\right)}{3}+i x \mathrm{e}^{-3 i x}-2 x \mathrm{e}^{-3 i x} \tan \left(\frac{3 x}{2}\right)-i x \mathrm{e}^{-3 i x} \tan \left(\frac{3 x}{2}\right)^{2}}{1+\tan \left(\frac{3 x}{2}\right)^{2}}\right)\left(\mathrm{e}^{(2+3 i) x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=-\frac{2 \mathrm{e}^{2 x}(3 x \sin (3 x)+2 \cos (3 x))}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(2-3 i) x} c_{2}+\mathrm{e}^{(2+3 i) x} c_{3}\right)+\left(-\frac{2 \mathrm{e}^{2 x}(3 x \sin (3 x)+2 \cos (3 x))}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(2-3 i) x} c_{2}+\mathrm{e}^{(2+3 i) x} c_{3}-\frac{2 \mathrm{e}^{2 x}(3 x \sin (3 x)+2 \cos (3 x))}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(2-3 i) x} c_{2}+\mathrm{e}^{(2+3 i) x} c_{3}-\frac{2 \mathrm{e}^{2 x}(3 x \sin (3 x)+2 \cos (3 x))}{3}
$$

Verified OK.

11.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+21 y^{\prime}-26 y=36 \mathrm{e}^{2 x} \sin (3 x)
$$

- Highest derivative means the order of the ODE is 3

```
y'\prime
```

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=36 \mathrm{e}^{2 x} \sin (3 x)+6 y_{3}(x)-21 y_{2}(x)+26 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=36 \mathrm{e}^{2 x} \sin (3 x)+6 y_{3}(x)-21 y_{2}(x)+26 y_{1}(x)\right]$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 26 & -21 & 6\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ 36 \mathrm{e}^{2 x} \sin (3 x)\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 36 \mathrm{e}^{2 x} \sin (3 x)\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
26 & -21 & 6
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[2-3 \mathrm{I},\left[\begin{array}{c}
-\frac{5}{169}+\frac{12 \mathrm{I}}{169} \\
\frac{2}{13}+\frac{3 \mathrm{I}}{13} \\
1
\end{array}\right]\right],\left[2+3 \mathrm{I},\left[\begin{array}{c}
-\frac{5}{169}-\frac{12 \mathrm{I}}{169} \\
\frac{2}{13}-\frac{3 \mathrm{I}}{13} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-3 \mathrm{I},\left[\begin{array}{c}
-\frac{5}{169}+\frac{12 \mathrm{I}}{169} \\
\frac{2}{13}+\frac{3 I}{13} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(2-3 \mathrm{I}) x} \cdot\left[\begin{array}{c}
-\frac{5}{169}+\frac{12 I}{169} \\
\frac{2}{13}+\frac{3 I}{13} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{2 x} \cdot(\cos (3 x)-\mathrm{I} \sin (3 x)) \cdot\left[\begin{array}{c}
-\frac{5}{169}+\frac{12 \mathrm{I}}{169} \\
\frac{2}{13}+\frac{3 I}{13} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\left(-\frac{5}{169}+\frac{12 \mathrm{I}}{169}\right)(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\left(\frac{2}{13}+\frac{3 I}{13}\right)(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\cos (3 x)-\mathrm{I} \sin (3 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
-\frac{5 \cos (3 x)}{16 x}+\frac{12 \sin (3 x)}{169} \\
\frac{2 \cos (3 x)}{13}+\frac{3 \sin (3 x)}{13} \\
\cos (3 x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{5 \sin (3 x)}{169}+\frac{12 \cos (3 x)}{16 x} \\
-\frac{2 \sin (3 x)}{13}+\frac{3 \cos (3 x)}{13} \\
-\sin (3 x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{4} & \mathrm{e}^{2 x}\left(-\frac{5 \cos (3 x)}{169}+\frac{12 \sin (3 x)}{169}\right) & \mathrm{e}^{2 x}\left(\frac{5 \sin (3 x)}{169}+\frac{12 \cos (3 x)}{169}\right) \\
\frac{\mathrm{e}^{2 x}}{2} & \mathrm{e}^{2 x}\left(\frac{2 \cos (3 x)}{13}+\frac{3 \sin (3 x)}{13}\right) & \mathrm{e}^{2 x}\left(-\frac{2 \sin (3 x)}{13}+\frac{3 \cos (3 x)}{13}\right) \\
\mathrm{e}^{2 x} & \mathrm{e}^{2 x} \cos (3 x) & -\mathrm{e}^{2 x} \sin (3 x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{4} & \mathrm{e}^{2 x}\left(-\frac{5 \cos (3 x)}{169}+\frac{12 \sin (3 x)}{169}\right) & \mathrm{e}^{2 x}\left(\frac{5 \sin (3 x)}{169}+\frac{12 \cos (3 x)}{169}\right) \\
\frac{\mathrm{e}^{2 x}}{2} & \mathrm{e}^{2 x}\left(\frac{2 \cos (3 x)}{13}+\frac{3 \sin (3 x)}{13}\right) & \mathrm{e}^{2 x}\left(-\frac{2 \sin (3 x)}{13}+\frac{3 \cos (3 x)}{13}\right) \\
\mathrm{e}^{2 x} & \mathrm{e}^{2 x} \cos (3 x) & -\mathrm{e}^{2 x} \sin (3 x)
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
\frac{1}{4} & -\frac{5}{169} & \frac{12}{169} \\
\frac{1}{2} & \frac{2}{13} & \frac{3}{13} \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
-\frac{\mathrm{e}^{2 x}(-13+4 \cos (3 x)+6 \sin (3 x))}{9} & \frac{\mathrm{e}^{2 x}(-4+4 \cos (3 x)+3 \sin (3 x))}{9} & -\frac{\mathrm{e}^{2 x}(\cos (3 x)-1)}{9} \\
-\frac{26 \mathrm{e}^{2 x}(\cos (3 x)-1)}{9} & -\frac{\mathrm{e}^{2 x}(8-17 \cos (3 x)+6 \sin (3 x))}{9} & \frac{\mathrm{e}^{2 x}(2-2 \cos (3 x)+3 \sin (3 x))}{9} \\
\frac{26 \mathrm{e}^{2 x}(2-2 \cos (3 x)+3 \sin (3 x))}{9} & -\frac{\mathrm{e}^{2 x}(16-16 \cos (3 x)+63 \sin (3 x))}{9} & \frac{\mathrm{e}^{2 x}(4+5 \cos (3 x)+12 \sin (3 x))}{9}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{2 x}(-2+3 x \sin (3 x)+2 \cos (3 x))}{3} \\
2 \mathrm{e}^{2 x}\left(\frac{4}{3}+\frac{(-9 x-4) \cos (3 x)}{3}+(-2 x+1) \sin (3 x)\right) \\
2 \mathrm{e}^{2 x}\left(\frac{8}{3}+\frac{4(-2-9 x) \cos (3 x)}{3}+(5 x+4) \sin (3 x)\right)
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{2 x}(-2+3 x \sin (3 x)+2 \cos (3 x))}{3} \\
2 \mathrm{e}^{2 x}\left(\frac{4}{3}+\frac{(-9 x-4) \cos (3 x)}{3}+(-2 x+1) \sin (3 x)\right) \\
2 \mathrm{e}^{2 x}\left(\frac{8}{3}+\frac{4(-2-9 x) \cos (3 x)}{3}+(5 x+4) \sin (3 x)\right)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-2\left(\left(\frac{5 c_{2}}{338}-\frac{6 c_{3}}{169}+\frac{2}{3}\right) \cos (3 x)+\left(x-\frac{6 c_{2}}{169}-\frac{5 c_{3}}{338}\right) \sin (3 x)-\frac{c_{1}}{8}-\frac{2}{3}\right) \mathrm{e}^{2 x}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve (diff $(y(x), x \$ 3)-6 * \operatorname{diff}(y(x), x \$ 2)+21 * \operatorname{diff}(y(x), x)-26 * y(x)=36 * \exp (2 * x) * \sin (3 * x), y(x)$, s

$$
y(x)=\frac{\mathrm{e}^{2 x}\left(3 c_{3} \sin (3 x)-6 x \sin (3 x)+3 c_{2} \cos (3 x)-2 \cos (3 x)+3 c_{1}\right)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.103 (sec). Leaf size: 34
DSolve[y'' $\quad[x]-6 * y$ ' $[x]+21 * y$ ' $[x]-26 * y[x]==36 * \operatorname{Exp}[2 * x] * \operatorname{Sin}[3 * x], y[x], x$, IncludeSingularSolutio

$$
y(x) \rightarrow e^{2 x}\left(\left(-1+c_{2}\right) \cos (3 x)+\left(-2 x+c_{1}\right) \sin (3 x)+c_{3}\right)
$$

11.6 problem 6

11.6.1 Maple step by step solution

2164
Internal problem ID [12779]
Internal file name [OUTPUT/11431_Friday_November_03_2023_06_32_53_AM_14195515/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218
Problem number: 6.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=\left(2 x^{2}+4 x+8\right) \cos (x)+\left(6 x^{2}+8 x+12\right) \sin (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda^{2}-\lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{-x} \\
y_{2} & =x \mathrm{e}^{-x} \\
y_{3} & =\mathrm{e}^{x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=\left(2 x^{2}+4 x+8\right) \cos (x)+\left(6 x^{2}+8 x+12\right) \sin (x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\left(2 x^{2}+4 x+8\right) \cos (x)+\left(6 x^{2}+8 x+12\right) \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \sin (x), \cos (x) x, \cos (x) x^{2}, \sin (x) x^{2}, \cos (x), \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \sin (x)+A_{2} \cos (x) x+A_{3} \cos (x) x^{2}+A_{4} \sin (x) x^{2}+A_{5} \cos (x)+A_{6} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{5} \sin (x)-2 A_{6} \cos (x)+2 A_{1} \cos (x)-2 A_{1} x \sin (x)-2 A_{2} \cos (x) x-2 A_{3} \cos (x) x^{2} \\
& \quad-2 A_{4} \sin (x) x^{2}-8 A_{3} \cos (x) x-8 A_{4} \sin (x) x-4 A_{3} \sin (x) x+4 A_{4} \cos (x) x \\
& -2 A_{5} \cos (x)-2 A_{6} \sin (x)-4 A_{1} \sin (x)-2 A_{1} x \cos (x)-4 A_{2} \cos (x)+2 A_{2} \sin (x) x \\
& +2 A_{3} \sin (x) x^{2}-2 A_{4} \cos (x) x^{2}-2 A_{2} \sin (x)+2 A_{3} \cos (x)+2 A_{4} \sin (x) \\
& -6 A_{3} \sin (x)+6 A_{4} \cos (x)=\left(2 x^{2}+4 x+8\right) \cos (x)+\left(6 x^{2}+8 x+12\right) \sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-4, A_{2}=-6, A_{3}=1, A_{4}=-2, A_{5}=-2, A_{6}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-4 x \sin (x)-6 \cos (x) x+\cos (x) x^{2}-2 \sin (x) x^{2}-2 \cos (x)+\sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}\right) \\
& +\left(-4 x \sin (x)-6 \cos (x) x+\cos (x) x^{2}-2 \sin (x) x^{2}-2 \cos (x)+\sin (x)\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & \mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+c_{3} \mathrm{e}^{x}-4 x \sin (x)-6 \cos (x) x \\
& +\cos (x) x^{2}-2 \sin (x) x^{2}-2 \cos (x)+\sin (x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+c_{3} \mathrm{e}^{x}-4 x \sin (x)-6 \cos (x) x \tag{1}\\
& +\cos (x) x^{2}-2 \sin (x) x^{2}-2 \cos (x)+\sin (x)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+c_{3} \mathrm{e}^{x}-4 x \sin (x)-6 \cos (x) x \\
& +\cos (x) x^{2}-2 \sin (x) x^{2}-2 \cos (x)+\sin (x)
\end{aligned}
$$

Verified OK.

11.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=\left(2 x^{2}+4 x+8\right) \cos (x)+\left(6 x^{2}+8 x+12\right) \sin (x)
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=y+2 \cos (x) x^{2}+6 \sin (x) x^{2}+4 \cos (x) x+8 x \sin (x)+8 \cos (x)+12 \sin (x)-y^{\prime \prime}+y^{\prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=6 \sin (x) x^{2}+2 \cos (x) x^{2}+8 x \sin (x)+4 \cos (x) x+12 \sin (x)+8 \cos (x)
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=2 \cos (x) x^{2}+6 \sin (x) x^{2}+4 \cos (x) x+8 x \sin (x)+8 \cos (x)+12 \sin (x)-y_{3}(x)+y_{2}(x
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=2 \cos (x) x^{2}+6 \sin (x) x^{2}+4 \cos (x) x+8 x \sin (x)+8 \cos \right.
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
6 \sin (x) x^{2}+2 \cos (x) x^{2}+8 x \sin (x)+4 \cos (x) x+12 \sin (x)
\end{array}\right.
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
6 \sin (x) x^{2}+2 \cos (x) x^{2}+8 x \sin (x)+4 \cos (x) x+12 \sin (x)+8 \cos (x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- \quad Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]-(-1) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $\vec{y}_{p}($ $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & (x+1) \mathrm{e}^{-x} & \mathrm{e}^{x} \\
-\mathrm{e}^{-x} & -x \mathrm{e}^{-x} & \mathrm{e}^{x} \\
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & (x+1) \mathrm{e}^{-x} & \mathrm{e}^{x} \\
-\mathrm{e}^{-x} & -x \mathrm{e}^{-x} & \mathrm{e}^{x} \\
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
(x+1) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}-x \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2} \\
-x \mathrm{e}^{-x} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}+x \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2} \\
x \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}-x \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
2(-x-2) \mathrm{e}^{-x}+2\left(x^{2}-6 x-2\right) \cos (x)+2\left(-2 x^{2}-4 x+1\right) \sin (x)+8 \mathrm{e}^{x} \\
(2 x+2) \mathrm{e}^{-x}+\left(-4 x^{2}-4 x-10\right) \cos (x)+\left(-2 x^{2}+4 x-4\right) \sin (x)+8 \mathrm{e}^{x} \\
(-2 x-2) \mathrm{e}^{-x}+(-8 x-6) \cos (x)+(-4 x+8) \sin (x)+8 \mathrm{e}^{x}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\left[\begin{array}{r}
2(-x-2) \mathrm{e}^{-x}+2\left(x^{2}-6 x-2\right) \cos (x)+2\left(-2 x^{2}-4 x+\right. \\
(2 x+2) \mathrm{e}^{-x}+\left(-4 x^{2}-4 x-10\right) \cos (x)+\left(-2 x^{2}+4 x-\right. \\
(-2 x-2) \mathrm{e}^{-x}+(-8 x-6) \cos (x)+(-4 x+8) \sin
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\left(\left(c_{2}-2\right) x+c_{1}+c_{2}-4\right) \mathrm{e}^{-x}+2\left(x^{2}-6 x-2\right) \cos (x)+2\left(-2 x^{2}-4 x+1\right) \sin (x)+\mathrm{e}^{x}\left(c_{3}+\right.
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 43

```
dsolve(diff (y (x),x$3)+\operatorname{diff}(y(x),x$2)-\operatorname{diff}(y(x),x)-y(x)=(2*x^2+4*x+8)*\operatorname{cos}(x)+(6*x^2+8*x+12)*s
```

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{-x}+\left(x^{2}-6 x-2\right) \cos (x)+\left(-2 x^{2}-4 x+1\right) \sin (x)+c_{1} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 55
DSolve $\left[y\right.$ ' ' ' $[x]+y$ ' ' $[x]-y$ ' $[x]-y[x]==\left(2 * x^{\wedge} 2+4 * x+8\right) * \operatorname{Cos}[x]+\left(6 * x^{\wedge} 2+8 * x+12\right) * \operatorname{Sin}[x], y[x], x$, IncludeS

$$
y(x) \rightarrow\left(x^{2}-6 x-2\right) \cos (x)+e^{-x}\left(-e^{x}\left(2 x^{2}+4 x-1\right) \sin (x)+c_{2} x+c_{3} e^{2 x}+c_{1}\right)
$$

11.7 problem 7

Internal problem ID [12780]
Internal file name [OUTPUT/11432_Friday_November_03_2023_06_32_53_AM_50427656/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.4, page 218
Problem number: 7 .
ODE order: 6.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _linear, _nonhomogeneous]]
```

$$
y^{(6)}-12 y^{(5)}+63 y^{\prime \prime \prime \prime}-18 y^{\prime \prime \prime}+315 y^{\prime \prime}-300 y^{\prime}+125 y=\mathrm{e}^{x}(48 \cos (x)+96 \sin (x))
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{(6)}-12 y^{(5)}+63 y^{\prime \prime \prime \prime}-18 y^{\prime \prime \prime}+315 y^{\prime \prime}-300 y^{\prime}+125 y=0
$$

The characteristic equation is

$$
\lambda^{6}-12 \lambda^{5}+63 \lambda^{4}-18 \lambda^{3}+315 \lambda^{2}-300 \lambda+125=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=1\right) \\
& \lambda_{2}=\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=2\right) \\
& \lambda_{3}=\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=3\right) \\
& \lambda_{4}=\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=4\right) \\
& \lambda_{5}=\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=5\right) \\
& \lambda_{6}=\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=6\right)
\end{aligned}
$$

Therefore the homogeneous solution is
$y_{h}(x)=\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=5\right) x} c_{1}+\mathrm{e}^{\text {RootOf }\left(-Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-3\right.}$
The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\mathrm{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=5\right) x} \\
& y_{2}=\mathrm{e}^{\mathrm{RootOf}(}\left(Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=3\right) x \\
& y_{3}=\mathrm{e}^{\mathrm{RootOf}(}\left(Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=1\right) x \\
& y_{4}=\mathrm{e}^{\mathrm{RootOf}(}\left(Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=6\right) x \\
& y_{5}=\mathrm{e}^{\mathrm{RootOf}(}\left(Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=4\right) x \\
& y_{6}=\mathrm{e}^{\mathrm{RootOf}(}\left(Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=2\right) x
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{(6)}-12 y^{(5)}+63 y^{\prime \prime \prime \prime}-18 y^{\prime \prime \prime}+315 y^{\prime \prime}-300 y^{\prime}+125 y=\mathrm{e}^{x}(48 \cos (x)+96 \sin (x))
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}(48 \cos (x)+96 \sin (x))
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x} \cos (x), \mathrm{e}^{x} \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{\mathrm{RootOf}}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=1\right) x, \mathrm{e}^{\mathrm{RootOf}}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { in } C\right.\right.
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x} \cos (x)+A_{2} \mathrm{e}^{x} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -334 A_{1} \mathrm{e}^{x} \sin (x)+334 A_{2} \mathrm{e}^{x} \cos (x)-343 A_{1} \mathrm{e}^{x} \cos (x)-343 A_{2} \mathrm{e}^{x} \sin (x) \\
& =\mathrm{e}^{x}(48 \cos (x)+96 \sin (x))
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{48528}{229205}, A_{2}=-\frac{16896}{229205}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{48528 \mathrm{e}^{x} \cos (x)}{229205}-\frac{16896 \mathrm{e}^{x} \sin (x)}{229205}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
=(& \left(\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=5\right) x} c_{1}\right. \\
& +\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=3\right) x} c_{2} \\
& +\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=1\right) x} c_{3} \\
& \quad+\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=6\right) x} c_{4} \\
& \quad+\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=4\right) x} c_{5} \\
& \left.\quad+\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=2\right) x} c_{6}\right) \\
& +\left(-\frac{48528 \mathrm{e}^{x} \cos (x)}{229205}-\frac{16896 \mathrm{e}^{x} \sin (x)}{229205}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=5\right) x} c_{1} \\
& +\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=3\right) x} c_{2} \\
& +\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=1\right) x} c_{3} \\
& +\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=6\right) x} c_{4} \tag{1}\\
& +\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=4\right) x} c_{5} \\
& +\mathrm{e}^{\text {RootOf }\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=2\right) x} c_{6}^{x} \\
& -\frac{48528 \mathrm{e}^{x} \cos (x)}{229205}-\frac{16896 \mathrm{e}^{x} \sin (x)}{229205}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& y= \mathrm{e}^{\operatorname{RootOf}(}\left(Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=5\right) x \\
&+\mathrm{e}_{1} \mathrm{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=3\right) x \\
& c_{2} \\
&+\mathrm{e}^{\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=1\right) x} c_{3} \\
&+\mathrm{e}^{\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=6\right) x} c_{4} \\
&+\mathrm{e}^{\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=4\right) x} c_{5} \\
&+\mathrm{e}^{\operatorname{RootOf}\left(_Z^{6}-12 _Z^{5}+63 _Z^{4}-18 _Z^{3}+315 _Z^{2}-300 _Z+125, \text { index }=2\right) x} c_{6} \\
&-\frac{48528 \mathrm{e}^{x} \cos (x)}{229205}-\frac{16896 \mathrm{e}^{x} \sin (x)}{229205}
\end{aligned}
$$

Verified OK.

Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 6; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 6; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 5468

```
dsolve(diff (y(x),x$6)-12*diff (y(x),x$5)+63*\operatorname{diff (y (x),x$4)-18*diff (y (x),x$3)+315*diff (y (x),x$}
```

Expression too large to display
\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 292

```
DSolve[y''''''[x]-12*y'''''[x]+63*y''''[x]-18*y'''[x]+315*y''[x]-300*y'[x]+125*y[x]==Exp[x]*
```

$$
\begin{aligned}
y(x) \rightarrow & c_{3} \exp \left(x \operatorname{Root}\left[\# 1^{6}-12 \# 1^{5}+63 \# 1^{4}-18 \# 1^{3}+315 \# 1^{2}-300 \# 1+125 \&, 3\right]\right) \\
& +c_{4} \exp \left(x \operatorname{Root}\left[\# 1^{6}-12 \# 1^{5}+63 \# 1^{4}-18 \# 1^{3}+315 \# 1^{2}-300 \# 1+125 \&, 4\right]\right) \\
& +c_{1} \exp \left(x \operatorname{Root}\left[\# 1^{6}-12 \# 1^{5}+63 \# 1^{4}-18 \# 1^{3}+315 \# 1^{2}-300 \# 1+125 \&, 1\right]\right) \\
& +c_{2} \exp \left(x \operatorname{Root}\left[\# 1^{6}-12 \# 1^{5}+63 \# 1^{4}-18 \# 1^{3}+315 \# 1^{2}-300 \# 1+125 \&, 2\right]\right) \\
& +c_{5} \exp \left(x \operatorname{Root}\left[\# 1^{6}-12 \# 1^{5}+63 \# 1^{4}-18 \# 1^{3}+315 \# 1^{2}-300 \# 1+125 \&, 5\right]\right) \\
& +c_{6} \exp \left(x \operatorname{Root}\left[\# 1^{6}-12 \# 1^{5}+63 \# 1^{4}-18 \# 1^{3}+315 \# 1^{2}-300 \# 1+125 \&, 6\right]\right) \\
& -\frac{48 e^{x}(352 \sin (x)+1011 \cos (x))}{229205}
\end{aligned}
$$

12 Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221

12.1 problem 1 2177
12.2 problem 2 2184
12.3 problem 3 2188
12.4 problem 4 2198

12.1 problem 1

12.1.1 Maple step by step solution . 2179

Internal problem ID [12781]
Internal file name [OUTPUT/11433_Friday_November_03_2023_06_32_54_AM_79193795/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221
Problem number: 1.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-4 y^{\prime}+12 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=5, y^{\prime \prime}(0)=-1\right]
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}-4 \lambda+12=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2}+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+2 c_{2} \mathrm{e}^{2 x}+3 c_{3} \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=-2 c_{1}+2 c_{2}+3 c_{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=4 c_{1} \mathrm{e}^{-2 x}+4 c_{2} \mathrm{e}^{2 x}+9 c_{3} \mathrm{e}^{3 x}
$$

substituting $y^{\prime \prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=4 c_{1}+4 c_{2}+9 c_{3} \tag{3A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=3 \\
& c_{3}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{-2 x}+3 \mathrm{e}^{2 x}-\mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-2 x}+3 \mathrm{e}^{2 x}-\mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 387: Solution plot

Verification of solutions

$$
y=-\mathrm{e}^{-2 x}+3 \mathrm{e}^{2 x}-\mathrm{e}^{3 x}
$$

Verified OK.

12.1.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-3 y^{\prime \prime}-4 y^{\prime}+12 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=5,\left.y^{\prime \prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=3 y_{3}(x)+4 y_{2}(x)-12 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 y_{3}(x)+4 y_{2}(x)-12 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & 4 & 3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & 4 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(4 c_{3} \mathrm{e}^{5 x}+9 c_{2} \mathrm{e}^{4 x}+9 c_{1}\right) \mathrm{e}^{-2 x}}{36}$
- Use the initial condition $y(0)=1$

$$
1=\frac{c_{3}}{9}+\frac{c_{2}}{4}+\frac{c_{1}}{4}
$$

- Calculate the 1st derivative of the solution

$$
y^{\prime}=\frac{\left(20 c_{3} \mathrm{e}^{5 x}+36 c_{2} \mathrm{e}^{4 x}\right) \mathrm{e}^{-2 x}}{36}-\frac{\left(4 c_{3} \mathrm{e}^{5 x}+9 c_{2} \mathrm{e}^{4 x}+9 c_{1}\right) \mathrm{e}^{-2 x}}{18}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$

$$
5=\frac{c_{3}}{3}+\frac{c_{2}}{2}-\frac{c_{1}}{2}
$$

- Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=\frac{\left(100 c_{3} \mathrm{e}^{5 x}+144 c_{2} \mathrm{e}^{4 x}\right) \mathrm{e}^{-2 x}}{36}-\frac{\left(20 c_{3} \mathrm{e}^{5 x}+36 c_{2} \mathrm{e}^{4 x}\right) \mathrm{e}^{-2 x}}{9}+\frac{\left(4 c_{3} \mathrm{e}^{5 x}+9 c_{2} \mathrm{e}^{4 x}+9 c_{1}\right) \mathrm{e}^{-2 x}}{9}
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=-1$

$$
-1=c_{1}+c_{2}+c_{3}
$$

- Solve for the unknown coefficients

$$
\left\{c_{1}=-4, c_{2}=12, c_{3}=-9\right\}
$$

- \quad Solution to the IVP

$$
y=\left(-\mathrm{e}^{5 x}+3 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve([diff (y (x),x$3)-3*\operatorname{diff}(y(x),x$2)-4*\operatorname{diff}(y(x),x)+12*y(x)=0,y(0) = 1, D(y)(0) = 5, (D@@
```

$$
y(x)=\left(-\mathrm{e}^{5 x}+3 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 26

$$
y(x) \rightarrow-e^{-2 x}\left(-3 e^{4 x}+e^{5 x}+1\right)
$$

12.2 problem 2

Internal problem ID [12782]
Internal file name [OUTPUT/11434_Friday_November_03_2023_06_32_54_AM_22446224/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221
Problem number: 2.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime \prime}+2 y^{\prime}-y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=-3, y^{\prime \prime \prime}(0)=3\right]
$$

The characteristic equation is

$$
\lambda^{4}-2 \lambda^{3}+2 \lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1 \\
& \lambda_{4}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=x \mathrm{e}^{x} \\
& y_{4}=x^{2} \mathrm{e}^{x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+2 x \mathrm{e}^{x} c_{4}+x^{2} \mathrm{e}^{x} c_{4}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-c_{1}+c_{2}+c_{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+2 c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+2 \mathrm{e}^{x} c_{4}+4 x \mathrm{e}^{x} c_{4}+x^{2} \mathrm{e}^{x} c_{4}
$$

substituting $y^{\prime \prime}=-3$ and $x=0$ in the above gives

$$
\begin{equation*}
-3=c_{1}+c_{2}+2 c_{3}+2 c_{4} \tag{3A}
\end{equation*}
$$

Taking three derivatives of the solution gives

$$
y^{\prime \prime \prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+3 c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+6 \mathrm{e}^{x} c_{4}+6 x \mathrm{e}^{x} c_{4}+x^{2} \mathrm{e}^{x} c_{4}
$$

substituting $y^{\prime \prime \prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-c_{1}+c_{2}+3 c_{3}+6 c_{4} \tag{4~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=2 \\
& c_{3}=-4 \\
& c_{4}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 x^{2} \mathrm{e}^{x}-4 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\mathrm{e}^{-x}
$$

Which simplifies to

$$
y=-\mathrm{e}^{-x}+\left(2 x^{2}-4 x+2\right) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-x}+\left(2 x^{2}-4 x+2\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 388: Solution plot
$\underline{\text { Verification of solutions }}$

$$
y=-\mathrm{e}^{-x}+\left(2 x^{2}-4 x+2\right) \mathrm{e}^{x}
$$

Verified OK.

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27
dsolve ([diff $(y(x), x \$ 4)-2 * \operatorname{diff}(y(x), x \$ 3)+2 * \operatorname{diff}(y(x), x)-y(x)=0, y(0)=1, D(y)(0)=-1, \quad(D @ Q)$

$$
y(x)=-\mathrm{e}^{-x}+\left(2 x^{2}-4 x+2\right) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 25
DSolve[\{y'' '' $[x]-2 * y$ ' ' ' $[x]+2 * y$ ' $[x]-y[x]==0,\{y[0]==1, y$ ' $[0]==-1, y$ ' $[0]==-3, y$ ' ' ' $[0]==3\}\}, y[x], x$

$$
y(x) \rightarrow e^{-x}\left(2 e^{2 x}(x-1)^{2}-1\right)
$$

12.3 problem 3

12.3.1 Maple step by step solution

2192
Internal problem ID [12783]
Internal file name [OUTPUT/11435_Saturday_November_04_2023_08_47_16_AM_64086885/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221
Problem number: 3 .
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=2 \mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=3, y^{\prime \prime}(0)=-3\right]
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}-\lambda^{2}+\lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=i \\
& \lambda_{3}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=2 \mathrm{e}^{x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{i x}, \mathrm{e}^{-i x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}=2 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}\right)+\left(x \mathrm{e}^{x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2}+c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+i \mathrm{e}^{i x} c_{2}-i \mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{x}+\mathrm{e}^{x}
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{2} i-c_{3} i+c_{1}+1 \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=\mathrm{e}^{x} c_{1}-\mathrm{e}^{i x} c_{2}-\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{x}+2 \mathrm{e}^{x}
$$

substituting $y^{\prime \prime}=-3$ and $x=0$ in the above gives

$$
\begin{equation*}
-3=c_{1}-c_{2}-c_{3}+2 \tag{3A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=\frac{3}{2}-2 i \\
& c_{3}=\frac{3}{2}+2 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+3 \cos (x)+4 \sin (x)
$$

Which simplifies to

$$
y=(x-2) \mathrm{e}^{x}+3 \cos (x)+4 \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+3 \cos (x)+4 \sin (x) \tag{1}
\end{equation*}
$$

Figure 389: Solution plot

Verification of solutions

$$
y=(x-2) \mathrm{e}^{x}+3 \cos (x)+4 \sin (x)
$$

Verified OK.

12.3.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=2 \mathrm{e}^{x}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=3,\left.y^{\prime \prime}\right|_{\{x=0\}}=-3\right]
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=2 \mathrm{e}^{x}+y_{3}(x)-y_{2}(x)+y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=2 \mathrm{e}^{x}+y_{3}(x)-y_{2}(x)+y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
2 \mathrm{e}^{x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 2 \mathrm{e}^{x}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & -\cos (x) & \sin (x) \\
\mathrm{e}^{x} & \sin (x) & \cos (x) \\
\mathrm{e}^{x} & \cos (x) & -\sin (x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & -\cos (x) & \sin (x) \\
\mathrm{e}^{x} & \sin (x) & \cos (x) \\
\mathrm{e}^{x} & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{x}}{2}+\frac{\cos (x)}{2}-\frac{\sin (x)}{2} & \sin (x) & \frac{\mathrm{e}^{x}}{2}-\frac{\cos (x)}{2}-\frac{\sin (x)}{2} \\
\frac{\mathrm{e}^{x}}{2}-\frac{\cos (x)}{2}-\frac{\sin (x)}{2} & \cos (x) & \frac{\mathrm{e}^{x}}{2}+\frac{\sin (x)}{2}-\frac{\cos (x)}{2} \\
\frac{\mathrm{e}^{x}}{2}+\frac{\sin (x)}{2}-\frac{\cos (x)}{2} & -\sin (x) & \frac{\mathrm{e}^{x}}{2}+\frac{\cos (x)}{2}+\frac{\sin (x)}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$
$\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\mathrm{e}^{x}(x-1)+\cos (x) \\
x \mathrm{e}^{x}-\sin (x) \\
x \mathrm{e}^{x}+\mathrm{e}^{x}-\cos (x)
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\mathrm{e}^{x}(x-1)+\cos (x) \\
x \mathrm{e}^{x}-\sin (x) \\
x \mathrm{e}^{x}+\mathrm{e}^{x}-\cos (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\left(c_{1}+x-1\right) \mathrm{e}^{x}+\left(-c_{2}+1\right) \cos (x)+c_{3} \sin (x)
$$

- Use the initial condition $y(0)=1$
$1=c_{1}-c_{2}$
- Calculate the 1st derivative of the solution

$$
y^{\prime}=\mathrm{e}^{x}+\left(c_{1}+x-1\right) \mathrm{e}^{x}-\left(-c_{2}+1\right) \sin (x)+c_{3} \cos (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=3$
$3=c_{1}+c_{3}$
- Calculate the 2nd derivative of the solution
$y^{\prime \prime}=2 \mathrm{e}^{x}+\left(c_{1}+x-1\right) \mathrm{e}^{x}-\left(-c_{2}+1\right) \cos (x)-c_{3} \sin (x)$
- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=-3$
$-3=c_{1}+c_{2}$
- \quad Solve for the unknown coefficients
$\left\{c_{1}=-1, c_{2}=-2, c_{3}=4\right\}$
- Solution to the IVP
$y=(x-2) \mathrm{e}^{x}+3 \cos (x)+4 \sin (x)$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 19

```
dsolve([diff(y(x),x$3)-\operatorname{diff}(y(x),x$2)+\operatorname{diff}(y(x),x)-y(x)=2*exp(x),y(0)=1,D(y)(0)=3, (D@@
```

$$
y(x)=(x-2) \mathrm{e}^{x}+3 \cos (x)+4 \sin (x)
$$

Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 21
DSolve[\{y'' ' $[x]-y$ '' $[x]+y$ ' $[x]-y[x]==2 * \operatorname{Exp}[x],\{y[0]==1, y$ ' $[0]==3, y$ ' $[0]==-3\}\}, y[x], x$, IncludeSin

$$
y(x) \rightarrow e^{x}(x-2)+4 \sin (x)+3 \cos (x)
$$

12.4 problem 4

Internal problem ID [12784]
Internal file name [OUTPUT/11436_Saturday_November_04_2023_08_47_19_AM_78487314/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 4. N-th Order Linear Differential Equations. Exercises 4.5, page 221
Problem number: 4.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=4+3 x
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=1, y^{\prime \prime \prime}(0)=1\right]
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{2}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i \\
\lambda_{3} & =i \\
\lambda_{4} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i x} \\
& y_{2}=x \mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=x \mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=4+3 x
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{i x}, x \mathrm{e}^{-i x}, \mathrm{e}^{i x}, \mathrm{e}^{-i x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{2} x+A_{1}=4+3 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=4, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=4+3 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}\right)+(4+3 x)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+4+3 x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+4+3 x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{3}+c_{1}+4 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{-i x} c_{4}-i\left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\mathrm{e}^{i x} c_{2}+i\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}+3
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} i-c_{3} i+c_{2}+c_{4}+3 \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=-2 i \mathrm{e}^{-i x} c_{4}-\left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+2 i \mathrm{e}^{i x} c_{2}-\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}
$$

substituting $y^{\prime \prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=2 c_{2} i-2 c_{4} i-c_{1}-c_{3} \tag{3~A}
\end{equation*}
$$

Taking three derivatives of the solution gives

$$
y^{\prime \prime \prime}=-3 \mathrm{e}^{-i x} c_{4}+i\left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}-3 \mathrm{e}^{i x} c_{2}-i\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x}
$$

substituting $y^{\prime \prime \prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-c_{1} i+c_{3} i-3 c_{2}-3 c_{4} \tag{4~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2+2 i \\
& c_{2}=\frac{1}{2}+\frac{3 i}{4} \\
& c_{3}=-2-2 i \\
& c_{4}=\frac{1}{2}-\frac{3 i}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4+3 x+\cos (x) x-4 \cos (x)-\frac{3 x \sin (x)}{2}-4 \sin (x)
$$

Which simplifies to

$$
y=4+(-4+x) \cos (x)+\frac{(-3 x-8) \sin (x)}{2}+3 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4+(-4+x) \cos (x)+\frac{(-3 x-8) \sin (x)}{2}+3 x \tag{1}
\end{equation*}
$$

Figure 390: Solution plot

Verification of solutions

$$
y=4+(-4+x) \cos (x)+\frac{(-3 x-8) \sin (x)}{2}+3 x
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

```
dsolve([diff(y(x),x$4)+2*\operatorname{diff}(y(x),x$2)+y(x)=3*x+4,y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 1,
```

$$
y(x)=4+(x-4) \cos (x)+\frac{(-3 x-8) \sin (x)}{2}+3 x
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 27
DSolve[\{y'' '' $[x]+2 * y$ '' $[x]+y[x]==3 * x+4,\left\{y[0]==0, y\right.$ ' $[0]==0, y^{\prime \prime}[0]==1, y$ ' ' $\left.\left.[0]==1\right\}\right\}, y[x], x$, Includ

$$
y(x) \rightarrow 3 x-\frac{1}{2}(3 x+8) \sin (x)+(x-4) \cos (x)+4
$$

13 Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
13.1 problem 1 2204
13.2 problem 2 2208
13.3 problem 3 2212
13.4 problem 4 2216
13.5 problem 5 2221
13.6 problem 6 2226
13.7 problem 7 2231
13.8 problem 8 2235
13.9 problem 9 2239
13.10problem 10 2244
13.11problem 11 2250
13.12problem 12 2256
13.13problem 13 2263
13.14problem 14 2269

13.1 problem 1

13.1.1 Solving as laplace ode . 2204
13.1.2 Maple step by step solution 2206

Internal problem ID [12785]
Internal file name [OUTPUT/11437_Saturday_November_04_2023_08_47_19_AM_68303959/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y=0
$$

13.1.1 Solving as laplace ode

Since no initial condition is explicitly given, then let

$$
y(0)=c_{1}
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-Y(s)=0 \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-c_{1}-Y(s)=0
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{c_{1}}{s-1}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{c_{1}}{s-1}\right) \\
& =\mathrm{e}^{x} c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1} \tag{1}
\end{equation*}
$$

Figure 391: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}
$$

Verified OK.

13.1.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 4.609 (sec). Leaf size: 9
dsolve(diff $(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{x} y(0)
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 16
DSolve[y' $[x]-y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

13.2 problem 2

13.2.1 Maple step by step solution

2210
Internal problem ID [12786]
Internal file name [OUTPUT/11438_Saturday_November_04_2023_08_47_19_AM_72649872/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0
$$

Since no initial conditions are explicitly given, then let

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)+5 Y(s)=0 \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-c_{2}-s c_{1}-2 s Y(s)+2 c_{1}+5 Y(s)=0
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s c_{1}-2 c_{1}+c_{2}}{s^{2}-2 s+5}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{(1+2 i)\left(\frac{c_{1}}{8}-\frac{c_{2}}{8}\right)+\frac{3 c_{1}}{8}+\frac{c_{2}}{8}}{s-1-2 i}+\frac{(1-2 i)\left(\frac{c_{1}}{8}-\frac{c_{2}}{8}\right)+\frac{3 c_{1}}{8}+\frac{c_{2}}{8}}{s-1+2 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
& \mathcal{L}^{-1}\left(\frac{(1+2 i)\left(\frac{c_{1}}{8}-\frac{c_{2}}{8}\right)+\frac{3 c_{1}}{8}+\frac{c_{2}}{8}}{s-1-2 i}\right)=\frac{\mathrm{e}^{(1+2 i) x}\left(-i c_{2}+(2+i) c_{1}\right)}{4} \\
& \mathcal{L}^{-1}\left(\frac{(1-2 i)\left(\frac{c_{1}}{8}-\frac{c_{2}}{8}\right)+\frac{3 c_{1}}{8}+\frac{c_{2}}{8}}{s-1+2 i}\right)=\frac{\mathrm{e}^{(1-2 i) x}\left(i c_{2}+(2-i) c_{1}\right)}{4}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\frac{\mathrm{e}^{x}\left(2 c_{1} \cos (2 x)+\sin (2 x)\left(-c_{1}+c_{2}\right)\right)}{2}
$$

Simplifying the solution gives

$$
y=\frac{\left(-c_{1}+c_{2}\right) \mathrm{e}^{x} \sin (2 x)}{2}+c_{1} \cos (2 x) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-c_{1}+c_{2}\right) \mathrm{e}^{x} \sin (2 x)}{2}+c_{1} \cos (2 x) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 392: Slope field plot

Verification of solutions

$$
y=\frac{\left(-c_{1}+c_{2}\right) \mathrm{e}^{x} \sin (2 x)}{2}+c_{1} \cos (2 x) \mathrm{e}^{x}
$$

Verified OK.

13.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE $r^{2}-2 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(1-2 \mathrm{I}, 1+2 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{x} \cos (2 x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x} \sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \cos (2 x) \mathrm{e}^{x}+\mathrm{e}^{x} c_{2} \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 5.516 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}(2 y(0) \cos (2 x)+\sin (2 x)(D(y)(0)-y(0)))}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 24
DSolve[y'' $[x]-2 * y$ ' $[x]+5 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} \cos (2 x)+c_{1} \sin (2 x)\right)
$$

13.3 problem 3

13.3.1 Solving as laplace ode . 2212
13.3.2 Maple step by step solution . 2214

Internal problem ID [12787]
Internal file name [OUTPUT/11439_Saturday_November_04_2023_08_47_19_AM_18391819/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+2 y=4
$$

13.3.1 Solving as laplace ode

Since no initial condition is explicitly given, then let

$$
y(0)=c_{1}
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+2 Y(s)=\frac{4}{s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-c_{1}+2 Y(s)=\frac{4}{s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{c_{1} s+4}{s(s+2)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{2}{s}+\frac{-2+c_{1}}{s+2}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{2}{s}\right) & =2 \\
\mathcal{L}^{-1}\left(\frac{-2+c_{1}}{s+2}\right) & =\left(-2+c_{1}\right) \mathrm{e}^{-2 x}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\left(-2+c_{1}\right) \mathrm{e}^{-2 x}+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-2+c_{1}\right) \mathrm{e}^{-2 x}+2 \tag{1}
\end{equation*}
$$

Figure 393: Slope field plot

Verification of solutions

$$
y=\left(-2+c_{1}\right) \mathrm{e}^{-2 x}+2
$$

Verified OK.

13.3.2 Maple step by step solution

Let's solve
$y^{\prime}+2 y=4$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{-2 y+4}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{-2 y+4} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\frac{\ln (-y+2)}{2}=x+c_{1}$
- \quad Solve for y
$y=-\mathrm{e}^{-2 c_{1}-2 x}+2$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 5.422 (sec). Leaf size: 15
dsolve(diff $(y(x), x)+2 * y(x)=4, y(x)$, singsol=all)

$$
y(x)=(y(0)-2) \mathrm{e}^{-2 x}+2
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 20
DSolve[y' $[x]+2 * y[x]==4, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow 2+c_{1} e^{-2 x} \\
& y(x) \rightarrow 2
\end{aligned}
$$

13.4 problem 4

13.4.1 Maple step by step solution

2218
Internal problem ID [12788]
Internal file name [OUTPUT/11440_Saturday_November_04_2023_08_47_20_AM_85677221/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-9 y=2 \sin (3 x)
$$

Since no initial conditions are explicitly given, then let

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-9 Y(s)=\frac{6}{s^{2}+9} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-c_{2}-s c_{1}-9 Y(s)=\frac{6}{s^{2}+9}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{c_{1} s^{3}+c_{2} s^{2}+9 s c_{1}+9 c_{2}+6}{\left(s^{2}+9\right)\left(s^{2}-9\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{\frac{c_{1}}{2}+\frac{c_{2}}{6}+\frac{1}{18}}{s-3}+\frac{i}{18 s-54 i}-\frac{i}{18(s+3 i)}+\frac{\frac{c_{1}}{2}-\frac{c_{2}}{6}-\frac{1}{18}}{s+3}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{c_{1}}{2}+\frac{c_{2}}{6}+\frac{1}{18}}{s-3}\right) & =\frac{\left(9 c_{1}+3 c_{2}+1\right) \mathrm{e}^{3 x}}{18} \\
\mathcal{L}^{-1}\left(\frac{i}{18 s-54 i}\right) & =\frac{i \mathrm{e}^{3 i x}}{18} \\
\mathcal{L}^{-1}\left(-\frac{i}{18(s+3 i)}\right) & =-\frac{i \mathrm{e}^{-3 i x}}{18} \\
\mathcal{L}^{-1}\left(\frac{\frac{c_{1}}{2}-\frac{c_{2}}{6}-\frac{1}{18}}{s+3}\right) & =\frac{\left(9 c_{1}-3 c_{2}-1\right) \mathrm{e}^{-3 x}}{18}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\frac{\sin (3 x)}{9}+c_{1} \cosh (3 x)+\frac{\sinh (3 x)\left(1+3 c_{2}\right)}{9}
$$

Simplifying the solution gives

$$
y=-\frac{\sin (3 x)}{9}+c_{1} \cosh (3 x)+\frac{\sinh (3 x)\left(1+3 c_{2}\right)}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sin (3 x)}{9}+c_{1} \cosh (3 x)+\frac{\sinh (3 x)\left(1+3 c_{2}\right)}{9} \tag{1}
\end{equation*}
$$

Figure 394: Slope field plot

Verification of solutions

$$
y=-\frac{\sin (3 x)}{9}+c_{1} \cosh (3 x)+\frac{\sinh (3 x)\left(1+3 c_{2}\right)}{9}
$$

Verified OK.

13.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-9 y=2 \sin (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-9=0
$$

- Factor the characteristic polynomial
$(r-3)(r+3)=0$
- Roots of the characteristic polynomial
$r=(-3,3)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{3 x} c_{2}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function
$\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \sin (3 x)\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 x} & \mathrm{e}^{3 x} \\ -3 \mathrm{e}^{-3 x} & 3 \mathrm{e}^{3 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=6$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{-3 x}\left(\int \mathrm{e}^{3 x} \sin (3 x) d x\right)}{3}+\frac{\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-3 x} \sin (3 x) d x\right)}{3}$
- Compute integrals
$y_{p}(x)=-\frac{\sin (3 x)}{9}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{3 x} c_{2}-\frac{\sin (3 x)}{9}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.781 (sec). Leaf size: 30

```
dsolve(diff(y(x),x$2)-9*y(x)=2*sin(3*x),y(x), singsol=all)
```

$$
y(x)=-\frac{\sin (3 x)}{9}+y(0) \cosh (3 x)+\frac{\sinh (3 x)(1+3 D(y)(0))}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 30
DSolve[y'' $[\mathrm{x}]-9 * y[\mathrm{x}]==2 * \operatorname{Sin}[3 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-\frac{1}{9} \sin (3 x)+c_{1} e^{3 x}+c_{2} e^{-3 x}
$$

13.5 problem 5

13.5.1 Maple step by step solution 2223

Internal problem ID [12789]
Internal file name [OUTPUT/11441_Saturday_November_04_2023_08_47_20_AM_58456927/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=2 \sin (3 x)
$$

Since no initial conditions are explicitly given, then let

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+9 Y(s)=\frac{6}{s^{2}+9} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-c_{2}-s c_{1}+9 Y(s)=\frac{6}{s^{2}+9}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{c_{1} s^{3}+c_{2} s^{2}+9 s c_{1}+9 c_{2}+6}{\left(s^{2}+9\right)^{2}}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{6(s-3 i)^{2}}-\frac{1}{6(s+3 i)^{2}}+\frac{3 i\left(-\frac{c_{2}}{18}-\frac{1}{54}\right)+\frac{c_{1}}{2}}{s-3 i}+\frac{-3 i\left(-\frac{c_{2}}{18}-\frac{1}{54}\right)+\frac{c_{1}}{2}}{s+3 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{6(s-3 i)^{2}}\right) & =-\frac{x \mathrm{e}^{3 i x}}{6} \\
\mathcal{L}^{-1}\left(-\frac{1}{6(s+3 i)^{2}}\right) & =-\frac{x \mathrm{e}^{-3 i x}}{6} \\
\mathcal{L}^{-1}\left(\frac{3 i\left(-\frac{c_{2}}{18}-\frac{1}{54}\right)+\frac{c_{1}}{2}}{s-3 i}\right) & =\frac{\left(-3 i c_{2}+9 c_{1}-i\right) \mathrm{e}^{3 i x}}{18} \\
\mathcal{L}^{-1}\left(\frac{-3 i\left(-\frac{c_{2}}{18}-\frac{1}{54}\right)+\frac{c_{1}}{2}}{s+3 i}\right) & =\frac{\left(3 i c_{2}+9 c_{1}+i\right) \mathrm{e}^{-3 i x}}{18}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\frac{\cos (3 x)\left(-3 c_{1}+x\right)}{3}+\frac{\sin (3 x)\left(1+3 c_{2}\right)}{9}
$$

Simplifying the solution gives

$$
y=\frac{\left(-3 x+9 c_{1}\right) \cos (3 x)}{9}+\frac{\sin (3 x)\left(1+3 c_{2}\right)}{9}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-3 x+9 c_{1}\right) \cos (3 x)}{9}+\frac{\sin (3 x)\left(1+3 c_{2}\right)}{9} \tag{1}
\end{equation*}
$$

Figure 395: Slope field plot

Verification of solutions

$$
y=\frac{\left(-3 x+9 c_{1}\right) \cos (3 x)}{9}+\frac{\sin (3 x)\left(1+3 c_{2}\right)}{9}
$$

Verified OK.

13.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=2 \sin (3 x)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \sin (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{2 \cos (3 x)\left(\int \sin (3 x)^{2} d x\right)}{3}+\frac{\sin (3 x)\left(\int \sin (6 x) d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\sin (3 x)}{18}-\frac{x \cos (3 x)}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\sin (3 x)}{18}-\frac{x \cos (3 x)}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.437 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$2)+9*y(x)=2*sin(3*x),y(x), singsol=all)
```

$$
y(x)=-\frac{\cos (3 x)(x-3 y(0))}{3}+\frac{\sin (3 x)(1+3 D(y)(0))}{9}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 33
DSolve[y'' $[\mathrm{x}]+9 * y[\mathrm{x}]==2 * \operatorname{Sin}[3 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow\left(-\frac{x}{3}+c_{1}\right) \cos (3 x)+\frac{1}{18}\left(1+18 c_{2}\right) \sin (3 x)
$$

13.6 problem 6

13.6.1 Maple step by step solution 2228

Internal problem ID [12790]
Internal file name [OUTPUT/11442_Saturday_November_04_2023_08_47_20_AM_55985488/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second__order_linear__constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}-2 y=x \mathrm{e}^{x}-3 x^{2}
$$

Since no initial conditions are explicitly given, then let

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)-2 Y(s)=\frac{1}{(s-1)^{2}}-\frac{6}{s^{3}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-c_{2}-s c_{1}+s Y(s)-c_{1}-2 Y(s)=\frac{1}{(s-1)^{2}}-\frac{6}{s^{3}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{c_{1} s^{6}-c_{1} s^{5}+c_{2} s^{5}-c_{1} s^{4}-2 c_{2} s^{4}+c_{1} s^{3}+c_{2} s^{3}+s^{3}-6 s^{2}+12 s-6}{(s-1)^{2} s^{3}\left(s^{2}+s-2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{3}{s^{3}}+\frac{3}{2 s^{2}}+\frac{9}{4 s}+\frac{\frac{c_{1}}{3}-\frac{c_{2}}{3}-\frac{31}{108}}{s+2}-\frac{1}{9(s-1)^{2}}+\frac{1}{3(s-1)^{3}}+\frac{\frac{2 c_{1}}{3}+\frac{c_{2}}{3}-\frac{53}{27}}{s-1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{3}{s^{3}}\right) & =\frac{3 x^{2}}{2} \\
\mathcal{L}^{-1}\left(\frac{3}{2 s^{2}}\right) & =\frac{3 x}{2} \\
\mathcal{L}^{-1}\left(\frac{9}{4 s}\right) & =\frac{9}{4} \\
\mathcal{L}^{-1}\left(\frac{\frac{c_{1}}{3}-\frac{c_{2}}{3}-\frac{31}{108}}{s+2}\right) & =\frac{\left(36 c_{1}-36 c_{2}-31\right) \mathrm{e}^{-2 x}}{108} \\
\mathcal{L}^{-1}\left(-\frac{1}{9(s-1)^{2}}\right) & =-\frac{x \mathrm{e}^{x}}{9} \\
\mathcal{L}^{-1}\left(\frac{1}{3(s-1)^{3}}\right) & =\frac{x^{2} \mathrm{e}^{x}}{6} \\
\mathcal{L}^{-1}\left(\frac{\frac{2 c_{1}}{3}+\frac{c_{2}}{3}-\frac{53}{27}}{s-1}\right) & =\frac{\left(18 c_{1}+9 c_{2}-53\right) \mathrm{e}^{x}}{27}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\frac{9}{4}+\frac{3 x^{2}}{2}+\frac{3 x}{2}+\frac{\mathrm{e}^{x}\left(9 x^{2}+36 c_{1}+18 c_{2}-6 x-106\right)}{54}+\frac{\left(36 c_{1}-36 c_{2}-31\right) \mathrm{e}^{-2 x}}{108}
$$

Simplifying the solution gives

$$
y=\frac{3\left(-\frac{31}{162}+\frac{\left(x^{2}-\frac{2}{3} x+4 c_{1}+2 c_{2}-\frac{106}{9}\right) \mathrm{e}^{3 x}}{9}+\left(x^{2}+x+\frac{3}{2}\right) \mathrm{e}^{2 x}+\frac{2 c_{1}}{9}-\frac{2 c_{2}}{9}\right) \mathrm{e}^{-2 x}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3\left(-\frac{31}{162}+\frac{\left(x^{2}-\frac{2}{3} x+4 c_{1}+2 c_{2}-\frac{106}{9}\right) \mathrm{e}^{3 x}}{9}+\left(x^{2}+x+\frac{3}{2}\right) \mathrm{e}^{2 x}+\frac{2 c_{1}}{9}-\frac{2 c_{2}}{9}\right) \mathrm{e}^{-2 x}}{2} \tag{1}
\end{equation*}
$$

Figure 396: Slope field plot

Verification of solutions

$$
y=\frac{3\left(-\frac{31}{162}+\frac{\left(x^{2}-\frac{2}{3} x+4 c_{1}+2 c_{2}-\frac{106}{9}\right) \mathrm{e}^{3 x}}{9}+\left(x^{2}+x+\frac{3}{2}\right) \mathrm{e}^{2 x}+\frac{2 c_{1}}{9}-\frac{2 c_{2}}{9}\right) \mathrm{e}^{-2 x}}{2}
$$

Verified OK.

13.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-2 y=x \mathrm{e}^{x}-3 x^{2}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+r-2=0$
- Factor the characteristic polynomial

$$
(r+2)(r-1)=0
$$

- Roots of the characteristic polynomial
$r=(-2,1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{x}-3 x^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\left(\mathrm{e}^{3 x}\left(\int\left(3 x^{2} \mathrm{e}^{-x}-x\right) d x\right)+\int \mathrm{e}^{2 x} x\left(\mathrm{e}^{x}-3 x\right) d x\right) \mathrm{e}^{-2 x}}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{9}{4}+\frac{\left(9 x^{2}-6 x+2\right) \mathrm{e}^{x}}{54}+\frac{3 x^{2}}{2}+\frac{3 x}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\frac{9}{4}+\frac{\left(9 x^{2}-6 x+2\right) \mathrm{e}^{x}}{54}+\frac{3 x^{2}}{2}+\frac{3 x}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.812 (sec). Leaf size: 52

```
dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=x*exp(x)-3*x^2,y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & \frac{9}{4}+\frac{3 x}{2}+\frac{3 x^{2}}{2}+\frac{\mathrm{e}^{x}\left(9 x^{2}+18 D(y)(0)+36 y(0)-6 x-106\right)}{54} \\
& +\frac{(36 y(0)-36 D(y)(0)-31) \mathrm{e}^{-2 x}}{108}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.313 (sec). Leaf size: 49
DSolve[y''[x]+y'[x]-2*y[x]==x*Exp[x]-3*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{3}{4}\left(2 x^{2}+2 x+3\right)+\frac{1}{54} e^{x}\left(9 x^{2}-6 x+2+54 c_{2}\right)+c_{1} e^{-2 x}
$$

13.7 problem 7

Internal problem ID [12791]
Internal file name [OUTPUT/11443_Saturday_November_04_2023_08_47_21_AM_22023351/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 7 .
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_laplace"
Maple gives the following as the ode type

```
[[_high_order, _missing_y]]
```

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime \prime}+y^{\prime \prime}=x \mathrm{e}^{x}-3 x^{2}
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0) \\
\mathcal{L}\left(y^{\prime \prime \prime}\right) & =s^{3} Y(s)-y^{\prime \prime}(0)-s y^{\prime}(0)-s^{2} y(0) \\
\mathcal{L}\left(y^{\prime \prime \prime \prime}\right) & =s^{4} Y(s)-y^{\prime \prime \prime}(0)-s y^{\prime \prime}(0)-s^{2} y^{\prime}(0)-s^{3} y(0)
\end{aligned}
$$

The given ode becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{4} Y(s)-y^{\prime \prime \prime}(0)-s y^{\prime \prime}(0)-s^{2} y^{\prime}(0)-s^{3} y(0)-2 s^{3} Y(s)+2 y^{\prime \prime}(0)+2 s y^{\prime}(0)+2 s^{2} y(0)+s^{2} Y(s)-y^{\prime}(0)-s y(0)=\frac{}{(s-} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2} \\
y^{\prime \prime}(0) & =c_{3} \\
y^{\prime \prime \prime}(0) & =c_{4}
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{4} Y(s)-c_{4}-s c_{3}-s^{2} c_{2}-s^{3} c_{1}-2 s^{3} Y(s)+2 c_{3}+2 s c_{2}+2 s^{2} c_{1}+s^{2} Y(s)-c_{2}-s c_{1}=\frac{1}{(s-1)^{2}}-\frac{6}{s^{3}}
$$

Solving the above equation for $Y(s)$ results in
$Y(s)=\frac{c_{1} s^{8}-4 c_{1} s^{7}+c_{2} s^{7}+6 c_{1} s^{6}-4 c_{2} s^{6}+c_{3} s^{6}-4 c_{1} s^{5}+6 c_{2} s^{5}-4 c_{3} s^{5}+c_{4} s^{5}+c_{1} s^{4}-4 c_{2} s^{4}+5 c_{3} s^{4}}{(s-1)^{2} s^{5}\left(s^{2}-2 s+1\right)}$
Applying partial fractions decomposition results in
$Y(s)=-\frac{2}{(s-1)^{3}}+\frac{1}{(s-1)^{4}}-\frac{18}{s^{3}}+\frac{-26-3 c_{3}+2 c_{4}+c_{1}}{s}+\frac{-23+c_{2}-2 c_{3}+c_{4}}{s^{2}}+\frac{-c_{3}+c_{4}-3}{(s-1)^{2}}+\frac{3 c_{3}-2 c_{4}}{s-1}$
The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{2}{(s-1)^{3}}\right) & =-x^{2} \mathrm{e}^{x} \\
\mathcal{L}^{-1}\left(\frac{1}{(s-1)^{4}}\right) & =\frac{x^{3} \mathrm{e}^{x}}{6} \\
\mathcal{L}^{-1}\left(-\frac{18}{s^{3}}\right) & =-9 x^{2} \\
\mathcal{L}^{-1}\left(\frac{-26-3 c_{3}+2 c_{4}+c_{1}}{s}\right) & =-26-3 c_{3}+2 c_{4}+c_{1} \\
\mathcal{L}^{-1}\left(\frac{-23+c_{2}-2 c_{3}+c_{4}}{s^{2}}\right) & =\left(-23+c_{2}-2 c_{3}+c_{4}\right) x \\
\mathcal{L}^{-1}\left(\frac{-c_{3}+c_{4}-3}{(s-1)^{2}}\right) & =\left(-c_{3}+c_{4}-3\right) x \mathrm{e}^{x} \\
\mathcal{L}^{-1}\left(\frac{3 c_{3}-2 c_{4}+26}{s-1}\right) & =\left(3 c_{3}-2 c_{4}+26\right) \mathrm{e}^{x} \\
\mathcal{L}^{-1}\left(-\frac{6}{s^{5}}\right) & =-\frac{x^{4}}{4} \\
\mathcal{L}^{-1}\left(-\frac{12}{s^{4}}\right) & =-2 x^{3}
\end{aligned}
$$

Adding the above results and simplifying gives
$y=-26-2 x^{3}-9 x^{2}-\frac{x^{4}}{4}-3 c_{3}+2 c_{4}+c_{1}+\frac{\mathrm{e}^{x}\left(x^{3}-6 c_{3} x+6 c_{4} x-6 x^{2}+18 c_{3}-12 c_{4}-18 x+156\right)}{6}+(-23+c$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & -26-2 x^{3}-9 x^{2}-\frac{x^{4}}{4}-3 c_{3}+2 c_{4}+c_{1} \\
& +\frac{\mathrm{e}^{x}\left(x^{3}-6 c_{3} x+6 c_{4} x-6 x^{2}+18 c_{3}-12 c_{4}-18 x+156\right)}{6} \tag{1}\\
& +\left(-23+c_{2}-2 c_{3}+c_{4}\right) x
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & -26-2 x^{3}-9 x^{2}-\frac{x^{4}}{4}-3 c_{3}+2 c_{4}+c_{1} \\
& +\frac{\mathrm{e}^{x}\left(x^{3}-6 c_{3} x+6 c_{4} x-6 x^{2}+18 c_{3}-12 c_{4}-18 x+156\right)}{6}+\left(-23+c_{2}-2 c_{3}+c_{4}\right) x
\end{aligned}
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
\rightarrow Calling odsolve with the ODE`, $\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad, a\right), \quad a\right)=, a * \exp \left(_a\right)-3 * _a^{\wedge} 2+2 *\left(\operatorname{diff}\left(_b(\right.\right.$
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful
\checkmark Solution by Maple
Time used: 5.985 (sec). Leaf size: 79
dsolve(diff $(y(x), x \$ 4)-2 * \operatorname{diff}(y(x), x \$ 3)+\operatorname{diff}(y(x), x \$ 2)=x * \exp (x)-3 * x^{\wedge} 2, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=-26-\frac{x^{4}}{4}-9 x^{2}-2 x^{3}+y(0) \\
& \quad+\frac{\mathrm{e}^{x}\left(x^{3}+6 x D^{(3)}(y)(0)-6 x D^{(2)}(y)(0)-6 x^{2}-12 D^{(3)}(y)(0)+18 D^{(2)}(y)(0)-18 x+156\right)}{6} \\
& \quad-D^{(2)}(y)(0)(3+2 x)+D^{(3)}(y)(0)(x+2)+x(-23+D(y)(0))
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.812 (sec). Leaf size: 59
DSolve[y''''[x]-2*y'''[x]+y''[x]==x*Exp[x]-3*x^2,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{x^{4}}{4}-2 x^{3}-9 x^{2}+e^{x}\left(\frac{x^{3}}{6}-x^{2}+\left(3+c_{2}\right) x-4+c_{1}-2 c_{2}\right)+c_{4} x+c_{3}
$$

13.8 problem 8

13.8.1 Existence and uniqueness analysis 2235
13.8.2 Solving as laplace ode . 2236
13.8.3 Maple step by step solution . 2237

Internal problem ID [12792]
Internal file name [OUTPUT/11444_Saturday_November_04_2023_08_47_21_AM_50415031/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\mathrm{e}^{x}
$$

With initial conditions

$$
[y(0)=-1]
$$

13.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\mathrm{e}^{x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.8.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)=\frac{1}{s-1} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)+1=\frac{1}{s-1}
$$

Solving for $Y(s)$ gives

$$
Y(s)=-\frac{-2+s}{(s-1) s}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{2}{s}+\frac{1}{s-1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{2}{s}\right) & =-2 \\
\mathcal{L}^{-1}\left(\frac{1}{s-1}\right) & =\mathrm{e}^{x}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\mathrm{e}^{x}-2
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}-2 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}-2
$$

Verified OK.

13.8.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\mathrm{e}^{x}, y(0)=-1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \mathrm{e}^{x} d x+c_{1}
$$

- Evaluate integral
$y=\mathrm{e}^{x}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{x}+c_{1}$
- Use initial condition $y(0)=-1$
$-1=1+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-2$
- Substitute $c_{1}=-2$ into general solution and simplify
$y=\mathrm{e}^{x}-2$
- \quad Solution to the IVP
$y=\mathrm{e}^{x}-2$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 5.328 (sec). Leaf size: 8

```
dsolve([diff(y(x),x)=exp(x),y(0) = -1],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x}-2
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 10

```
DSolve[{y'[x]==Exp[x],{y[0]==-1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{x}-2
$$

13.9 problem 9

13.9.1 Existence and uniqueness analysis 2239
13.9.2 Solving as laplace ode . 2240
13.9.3 Maple step by step solution . 2241

Internal problem ID [12793]
Internal file name [OUTPUT/11445_Saturday_November_04_2023_08_47_21_AM_30044945/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode__lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_linear, `class A`]]
```

$$
y^{\prime}-y=2 \mathrm{e}^{x}
$$

With initial conditions

$$
[y(0)=1]
$$

13.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =2 \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=2 \mathrm{e}^{x}
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2 \mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.9.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-Y(s)=\frac{2}{s-1} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1-Y(s)=\frac{2}{s-1}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{1+s}{(s-1)^{2}}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{s-1}+\frac{2}{(s-1)^{2}}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{s-1}\right) & =\mathrm{e}^{x} \\
\mathcal{L}^{-1}\left(\frac{2}{(s-1)^{2}}\right) & =2 x \mathrm{e}^{x}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=(2 x+1) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2 x+1) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(2 x+1) \mathrm{e}^{x}
$$

Verified OK.

13.9.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y=2 \mathrm{e}^{x}, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y+2 \mathrm{e}^{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=2 \mathrm{e}^{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y\right)=2 \mu(x) \mathrm{e}^{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) \mathrm{e}^{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 2 \mu(x) \mathrm{e}^{x} d x+c_{1}$
- Solve for y
$y=\frac{\int 2 \mu(x) \mathrm{e}^{x} d x+c_{1}}{\mu(x)}$
- Substitute $\mu(x)=\mathrm{e}^{-x}$
$y=\frac{\int 2 \mathrm{e}^{-x} \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{-x}}$
- Evaluate the integrals on the rhs
$y=\frac{2 x+c_{1}}{e^{-x}}$
- Simplify
$y=\mathrm{e}^{x}\left(2 x+c_{1}\right)$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Solve for c_{1}
$c_{1}=1$
- Substitute $c_{1}=1$ into general solution and simplify
$y=(2 x+1) \mathrm{e}^{x}$
- Solution to the IVP

$$
y=(2 x+1) \mathrm{e}^{x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 5.094 (sec). Leaf size: 12
dsolve([diff $(y(x), x)-y(x)=2 * \exp (x), y(0)=1], y(x)$, singsol=all)

$$
y(x)=(2 x+1) \mathrm{e}^{x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 14
DSolve[\{y' $[x]-y[x]==2 * \operatorname{Exp}[x],\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}(2 x+1)
$$

13.10 problem 10

13.10.1 Existence and uniqueness analysis 2244
13.10.2 Maple step by step solution . 2247

Internal problem ID [12794]
Internal file name [OUTPUT/11446_Saturday_November_04_2023_08_47_21_AM_34637621/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-9 y=x+2
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=1\right]
$$

13.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-9 \\
F & =x+2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-9 y=x+2
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=x+2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-9 Y(s)=\frac{2 s+1}{s^{2}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =-1 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1+s-9 Y(s)=\frac{2 s+1}{s^{2}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{s^{3}-s^{2}-2 s-1}{s^{2}\left(s^{2}-9\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{9 s^{2}}-\frac{11}{54(s-3)}-\frac{2}{9 s}-\frac{31}{54(s+3)}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{9 s^{2}}\right) & =-\frac{x}{9} \\
\mathcal{L}^{-1}\left(-\frac{11}{54(s-3)}\right) & =-\frac{11 \mathrm{e}^{3 x}}{54} \\
\mathcal{L}^{-1}\left(-\frac{2}{9 s}\right) & =-\frac{2}{9} \\
\mathcal{L}^{-1}\left(-\frac{31}{54(s+3)}\right) & =-\frac{31 \mathrm{e}^{-3 x}}{54}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\frac{7 \cosh (3 x)}{9}+\frac{10 \sinh (3 x)}{27}-\frac{x}{9}-\frac{2}{9}
$$

Simplifying the solution gives

$$
y=-\frac{7 \cosh (3 x)}{9}+\frac{10 \sinh (3 x)}{27}-\frac{x}{9}-\frac{2}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{7 \cosh (3 x)}{9}+\frac{10 \sinh (3 x)}{27}-\frac{x}{9}-\frac{2}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{7 \cosh (3 x)}{9}+\frac{10 \sinh (3 x)}{27}-\frac{x}{9}-\frac{2}{9}
$$

Verified OK.

13.10.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-9 y=x+2, y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-9=0$
- Factor the characteristic polynomial

$$
(r-3)(r+3)=0
$$

- Roots of the characteristic polynomial $r=(-3,3)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{3 x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x+2\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 x} & \mathrm{e}^{3 x} \\ -3 \mathrm{e}^{-3 x} & 3 \mathrm{e}^{3 x}\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=6
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-3 x}\left(\int \mathrm{e}^{3 x}(x+2) d x\right)}{6}+\frac{\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-3 x}(x+2) d x\right)}{6}
$$

- Compute integrals $y_{p}(x)=-\frac{2}{9}-\frac{x}{9}$
- Substitute particular solution into general solution to ODE $y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{3 x} c_{2}-\frac{2}{9}-\frac{x}{9}$
Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{3 x} c_{2}-\frac{2}{9}-\frac{x}{9}$
- Use initial condition $y(0)=-1$

$$
-1=c_{1}+c_{2}-\frac{2}{9}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+3 \mathrm{e}^{3 x} c_{2}-\frac{1}{9}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=-3 c_{1}+3 c_{2}-\frac{1}{9}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{31}{54}, c_{2}=-\frac{11}{54}\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\frac{31 \mathrm{e}^{-3 x}}{54}-\frac{11 \mathrm{e}^{3 x}}{54}-\frac{2}{9}-\frac{x}{9}
$$

- \quad Solution to the IVP

$$
y=-\frac{31 \mathrm{e}^{-3 x}}{54}-\frac{11 \mathrm{e}^{3 x}}{54}-\frac{2}{9}-\frac{x}{9}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.391 (sec). Leaf size: 21
dsolve([diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-9 * y(\mathrm{x})=\mathrm{x}+2, \mathrm{y}(0)=-1, \mathrm{D}(\mathrm{y})(0)=1], y(\mathrm{x})$, singsol=all)

$$
y(x)=-\frac{x}{9}-\frac{7 \cosh (3 x)}{9}+\frac{10 \sinh (3 x)}{27}-\frac{2}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 33
DSolve[\{y' $\left.[\mathrm{x}]-9 * y[x]==x+2,\left\{y[0]==-1, y^{\prime}[0]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{54} e^{-3 x}\left(-6 e^{3 x}(x+2)-11 e^{6 x}-31\right)
$$

13.11 problem 11

13.11.1 Existence and uniqueness analysis 2250
13.11.2 Maple step by step solution . 2253

Internal problem ID [12795]
Internal file name [OUTPUT/11447_Saturday_November_04_2023_08_47_22_AM_80377253/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+9 y=x+2
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=1\right]
$$

13.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =9 \\
F & =x+2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=x+2
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=x+2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+9 Y(s)=\frac{2 s+1}{s^{2}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =-1 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1+s+9 Y(s)=\frac{2 s+1}{s^{2}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{s^{3}-s^{2}-2 s-1}{s^{2}\left(s^{2}+9\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{9 s^{2}}+\frac{2}{9 s}+\frac{-\frac{11}{18}-\frac{4 i}{27}}{s-3 i}+\frac{-\frac{11}{18}+\frac{4 i}{27}}{s+3 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{9 s^{2}}\right) & =\frac{x}{9} \\
\mathcal{L}^{-1}\left(\frac{2}{9 s}\right) & =\frac{2}{9} \\
\mathcal{L}^{-1}\left(\frac{-\frac{11}{18}-\frac{4 i}{27}}{s-3 i}\right) & =\left(-\frac{11}{18}-\frac{4 i}{27}\right) \mathrm{e}^{3 i x} \\
\mathcal{L}^{-1}\left(\frac{-\frac{11}{18}+\frac{4 i}{27}}{s+3 i}\right) & =\left(-\frac{11}{18}+\frac{4 i}{27}\right) \mathrm{e}^{-3 i x}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\frac{11 \cos (3 x)}{9}+\frac{8 \sin (3 x)}{27}+\frac{x}{9}+\frac{2}{9}
$$

Simplifying the solution gives

$$
y=-\frac{11 \cos (3 x)}{9}+\frac{8 \sin (3 x)}{27}+\frac{x}{9}+\frac{2}{9}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{11 \cos (3 x)}{9}+\frac{8 \sin (3 x)}{27}+\frac{x}{9}+\frac{2}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{11 \cos (3 x)}{9}+\frac{8 \sin (3 x)}{27}+\frac{x}{9}+\frac{2}{9}
$$

Verified OK.

13.11.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=x+2, y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x+2\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int \sin (3 x)(x+2) d x\right)}{3}+\frac{\sin (3 x)\left(\int \cos (3 x)(x+2) d x\right)}{3}
$$

- Compute integrals $y_{p}(x)=\frac{2}{9}+\frac{x}{9}$
- Substitute particular solution into general solution to ODE $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{2}{9}+\frac{x}{9}$
Check validity of solution $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{2}{9}+\frac{x}{9}$
- Use initial condition $y(0)=-1$

$$
-1=c_{1}+\frac{2}{9}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)+\frac{1}{9}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=\frac{1}{9}+3 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{11}{9}, c_{2}=\frac{8}{27}\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{11 \cos (3 x)}{9}+\frac{8 \sin (3 x)}{27}+\frac{x}{9}+\frac{2}{9}$
- \quad Solution to the IVP

$$
y=-\frac{11 \cos (3 x)}{9}+\frac{8 \sin (3 x)}{27}+\frac{x}{9}+\frac{2}{9}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.313 (sec). Leaf size: 21
dsolve([diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+9 * y(\mathrm{x})=\mathrm{x}+2, \mathrm{y}(0)=-1, \mathrm{D}(\mathrm{y})(0)=1], y(\mathrm{x})$, singsol=all)

$$
y(x)=\frac{x}{9}-\frac{11 \cos (3 x)}{9}+\frac{8 \sin (3 x)}{27}+\frac{2}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 26
DSolve[\{y' $\left.[x]+9 * y[x]==x+2,\left\{y[0]==-1, y^{\prime}[0]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{27}(3 x+8 \sin (3 x)-33 \cos (3 x)+6)
$$

13.12 problem 12

13.12.1 Existence and uniqueness analysis 2256
13.12.2 Maple step by step solution . 2259

Internal problem ID [12796]
Internal file name [OUTPUT/11448_Saturday_November_04_2023_08_47_22_AM_84888398/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}+6 y=-2 \sin (3 x)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=-1\right]
$$

13.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =6 \\
F & =-2 \sin (3 x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}+6 y=-2 \sin (3 x)
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=-2 \sin (3 x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)+6 Y(s)=-\frac{6}{s^{2}+9} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =-1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+1-s Y(s)+6 Y(s)=-\frac{6}{s^{2}+9}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{s^{2}+15}{\left(s^{2}+9\right)\left(s^{2}-s+6\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{-\frac{1}{6}-\frac{i}{6}}{s-3 i}+\frac{-\frac{1}{6}+\frac{i}{6}}{s+3 i}+\frac{\frac{1}{6}+\frac{13 i \sqrt{23}}{138}}{s-\frac{1}{2}-\frac{i \sqrt{23}}{2}}+\frac{\frac{1}{6}-\frac{13 i \sqrt{23}}{138}}{s-\frac{1}{2}+\frac{i \sqrt{23}}{2}}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{-\frac{1}{6}-\frac{i}{6}}{s-3 i}\right) & =\left(-\frac{1}{6}-\frac{i}{6}\right) \mathrm{e}^{3 i x} \\
\mathcal{L}^{-1}\left(\frac{-\frac{1}{6}+\frac{i}{6}}{s+3 i}\right) & =\left(-\frac{1}{6}+\frac{i}{6}\right) \mathrm{e}^{-3 i x} \\
\mathcal{L}^{-1}\left(\frac{\frac{1}{6}+\frac{13 i \sqrt{23}}{138}}{s-\frac{1}{2}-\frac{i \sqrt{23}}{2}}\right) & =\frac{(13 i \sqrt{23}+23) \mathrm{e}^{\frac{(1+i \sqrt{23}) x}{2}}}{138} \\
\mathcal{L}^{-1}\left(\frac{\frac{1}{6}-\frac{13 i \sqrt{23}}{138}}{s-\frac{1}{2}+\frac{i \sqrt{23}}{2}}\right) & =\frac{(23-13 i \sqrt{23}) \mathrm{e}^{\frac{(1-i \sqrt{23}) x}{2}}}{138}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\frac{\cos (3 x)}{3}+\frac{\sin (3 x)}{3}+\frac{\left(-13 \sqrt{23} \sin \left(\frac{\sqrt{23} x}{2}\right)+23 \cos \left(\frac{\sqrt{23} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{69}
$$

Simplifying the solution gives

$$
y=-\frac{13 \sqrt{23} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{69}+\frac{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{3}+\frac{\sin (3 x)}{3}-\frac{\cos (3 x)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{13 \sqrt{23} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{69}+\frac{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{3}+\frac{\sin (3 x)}{3}-\frac{\cos (3 x)}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{13 \sqrt{23} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{69}+\frac{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{3}+\frac{\sin (3 x)}{3}-\frac{\cos (3 x)}{3}
$$

Verified OK.

13.12.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}+6 y=-2 \sin (3 x), y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r+6=0
$$

- Use quadratic formula to solve for r
$r=\frac{1 \pm(\sqrt{-23})}{2}$
- Roots of the characteristic polynomial
$r=\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2}, \frac{1}{2}+\frac{\mathrm{I} \sqrt{23}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)$
- 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-2 \sin (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) & \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right) \\ \frac{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{2}-\frac{\sqrt{23} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{2} & \frac{\mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{x}{2}} \sqrt{23} \cos \left(\frac{\sqrt{23} x}{2}\right)}{2}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{23} \mathrm{e}^{x}}{2}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{4 \sqrt{23} \mathrm{e}^{\frac{x}{2}}\left(\sin \left(\frac{\sqrt{23} x}{2}\right)\left(\int \mathrm{e}^{-\frac{x}{2}} \sin (3 x) \cos \left(\frac{\sqrt{23} x}{2}\right) d x\right)-\cos \left(\frac{\sqrt{23} x}{2}\right)\left(\int \mathrm{e}^{-\frac{x}{2}} \sin (3 x) \sin \left(\frac{\sqrt{23} x}{2}\right) d x\right)\right)}{23}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\cos (3 x)}{3}+\frac{\sin (3 x)}{3}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)-\frac{\cos (3 x)}{3}+\frac{\sin (3 x)}{3}$
Check validity of solution $y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)-\frac{\cos (3 x)}{3}+\frac{\sin (3 x)}{3}$
- Use initial condition $y(0)=0$
$0=-\frac{1}{3}+c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{\frac{x}{2}} \sqrt{23} \sin \left(\frac{\sqrt{23} x}{2}\right)}{2}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{2}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}} \sqrt{23} \cos \left(\frac{\sqrt{23} x}{2}\right)}{2}+\sin (3 x)+\cos (3 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$

$$
-1=\frac{c_{1}}{2}+1+\frac{c_{2} \sqrt{23}}{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{3}, c_{2}=-\frac{13 \sqrt{23}}{69}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{13 \sqrt{23} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{69}+\frac{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{3}+\frac{\sin (3 x)}{3}-\frac{\cos (3 x)}{3}
$$

- \quad Solution to the IVP

$$
y=-\frac{13 \sqrt{23} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{69}+\frac{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{3}+\frac{\sin (3 x)}{3}-\frac{\cos (3 x)}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 6.438 (sec). Leaf size: 45

```
dsolve([diff(y(x),x$2)-diff (y(x),x)+6*y(x)=-2*\operatorname{sin}(3*x),y(0)=0,D(y)(0) = -1],y(x), singsol
```

$$
y(x)=-\frac{13 \mathrm{e}^{\frac{x}{2}} \sqrt{23} \sin \left(\frac{\sqrt{23} x}{2}\right)}{69}+\frac{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{3}+\frac{\sin (3 x)}{3}-\frac{\cos (3 x)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 67
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]-y\right.\right.$ ' $[x]+6 * y[x]==-2 * \operatorname{Sin}[3 * x],\{y[0]==0, y$ ' $\left.[0]==-1\}\right\}, y[x], x$, IncludeSingularSolution
$y(x) \rightarrow \frac{1}{69}\left(23 \sin (3 x)-13 \sqrt{23} e^{x / 2} \sin \left(\frac{\sqrt{23} x}{2}\right)-23 \cos (3 x)+23 e^{x / 2} \cos \left(\frac{\sqrt{23} x}{2}\right)\right)$

13.13 problem 13

13.13.1 Existence and uniqueness analysis 2263
13.13.2 Maple step by step solution . 2266

Internal problem ID [12797]
Internal file name [OUTPUT/11449_Saturday_November_04_2023_08_47_22_AM_10331552/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-2 y^{\prime}+2 y=-x^{2}+1
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

13.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =2 \\
F & =-x^{2}+1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+2 y=-x^{2}+1
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=-x^{2}+1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)+2 Y(s)=-\frac{2}{s^{3}}+\frac{1}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2-s-2 s Y(s)+2 Y(s)=-\frac{2}{s^{3}}+\frac{1}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{4}-2 s^{3}+s^{2}-2}{s^{3}\left(s^{2}-2 s+2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{s^{2}}-\frac{1}{s^{3}}+\frac{1}{2 s-2-2 i}+\frac{1}{2 s-2+2 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{s^{2}}\right) & =-x \\
\mathcal{L}^{-1}\left(-\frac{1}{s^{3}}\right) & =-\frac{x^{2}}{2} \\
\mathcal{L}^{-1}\left(\frac{1}{2 s-2-2 i}\right) & =\frac{\mathrm{e}^{(1+i) x}}{2} \\
\mathcal{L}^{-1}\left(\frac{1}{2 s-2+2 i}\right) & =\frac{\mathrm{e}^{(1-i) x}}{2}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\mathrm{e}^{x} \cos (x)-\frac{x^{2}}{2}-x
$$

Simplifying the solution gives

$$
y=\mathrm{e}^{x} \cos (x)-\frac{x^{2}}{2}-x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} \cos (x)-\frac{x^{2}}{2}-x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} \cos (x)-\frac{x^{2}}{2}-x
$$

Verified OK.

13.13.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+2 y=-x^{2}+1, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{2 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(1-\mathrm{I}, 1+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x} \cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x} \sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{x} \cos (x)+c_{2} \mathrm{e}^{x} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-x^{2}+1\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} \cos (x) & \mathrm{e}^{x} \sin (x) \\
\mathrm{e}^{x} \cos (x)-\mathrm{e}^{x} \sin (x) & \mathrm{e}^{x} \cos (x)+\mathrm{e}^{x} \sin (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{x}\left(\cos (x)\left(\int \mathrm{e}^{-x} \sin (x)\left(x^{2}-1\right) d x\right)-\sin (x)\left(\int \cos (x) \mathrm{e}^{-x}\left(x^{2}-1\right) d x\right)\right)
$$

- Compute integrals
$y_{p}(x)=-\frac{x(x+2)}{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{x} \cos (x)+c_{2} \mathrm{e}^{x} \sin (x)-\frac{x(x+2)}{2}$
Check validity of solution $y=c_{1} \mathrm{e}^{x} \cos (x)+c_{2} \mathrm{e}^{x} \sin (x)-\frac{x(x+2)}{2}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=c_{1} \mathrm{e}^{x} \cos (x)-c_{1} \mathrm{e}^{x} \sin (x)+c_{2} \mathrm{e}^{x} \sin (x)+c_{2} \mathrm{e}^{x} \cos (x)-x-1
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=c_{1}+c_{2}-1$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify
$y=\mathrm{e}^{x} \cos (x)-\frac{x^{2}}{2}-x$
- \quad Solution to the IVP
$y=\mathrm{e}^{x} \cos (x)-\frac{x^{2}}{2}-x$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.0 (sec). Leaf size: 18

```
dsolve([diff(y(x),x$2)-2*\operatorname{diff}(y(x),x)+2*y(x)=1-\mp@subsup{x}{}{\wedge}2,y(0) = 1, D(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=-x-\frac{x^{2}}{2}+\cos (x) \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime \prime}[x]-2 * y\right.\right.$ ' $\left.[x]+2 * y[x]==1-x^{\wedge} 2,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow e^{x} \cos (x)-\frac{1}{2} x(x+2)
$$

13.14 problem 14

13.14.1 Maple step by step solution

2271
Internal problem ID [12798]
Internal file name [OUTPUT/11450_Saturday_November_04_2023_08_47_23_AM_43671262/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.2, page 248
Problem number: 14.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_laplace"
Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+2 y^{\prime}=x+\cos (x)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=2\right]
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0) \\
\mathcal{L}\left(y^{\prime \prime \prime}\right) & =s^{3} Y(s)-y^{\prime \prime}(0)-s y^{\prime}(0)-s^{2} y(0)
\end{aligned}
$$

The given ode becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{3} Y(s)-y^{\prime \prime}(0)-s y^{\prime}(0)-s^{2} y(0)+3 s^{2} Y(s)-3 y^{\prime}(0)-3 s y(0)+2 s Y(s)-2 y(0)=\frac{1}{s^{2}}+\frac{s}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =-1 \\
y^{\prime \prime}(0) & =2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{3} Y(s)-1-2 s-s^{2}+3 s^{2} Y(s)+2 s Y(s)=\frac{1}{s^{2}}+\frac{s}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{6}+2 s^{5}+2 s^{4}+3 s^{3}+2 s^{2}+1}{s^{3}\left(s^{2}+1\right)\left(s^{2}+3 s+2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{2(s+1)}+\frac{-\frac{3}{20}-\frac{i}{20}}{s-i}+\frac{-\frac{3}{20}+\frac{i}{20}}{s+i}+\frac{17}{40(s+2)}-\frac{3}{4 s^{2}}+\frac{1}{2 s^{3}}+\frac{11}{8 s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{2(s+1)}\right) & =-\frac{\mathrm{e}^{-x}}{2} \\
\mathcal{L}^{-1}\left(\frac{-\frac{3}{20}-\frac{i}{20}}{s-i}\right) & =\left(-\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{i x} \\
\mathcal{L}^{-1}\left(\frac{-\frac{3}{20}+\frac{i}{20}}{s+i}\right) & =\left(-\frac{3}{20}+\frac{i}{20}\right) \mathrm{e}^{-i x} \\
\mathcal{L}^{-1}\left(\frac{17}{40(s+2)}\right) & =\frac{17 \mathrm{e}^{-2 x}}{40} \\
\mathcal{L}^{-1}\left(-\frac{3}{4 s^{2}}\right) & =-\frac{3 x}{4} \\
\mathcal{L}^{-1}\left(\frac{1}{2 s^{3}}\right) & =\frac{x^{2}}{4} \\
\mathcal{L}^{-1}\left(\frac{11}{8 s}\right) & =\frac{11}{8}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\frac{17 \mathrm{e}^{-2 x}}{40}-\frac{3 \cos (x)}{10}+\frac{\sin (x)}{10}+\frac{x^{2}}{4}-\frac{\mathrm{e}^{-x}}{2}-\frac{3 x}{4}+\frac{11}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{17 \mathrm{e}^{-2 x}}{40}-\frac{3 \cos (x)}{10}+\frac{\sin (x)}{10}+\frac{x^{2}}{4}-\frac{\mathrm{e}^{-x}}{2}-\frac{3 x}{4}+\frac{11}{8} \tag{1}
\end{equation*}
$$

Figure 403: Solution plot

Verification of solutions

$$
y=\frac{17 \mathrm{e}^{-2 x}}{40}-\frac{3 \cos (x)}{10}+\frac{\sin (x)}{10}+\frac{x^{2}}{4}-\frac{\mathrm{e}^{-x}}{2}-\frac{3 x}{4}+\frac{11}{8}
$$

Verified OK.

13.14.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}+3 y^{\prime \prime}+2 y^{\prime}=x+\cos (x), y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=-1,\left.y^{\prime \prime}\right|_{\{x=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$
$\square \quad$ Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x+\cos (x)-3 y_{3}(x)-2 y_{2}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x+\cos (x)-3 y_{3}(x)-2 y_{2}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ x+\cos (x)\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x+\cos (x)\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & -3
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- \quad Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-2 x}}{4} & \mathrm{e}^{-x} & 1 \\
-\frac{\mathrm{e}^{-2 x}}{2} & -\mathrm{e}^{-x} & 0 \\
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} & 0
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-2 x}}{4} & \mathrm{e}^{-x} & 1 \\
-\frac{\mathrm{e}^{-2 x}}{2} & -\mathrm{e}^{-x} & 0 \\
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} & 0
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
\frac{1}{4} & 1 & 1 \\
-\frac{1}{2} & -1 & 0 \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix
$\Phi(x)=\left[\begin{array}{ccc}1 & \frac{\mathrm{e}^{-2 x}}{2}-2 \mathrm{e}^{-x}+\frac{3}{2} & \frac{\mathrm{e}^{-2 x}}{2}-\mathrm{e}^{-x}+\frac{1}{2} \\ 0 & -\mathrm{e}^{-2 x}+2 \mathrm{e}^{-x} & -\mathrm{e}^{-2 x}+\mathrm{e}^{-x} \\ 0 & 2 \mathrm{e}^{-2 x}-2 \mathrm{e}^{-x} & 2 \mathrm{e}^{-2 x}-\mathrm{e}^{-x}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution $\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\sin (x)}{10}-\frac{3 \mathrm{e}^{-2 x}}{40}-\frac{\mathrm{e}^{-x}}{2}-\frac{3 x}{4}+\frac{7}{8}+\frac{x^{2}}{4}-\frac{3 \cos (x)}{10} \\
\frac{3 \mathrm{e}^{-2 x}}{20}+\frac{\mathrm{e}^{-x}}{2}+\frac{x}{2}-\frac{3}{4}+\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10} \\
-\frac{3 \mathrm{e}^{-2 x}}{10}-\frac{\mathrm{e}^{-x}}{2}+\frac{1}{2}+\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\frac{\sin (x)}{10}-\frac{3 \mathrm{e}^{-2 x}}{40}-\frac{\mathrm{e}^{-x}}{2}-\frac{3 x}{4}+\frac{7}{8}+\frac{x^{2}}{4}-\frac{3 \cos (x)}{10} \\
\frac{3 \mathrm{e}^{-2 x}}{20}+\frac{\mathrm{e}^{-x}}{2}+\frac{x}{2}-\frac{3}{4}+\frac{\cos (x)}{10}+\frac{3 \sin (x)}{10} \\
-\frac{3 \mathrm{e}^{-2 x}}{10}-\frac{\mathrm{e}^{-x}}{2}+\frac{1}{2}+\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(10 c_{1}-3\right) \mathrm{e}^{-2 x}}{40}+\frac{\left(40 c_{2}-20\right) \mathrm{e}^{-x}}{40}+\frac{x^{2}}{4}-\frac{3 x}{4}+c_{3}-\frac{3 \cos (x)}{10}+\frac{\sin (x)}{10}+\frac{7}{8}$
- Use the initial condition $y(0)=1$
$1=\frac{c_{1}}{4}+c_{2}+c_{3}$
- Calculate the 1st derivative of the solution
$y^{\prime}=-\frac{\left(10 c_{1}-3\right) \mathrm{e}^{-2 x}}{20}-\frac{\left(40 c_{2}-20\right) \mathrm{e}^{-x}}{40}+\frac{x}{2}-\frac{3}{4}+\frac{3 \sin (x)}{10}+\frac{\cos (x)}{10}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$
$-1=-\frac{c_{1}}{2}-c_{2}$
- Calculate the 2nd derivative of the solution
$y^{\prime \prime}=\frac{\left(10 c_{1}-3\right) \mathrm{e}^{-2 x}}{10}+\frac{\left(40 c_{2}-20\right) \mathrm{e}^{-x}}{40}+\frac{1}{2}+\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}$
- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=2$

$$
2=c_{1}+c_{2}
$$

- \quad Solve for the unknown coefficients
$\left\{c_{1}=2, c_{2}=0, c_{3}=\frac{1}{2}\right\}$
- \quad Solution to the IVP

$$
y=\frac{17 \mathrm{e}^{-2 x}}{40}-\frac{3 \cos (x)}{10}+\frac{\sin (x)}{10}+\frac{x^{2}}{4}-\frac{\mathrm{e}^{-x}}{2}-\frac{3 x}{4}+\frac{11}{8}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -3*(diff(_b(_a), _a))-2*_b(_a
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    <- double symmetry of the form [xi=0, eta=F(x)] successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful`
```

\checkmark Solution by Maple
Time used: 5.36 (sec). Leaf size: 34

```
dsolve([diff (y(x),x$3)+3*\operatorname{diff}(y(x),x$2)+2*\operatorname{diff}(y(x),x)=x+\operatorname{cos}(x),y(0)=1,D(y)(0)=-1, (D@G
```

$$
y(x)=-\frac{3 \cos (x)}{10}+\frac{\sin (x)}{10}-\frac{\mathrm{e}^{-x}}{2}-\frac{3 x}{4}+\frac{x^{2}}{4}+\frac{17 \mathrm{e}^{-2 x}}{40}+\frac{11}{8}
$$

\checkmark Solution by Mathematica
Time used: 0.565 (sec). Leaf size: 41

```
DSolve[{y'''[x]+3*y''[x]+2*y'[x]==x+Cos[x],{y[0]==1,y'[0]==-1,y''[0]==2}},y[x],x, IncludeSing
```

$$
y(x) \rightarrow \frac{1}{40}\left(10 x^{2}-30 x+17 e^{-2 x}-20 e^{-x}+4 \sin (x)-12 \cos (x)+55\right)
$$

14 Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
14.1 problem 7 2278
14.2 problem 8 2283
14.3 problem 9 2288
14.4 problem 10 2294
14.5 problem 11 2300
14.6 problem 12 2305
14.7 problem 13 2311
14.8 problem 14 2317

14.1 problem 7

14.1.1 Existence and uniqueness analysis 2278
14.1.2 Solving as laplace ode . 2279
14.1.3 Maple step by step solution . 2280

Internal problem ID [12799]
Internal file name [OUTPUT/11451_Saturday_November_04_2023_08_47_23_AM_16935513/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 y=6
$$

With initial conditions

$$
[y(0)=2]
$$

14.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)=6
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=6
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.1.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-2 Y(s)=\frac{6}{s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-2-2 Y(s)=\frac{6}{s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{6+2 s}{s(s-2)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{5}{s-2}-\frac{3}{s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{5}{s-2}\right) & =5 \mathrm{e}^{2 x} \\
\mathcal{L}^{-1}\left(-\frac{3}{s}\right) & =-3
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=2 \mathrm{e}^{x}(\cosh (x)+4 \sinh (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{x}(\cosh (x)+4 \sinh (x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{x}(\cosh (x)+4 \sinh (x))
$$

Verified OK.

14.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-2 y=6, y(0)=2\right]$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{2 y+6}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{2 y+6} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{\ln (y+3)}{2}=x+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{2 x+2 c_{1}}-3$
- Use initial condition $y(0)=2$
$2=\mathrm{e}^{2 c_{1}}-3$
- \quad Solve for c_{1}
$c_{1}=\frac{\ln (5)}{2}$
- Substitute $c_{1}=\frac{\ln (5)}{2}$ into general solution and simplify

$$
y=5 \mathrm{e}^{2 x}-3
$$

- \quad Solution to the IVP

$$
y=5 \mathrm{e}^{2 x}-3
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 5.266 (sec). Leaf size: 15
dsolve([diff $(y(x), x)-2 * y(x)=6, y(0)=2], y(x)$, singsol=all)

$$
y(x)=2 \mathrm{e}^{x}(\cosh (x)+4 \sinh (x))
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 14
DSolve $[\{y '[x]-2 * y[x]==6,\{y[0]==2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 5 e^{2 x}-3
$$

14.2 problem 8

14.2.1 Existence and uniqueness analysis 2283
14.2.2 Solving as laplace ode . 2284
14.2.3 Maple step by step solution . 2285

Internal problem ID [12800]
Internal file name [OUTPUT/11452_Saturday_November_04_2023_08_47_23_AM_50152952/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=\frac{5}{2}\right]
$$

14.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=\mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\mathrm{e}^{x}
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.2.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+Y(s)=\frac{1}{s-1} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-\frac{5}{2}+Y(s)=\frac{1}{s-1}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{-3+5 s}{2(s-1)(s+1)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{2 s-2}+\frac{2}{s+1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{2 s-2}\right) & =\frac{\mathrm{e}^{x}}{2} \\
\mathcal{L}^{-1}\left(\frac{2}{s+1}\right) & =2 \mathrm{e}^{-x}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\frac{5 \cosh (x)}{2}-\frac{3 \sinh (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 \cosh (x)}{2}-\frac{3 \sinh (x)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 \cosh (x)}{2}-\frac{3 \sinh (x)}{2}
$$

Verified OK.

14.2.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=\mathrm{e}^{x}, y(0)=\frac{5}{2}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\mathrm{e}^{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=\mathrm{e}^{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x) \mathrm{e}^{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int\left(\mathrm{e}^{x}\right)^{2} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(\mathrm{e}^{x}\right)^{2}}{2}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2}$
- Use initial condition $y(0)=\frac{5}{2}$
$\frac{5}{2}=\frac{1}{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify
$y=2 \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2}$
- Solution to the IVP

$$
y=2 \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 5.813 (sec). Leaf size: 13

```
dsolve([diff (y (x),x)+y(x)=exp(x),y(0) = 5/2],y(x), singsol=all)
```

$$
y(x)=\frac{5 \cosh (x)}{2}-\frac{3 \sinh (x)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 20
DSolve[\{y' $[x]+y[x]==\operatorname{Exp}[x],\{y[0]==5 / 2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 2 e^{-x}+\frac{e^{x}}{2}
$$

14.3 problem 9

14.3.1 Existence and uniqueness analysis 2288
14.3.2 Maple step by step solution . 2291

Internal problem ID [12801]
Internal file name [OUTPUT/11453_Saturday_November_04_2023_08_47_23_AM_38420457/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second__order_linear__constant__coeff", "second__order_ode_can__be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+9 y=1
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

14.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =9 \\
F & =1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=1
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+9 Y(s)=\frac{1}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+9 Y(s)=\frac{1}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{1}{s\left(s^{2}+9\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{9 s}-\frac{1}{18(s-3 i)}-\frac{1}{18(s+3 i)}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{9 s}\right) & =\frac{1}{9} \\
\mathcal{L}^{-1}\left(-\frac{1}{18(s-3 i)}\right) & =-\frac{\mathrm{e}^{3 i x}}{18} \\
\mathcal{L}^{-1}\left(-\frac{1}{18(s+3 i)}\right) & =-\frac{\mathrm{e}^{-3 i x}}{18}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\frac{\cos (3 x)}{9}+\frac{1}{9}
$$

Simplifying the solution gives

$$
y=-\frac{\cos (3 x)}{9}+\frac{1}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (3 x)}{9}+\frac{1}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\cos (3 x)}{9}+\frac{1}{9}
$$

Verified OK.

14.3.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=1, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (3 x)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=1\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int \sin (3 x) d x\right)}{3}+\frac{\sin (3 x)\left(\int \cos (3 x) d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{1}{9}
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{1}{9}$ Check validity of solution $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{1}{9}$
- Use initial condition $y(0)=0$
$0=c_{1}+\frac{1}{9}$
- Compute derivative of the solution
$y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{9}, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify $y=-\frac{\cos (3 x)}{9}+\frac{1}{9}$
- \quad Solution to the IVP
$y=-\frac{\cos (3 x)}{9}+\frac{1}{9}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 4.921 (sec). Leaf size: 12
dsolve([diff $(y(x), x \$ 2)+9 * y(x)=1, y(0)=0, D(y)(0)=0], y(x)$, singsol=all)

$$
y(x)=-\frac{\cos (3 x)}{9}+\frac{1}{9}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 17
DSolve[\{y'' $\left.[x]+9 * y[x]==1,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{2}{9} \sin ^{2}\left(\frac{3 x}{2}\right)
$$

14.4 problem 10

14.4.1 Existence and uniqueness analysis 2294
14.4.2 Maple step by step solution . 2297

Internal problem ID [12802]
Internal file name [OUTPUT/11454_Saturday_November_04_2023_08_47_24_AM_46660882/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+9 y=18 \mathrm{e}^{3 x}
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=6\right]
$$

14.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =9 \\
F & =18 \mathrm{e}^{3 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=18 \mathrm{e}^{3 x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=18 \mathrm{e}^{3 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+9 Y(s)=\frac{18}{s-3} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =-1 \\
y^{\prime}(0) & =6
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-6+s+9 Y(s)=\frac{18}{s-3}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{s(s-9)}{(s-3)\left(s^{2}+9\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{s-3}+\frac{-1-\frac{i}{2}}{s-3 i}+\frac{-1+\frac{i}{2}}{s+3 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{s-3}\right) & =\mathrm{e}^{3 x} \\
\mathcal{L}^{-1}\left(\frac{-1-\frac{i}{2}}{s-3 i}\right) & =\left(-1-\frac{i}{2}\right) \mathrm{e}^{3 i x} \\
\mathcal{L}^{-1}\left(\frac{-1+\frac{i}{2}}{s+3 i}\right) & =\left(-1+\frac{i}{2}\right) \mathrm{e}^{-3 i x}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-2 \cos (3 x)+\sin (3 x)+\mathrm{e}^{3 x}
$$

Simplifying the solution gives

$$
y=-2 \cos (3 x)+\sin (3 x)+\mathrm{e}^{3 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 \cos (3 x)+\sin (3 x)+\mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \cos (3 x)+\sin (3 x)+\mathrm{e}^{3 x}
$$

Verified OK.

14.4.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=18 \mathrm{e}^{3 x}, y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=6\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=18 \mathrm{e}^{3 x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (3 x) & \sin (3 x) \\ -3 \sin (3 x) & 3 \cos (3 x)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-6 \cos (3 x)\left(\int \mathrm{e}^{3 x} \sin (3 x) d x\right)+6 \sin (3 x)\left(\int \mathrm{e}^{3 x} \cos (3 x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{3 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\mathrm{e}^{3 x}
$$

Check validity of solution $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\mathrm{e}^{3 x}$

- Use initial condition $y(0)=-1$

$$
-1=1+c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)+3 \mathrm{e}^{3 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=6$

$$
6=3+3 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-2, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-2 \cos (3 x)+\sin (3 x)+\mathrm{e}^{3 x}
$$

- \quad Solution to the IVP

$$
y=-2 \cos (3 x)+\sin (3 x)+\mathrm{e}^{3 x}
$$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.922 (sec). Leaf size: 19
dsolve([diff $(y(x), x \$ 2)+9 * y(x)=18 * \exp (3 * x), y(0)=-1, D(y)(0)=6], y(x)$, singsol=all)

$$
y(x)=-2 \cos (3 x)+\sin (3 x)+\mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 21
DSolve $\left[\left\{y^{\prime} '[x]+9 * y[x]==18 * \operatorname{Exp}[3 * x],\left\{y[0]==-1, y^{\prime}[0]==6\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ T

$$
y(x) \rightarrow e^{3 x}+\sin (3 x)-2 \cos (3 x)
$$

14.5 problem 11

14.5.1 Existence and uniqueness analysis 2300
14.5.2 Maple step by step solution . 2303

Internal problem ID [12803]
Internal file name [OUTPUT/11455_Saturday_November_04_2023_08_47_24_AM_78086821/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=3\right]
$$

14.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)-2 Y(s)=0 \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =3
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-3-s Y(s)-2 Y(s)=0
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{3}{s^{2}-s-2}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{s+1}+\frac{1}{s-2}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{s+1}\right) & =-\mathrm{e}^{-x} \\
\mathcal{L}^{-1}\left(\frac{1}{s-2}\right) & =\mathrm{e}^{2 x}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\mathrm{e}^{-x}+\mathrm{e}^{2 x}
$$

Simplifying the solution gives

$$
y=-\mathrm{e}^{-x}+\mathrm{e}^{2 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-x}+\mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-x}+\mathrm{e}^{2 x}
$$

Verified OK.

14.5.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=3\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=3$
$3=-c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2} $\left\{c_{1}=-1, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\mathrm{e}^{-x}+\mathrm{e}^{2 x}
$$

- \quad Solution to the IVP

$$
y=-\mathrm{e}^{-x}+\mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 5.203 (sec). Leaf size: 15

```
dsolve([diff(y(x),x$2)-diff(y(x),x)-2*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x), singsol=all)
```

$$
y(x)=-\mathrm{e}^{-x}+\mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 18

```
DSolve[{y''[x]-y'[x]-2*y[x]==0,{y[0]==0,y'[0]==3}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-x}\left(e^{3 x}-1\right)
$$

14.6 problem 12

14.6.1 Existence and uniqueness analysis 2305
14.6.2 Maple step by step solution . 2308

Internal problem ID [12804]
Internal file name [OUTPUT/11456_Saturday_November_04_2023_08_47_24_AM_94980606/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime}-2 y=x^{2}
$$

With initial conditions

$$
\left[y(0)=\frac{11}{4}, y^{\prime}(0)=\frac{1}{2}\right]
$$

14.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-2 \\
F & =x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-2 y=x^{2}
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)-2 Y(s)=\frac{2}{s^{3}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =\frac{11}{4} \\
y^{\prime}(0) & =\frac{1}{2}
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+\frac{9}{4}-\frac{11 s}{4}-s Y(s)-2 Y(s)=\frac{2}{s^{3}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{11 s^{4}-9 s^{3}+8}{4 s^{3}\left(s^{2}-s-2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{3}{4 s}-\frac{1}{s^{3}}+\frac{7}{3(s+1)}+\frac{7}{6(s-2)}+\frac{1}{2 s^{2}}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{3}{4 s}\right) & =-\frac{3}{4} \\
\mathcal{L}^{-1}\left(-\frac{1}{s^{3}}\right) & =-\frac{x^{2}}{2} \\
\mathcal{L}^{-1}\left(\frac{7}{3(s+1)}\right) & =\frac{7 \mathrm{e}^{-x}}{3} \\
\mathcal{L}^{-1}\left(\frac{7}{6(s-2)}\right) & =\frac{7 \mathrm{e}^{2 x}}{6} \\
\mathcal{L}^{-1}\left(\frac{1}{2 s^{2}}\right) & =\frac{x}{2}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\frac{7 \mathrm{e}^{2 x}}{6}-\frac{x^{2}}{2}+\frac{7 \mathrm{e}^{-x}}{3}+\frac{x}{2}-\frac{3}{4}
$$

Simplifying the solution gives

$$
y=\frac{7 \mathrm{e}^{2 x}}{6}-\frac{x^{2}}{2}+\frac{7 \mathrm{e}^{-x}}{3}+\frac{x}{2}-\frac{3}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{7 \mathrm{e}^{2 x}}{6}-\frac{x^{2}}{2}+\frac{7 \mathrm{e}^{-x}}{3}+\frac{x}{2}-\frac{3}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{7 \mathrm{e}^{2 x}}{6}-\frac{x^{2}}{2}+\frac{7 \mathrm{e}^{-x}}{3}+\frac{x}{2}-\frac{3}{4}
$$

Verified OK.

14.6.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=x^{2}, y(0)=\frac{11}{4},\left.y^{\prime}\right|_{\{x=0\}}=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial
$(r+1)(r-2)=0$
- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x^{2}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{2 x} \\
-\mathrm{e}^{-x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\int x^{2} \mathrm{e}^{x} d x\right)}{3}+\frac{\mathrm{e}^{2 x}\left(\int x^{2} \mathrm{e}^{-2 x} d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{3}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}-\frac{x^{2}}{2}+\frac{x}{2}-\frac{3}{4}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}-\frac{x^{2}}{2}+\frac{x}{2}-\frac{3}{4}$

- Use initial condition $y(0)=\frac{11}{4}$
$\frac{11}{4}=c_{1}+c_{2}-\frac{3}{4}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}-x+\frac{1}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=\frac{1}{2}$
$\frac{1}{2}=-c_{1}+2 c_{2}+\frac{1}{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{7}{3}, c_{2}=\frac{7}{6}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{7 \mathrm{e}^{2 x}}{6}-\frac{x^{2}}{2}+\frac{7 \mathrm{e}^{-x}}{3}+\frac{x}{2}-\frac{3}{4}
$$

- \quad Solution to the IVP

$$
y=\frac{7 \mathrm{e}^{2 x}}{6}-\frac{x^{2}}{2}+\frac{7 \mathrm{e}^{-x}}{3}+\frac{x}{2}-\frac{3}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 5.016 (sec). Leaf size: 26

```
dsolve([diff(y(x),x$2)-diff(y(x),x)-2*y(x)=x^2,y(0) = 11/4, D(y)(0) = 1/2],y(x), singsol=all
```

$$
y(x)=\frac{7 \mathrm{e}^{-x}}{3}+\frac{x}{2}-\frac{x^{2}}{2}+\frac{7 \mathrm{e}^{2 x}}{6}-\frac{3}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 33

```
DSolve[{y''[x]-y'[x]-2*y[x]==x^2,{y[0]==11/4,y'[0]==1/2}},y[x],x,IncludeSingularSolutions ->
```

$$
y(x) \rightarrow \frac{1}{12}\left(-6 x^{2}+6 x+28 e^{-x}+14 e^{2 x}-9\right)
$$

14.7 problem 13

14.7.1 Existence and uniqueness analysis 2311
14.7.2 Maple step by step solution . 2314

Internal problem ID [12805]
Internal file name [OUTPUT/11457_Saturday_November_04_2023_08_47_24_AM_52105283/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant_coeff", "linear_second_oorder__ode_solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=2 \sin (x)
$$

With initial conditions

$$
\left[y(0)=-2, y^{\prime}(0)=0\right]
$$

14.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =1 \\
F & =2 \sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+y=2 \sin (x)
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=2 \sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)+Y(s)=\frac{2}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =-2 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-4+2 s-2 s Y(s)+Y(s)=\frac{2}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{2\left(s^{3}-2 s^{2}+s-3\right)}{\left(s^{2}+1\right)\left(s^{2}-2 s+1\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{3}{s-1}+\frac{3}{(s-1)^{2}}+\frac{1}{2 s-2 i}+\frac{1}{2 s+2 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{3}{s-1}\right) & =-3 \mathrm{e}^{x} \\
\mathcal{L}^{-1}\left(\frac{3}{(s-1)^{2}}\right) & =3 x \mathrm{e}^{x} \\
\mathcal{L}^{-1}\left(\frac{1}{2 s-2 i}\right) & =\frac{\mathrm{e}^{i x}}{2} \\
\mathcal{L}^{-1}\left(\frac{1}{2 s+2 i}\right) & =\frac{\mathrm{e}^{-i x}}{2}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\cos (x)+3 \mathrm{e}^{x}(x-1)
$$

Simplifying the solution gives

$$
y=(-3+3 x) \mathrm{e}^{x}+\cos (x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=(-3+3 x) \mathrm{e}^{x}+\cos (x) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=(-3+3 x) \mathrm{e}^{x}+\cos (x)
$$

Verified OK.

14.7.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+y=2 \sin (x), y(0)=-2,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathbf{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=2 \mathrm{e}^{x}\left(-\left(\int x \mathrm{e}^{-x} \sin (x) d x\right)+x\left(\int \mathrm{e}^{-x} \sin (x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\cos (x)
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\cos (x)
$$

Check validity of solution $y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\cos (x)$

- Use initial condition $y(0)=-2$

$$
-2=1+c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}-\sin (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-3, c_{2}=3\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(-3+3 x) \mathrm{e}^{x}+\cos (x)
$$

- \quad Solution to the IVP

$$
y=(-3+3 x) \mathrm{e}^{x}+\cos (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.109 (sec). Leaf size: 14
dsolve $([\operatorname{diff}(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+y(x)=2 * \sin (x), y(0)=-2, D(y)(0)=0], y(x)$, singsol=al

$$
y(x)=(3 x-3) \mathrm{e}^{x}+\cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 16
DSolve $\left[\left\{y^{\prime} '[x]-2 * y '[x]+y[x]==2 * \operatorname{Sin}[x],\left\{y[0]==-2, y^{\prime}[0]==0\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions

$$
y(x) \rightarrow 3 e^{x}(x-1)+\cos (x)
$$

14.8 problem 14

14.8.1 Maple step by step solution

2319
Internal problem ID [12806]
Internal file name [OUTPUT/11458_Saturday_November_04_2023_08_47_24_AM_22492681/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.3, page 255
Problem number: 14.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_laplace"
Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=5, y^{\prime \prime}(0)=5\right]
$$

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0) \\
\mathcal{L}\left(y^{\prime \prime \prime}\right) & =s^{3} Y(s)-y^{\prime \prime}(0)-s y^{\prime}(0)-s^{2} y(0)
\end{aligned}
$$

The given ode becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{3} Y(s)-y^{\prime \prime}(0)-s y^{\prime}(0)-s^{2} y(0)-s^{2} Y(s)+y^{\prime}(0)+s y(0)+4 s Y(s)-4 y(0)-4 Y(s)=0 \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =5 \\
y^{\prime \prime}(0) & =5
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{3} Y(s)-5 s-s^{2} Y(s)+4 s Y(s)-4 Y(s)=0
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{5 s}{s^{3}-s^{2}+4 s-4}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{-\frac{1}{2}-i}{s-2 i}+\frac{-\frac{1}{2}+i}{s+2 i}+\frac{1}{s-1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{-\frac{1}{2}-i}{s-2 i}\right) & =\left(-\frac{1}{2}-i\right) \mathrm{e}^{2 i x} \\
\mathcal{L}^{-1}\left(\frac{-\frac{1}{2}+i}{s+2 i}\right) & =\left(-\frac{1}{2}+i\right) \mathrm{e}^{-2 i x} \\
\mathcal{L}^{-1}\left(\frac{1}{s-1}\right) & =\mathrm{e}^{x}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\mathrm{e}^{x}-\cos (2 x)+2 \sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}-\cos (2 x)+2 \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 411: Solution plot

Verification of solutions

$$
y=\mathrm{e}^{x}-\cos (2 x)+2 \sin (2 x)
$$

Verified OK.

14.8.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=5,\left.y^{\prime \prime}\right|_{\{x=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=y_{3}(x)-4 y_{2}(x)+4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=y_{3}(x)-4 y_{2}(x)+4 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -4 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -4 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{4} \\
-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\cos (2 x)}{4}+\frac{I \sin (2 x)}{4} \\
\frac{I}{2}(\cos (2 x)-I \sin (2 x)) \\
\cos (2 x)-I \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{x} c_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} \cos (2 x)}{4}+\frac{c_{3} \sin (2 x)}{4} \\
\frac{c_{2} \sin (2 x)}{2}+\frac{c_{3} \cos (2 x)}{2} \\
c_{2} \cos (2 x)-c_{3} \sin (2 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\mathrm{e}^{x} c_{1}+\frac{c_{3} \sin (2 x)}{4}-\frac{c_{2} \cos (2 x)}{4}$
- Use the initial condition $y(0)=0$
$0=c_{1}-\frac{c_{2}}{4}$
- Calculate the 1 st derivative of the solution
$y^{\prime}=\mathrm{e}^{x} c_{1}+\frac{c_{3} \cos (2 x)}{2}+\frac{c_{2} \sin (2 x)}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$
$5=c_{1}+\frac{c_{3}}{2}$
- Calculate the 2nd derivative of the solution
$y^{\prime \prime}=\mathrm{e}^{x} c_{1}-c_{3} \sin (2 x)+c_{2} \cos (2 x)$
- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=5$

$$
5=c_{1}+c_{2}
$$

- \quad Solve for the unknown coefficients

$$
\left\{c_{1}=1, c_{2}=4, c_{3}=8\right\}
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{x}-\cos (2 x)+2 \sin (2 x)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 5.813 (sec). Leaf size: 19
dsolve ([diff $(y(x), x \$ 3)-\operatorname{diff}(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)-4 * y(x)=0, y(0)=0, D(y)(0)=5, \quad$ (D@@2)

$$
y(x)=\mathrm{e}^{x}-\cos (2 x)+2 \sin (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 21

```
DSolve[{y'''[x]-y''[x]+4*y'[x]-4*y[x]==0,{y[0]==0,y'[0]==5,y''[0]==5}},y[x],x, IncludeSingula
```

$$
y(x) \rightarrow e^{x}+2 \sin (2 x)-\cos (2 x)
$$

15 Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265

15.1 problem 4 (a) 2324
15.2 problem 4 (b) 2330
15.3 problem 4 (c) 2338
15.4 problem 4 (d) 2345
15.5 problem 4 (e) 2352
15.6 problem 4 (g) 2359
15.7 problem 4 (h) 2366

15.1 problem 4 (a)

15.1.1 Existence and uniqueness analysis 2324
15.1.2 Solving as laplace ode . 2325
15.1.3 Maple step by step solution . 2327

Internal problem ID [12807]
Internal file name [OUTPUT/11459_Saturday_November_04_2023_08_47_25_AM_93984434/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265
Problem number: 4 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
1 & 1 \leq x
\end{array}\right.
$$

With initial conditions

$$
[y(0)=1]
$$

15.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=2 \\
& q(x)= \begin{cases}0 & x<0 \\
2 & x<1 \\
1 & 1 \leq x\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y= \begin{cases}0 & x<0 \\ 2 & x<1 \\ 1 & 1 \leq x\end{cases}
$$

The domain of $p(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\left\{\begin{array}{ll}0 & x<0 \\ 2 & x<1 \\ 1 & 1 \leq x\end{array}\right.$ is

$$
\{0 \leq x \leq 1,1 \leq x \leq \infty,-\infty \leq x \leq 0\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.1.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+2 Y(s)=\frac{2-\mathrm{e}^{-s}}{s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1+2 Y(s)=\frac{2-\mathrm{e}^{-s}}{s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=-\frac{-2+\mathrm{e}^{-s}-s}{s(s+2)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{-2+\mathrm{e}^{-s}-s}{s(s+2)}\right) \\
& =1-\frac{\text { Heaviside }(x-1)\left(1-\mathrm{e}^{-2 x+2}\right)}{2}
\end{aligned}
$$

Hence the final solution is

$$
y=1-\frac{\text { Heaviside }(x-1)\left(1-\mathrm{e}^{-2 x+2}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1-\frac{\text { Heaviside }(x-1)\left(1-\mathrm{e}^{-2 x+2}\right)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1-\frac{\operatorname{Heaviside}(x-1)\left(1-\mathrm{e}^{-2 x+2}\right)}{2}
$$

Verified OK.

15.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+2 y=\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 1 & 1 \leq x\end{array}, y(0)=1\right]\right.$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 1 & 1 \leq x\end{array}\right.$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+2 y=\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 1 & 1 \leq x\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+2 y\right)=\mu(x)\left(\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 1 & 1 \leq x\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+2 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=2 \mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{2 x}$
- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
1 & 1 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x)\left(\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
1 & 1 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- \quad Solve for y
$y=\frac{\int \mu(x)\left(\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 1 & 1 \leq x\end{array}\right) d x+c_{1}\right.}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{2 x}$
$y=\frac{\int \mathrm{e}^{2 x}\left(\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 1 & 1 \leq x\end{array}\right) d x+c_{1}\right.}{\mathrm{e}^{2 x}}$
- Evaluate the integrals on the rhs
$y=\frac{\left\{\begin{array}{cl}0 & x \leq 0 \\ \mathrm{e}^{2 x}-1 & x \leq 1+c_{1} \\ \frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2}}{2}-1 & 1<x\end{array}\right.}{\mathrm{e}^{2 x}}$
- Simplify

$$
y=\mathrm{e}^{-2 x}\left(\left\{\begin{array}{cl}
0 & x \leq 0 \\
\mathrm{e}^{2 x}-1 & x \leq 1 \\
\frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2}}{2}-1 & 1<x
\end{array}\right)\right.
$$

- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{-2 x} & x \leq 0 \\
1 & x \leq 1 \\
\frac{1}{2}+\frac{\mathrm{e}^{-2 x+2}}{2} & 1<x
\end{array}\right.
$$

- \quad Solution to the IVP
$y=\left\{\begin{array}{cc}\mathrm{e}^{-2 x} & x \leq 0 \\ 1 & x \leq 1 \\ \frac{1}{2}+\frac{\mathrm{e}^{-2 x+2}}{2} & 1<x\end{array}\right.$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 7.625 (sec). Leaf size: 22
dsolve([diff $(y(x), x)+2 * y(x)=$ piecewise $(0<=x$ and $x<1,2,1<=x, 1), y(0)=1], y(x)$, singsol=all)

$$
y(x)=\left\{\begin{array}{cc}
1 & x<1 \\
\frac{1}{2}+\frac{\mathrm{e}^{2-2 x}}{2} & 1 \leq x
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.113 (sec). Leaf size: 37
DSolve[\{y' $[x]+2 * y[x]==$ Piecewise $[\{\{2,0<=x<1\},\{1,1<=x\}\}],\{y[0]==1\}\}, y[x], x$, IncludeSingularSol

$$
y(x) \rightarrow\left\{\begin{array}{cc}
e^{-2 x} & x \leq 0 \\
1 & 0<x \leq 1 \\
\frac{1}{2}\left(1+e^{2-2 x}\right) & \text { True }
\end{array}\right.
$$

15.2 problem 4 (b)

15.2.1 Existence and uniqueness analysis 2330
15.2.2 Maple step by step solution . 2333

Internal problem ID [12808]
Internal file name [OUTPUT/11460_Saturday_November_04_2023_08_47_25_AM_68786493/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265
Problem number: 4 (b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-2 y= \begin{cases}1 & 2 \leq x<4 \\ 0 & \text { otherwise }\end{cases}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

15.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-2 \\
F & = \begin{cases}0 & x<2 \\
1 & x<4 \\
0 & 4 \leq x\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-2 y=\left\{\begin{array}{cl}
0 & x<2 \\
1 & x<4 \\
0 & 4 \leq x
\end{array}\right.
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\left\{\begin{array}{ll}0 & x<2 \\ 1 & x<4 \\ 0 & 4 \leq x\end{array}\right.$ is

$$
\{2 \leq x \leq 4,4 \leq x \leq \infty,-\infty \leq x \leq 2\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)-2 Y(s)=\frac{\mathrm{e}^{-2 s}-\mathrm{e}^{-4 s}}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-s Y(s)-2 Y(s)=\frac{\mathrm{e}^{-2 s}-\mathrm{e}^{-4 s}}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-2 s}-\mathrm{e}^{-4 s}+s}{s\left(s^{2}-s-2\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-2 s}-\mathrm{e}^{-4 s}+s}{s\left(s^{2}-s-2\right)}\right) \\
& =-\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}+\frac{\mathrm{e}^{2 x-8}(-1+\operatorname{Heaviside}(4-x))}{6}+\frac{(1-\operatorname{Heaviside}(-x+2)) \mathrm{e}^{2 x-4}}{6}-\frac{\text { Heaviside }(x-2)}{6}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & -\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}+\frac{\mathrm{e}^{2 x-8}(-1+\operatorname{Heaviside}(4-x))}{6}+\frac{(1-\operatorname{Heaviside}(-x+2)) \mathrm{e}^{2 x-4}}{6} \\
& -\frac{\text { Heaviside }(x-2)\left(3-2 \mathrm{e}^{-x+2}\right)}{6}+\frac{\text { Heaviside }(-4+x)\left(3-2 \mathrm{e}^{4-x}\right)}{6}
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & -\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}-\frac{\mathrm{e}^{2 x-8} \operatorname{Heaviside}(-4+x)}{6}+\frac{\mathrm{e}^{2 x-4} \operatorname{Heaviside}(x-2)}{6} \\
& +\frac{\operatorname{Heaviside}(x-2) \mathrm{e}^{-x+2}}{3}-\frac{\operatorname{Heaviside}(x-2)}{2} \\
& -\frac{\operatorname{Heaviside}(-4+x) \mathrm{e}^{4-x}}{3}+\frac{\operatorname{Heaviside}(-4+x)}{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}-\frac{\mathrm{e}^{2 x-8} \operatorname{Heaviside}(-4+x)}{6}+\frac{\mathrm{e}^{2 x-4} \operatorname{Heaviside}(x-2)}{6} \\
& +\frac{\operatorname{Heaviside}(x-2) \mathrm{e}^{-x+2}}{3}-\frac{\operatorname{Heaviside}(x-2)}{2} \tag{1}\\
& -\frac{\operatorname{Heaviside}(-4+x) \mathrm{e}^{4-x}}{3}+\frac{\operatorname{Heaviside}(-4+x)}{2}
\end{align*}
$$

(a) Solution plot

Verification of solutions

$$
\begin{aligned}
y= & -\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}-\frac{\mathrm{e}^{2 x-8} \operatorname{Heaviside}(-4+x)}{6}+\frac{\mathrm{e}^{2 x-4} \operatorname{Heaviside}(x-2)}{6} \\
& +\frac{\operatorname{Heaviside}(x-2) \mathrm{e}^{-x+2}}{3}-\frac{\operatorname{Heaviside}(x-2)}{2} \\
& -\frac{\operatorname{Heaviside}(-4+x) \mathrm{e}^{4-x}}{3}+\frac{\operatorname{Heaviside}(-4+x)}{2}
\end{aligned}
$$

Verified OK.

15.2.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=\left\{\begin{array}{ll}
0 & x<2 \\
1 & x<4 \\
0 & 4 \leq x
\end{array}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]\right.
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-1,2)$
- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\left\{\begin{array}{cc}
0 & x<2 \\
1 & x<4 \\
0 & 4 \leq x
\end{array}\right]\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{2 x} \\
-\mathrm{e}^{-x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-x}\left(\int\left(\left\{\begin{array}{cc}
0 & x<2 \\
\frac{\mathrm{e}^{x}}{3} & x<4 \\
0 & 4 \leq x
\end{array}\right) d x\right)+\mathrm{e}^{2 x}\left(\int\left(\left\{\begin{array}{cc}
0 & x<2 \\
\frac{\mathrm{e}^{-2 x}}{3} & x<4 \\
0 & 4 \leq x
\end{array}\right) d x\right)\right.\right.
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 2 \\
\left(\mathrm{e}^{2 x-4}-3+2 \mathrm{e}^{-x+2}\right. & x \leq 4 \\
-\mathrm{e}^{2 x-8}+\mathrm{e}^{2 x-4}+2 \mathrm{e}^{-x+2}-2 \mathrm{e}^{4-x} & 4<x
\end{array}\right)\right.}{6}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\frac{\left(\left\{\begin{array}{cc}0 & x \leq 2 \\ \mathrm{e}^{2 x-4}-3+2 \mathrm{e}^{-x+2} & x \leq 4 \\ -\mathrm{e}^{2 x-8}+\mathrm{e}^{2 x-4}+2 \mathrm{e}^{-x+2}-2 \mathrm{e}^{4-x} & 4<x\end{array}\right)\right.}{6}$
Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\frac{\left(\left\{\begin{array}{cc}0 & x \leq 2 \\ \mathrm{e}^{2 x-4}-3+2 \mathrm{e}^{-x+2} & x \leq 4 \\ -\mathrm{e}^{2 x-8}+\mathrm{e}^{2 x-4}+2 \mathrm{e}^{-x+2}-2 \mathrm{e}^{4-x} & 4<x\end{array}\right)\right.}{6}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}+\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 2 \\
2 \mathrm{e}^{2 x-4}-2 \mathrm{e}^{-x+2} & x \leq 4 \\
-2 \mathrm{e}^{2 x-8}+2 \mathrm{e}^{2 x-4}-2 \mathrm{e}^{-x+2}+2 \mathrm{e}^{4-x} & 4<x
\end{array}\right)\right.}{6}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=-c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{3}, c_{2}=\frac{1}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}-\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 2 \\
-\mathrm{e}^{2 x-4}+3-2 \mathrm{e}^{-x+2} & x \leq 4 \\
\mathrm{e}^{2 x-8}-\mathrm{e}^{2 x-4}-2 \mathrm{e}^{-x+2}+2 \mathrm{e}^{4-x} & 4<x
\end{array}\right)\right.}{6}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}-\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 2 \\
-\mathrm{e}^{2 x-4}+3-2 \mathrm{e}^{-x+2} & x \leq 4 \\
\mathrm{e}^{2 x-8}-\mathrm{e}^{2 x-4}-2 \mathrm{e}^{-x+2}+2 \mathrm{e}^{4-x} & 4<x
\end{array}\right)\right.}{6}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`

Solution by Maple
Time used: 8.969 (sec). Leaf size: 136
dsolve ([diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-2 * y(x)=\operatorname{piecewise}(2<=x$ and $x<4,1, \operatorname{true}, 0), y(0)=0, D(y)(0$
\checkmark Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 127
DSolve[\{y''[x]-y'[x]-2*y[x]==Piecewise[\{ $\{1,2<=x<4\},\{0$, True $\left.\}\}],\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[x], x$, In

$$
y(x) \rightarrow\left\{\begin{array}{cc}
\frac{1}{3} e^{-x}\left(-1+e^{3 x}\right) & x \leq 2 \\
\frac{1}{6} e^{-x-4}\left(-2 e^{4}+2 e^{6}+e^{3 x}-3 e^{x+4}+2 e^{3 x+4}\right) & 2<x \leq 4 \\
\frac{1}{6} e^{-x-8}\left(-2 e^{8}+2 e^{10}-2 e^{12}-e^{3 x}+e^{3 x+4}+2 e^{3 x+8}\right) & \text { True }
\end{array}\right.
$$

15.3 problem 4 (c)

15.3.1 Existence and uniqueness analysis 2338
15.3.2 Maple step by step solution . 2341

Internal problem ID [12809]
Internal file name [OUTPUT/11461_Saturday_November_04_2023_08_47_25_AM_41313843/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265
Problem number: 4 (c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "exact linear second order ode", "second_order_ode_missing_y", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}-2 y^{\prime}=\left\{\begin{array}{cc}
0 & 0 \leq x<1 \\
(x-1)^{2} & 1 \leq x
\end{array}\right.
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

15.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =0 \\
F & =\left\{\begin{array}{cc}
0 & x<1 \\
(x-1)^{2} & 1 \leq x
\end{array}\right.
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}=\left\{\begin{array}{cc}
0 & x<1 \\
(x-1)^{2} & 1 \leq x
\end{array}\right.
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $F=\left\{\begin{array}{cc}0 & x<1 \\ (x-1)^{2} & 1 \leq x\end{array}\right.$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)=\frac{2 \mathrm{e}^{-s}}{s^{3}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2-s-2 s Y(s)=\frac{2 \mathrm{e}^{-s}}{s^{3}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{4}-2 s^{3}+2 \mathrm{e}^{-s}}{s^{4}(s-2)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{s^{4}-2 s^{3}+2 \mathrm{e}^{-s}}{s^{4}(s-2)}\right) \\
& =1+\frac{(1-\text { Heaviside }(1-x)) \mathrm{e}^{2 x-2}}{8}-\frac{\text { Heaviside }(x-1)\left(4 x^{3}-6 x^{2}+6 x-1\right)}{24}
\end{aligned}
$$

Hence the final solution is

$$
y=1+\frac{(1-\text { Heaviside }(1-x)) \mathrm{e}^{2 x-2}}{8}-\frac{\text { Heaviside }(x-1)\left(4 x^{3}-6 x^{2}+6 x-1\right)}{24}
$$

Simplifying the solution gives

$$
y=\frac{\mathrm{e}^{2 x-2} \operatorname{Heaviside}(x-1)}{8}+1+\frac{\left(-4 x^{3}+6 x^{2}-6 x+1\right) \text { Heaviside }(x-1)}{24}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x-2} \text { Heaviside }(x-1)}{8}+1+\frac{\left(-4 x^{3}+6 x^{2}-6 x+1\right) \text { Heaviside }(x-1)}{24} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x-2} \text { Heaviside }(x-1)}{8}+1+\frac{\left(-4 x^{3}+6 x^{2}-6 x+1\right) \text { Heaviside }(x-1)}{24}
$$

Verified OK.

15.3.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}=\left\{\begin{array}{cc}
0 & x<1 \\
(x-1)^{2} & 1 \leq x
\end{array}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]\right.
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r=0
$$

- Factor the characteristic polynomial

$$
r(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(0,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\left\{\begin{array}{cc}
0 & x<1 \\
(x-1)^{2} & 1 \leq x
\end{array}\right]\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
1 & \mathrm{e}^{2 x} \\
0 & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\left(\int\left(\left\{\begin{array}{cc}
0 & x<1 \\
\frac{(x-1)^{2}}{2} & 1 \leq x
\end{array}\right) d x\right)+\mathrm{e}^{2 x}\left(\int\left(\left\{\begin{array}{cc}
0 & x<1 \\
\frac{\mathrm{e}^{-2 x}(x-1)^{2}}{2} & 1 \leq x
\end{array}\right) d x\right)\right.\right.
$$

- Compute integrals

$$
y_{p}(x)=\left\{\begin{array}{cc}
0 & x \leq 1 \\
\frac{e^{2 x-2}}{8}-\frac{x^{3}}{6}+\frac{x^{2}}{4}-\frac{x}{4}+\frac{1}{24} & 1<x
\end{array}\right.
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1}+c_{2} \mathrm{e}^{2 x}+\left\{\begin{array}{cc}
0 & x \leq 1 \\
\frac{\mathrm{e}^{2 x-2}}{8}-\frac{x^{3}}{6}+\frac{x^{2}}{4}-\frac{x}{4}+\frac{1}{24} & 1<x
\end{array}\right.
$$

Check validity of solution $y=c_{1}+c_{2} \mathrm{e}^{2 x}+\left\{\begin{array}{cl}0 & x \leq 1 \\ \frac{\mathrm{e}^{2 x-2}}{8}-\frac{x^{3}}{6}+\frac{x^{2}}{4}-\frac{x}{4}+\frac{1}{24} & 1<x\end{array}\right.$

- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=2 c_{2} \mathrm{e}^{2 x}+\left\{\begin{array}{cc}
0 & x \leq 1 \\
\frac{\mathrm{e}^{2 x-2}}{4}-\frac{x^{2}}{2}+\frac{x}{2}-\frac{1}{4} & 1<x
\end{array}\right.
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\left\{\begin{array}{cc}
1 & x \leq 1 \\
\frac{25}{24}+\frac{\mathrm{e}^{2 x-2}}{8}-\frac{x^{3}}{6}+\frac{x^{2}}{4}-\frac{x}{4} & 1<x
\end{array}\right.
$$

- \quad Solution to the IVP

$$
y=\left\{\begin{array}{cc}
1 & x \leq 1 \\
\frac{25}{24}+\frac{\mathrm{e}^{2 x-2}}{8}-\frac{x^{3}}{6}+\frac{x^{2}}{4}-\frac{x}{4} & 1<x
\end{array}\right.
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
\rightarrow Calling odsolve with the ODE`, \(\operatorname{diff}\left(_b\left(_a\right), \quad a\right)=H e a v i s i d e\left(_a-1\right) * a^{\wedge} 2-2 * H e a v i s i d e\left(_a-1\right) *\) Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful <- high order exact linear fully integrable successful`
\checkmark Solution by Maple
Time used: 9.25 (sec). Leaf size: 39
dsolve $([\operatorname{diff}(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)=$ piecewise $(0<=x$ and $x<1,0,1<=x,(x-1) \sim 2), y(0)=1, D(y)($

$$
y(x)=\left\{\begin{array}{cc}
1 & x<1 \\
\frac{7}{8} & x=1 \\
\frac{25}{24}+\frac{\mathrm{e}^{2 x-2}}{8}+\frac{x^{2}}{4}-\frac{x^{3}}{6}-\frac{x}{4} & 1<x
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.269 (sec). Leaf size: 40
DSolve[\{y''[x]-2*y'[x]==Piecewise[\{ $\left.\left.\{0,0<=x<1\},\left\{(x-1)^{\wedge} 2, x>=1\right\}\right\}\right],\{y[0]==1, y$ ' $\left.[0]==0\}\right\}, y[x], x, I$

$$
y(x) \rightarrow\left\{\begin{array}{cc}
1 & x \leq 1 \\
\frac{1}{24}\left(-4 x^{3}+6 x^{2}-6 x+3 e^{2 x-2}+25\right) & \text { True }
\end{array}\right.
$$

15.4 problem 4 (d)

15.4.1 Existence and uniqueness analysis 2345
15.4.2 Maple step by step solution . 2348

Internal problem ID [12810]
Internal file name [OUTPUT/11462_Saturday_November_04_2023_08_47_26_AM_49386920/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265
Problem number: 4 (d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant_coeff", "linear_second_order__ode_solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=\left\{\begin{array}{cc}
0 & 0 \leq x<1 \\
x^{2}-2 x+3 & 1 \leq x
\end{array}\right.
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

15.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =1 \\
F & =\left\{\begin{array}{cc}
0 & x<1 \\
x^{2}-2 x+3 & 1 \leq x
\end{array}\right.
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+y=\left\{\begin{array}{cc}
0 & x<1 \\
x^{2}-2 x+3 & 1 \leq x
\end{array}\right.
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\left\{\begin{array}{cc}0 & x<1 \\ x^{2}-2 x+3 & 1 \leq x\end{array}\right.$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)+Y(s)=2 \mathrm{e}^{-s}\left(\frac{1}{s}+\frac{1}{s^{3}}\right) \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-2 s Y(s)+Y(s)=2 \mathrm{e}^{-s}\left(\frac{1}{s}+\frac{1}{s^{3}}\right)
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{2 \mathrm{e}^{-s} s^{2}+s^{3}+2 \mathrm{e}^{-s}}{s^{3}\left(s^{2}-2 s+1\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{2 \mathrm{e}^{-s} s^{2}+s^{3}+2 \mathrm{e}^{-s}}{s^{3}\left(s^{2}-2 s+1\right)}\right) \\
& =x \mathrm{e}^{x}+4(1-\text { Heaviside }(1-x)) \mathrm{e}^{x-1}(x-3)+\left(x^{2}+2 x+5\right) \text { Heaviside }(x-1)
\end{aligned}
$$

Hence the final solution is

$$
y=x \mathrm{e}^{x}+4(1-\text { Heaviside }(1-x)) \mathrm{e}^{x-1}(x-3)+\left(x^{2}+2 x+5\right) \text { Heaviside }(x-1)
$$

Simplifying the solution gives

$$
y=\left(4 \mathrm{e}^{x-1}(x-3)+x^{2}+2 x+5\right) \text { Heaviside }(x-1)+x \mathrm{e}^{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(4 \mathrm{e}^{x-1}(x-3)+x^{2}+2 x+5\right) \text { Heaviside }(x-1)+x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\left(4 \mathrm{e}^{x-1}(x-3)+x^{2}+2 x+5\right) \text { Heaviside }(x-1)+x \mathrm{e}^{x}
$$

Verified OK.

15.4.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+y=\left\{\begin{array}{cc}
0 & x<1 \\
x^{2}-2 x+3 & 1 \leq x
\end{array}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]\right.
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\left\{\begin{array}{cc}
0 & x<1 \\
x^{2}-2 x+3 & 1 \leq x
\end{array}\right.\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{x}\left(-\left(\int\left(\left\{\begin{array}{cc}
0 & x<1 \\
x \mathrm{e}^{-x}\left(x^{2}-2 x+3\right) & 1 \leq x
\end{array}\right) d x\right)+\left(\int \left(\left\{\begin{array}{cc}
0 & x<1 \\
\mathrm{e}^{-x}\left(x^{2}-2 x+3\right) & 1 \leq x
\end{array}\right.\right.\right.\right.\right.
$$

- Compute integrals

$$
y_{p}(x)=\left\{\begin{array}{cc}
0 & x \leq 1 \\
4 \mathrm{e}^{x-1}(x-3)+x^{2}+2 x+5 & 1<x
\end{array}\right.
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\left\{\begin{array}{cc}
0 & x \leq 1 \\
4 \mathrm{e}^{x-1}(x-3)+x^{2}+2 x+5 & 1<x
\end{array}\right.
$$

Check validity of solution $y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\left\{\begin{array}{cc}0 & x \leq 1 \\ 4 \mathrm{e}^{x-1}(x-3)+x^{2}+2 x+5 & 1<x\end{array}\right.$

- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+\left\{\begin{array}{cc}
0 & x \leq 1 \\
4 \mathrm{e}^{x-1}(x-3)+4 \mathrm{e}^{x-1}+2 x+2 & 1<x
\end{array}\right.
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=x \mathrm{e}^{x}+\left\{\begin{array}{cc}
0 & x \leq 1 \\
4 \mathrm{e}^{x-1}(x-3)+x^{2}+2 x+5 & 1<x
\end{array}\right.
$$

- \quad Solution to the IVP

$$
y=x \mathrm{e}^{x}+\left\{\begin{array}{cc}
0 & x \leq 1 \\
4 \mathrm{e}^{x-1}(x-3)+x^{2}+2 x+5 & 1<x
\end{array}\right.
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
\checkmark Solution by Maple
Time used: 7.61 (sec). Leaf size: 43
dsolve([diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+y(x)=$ piecewise $\left(0<=x\right.$ and $\left.x<1,0,1<=x, x^{\wedge} 2-2 * x+3\right), y(0)=$

$$
y(x)=\left\{\begin{array}{cl}
\mathrm{e}^{x} x & x<1 \\
\mathrm{e}+8 & x=1 \\
\mathrm{e}^{x} x+5+4(-3+x) \mathrm{e}^{-1+x}+x^{2}+2 x & 1<x
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 39
DSolve[\{y''[x]-2*y'[x]+y[x]==Piecewise[\{\{0,0<=x<1\},\{x^2-2*x+3,x>=1\}\}],\{y[0]==0,y'[0]==1\}\},y,yyyyyy

$$
y(x) \rightarrow\left\{\begin{array}{cc}
e^{x} x & x \leq 1 \\
x^{2}+e^{x} x+2 x+4 e^{x-1}(x-3)+5 & \text { True }
\end{array}\right.
$$

15.5 problem 4 (e)

15.5.1 Existence and uniqueness analysis 2352
15.5.2 Maple step by step solution . 2355

Internal problem ID [12811]
Internal file name [OUTPUT/11463_Saturday_November_04_2023_08_47_26_AM_12715766/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265
Problem number: 4 (e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\left\{\begin{array}{cc}
0 & 0 \leq x<\pi \\
-\sin (3 x) & \pi \leq x
\end{array}\right.
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=1\right]
$$

15.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =4 \\
F & =-\left(\left\{\begin{array}{cc}
0 & x<\pi \\
\sin (3 x) & \pi \leq x
\end{array}\right)\right.
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=-\left(\left\{\begin{array}{cc}
0 & x<\pi \\
\sin (3 x) & \pi \leq x
\end{array}\right)\right.
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=-\left(\left\{\begin{array}{cc}0 & x<\pi \\ \sin (3 x) & \pi \leq x\end{array}\right)\right.$ is

$$
\{x<\pi \vee \pi<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 Y(s)=\text { laplace }\left(\left\{\begin{array}{cc}
0 & x<\pi \tag{1}\\
-\sin (3 x) & \pi \leq x
\end{array}, x, s\right)\right.
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-s+4 Y(s)=\text { laplace }\left(\left\{\begin{array}{cc}
0 & x<\pi \\
-\sin (3 x) & \pi \leq x
\end{array}, x, s\right)\right.
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\text { laplace }\left(\left\{\begin{array}{cc}
0 & x<\pi \\
-\sin (3 x) & \pi \leq x
\end{array}, x, s\right)+s+1\right.}{s^{2}+4}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\operatorname{laplace}\left(\left\{\begin{array}{cc}
0 & x<\pi \\
-\sin (3 x) & \pi \leq x
\end{array}, x, s\right)+s+1\right)}{s^{2}+4}\right) \\
& =\frac{\sin (3 x)}{5}+\frac{4 \sin (2 x)}{5}+\cos (2 x)-\frac{\left(\left\{\begin{array}{ll}
0 & \pi-x<0 \\
1 & \text { otherwise }
\end{array}\right)(3 \sin (2 x)+2 \sin (3 x))\right.}{10}
\end{aligned}
$$

Simplifying the solution gives

$$
y=\left\{\begin{array}{cl}
\frac{\sin (2 x)}{2}+\cos (2 x) & x \leq \pi \\
\frac{\left(4 \cos (x)^{2}+8 \cos (x)-1\right) \sin (x)}{5}+2 \cos (x)^{2}-1 & \pi<x
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cl}
\frac{\sin (2 x)}{2}+\cos (2 x) & x \leq \pi \tag{1}\\
\frac{\left(4 \cos (x)^{2}+8 \cos (x)-1\right) \sin (x)}{5}+2 \cos (x)^{2}-1 & \pi<x
\end{array}\right.
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\left\{\begin{array}{cl}
\frac{\sin (2 x)}{2}+\cos (2 x) & x \leq \pi \\
\frac{\left(4 \cos (x)^{2}+8 \cos (x)-1\right) \sin (x)}{5}+2 \cos (x)^{2}-1 & \pi<x
\end{array}\right.
$$

Verified OK.

15.5.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=\left\{\begin{array}{cc}
0 & x<\pi \\
-\sin (3 x) & \pi \leq x
\end{array}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=1\right]\right.
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\left\{\begin{array}{cl}
0 & x<\pi \\
-\sin (3 x) & \pi \leq x
\end{array}\right.\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (2 x)\left(\int\left(\left\{\begin{array}{cc}
0 & x<\pi \\
-\frac{\cos (x)}{4}+\frac{\cos (5 x)}{4} & \pi \leq x
\end{array}\right) d x\right)+\sin (2 x)\left(\int \left(\left\{\begin{array}{c}
0 \\
-\frac{\sin (5 x)}{4}-\frac{\sin (x)}{4}
\end{array}\right.\right.\right.\right.
$$

- Compute integrals

$$
y_{p}(x)=\left\{\begin{array}{cl}
0 & x \leq \pi \\
\frac{\left(4 \cos (x)^{2}+3 \cos (x)-1\right) \sin (x)}{5} & \pi<x
\end{array}\right.
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\left\{\begin{array}{cl}0 & x \leq \pi \\ \frac{\left(4 \cos (x)^{2}+3 \cos (x)-1\right) \sin (x)}{5} & \pi<x\end{array}\right.$

Check validity of solution $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\left\{\begin{array}{cl}0 & x \leq \pi \\ \frac{\left(4 \cos (x)^{2}+3 \cos (x)-1\right) \sin (x)}{5} & \pi<x\end{array}\right.$

- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)+\left\{\begin{array}{cl}0 & x \leq 7 \\ \frac{(-8 \cos (x) \sin (x)-3 \sin (x)) \sin (x)}{5}+\frac{\left(4 \cos (x)^{2}+3 \cos (x)-1\right) \cos (x)}{5} & \pi<子\end{array}\right.$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=\frac{1}{2}\right\}$
- Substitute constant values into general solution and simplify
$y=\cos (2 x)+\frac{\sin (2 x)}{2}+\left\{\begin{array}{cl}0 & x \leq \pi \\ \frac{\left(4 \cos (x)^{2}+3 \cos (x)-1\right) \sin (x)}{5} & \pi<x\end{array}\right.$
- \quad Solution to the IVP
$y=\cos (2 x)+\frac{\sin (2 x)}{2}+\left\{\begin{array}{cl}0 & x \leq \pi \\ \frac{\left(4 \cos (x)^{2}+3 \cos (x)-1\right) \sin (x)}{5} & \pi<x\end{array}\right.$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 8.188 (sec). Leaf size: 39
dsolve([diff $(y(x), x \$ 2)+4 * y(x)=$ piecewise $(0<=x$ and $x<P i, 0, P i<=x, \sin (3 *(x-P i))), y(0)=1, D(y)($

$$
y(x)=\cos (2 x)+\left(\left\{\begin{array}{cl}
\frac{\sin (2 x)}{2} & x<\pi \\
\frac{4 \sin (2 x)}{5}+\frac{\sin (3 x)}{5} & \pi \leq x
\end{array}\right)\right.
$$

\checkmark Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 42
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+4 * y[x]==\right.\right.$ Piecewise $\left.\left.[\{\{0,0<=x<\operatorname{Pi}\},\{\operatorname{Sin}[3 *(x-P i)], x\rangle=P i\}\}\right],\left\{y[0]==1, y^{\prime}[0]==1\right\}\right\}, y$

$$
y(x) \rightarrow\left\{\begin{array}{cc}
\cos (2 x)+\cos (x) \sin (x) & x \leq \pi \\
\frac{1}{5}(5 \cos (2 x)+4 \sin (2 x)+\sin (3 x)) & \text { True }
\end{array}\right.
$$

15.6 problem 4 (g)

> 15.6.1 Existence and uniqueness analysis
15.6.2 Maple step by step solution . 2362

Internal problem ID [12812]
Internal file name [OUTPUT/11464_Saturday_November_04_2023_08_47_28_AM_1140586/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265
Problem number: 4 (g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y=\left\{\begin{array}{cc}
x & 0 \leq x<1 \\
1 & 1 \leq x
\end{array}\right.
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

15.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-4 \\
F & = \begin{cases}0 & x<0 \\
x & x<1 \\
1 & 1 \leq x\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y= \begin{cases}0 & x<0 \\ x & x<1 \\ 1 & 1 \leq x\end{cases}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\left\{\begin{array}{ll}0 & x<0 \\ x & x<1 \\ 1 & 1 \leq x\end{array}\right.$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-4 Y(s)=\frac{-\mathrm{e}^{-s}+1}{s^{2}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-4 Y(s)=\frac{-\mathrm{e}^{-s}+1}{s^{2}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{\mathrm{e}^{-s}-1}{s^{2}\left(s^{2}-4\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{\mathrm{e}^{-s}-1}{s^{2}\left(s^{2}-4\right)}\right) \\
& =-\frac{x \text { Heaviside }(1-x)}{4}+\frac{\sinh (2 x)}{8}-\frac{\text { Heaviside }(x-1)(\sinh (2 x-2)+2)}{8}
\end{aligned}
$$

Hence the final solution is

$$
y=-\frac{x \text { Heaviside }(1-x)}{4}+\frac{\sinh (2 x)}{8}-\frac{\operatorname{Heaviside}(x-1)(\sinh (2 x-2)+2)}{8}
$$

Simplifying the solution gives

$$
y=-\frac{\text { Heaviside }(x-1) \sinh (2 x-2)}{8}+\frac{(2 x-2) \text { Heaviside }(x-1)}{8}-\frac{x}{4}+\frac{\sinh (2 x)}{8}
$$

Summary
The solution(s) found are the following

$$
y=-\frac{\text { Heaviside }(x-1) \sinh (2 x-2)}{8}+\frac{(2 x-2) \operatorname{Heaviside}(x-1)}{8}-\frac{x}{4}+\frac{\sinh (2 x)(1)}{8}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\text { Heaviside }(x-1) \sinh (2 x-2)}{8}+\frac{(2 x-2) \operatorname{Heaviside}(x-1)}{8}-\frac{x}{4}+\frac{\sinh (2 x)}{8}
$$

Verified OK.

15.6.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y=\left\{\begin{array}{ll}
0 & x<0 \\
x & x<1 \\
1 & 1 \leq x
\end{array}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0\right]\right.
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-4=0$
- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\left\{\begin{array}{cc}
0 & x<0 \\
x & x<1 \\
1 & 1 \leq x
\end{array}\right]\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=4
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}\left(\int \mathrm{e}^{2 x}\left(\left\{\begin{array}{cc}
0 & x<0 \\
x & x<1 \\
1 & 1 \leq x
\end{array}\right) d x\right)\right.}{4}+\frac{\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x}\left(\left\{\begin{array}{cc}
0 & x<0 \\
x & x<1 \\
1 & 1 \leq x
\end{array}\right) d x\right)\right.}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
-4 x-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x} & x \leq 1 \\
\mathrm{e}^{-2 x+2}-4-\mathrm{e}^{-2 x}-\mathrm{e}^{2 x-2}+\mathrm{e}^{2 x} & 1<x
\end{array}\right)\right.}{16}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\frac{\left(\left\{\begin{array}{cc}0 & x \leq 0 \\ -4 x-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x} & x \leq 1 \\ \mathrm{e}^{-2 x+2}-4-\mathrm{e}^{-2 x}-\mathrm{e}^{2 x-2}+\mathrm{e}^{2 x} & 1<x\end{array}\right)\right.}{16}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\frac{\left(\left\{\begin{array}{cc}0 & x \leq 0 \\ -4 x-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x} & x \leq 1 \\ \mathrm{e}^{-2 x+2}-4-\mathrm{e}^{-2 x}-\mathrm{e}^{2 x-2}+\mathrm{e}^{2 x} & 1<x\end{array}\right)\right.}{16}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+2 c_{2} \mathrm{e}^{2 x}+\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
-4+2 \mathrm{e}^{-2 x}+2 \mathrm{e}^{2 x} & x \leq 1 \\
-2 \mathrm{e}^{-2 x+2}+2 \mathrm{e}^{-2 x}-2 \mathrm{e}^{2 x-2}+2 \mathrm{e}^{2 x} & 1<x
\end{array}\right)\right.}{16}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=-2 c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
-4 x-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x} & x \leq 1 \\
\mathrm{e}^{-2 x+2}-4-\mathrm{e}^{-2 x}-\mathrm{e}^{2 x-2}+\mathrm{e}^{2 x} & 1<x
\end{array}\right)\right.}{16}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
-4 x-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x} & x \leq 1 \\
\mathrm{e}^{-2 x+2}-4-\mathrm{e}^{-2 x}-\mathrm{e}^{2 x-2}+\mathrm{e}^{2 x} & 1<x
\end{array}\right)\right.}{16}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 8.235 (sec). Leaf size: 46
dsolve ([diff $(y(x), x \$ 2)-4 * y(x)=$ piecewise $(0<=x$ and $x<1, x, 1<=x, 1), y(0)=0, D(y)(0)=0], y(x)$,

$$
y(x)=\frac{\left(\left\{\begin{array}{cc}
\sinh (2 x)-2 x & x<1 \\
\sinh (2)-4 & x=1 \\
\sinh (2 x)-\sinh (2 x-2)-2 & 1<x
\end{array}\right)\right.}{8}
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 36
DSolve[\{y''[x]-4*y[x]==Piecewise[\{ $\left.\{x, 0<=x<1\},\{x, x>=1\}\}],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeS

$$
y(x) \rightarrow\left\{\begin{array}{cc}
0 & x \leq 0 \\
\frac{1}{16} e^{-2 x}\left(-4 e^{2 x} x+e^{4 x}-1\right) & \text { True }
\end{array}\right.
$$

15.7 problem 4 (h)

15.7.1 Existence and uniqueness analysis 2366
15.7.2 Maple step by step solution . 2369

Internal problem ID [12813]
Internal file name [OUTPUT/11465_Saturday_November_04_2023_08_47_28_AM_77734816/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.4, page 265
Problem number: 4 (h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y^{\prime}+5 y=\left\{\begin{array}{cc}
x & 0 \leq x<1 \\
1 & 1 \leq x
\end{array}\right.
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

15.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-4 \\
q(x) & =5 \\
F & = \begin{cases}0 & x<0 \\
x & x<1 \\
1 & 1 \leq x\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y^{\prime}+5 y= \begin{cases}0 & x<0 \\ x & x<1 \\ 1 & 1 \leq x\end{cases}
$$

The domain of $p(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\left\{\begin{array}{ll}0 & x<0 \\ x & x<1 \\ 1 & 1 \leq x\end{array}\right.$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-4 s Y(s)+4 y(0)+5 Y(s)=\frac{-\mathrm{e}^{-s}+1}{s^{2}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+4-s-4 s Y(s)+5 Y(s)=\frac{-\mathrm{e}^{-s}+1}{s^{2}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{-s^{3}+4 s^{2}+\mathrm{e}^{-s}-1}{s^{2}\left(s^{2}-4 s+5\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{-s^{3}+4 s^{2}+\mathrm{e}^{-s}-1}{s^{2}\left(s^{2}-4 s+5\right)}\right) \\
& =\frac{4}{25}+\frac{x \text { Heaviside }(1-x)}{5}+\frac{\text { Heaviside }(x-1)}{25}+\frac{\mathrm{e}^{2 x}(21 \cos (x)-47 \sin (x))}{25}+\frac{\mathrm{e}^{2 x-2}(\text { Heaviside }(1-x}{}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & \frac{4}{25}+\frac{x \text { Heaviside }(1-x)}{5}+\frac{\text { Heaviside }(x-1)}{25}+\frac{\mathrm{e}^{2 x}(21 \cos (x)-47 \sin (x))}{25} \\
& +\frac{\mathrm{e}^{2 x-2}(\text { Heaviside }(1-x)-1)(-4 \cos (x-1)+3 \sin (x-1))}{25}
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & \frac{4\left(\left(\cos (1)+\frac{3 \sin (1)}{4}\right) \cos (x)-\frac{3\left(\cos (1)-\frac{4 \sin (1)}{3}\right) \sin (x)}{4}\right) \text { Heaviside }(x-1) \mathrm{e}^{2 x-2}}{25} \\
& +\frac{(-5 x+1) \operatorname{Heaviside}(x-1)}{25}+\frac{\mathrm{e}^{2 x}(21 \cos (x)-47 \sin (x))}{25}+\frac{x}{5}+\frac{4}{25}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{4\left(\left(\cos (1)+\frac{3 \sin (1)}{4}\right) \cos (x)-\frac{3\left(\cos (1)-\frac{4 \sin (1)}{3}\right) \sin (x)}{4}\right) \text { Heaviside }(x-1) \mathrm{e}^{2 x-2}}{25} \tag{1}\\
& +\frac{(-5 x+1) \text { Heaviside }(x-1)}{25}+\frac{\mathrm{e}^{2 x}(21 \cos (x)-47 \sin (x))}{25}+\frac{x}{5}+\frac{4}{25}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{4\left(\left(\cos (1)+\frac{3 \sin (1)}{4}\right) \cos (x)-\frac{3\left(\cos (1)-\frac{4 \sin (1)}{3}\right) \sin (x)}{4}\right) \text { Heaviside }(x-1) \mathrm{e}^{2 x-2}}{25} \\
& +\frac{(-5 x+1) \operatorname{Heaviside}(x-1)}{25}+\frac{\mathrm{e}^{2 x}(21 \cos (x)-47 \sin (x))}{25}+\frac{x}{5}+\frac{4}{25}
\end{aligned}
$$

Verified OK.

15.7.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y^{\prime}+5 y=\left\{\begin{array}{ll}
0 & x<0 \\
x & x<1 \\
1 & 1 \leq x
\end{array}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]\right.
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-4 r+5=0$
- Use quadratic formula to solve for r

$$
r=\frac{4 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(2-\mathrm{I}, 2+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{2 x} \cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x} \sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{2 x} \cos (x)+c_{2} \mathrm{e}^{2 x} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\left\{\begin{array}{cc}
0 & x<0 \\
x & x<1 \\
1 & 1 \leq x
\end{array}\right]\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 x} \cos (x) & \mathrm{e}^{2 x} \sin (x) \\
2 \mathrm{e}^{2 x} \cos (x)-\mathrm{e}^{2 x} \sin (x) & 2 \mathrm{e}^{2 x} \sin (x)+\mathrm{e}^{2 x} \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{2 x}\left(\operatorname { c o s } (x) \left(\int\left(\left\{\begin{array}{cc}
0 & x<0 \\
x & x<1 \\
1 & 1 \leq x
\end{array}\right) \sin (x) \mathrm{e}^{-2 x} d x\right)-\sin (x)\left(\int \left(\left\{\begin{array}{cc}
0 & x<0 \\
x & x<1 \\
1 & 1 \leq x
\end{array}\right) \cos (\right.\right.\right.\right.
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(\left\{\begin{array}{c}
0 \\
(-4 \cos (x)+3 \sin (x)) \mathrm{e}^{2 x}+5 x+4
\end{array}\right.\right.}{\left((4 \cos (1)+3 \sin (1)) \cos (x)-3\left(\cos (1)-\frac{4 \sin (1)}{3}\right) \sin (x)\right) \mathrm{e}^{2 x-2}+5+(-4 \cos (x)}<25 \quad
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{2 x} \cos (x)+c_{2} \mathrm{e}^{2 x} \sin (x)+\frac{0}{0} \begin{array}{r}
(-4 \cos (x)+3 \sin (x)) \mathrm{e}^{2 x} \\
\left((4 \cos (1)+3 \sin (1)) \cos (x)-3\left(\cos (1)-\frac{4 \sin (1)}{3}\right) \sin (x)\right.
\end{array}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{2 x} \cos (x)+c_{2} \mathrm{e}^{2 x} \sin (x)+\xrightarrow{((4 \cos (1)+3 \sin (1)) \cos (x)-}$

- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution
$y^{\prime}=2 c_{1} \mathrm{e}^{2 x} \cos (x)-c_{1} \mathrm{e}^{2 x} \sin (x)+2 c_{2} \mathrm{e}^{2 x} \sin (x)+c_{2} \mathrm{e}^{2 x} \cos (x)+\underline{\left(\left\{\begin{array}{l}(-(4 \cos (1)+3 \sin (1))) \\ \mathrm{s}^{2}\end{array}\right.\right.}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=2 c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=-2\right\}$
- Substitute constant values into general solution and simplify
$y=\mathrm{e}^{2 x}(\cos (x)-2 \sin (x))+\frac{\left(\left\{\begin{array}{c}0 \\ (-4 \cos (x)+3 \sin (x)) \mathrm{e}^{2 x}+52 \\ \left((4 \cos (1)+3 \sin (1)) \cos (x)-3\left(\cos (1)-\frac{4 \sin (1)}{3}\right) \sin (x)\right) \mathrm{e}^{2}\end{array}\right.\right.}{25}$
- \quad Solution to the IVP

$$
y=\mathrm{e}^{2 x}(\cos (x)-2 \sin (x))+\frac{\left(\left\{\begin{array}{c}
0 \\
(-4 \cos (x)+3 \sin (x)) \mathrm{e}^{2 x}+5 x \\
\left((4 \cos (1)+3 \sin (1)) \cos (x)-3\left(\cos (1)-\frac{4 \sin (1)}{3}\right) \sin (x)\right) \mathrm{e}^{2:}
\end{array}\right.\right.}{25}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 8.484 (sec). Leaf size: 87
dsolve ([diff $(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+5 * y(x)=$ piecewise $(0<=x$ and $x<1, x, 1<=x, 1), y(0)=1, D(y)$
$y(x)$
$=\frac{\left(\left\{\begin{array}{cl}4+5 x+\mathrm{e}^{2 x}(21 \cos (x)-47 \sin (x)) & x<1 \\ 10+\mathrm{e}^{2}(21 \cos (1)-47 \sin (1)) & x=1 \\ (4 \cos (-1+x)-3 \sin (-1+x)) \mathrm{e}^{2 x-2}+5+\mathrm{e}^{2 x}(21 \cos (x)-47 \sin (x)) & 1<x\end{array}\right)\right.}{25}$
\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 51
DSolve[\{y''[x]-4*y'[x]+5*y[x]==Piecewise[\{ $\{x, 0<=x<1\},\{1, x>=1\}\}],\{y[0]==1, y$ ' $[0]==0\}\}, y[x], x$,

$$
y(x) \rightarrow\left\{\begin{array}{cc}
e^{2 x}(\cos (x)-2 \sin (x)) & x \leq 0 \\
\frac{1}{25}\left(5 x+21 e^{2 x} \cos (x)-47 e^{2 x} \sin (x)+4\right) & \text { True }
\end{array}\right.
$$

16 Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273
16.1 problem 1 2375
16.2 problem 2 2380
16.3 problem 3 2385
16.4 problem 4 2391
16.5 problem 5 2397
16.6 problem 6 2403
16.7 problem 7 2409

16.1 problem 1

16.1.1 Existence and uniqueness analysis 2375
16.1.2 Solving as laplace ode . 2376
16.1.3 Maple step by step solution . 2377

Internal problem ID [12814]
Internal file name [OUTPUT/11466_Saturday_November_04_2023_08_47_29_AM_38328001/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_linear, `class A`]]
```

$$
y^{\prime}+3 y=\delta(x-2)
$$

With initial conditions

$$
[y(0)=1]
$$

16.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =3 \\
q(x) & =\delta(x-2)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y=\delta(x-2)
$$

The domain of $p(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\delta(x-2)$ is

$$
\{x<2 \vee 2<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.1.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+3 Y(s)=\mathrm{e}^{-2 s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1+3 Y(s)=\mathrm{e}^{-2 s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{\mathrm{e}^{-2 s}+1}{s+3}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-2 s}+1}{s+3}\right) \\
& =\operatorname{Heaviside}(x-2) \mathrm{e}^{-3 x+6}+\mathrm{e}^{-3 x}
\end{aligned}
$$

Hence the final solution is

$$
y=\text { Heaviside }(x-2) \mathrm{e}^{-3 x+6}+\mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\text { Heaviside }(x-2) \mathrm{e}^{-3 x+6}+\mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\text { Heaviside }(x-2) \mathrm{e}^{-3 x+6}+\mathrm{e}^{-3 x}
$$

Verified OK.

16.1.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+3 y=\operatorname{Dirac}(x-2), y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-3 y+\operatorname{Dirac}(x-2)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+3 y=\operatorname{Dirac}(x-2)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+3 y\right)=\mu(x) \operatorname{Dirac}(x-2)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+3 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=3 \mu(x)$
- Solve to find the integrating factor $\mu(x)=\mathrm{e}^{3 x}$
- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \operatorname{Dirac}(x-2) d x+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \operatorname{Dirac}(x-2) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \operatorname{Dirac}(x-2) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{3 x}$
$y=\frac{\int \mathrm{e}^{3 x} \operatorname{Dirac}(x-2) d x+c_{1}}{\mathrm{e}^{3 x}}$
- Evaluate the integrals on the rhs
$y=\frac{\text { Heaviside }(x-2) \mathrm{e}^{6}+c_{1}}{\mathrm{e}^{3 x}}$
- \quad Simplify
$y=\mathrm{e}^{-3 x}\left(\right.$ Heaviside $\left.(x-2) \mathrm{e}^{6}+c_{1}\right)$
- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- Substitute $c_{1}=1$ into general solution and simplify
$y=\mathrm{e}^{-3 x}\left(\right.$ Heaviside $\left.(x-2) \mathrm{e}^{6}+1\right)$
- \quad Solution to the IVP
$y=\mathrm{e}^{-3 x}\left(\right.$ Heaviside $\left.(x-2) \mathrm{e}^{6}+1\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 5.921 (sec). Leaf size: 20

```
dsolve([diff(y(x),x)+3*y(x)=Dirac(x-2),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\text { Heaviside }(x-2) \mathrm{e}^{6-3 x}+\mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 21
DSolve[\{y' $[x]+3 * y[x]==\operatorname{DiracDelta}[x-2],\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-3 x}\left(e^{6} \theta(x-2)+1\right)
$$

16.2 problem 2

16.2.1 Existence and uniqueness analysis 2380
16.2.2 Solving as laplace ode . 2381
16.2.3 Maple step by step solution . 2383

Internal problem ID [12815]
Internal file name [OUTPUT/11467_Saturday_November_04_2023_08_47_29_AM_86585364/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode__lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_linear, `class A`]]
```

$$
y^{\prime}-3 y=\delta(x-1)+2 \text { Heaviside }(x-2)
$$

With initial conditions

$$
[y(0)=0]
$$

16.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-3 \\
& q(x)=\delta(x-1)+2 \text { Heaviside }(x-2)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=\delta(x-1)+2 \text { Heaviside }(x-2)
$$

The domain of $p(x)=-3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\delta(x-1)+$ 2 Heaviside $(x-2)$ is

$$
\{1 \leq x \leq 2,2 \leq x \leq \infty,-\infty \leq x \leq 1\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.2.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-3 Y(s)=\mathrm{e}^{-s}+\frac{2 \mathrm{e}^{-2 s}}{s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-3 Y(s)=\mathrm{e}^{-s}+\frac{2 \mathrm{e}^{-2 s}}{s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{\mathrm{e}^{-s} s+2 \mathrm{e}^{-2 s}}{s(s-3)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-s} s+2 \mathrm{e}^{-2 s}}{s(s-3)}\right) \\
& =-\frac{2 \text { Heaviside }(x-2)}{3}+\frac{2(1-\operatorname{Heaviside}(-x+2)) \mathrm{e}^{3 x-6}}{3}+\mathrm{e}^{-3+3 x}(1-\operatorname{Heaviside}(1-x))
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & -\frac{2 \text { Heaviside }(x-2)}{3}+\frac{2(1-\text { Heaviside }(-x+2)) \mathrm{e}^{3 x-6}}{3} \\
& +\mathrm{e}^{-3+3 x}(1-\text { Heaviside }(1-x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & -\frac{2 \text { Heaviside }(x-2)}{3}+\frac{2(1-\operatorname{Heaviside}(-x+2)) \mathrm{e}^{3 x-6}}{3} \\
& +\mathrm{e}^{-3+3 x}(1-\text { Heaviside }(1-x))
\end{aligned}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & -\frac{2 \text { Heaviside }(x-2)}{3}+\frac{2(1-\text { Heaviside }(-x+2)) \mathrm{e}^{3 x-6}}{3} \\
& +\mathrm{e}^{-3+3 x}(1-\text { Heaviside }(1-x))
\end{aligned}
$$

Verified OK.

16.2.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 y=\operatorname{Dirac}(x-1)+2 \operatorname{Heaviside}(x-2), y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=3 y+\operatorname{Dirac}(x-1)+2$ Heaviside $(x-2)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-3 y=\operatorname{Dirac}(x-1)+2$ Heaviside $(x-2)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-3 y\right)=\mu(x)(\operatorname{Dirac}(x-1)+2 H e a v i s i d e(x-2))$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-3 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-3 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-3 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)(\operatorname{Dirac}(x-1)+2 H e a v i s i d e(x-2)) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)(\operatorname{Dirac}(x-1)+2 H e a v i s i d e(x-2)) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)(\text { Dirac }(x-1)+2 \text { Heaviside }(x-2)) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-3 x}$
$y=\frac{\int \mathrm{e}^{-3 x}(\text { Dirac }(x-1)+2 \text { Heaviside }(x-2)) d x+c_{1}}{\mathrm{e}^{-3 x}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{-3} H \text { eaviside }(x-1)-\frac{2 \mathrm{e}^{-3 x} \text { Heaviside }(x-2)}{3}+\frac{2 \text { Heaviside }(x-2) \mathrm{e}^{-6}}{3}+c_{1}}{\mathrm{e}^{-3 x}}$
- Simplify
$y=\mathrm{e}^{-3+3 x} \operatorname{Heaviside}(x-1)-\frac{2 \text { Heaviside }(x-2)}{3}+\frac{2 \mathrm{e}^{3 x-6} \text { Heaviside }(x-2)}{3}+c_{1} \mathrm{e}^{3 x}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=\mathrm{e}^{-3+3 x} \operatorname{Heaviside}(x-1)+\frac{2 \text { Heaviside }(x-2)\left(\mathrm{e}^{3 x-6}-1\right)}{3}
$$

- Solution to the IVP

$$
y=\mathrm{e}^{-3+3 x} \operatorname{Heaviside}(x-1)+\frac{2 \text { Heaviside }(x-2)\left(\mathrm{e}^{3 x-6}-1\right)}{3}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 6.234 (sec). Leaf size: 46

```
dsolve([diff(y(x),x)-3*y(x)=Dirac(x-1)+2*Heaviside(x-2),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=-\frac{2 \text { Heaviside }(x-2)}{3}+\frac{2 \text { Heaviside }(x-2) \mathrm{e}^{-6+3 x}}{3}+\text { Heaviside }(-1+x) \mathrm{e}^{3 x-3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.212 (sec). Leaf size: 44
DSolve[\{y' $[x]-3 * y[x]==\operatorname{DiracDelta}[x-1]+2 *$ UnitStep $[x-2],\{y[0]==0\}\}, y[x], x$, IncludeSingularSolut

$$
y(x) \rightarrow e^{3 x-3} \theta(x-1)+\frac{2\left(e^{6}-e^{3 x}\right)(\theta(2-x)-1)}{3 e^{6}}
$$

16.3 problem 3

16.3.1 Existence and uniqueness analysis 2385
16.3.2 Maple step by step solution . 2388

Internal problem ID [12816]
Internal file name [OUTPUT/11468_Saturday_November_04_2023_08_47_29_AM_9423804/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=\delta(x-\pi)+\delta(x-3 \pi)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =9 \\
F & =\delta(x-\pi)+\delta(x-3 \pi)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=\delta(x-\pi)+\delta(x-3 \pi)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\delta(x-\pi)+\delta(x-3 \pi)$ is

$$
\{\pi \leq x \leq 3 \pi, 3 \pi \leq x \leq \infty,-\infty \leq x \leq \pi\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+9 Y(s)=\mathrm{e}^{-s \pi}+\mathrm{e}^{-3 s \pi} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+9 Y(s)=\mathrm{e}^{-s \pi}+\mathrm{e}^{-3 s \pi}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-s \pi}+\mathrm{e}^{-3 s \pi}}{s^{2}+9}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-s \pi}+\mathrm{e}^{-3 s \pi}}{s^{2}+9}\right) \\
& =-\frac{\sin (3 x)(\text { Heaviside }(x-\pi)+\text { Heaviside }(x-3 \pi))}{3}
\end{aligned}
$$

Hence the final solution is

$$
y=-\frac{\sin (3 x)(\text { Heaviside }(x-\pi)+\operatorname{Heaviside}(x-3 \pi))}{3}
$$

Simplifying the solution gives

$$
y=-\frac{\sin (3 x)(\operatorname{Heaviside}(x-\pi)+\operatorname{Heaviside}(x-3 \pi))}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sin (3 x)(\text { Heaviside }(x-\pi)+\operatorname{Heaviside}(x-3 \pi))}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\sin (3 x)(\text { Heaviside }(x-\pi)+\operatorname{Heaviside}(x-3 \pi))}{3}
$$

Verified OK.

16.3.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=\operatorname{Dirac}(x-\pi)+\operatorname{Dirac}(x-3 \pi), y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\operatorname{Dirac}(x-\pi)+\operatorname{Dirac}(\right.
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (3 x) & \sin (3 x) \\ -3 \sin (3 x) & 3 \cos (3 x)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\frac{\sin (3 x)\left(\int(-\operatorname{Dirac}(x-\pi)-\operatorname{Dirac}(x-3 \pi)) d x\right)}{3}$
- Compute integrals
$y_{p}(x)=-\frac{\sin (3 x)(\text { Heaviside }(x-\pi)+\operatorname{Heaviside}(x-3 \pi))}{3}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{\sin (3 x)(\text { Heaviside }(x-\pi)+\text { Heaviside }(x-3 \pi))}{3}$
Check validity of solution $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{\sin (3 x)(\text { Heaviside }(x-\pi)+\text { Heaviside }(x-3 \pi))}{3}$
- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- Compute derivative of the solution $y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)-\cos (3 x)($ Heaviside $(x-\pi)+\operatorname{Heaviside}(x-3 \pi))-\underline{\sin (3 x)(\text { Dira }}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\sin (3 x)(\operatorname{Heaviside}(x-\pi)+\operatorname{Heaviside}(x-3 \pi))}{3}
$$

- \quad Solution to the IVP

$$
y=-\frac{\sin (3 x)(\operatorname{Heaviside}(x-\pi)+\operatorname{Heaviside}(x-3 \pi))}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 6.469 (sec). Leaf size: 23
dsolve([diff $(y(x), x \$ 2)+9 * y(x)=\operatorname{Dirac}(x-P i)+\operatorname{Dirac}(x-3 * \operatorname{Pi}), y(0)=0, D(y)(0)=0], y(x)$, singsol

$$
y(x)=-\frac{(\text { Heaviside }(x-3 \pi)+\text { Heaviside }(x-\pi)) \sin (3 x)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 26
DSolve [\{y' ' $[\mathrm{x}]+9 * y[\mathrm{x}]==\operatorname{DiracDelta}[\mathrm{x}-\mathrm{Pi}]+\operatorname{DiracDelta}[\mathrm{x}-3 * \mathrm{Pi}],\{\mathrm{y}[0]==0, \mathrm{y}$ ' $[0]==0\}\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, Includ

$$
y(x) \rightarrow-\frac{1}{3}(\theta(x-3 \pi)+\theta(x-\pi)) \sin (3 x)
$$

16.4 problem 4

$$
\text { 16.4.1 Existence and uniqueness analysis } 2391
$$

16.4.2 Maple step by step solution . 2394

Internal problem ID [12817]
Internal file name [OUTPUT/11469_Saturday_November_04_2023_08_47_30_AM_42828604/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant_coeff", "linear_second_order_oode_solved__by_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=2 \delta(x-1)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

16.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =1 \\
F & =2 \delta(x-1)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+y=2 \delta(x-1)
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=2 \delta(x-1)$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)+Y(s)=2 \mathrm{e}^{-s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-2 s Y(s)+Y(s)=2 \mathrm{e}^{-s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{2 \mathrm{e}^{-s}+1}{s^{2}-2 s+1}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{2 \mathrm{e}^{-s}+1}{s^{2}-2 s+1}\right) \\
& =x \mathrm{e}^{x}+2(1-\text { Heaviside }(1-x)) \mathrm{e}^{x-1}(x-1)
\end{aligned}
$$

Hence the final solution is

$$
y=x \mathrm{e}^{x}+2(1-\text { Heaviside }(1-x)) \mathrm{e}^{x-1}(x-1)
$$

Simplifying the solution gives

$$
y=2 \mathrm{e}^{x-1}(x-1) \text { Heaviside }(x-1)+x \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{x-1}(x-1) \text { Heaviside }(x-1)+x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{x-1}(x-1) \text { Heaviside }(x-1)+x \mathrm{e}^{x}
$$

Verified OK.

16.4.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+y=2 \operatorname{Dirac}(x-1), y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathbf{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \operatorname{Dirac}(x-1)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=2\left(\int \operatorname{Dirac}(x-1) d x\right) \mathrm{e}^{x-1}(x-1)
$$

- Compute integrals

$$
y_{p}(x)=2 \mathrm{e}^{x-1}(x-1) \text { Heaviside }(x-1)
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+2 \mathrm{e}^{x-1}(x-1)$ Heaviside $(x-1)$
Check validity of solution $y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+2 \mathrm{e}^{x-1}(x-1)$ Heaviside $(x-1)$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+2 \mathrm{e}^{x-1}(x-1) \text { Heaviside }(x-1)+2 \mathrm{e}^{x-1} \text { Heaviside }(x-1)+2 \mathrm{e}^{x-1}(x-
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=2 \mathrm{e}^{x-1}(x-1) \text { Heaviside }(x-1)+x \mathrm{e}^{x}
$$

- \quad Solution to the IVP

$$
y=2 \mathrm{e}^{x-1}(x-1) \text { Heaviside }(x-1)+x \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 6.187 (sec). Leaf size: 28
dsolve([diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+y(x)=2 * \operatorname{Dirac}(x-1), y(0)=0, D(y)(0)=1], y(x)$, singsol

$$
y(x)=2 \text { Heaviside }(-1+x) \mathrm{e}^{-1+x}(-1+x)+\mathrm{e}^{x} x
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 24
DSolve $\left[\left\{y '\right.\right.$ ' $\left.[x]-2 * y '[x]+y[x]==2 * \operatorname{DiracDelta}[x-1],\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[x], x$, IncludeSingularSol

$$
y(x) \rightarrow e^{x-1}(2(x-1) \theta(x-1)+e x)
$$

16.5 problem 5

16.5.1 Existence and uniqueness analysis 2397
16.5.2 Maple step by step solution . 2400

Internal problem ID [12818]
Internal file name [OUTPUT/11470_Saturday_November_04_2023_08_47_30_AM_11197644/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+5 y=\cos (x)+2 \delta(x-\pi)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

16.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =5 \\
F & =\cos (x)+2 \delta(x-\pi)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+5 y=\cos (x)+2 \delta(x-\pi)
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\cos (x)+2 \delta(x-\pi)$ is

$$
\{x<\pi \vee \pi<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)+5 Y(s)=\frac{s}{s^{2}+1}+2 \mathrm{e}^{-s \pi} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2-s-2 s Y(s)+5 Y(s)=\frac{s}{s^{2}+1}+2 \mathrm{e}^{-s \pi}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{2 \mathrm{e}^{-s \pi} s^{2}+s^{3}-2 s^{2}+2 \mathrm{e}^{-s \pi}+2 s-2}{\left(s^{2}+1\right)\left(s^{2}-2 s+5\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{2 \mathrm{e}^{-s \pi} s^{2}+s^{3}-2 s^{2}+2 \mathrm{e}^{-s \pi}+2 s-2}{\left(s^{2}+1\right)\left(s^{2}-2 s+5\right)}\right) \\
& =\frac{\cos (x)}{5}-\frac{\sin (x)}{10}+\frac{4 \mathrm{e}^{x} \cos (2 x)}{5}+\frac{\left(-7 \mathrm{e}^{x}+20(1-\text { Heaviside }(\pi-x)) \mathrm{e}^{x-\pi}\right) \sin (2 x)}{20}
\end{aligned}
$$

Converting the above solution to piecewise it becomes

$$
y=\left\{\begin{array}{cl}
\frac{\cos (x)}{5}-\frac{\sin (x)}{10}+\frac{4 \mathrm{e}^{x} \cos (2 x)}{5}-\frac{7 \mathrm{e}^{x} \sin (2 x)}{20} & x \leq \pi \\
\frac{\cos (x)}{5}-\frac{\sin (x)}{10}+\frac{4 \mathrm{e}^{x} \cos (2 x)}{5}+\frac{\sin (2 x)\left(-7 \mathrm{e}^{x}+20 \mathrm{e}^{x-\pi}\right)}{20} & \pi<x
\end{array}\right.
$$

Simplifying the solution gives

$$
y=\frac{\cos (x)}{5}-\frac{\sin (x)}{10}+\frac{4 \mathrm{e}^{x} \cos (2 x)}{5}-\frac{7 \mathrm{e}^{x} \sin (2 x)}{20}+\left(\left\{\begin{array}{cc}
0 & x \leq \pi \\
\sin (2 x) \mathrm{e}^{x-\pi} & \pi<x
\end{array}\right)\right.
$$

Summary

The solution(s) found are the following

Verification of solutions

$$
y=\frac{\cos (x)}{5}-\frac{\sin (x)}{10}+\frac{4 \mathrm{e}^{x} \cos (2 x)}{5}-\frac{7 \mathrm{e}^{x} \sin (2 x)}{20}+\left(\left\{\begin{array}{cc}
0 & x \leq \pi \\
\sin (2 x) \mathrm{e}^{x-\pi} & \pi<x
\end{array}\right)\right.
$$

Verified OK.

16.5.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+5 y=\cos (x)+2 \operatorname{Dirac}(x-\pi), y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{2 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(1-2 \mathrm{I}, 1+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x} \cos (2 x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x} \sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x) \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)+2 \operatorname{Dirac}(x-\pi\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} \cos (2 x) & \mathrm{e}^{x} \sin (2 x) \\
\mathrm{e}^{x} \cos (2 x)-2 \mathrm{e}^{x} \sin (2 x) & \mathrm{e}^{x} \sin (2 x)+2 \mathrm{e}^{x} \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{x}\left(\cos (2 x)\left(\int \sin (2 x) \cos (x) \mathrm{e}^{-x} d x\right)-\sin (2 x)\left(\int\left(2 \mathrm{e}^{-\pi} \operatorname{Dirac}(x-\pi)+\mathrm{e}^{-x}\left(2 \cos (x)^{3}-\cos (x)\right)\right) d x\right)\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=2 \cos (x) \mathrm{e}^{x-\pi} \sin (x) \text { Heaviside }(x-\pi)-\frac{\sin (x)}{10}+\frac{\cos (x)}{5}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x) \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \sin (2 x)+2 \cos (x) \mathrm{e}^{x-\pi} \sin (x) \text { Heaviside }(x-\pi)-\frac{\sin (x)}{10}+\frac{\cos (x)}{5}
$$

Check validity of solution $y=c_{1} \cos (2 x) \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \sin (2 x)+2 \cos (x) \mathrm{e}^{x-\pi} \sin (x)$ Heaviside $(x-$

- Use initial condition $y(0)=1$
$1=c_{1}+\frac{1}{5}$
- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \sin (2 x) \mathrm{e}^{x}+c_{1} \cos (2 x) \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \sin (2 x)+2 c_{2} \mathrm{e}^{x} \cos (2 x)-2 \sin (x)^{2} \mathrm{e}^{x-\pi}$ Heaviside $(x$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=-\frac{1}{10}+c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{4}{5}, c_{2}=-\frac{7}{20}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{4 \mathrm{e}^{x} \cos (2 x)}{5}-\frac{7 \mathrm{e}^{x} \sin (2 x)}{20}+\mathrm{e}^{x-\pi}$ Heaviside $(x-\pi) \sin (2 x)-\frac{\sin (x)}{10}+\frac{\cos (x)}{5}$
- \quad Solution to the IVP
$y=\frac{4 \mathrm{e}^{x} \cos (2 x)}{5}-\frac{7 \mathrm{e}^{x} \sin (2 x)}{20}+\mathrm{e}^{x-\pi}$ Heaviside $(x-\pi) \sin (2 x)-\frac{\sin (x)}{10}+\frac{\cos (x)}{5}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 6.625 (sec). Leaf size: 50

```
dsolve([\operatorname{diff}(y(x),x$2)-2*\operatorname{diff}(y(x),x)+5*y(x)=cos(x)+2*\operatorname{Dirac}(x-Pi),y(0)=1,D(y)(0)=0],y(x
```

$y(x)=\sin (2 x)$ Heaviside $(x-\pi) \mathrm{e}^{x-\pi}+\frac{4 \mathrm{e}^{x} \cos (2 x)}{5}-\frac{7 \mathrm{e}^{x} \sin (2 x)}{20}-\frac{\sin (x)}{10}+\frac{\cos (x)}{5}$
\checkmark Solution by Mathematica
Time used: 0.506 (sec). Leaf size: 54
DSolve[\{y' ' $[x]-2 * y$ ' $\left.[x]+5 * y[x]==\operatorname{Cos}[x]+2 * \operatorname{DiracDelta}[x-P i],\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeS

$$
y(x) \rightarrow \frac{1}{10}\left(10 e^{x-\pi} \theta(x-\pi) \sin (2 x)-\sin (x)+8 e^{x} \cos (2 x)+\left(2-7 e^{x} \sin (x)\right) \cos (x)\right)
$$

16.6 problem 6

16.6.1 Existence and uniqueness analysis 2403
16.6.2 Maple step by step solution . 2406

Internal problem ID [12819]
Internal file name [OUTPUT/11471_Saturday_November_04_2023_08_47_30_AM_8501762/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\delta(x-\pi) \cos (x)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

16.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =4 \\
F & =-\delta(x-\pi)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=-\delta(x-\pi)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=-\delta(x-\pi)$ is

$$
\{x<\pi \vee \pi<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 Y(s)=-\mathrm{e}^{-s \pi} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1+4 Y(s)=-\mathrm{e}^{-s \pi}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{\mathrm{e}^{-s \pi}-1}{s^{2}+4}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{\mathrm{e}^{-s \pi}-1}{s^{2}+4}\right) \\
& =\frac{\sin (2 x) \text { Heaviside }(\pi-x)}{2}
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{\sin (2 x) \text { Heaviside }(\pi-x)}{2}
$$

Simplifying the solution gives

$$
y=-\frac{\sin (2 x)(-1+\text { Heaviside }(x-\pi))}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sin (2 x)(-1+\text { Heaviside }(x-\pi))}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\sin (2 x)(-1+\text { Heaviside }(x-\pi))}{2}
$$

Verified OK.

16.6.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=-\operatorname{Dirac}(x-\pi), y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-\operatorname{Dirac}(x-\pi)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\sin (2 x)\left(\int \operatorname{Dirac}(x-\pi) d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\sin (2 x) \text { Heaviside }(x-\pi)}{2}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\sin (2 x) \text { Heaviside }(x-\pi)}{2}$
Check validity of solution $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\sin (2 x) \text { Heaviside }(x-\pi)}{2}$
- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)-\cos (2 x) \text { Heaviside }(x-\pi)-\frac{\sin (2 x) \operatorname{Dirac}(x-\pi)}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=\frac{1}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\sin (2 x)(-1+\text { Heaviside }(x-\pi))}{2}
$$

- \quad Solution to the IVP

$$
y=-\frac{\sin (2 x)(-1+\operatorname{Heaviside}(x-\pi))}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.968 (sec). Leaf size: 16
dsolve $([\operatorname{diff}(y(x), x \$ 2)+4 * y(x)=\cos (x) * \operatorname{Dirac}(x-P i), y(0)=0, D(y)(0)=1], y(x)$, singsol=all)

$$
y(x)=-\frac{\sin (2 x)(-1+\operatorname{Heaviside}(x-\pi))}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 19
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+4 * y[x]==\operatorname{Cos}[x] * \operatorname{DiracDelta}[x-P i],\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[x], x\right.$, IncludeSingularSol

$$
y(x) \rightarrow(\theta(x-\pi)-1) \sin (x)(-\cos (x))
$$

16.7 problem 7

16.7.1 Existence and uniqueness analysis 2409
16.7.2 Maple step by step solution . 2411

Internal problem ID [12820]
Internal file name [OUTPUT/11472_Saturday_November_04_2023_08_47_31_AM_24458766/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 5. The Laplace Transform Method. Exercises 5.5, page 273
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y a^{2}=\delta(x-\pi) f(x)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =a^{2} \\
F & =f(\pi) \delta(x-\pi)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y a^{2}=f(\pi) \delta(x-\pi)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=a^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=f(\pi) \delta(x-\pi)$ is

$$
\{x<\pi \vee \pi<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+a^{2} Y(s)=f(\pi) \mathrm{e}^{-s \pi} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+a^{2} Y(s)=f(\pi) \mathrm{e}^{-s \pi}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{f(\pi) \mathrm{e}^{-s \pi}}{a^{2}+s^{2}}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{f(\pi) \mathrm{e}^{-s \pi}}{a^{2}+s^{2}}\right) \\
& =\frac{\text { Heaviside }(x-\pi) f(\pi) \sin (a(x-\pi))}{a}
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{\text { Heaviside }(x-\pi) f(\pi) \sin (a(x-\pi))}{a}
$$

Simplifying the solution gives

$$
y=\frac{\text { Heaviside }(x-\pi) f(\pi) \sin (a(x-\pi))}{a}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\operatorname{Heaviside}(x-\pi) f(\pi) \sin (a(x-\pi))}{a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\operatorname{Heaviside}(x-\pi) f(\pi) \sin (a(x-\pi))}{a}
$$

Verified OK.

16.7.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y a^{2}=f(\pi) \operatorname{Dirac}(x-\pi), y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
a^{2}+r^{2}=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm\left(\sqrt{-4 a^{2}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(\sqrt{-a^{2}},-\sqrt{-a^{2}}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{\sqrt{-a^{2}} x}$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{-\sqrt{-a^{2}} x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{\sqrt{-a^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-a^{2}} x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=f(\pi) \operatorname{Dirac}(x-\pi)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\sqrt{-a^{2}} x} & \mathrm{e}^{-\sqrt{-a^{2}} x} \\
\sqrt{-a^{2}} \mathrm{e}^{\sqrt{-a^{2}} x} & -\sqrt{-a^{2}} \mathrm{e}^{-\sqrt{-a^{2}} x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=-2 \sqrt{-a^{2}}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\frac{f(\pi)\left(\int \operatorname{Dirac}(x-\pi) d x\right)\left(-\mathrm{e}^{\sqrt{-a^{2}}(\pi-x)}+\mathrm{e}^{(x-\pi) \sqrt{-a^{2}}}\right)}{2 \sqrt{-a^{2}}}$
- Compute integrals

$$
y_{p}(x)=\frac{f(\pi) \text { Heaviside }(x-\pi)\left(-\mathrm{e}^{\sqrt{-a^{2}}(\pi-x)}+\mathrm{e}^{(x-\pi) \sqrt{-a^{2}}}\right)}{2 \sqrt{-a^{2}}}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{\sqrt{-a^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-a^{2}} x}+\frac{f(\pi) \text { Heaviside }(x-\pi)\left(-\mathrm{e}^{\sqrt{-a^{2}}(\pi-x)}+\mathrm{e}^{\left.(x-\pi) \sqrt{-a^{2}}\right)}\right.}{2 \sqrt{-a^{2}}}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{\sqrt{-a^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-a^{2}} x}+\frac{f(\pi) \text { Heaviside }(x-\pi)\left(-\mathrm{e}^{\sqrt{-a^{2}}(\pi-x)}+\mathrm{e}^{\left.(x-\pi) \sqrt{-a^{2}}\right)}\right.}{2 \sqrt{-a^{2}}}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=c_{1} \sqrt{-a^{2}} \mathrm{e}^{\sqrt{-a^{2}} x}-c_{2} \sqrt{-a^{2}} \mathrm{e}^{-\sqrt{-a^{2}} x}+\frac{f(\pi) \text { Dirac }(x-\pi)\left(-\mathrm{e}^{\sqrt{-a^{2}}(\pi-x)}+\mathrm{e}^{(x-\pi) \sqrt{-a^{2}}}\right)}{2 \sqrt{-a^{2}}}+\frac{f(\pi) \text { Heaviside }(x-\pi)}{}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=c_{1} \sqrt{-a^{2}}-c_{2} \sqrt{-a^{2}}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{f(\pi) \text { Heaviside }(x-\pi)\left(-\mathrm{e}^{\sqrt{-a^{2}}(\pi-x)}+\mathrm{e}^{(x-\pi) \sqrt{-a^{2}}}\right)}{2 \sqrt{-a^{2}}}
$$

- \quad Solution to the IVP

$$
y=\frac{f(\pi) \text { Heaviside }(x-\pi)\left(-\mathrm{e}^{\sqrt{-a^{2}}(\pi-x)}+\mathrm{e}^{(x-\pi) \sqrt{-a^{2}}}\right)}{2 \sqrt{-a^{2}}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 6.188 (sec). Leaf size: 24

```
dsolve([diff(y(x),x$2)+a^2*y(x)=\operatorname{Dirac}(x-Pi)*f(x),y(0)=0,D(y)(0)=0],y(x), singsol=all)
```

$$
y(x)=\frac{\text { Heaviside }(x-\pi) \sin (a(x-\pi)) f(\pi)}{a}
$$

\checkmark Solution by Mathematica
Time used: 0.398 (sec). Leaf size: 26
DSolve[\{y' ' $\left.[\mathrm{x}]+\mathrm{a} \wedge 2 * y[x]==\operatorname{DiracDelta}[\mathrm{x}-\mathrm{Pi}] * \mathrm{f}[\mathrm{x}],\left\{y[0]==0, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSol

$$
y(x) \rightarrow-\frac{f(\pi) \theta(x-\pi) \sin (a(\pi-x))}{a}
$$

17 Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
17.1 problem 1 2416
17.2 problem 3 2425
17.3 problem 4 2433
17.4 problem 5 2443
17.5 problem 6 2444
17.6 problem 13 (a) 2446
17.7 problem 13 (b(i)) 2454
17.8 problem 13 (b(ii)) 2455
17.9 problem 13 (c(i)) 2456
17.10problem 13 (c(ii)) 2457

17.1 problem 1

17.1.1 Solution using Matrix exponential method 2416
17.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2417
17.1.3 Maple step by step solution . 2422

Internal problem ID [12821]
Internal file name [OUTPUT/11473_Saturday_November_04_2023_08_47_31_AM_25985763/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=2 y_{1}(x)-3 y_{2}(x) \\
& y_{2}^{\prime}(x)=y_{1}(x)-2 y_{2}(x)
\end{aligned}
$$

17.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2}\right) c_{2} \\
\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(3 c_{2}-c_{1}\right) \mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}\left(c_{1}-c_{2}\right)}{2} \\
\frac{\left(3 c_{2}-c_{1}\right) \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}\left(c_{1}-c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

17.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -3 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
2 & -3 \\
1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\\
{\left[\begin{array}{ll}
3 & -3 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & -3 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
3 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -3 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -3 & 0 \\
1 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{l}3 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{-x} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-x}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{x} \\
& =\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\mathrm{e}^{-x} \\
\mathrm{e}^{-x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
3 \mathrm{e}^{x} \\
\mathrm{e}^{x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{x} \\
c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 425: Phase plot

17.1.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=2 y_{1}(x)-3 y_{2}(x), y_{2}^{\prime}(x)=y_{1}(x)-2 y_{2}(x)\right]
$$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow}{ }^{\prime}(x)=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y_{\sim}^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
y_{\longrightarrow^{\prime}}(x)=A \cdot y_{乙}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\sim}{\rightarrow}}^{\rightarrow}=\mathrm{e}^{-x} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{-}^{\rightarrow}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
y_{-}^{\overrightarrow{-}}=c_{1} y_{-}+c_{2} y_{-}
$$

- Substitute solutions into the general solution

$$
y \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{x} \\
c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{x}, y_{2}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 31

```
dsolve([diff(y__1(x),x)=2*y__1(x)-3*y__2(x), diff(y__2(x),x)=y__1(x)-2*y__2(x)],singsol=all)
```

$$
\begin{aligned}
& y_{1}(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \\
& y_{2}(x)=\frac{c_{1} \mathrm{e}^{x}}{3}+c_{2} \mathrm{e}^{-x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 72
DSolve $\left[\left\{y 1{ }^{\prime}[x]==2 * y 1[x]-3 * y 2[x], y 2{ }^{\prime}[x]==y 1[x]-2 * y 2[x]\right\},\{y 1[x], y 2[x]\}, x\right.$, IncludeSingularSoluti

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow \frac{1}{2} e^{-x}\left(c_{1}\left(3 e^{2 x}-1\right)-3 c_{2}\left(e^{2 x}-1\right)\right) \\
& \mathrm{y} 2(x) \rightarrow \frac{1}{2} e^{-x}\left(c_{1}\left(e^{2 x}-1\right)-c_{2}\left(e^{2 x}-3\right)\right)
\end{aligned}
$$

17.2 problem 3

17.2.1 Solution using Matrix exponential method 2425
17.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2426
17.2.3 Maple step by step solution

Internal problem ID [12822]
Internal file name [OUTPUT/11474_Saturday_November_04_2023_08_47_31_AM_27779913/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=y_{1}(x)-2 y_{2}(x) \\
& y_{2}^{\prime}(x)=y_{1}(x)+3 y_{2}(x)
\end{aligned}
$$

17.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{2 x} \cos (x)-\mathrm{e}^{2 x} \sin (x) & -2 \mathrm{e}^{2 x} \sin (x) \\
\mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x} \cos (x)+\mathrm{e}^{2 x} \sin (x)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 x}(\cos (x)-\sin (x)) & -2 \mathrm{e}^{2 x} \sin (x) \\
\mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x}(\cos (x)+\sin (x))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 x}(\cos (x)-\sin (x)) & -2 \mathrm{e}^{2 x} \sin (x) \\
\mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x}(\cos (x)+\sin (x))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 x}(\cos (x)-\sin (x)) c_{1}-2 \mathrm{e}^{2 x} \sin (x) c_{2} \\
\mathrm{e}^{2 x} \sin (x) c_{1}+\mathrm{e}^{2 x}(\cos (x)+\sin (x)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(-c_{1}-2 c_{2}\right) \sin (x)+c_{1} \cos (x)\right) \mathrm{e}^{2 x} \\
\mathrm{e}^{2 x}\left(\left(c_{1}+c_{2}\right) \sin (x)+c_{2} \cos (x)\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

17.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -2 \\
1 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+i \\
& \lambda_{2}=2-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2+i$	1	complex eigenvalue
$2-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]-(2-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1+i & -2 \\
1 & 1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+i & -2 & 0 \\
1 & 1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{1}{2}+\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(-1-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(-1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(-1-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(-1-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(-1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]-(2+i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1-i & -2 \\
1 & 1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-i & -2 & 0 \\
1 & 1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{1}{2}-\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(-1+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(-1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(-1+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(-1+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(-1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$2+i$	1	1	No	$\left[\begin{array}{c}-1+i \\ 1\end{array}\right]$
$2-i$	1	1	No	$\left[\begin{array}{c}-1-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(-1+i) \mathrm{e}^{(2+i) x} \\
\mathrm{e}^{(2+i) x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(-1-i) \mathrm{e}^{(2-i) x} \\
\mathrm{e}^{(2-i) x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
(-1+i) c_{1} \mathrm{e}^{(2+i) x}+(-1-i) c_{2} \mathrm{e}^{(2-i) x} \\
c_{1} \mathrm{e}^{(2+i) x}+c_{2} \mathrm{e}^{(2-i) x}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 426: Phase plot

17.2.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=y_{1}(x)-2 y_{2}(x), y_{2}^{\prime}(x)=y_{1}(x)+3 y_{2}(x)\right]
$$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y \rightarrow^{\prime}(x)=\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right] \cdot y \rightarrow(x)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]
$$

- Rewrite the system as
$y^{\rightarrow}{ }^{\prime}(x)=A \cdot y \xrightarrow{\rightarrow}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2-\mathrm{I},\left[\begin{array}{c}
-1-\mathrm{I} \\
1
\end{array}\right]\right],\left[2+\mathrm{I},\left[\begin{array}{c}
-1+\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-\mathrm{I},\left[\begin{array}{c}
-1-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(2-\mathrm{I}) x} \cdot\left[\begin{array}{c}
-1-\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{2 x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
(-1-\mathrm{I})(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
y_{\xrightarrow{\rightarrow}}=c_{1} y^{\rightarrow}{ }_{1}(x)+c_{2} y_{\longrightarrow}^{\rightarrow}(x)
$$

- Substitute solutions into the general solution

$$
y \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
-\cos (x)-\sin (x) \\
\cos (x)
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
-\cos (x)+\sin (x) \\
-\sin (x)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{2 x}\left(\cos (x)\left(c_{1}+c_{2}\right)+\sin (x)\left(c_{1}-c_{2}\right)\right) \\
\mathrm{e}^{2 x}\left(c_{1} \cos (x)-c_{2} \sin (x)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=-\mathrm{e}^{2 x}\left(\cos (x)\left(c_{1}+c_{2}\right)+\sin (x)\left(c_{1}-c_{2}\right)\right), y_{2}(x)=\mathrm{e}^{2 x}\left(c_{1} \cos (x)-c_{2} \sin (x)\right)\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 46

```
dsolve([diff(y__1(x),x)=y__1(x)-2*y__2(x), diff(y__2(x),x)=y__1(x)+3*y__2(x)],singsol=all)
```

$$
\begin{aligned}
& y_{1}(x)=\mathrm{e}^{2 x}\left(\sin (x) c_{1}+\cos (x) c_{2}\right) \\
& y_{2}(x)=-\frac{\mathrm{e}^{2 x}\left(\sin (x) c_{1}-\sin (x) c_{2}+\cos (x) c_{1}+\cos (x) c_{2}\right)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 51
DSolve $\left[\left\{y 11^{\prime}[x]==y 1[x]-2 * y 2[x], y 2{ }^{\prime}[x]==y 1[x]+3 * y 2[x]\right\},\{y 1[x], y 2[x]\}, x\right.$, IncludeSingularSolution

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow e^{2 x}\left(c_{1} \cos (x)-\left(c_{1}+2 c_{2}\right) \sin (x)\right) \\
& \mathrm{y} 2(x) \rightarrow e^{2 x}\left(c_{2} \cos (x)+\left(c_{1}+c_{2}\right) \sin (x)\right)
\end{aligned}
$$

17.3 problem 4

17.3.1 Solution using Matrix exponential method 2433
17.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2435

Internal problem ID [12823]
Internal file name [OUTPUT/11475_Saturday_November_04_2023_08_47_32_AM_57192821/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=y_{1}(x)+2 y_{2}(x)+x-1 \\
& y_{2}^{\prime}(x)=3 y_{1}(x)+2 y_{2}(x)-5 x-2
\end{aligned}
$$

With initial conditions

$$
\left[y_{1}(0)=-2, y_{2}(0)=3\right]
$$

17.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
x-1 \\
-5 x-2
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
$$

Where $\vec{x}_{h}(x)$ is the homogeneous solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)$ and $\vec{x}_{p}(x)$ is a particular solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5} & \frac{2 \mathrm{e}^{4 x}}{5}-\frac{2 \mathrm{e}^{-x}}{5} \\
\frac{3 \mathrm{e}^{4 x}}{5}-\frac{3 \mathrm{e}^{-x}}{5} & \frac{2 \mathrm{e}^{-x}}{5}+\frac{3 \mathrm{e}^{4 x}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A x} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5} & \frac{2 \mathrm{e}^{4 x}}{5}-\frac{2 \mathrm{e}^{-x}}{5} \\
\frac{3 \mathrm{e}^{4 x}}{5}-\frac{3 \mathrm{e}^{-x}}{5} & \frac{2 \mathrm{e}^{-x}}{5}+\frac{3 \mathrm{e}^{4 x}}{5}
\end{array}\right]\left[\begin{array}{c}
-2 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{12 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5} \\
\frac{3 \mathrm{e}^{4 x}}{5}+\frac{12 \mathrm{e}^{-x}}{5}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(x)=e^{A x} \int e^{-A x} \vec{G}(x) d x
$$

But

$$
\begin{aligned}
e^{-A x} & =\left(e^{A x}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(3 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-4 x}}{5} & -\frac{2\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-4 x}}{5} \\
-\frac{3\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-4 x}}{5} & \frac{\left(2 \mathrm{e}^{5 x}+3\right) \mathrm{e}^{-4 x}}{5}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(x) & =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5} & \frac{2 \mathrm{e}^{4 x}}{5}-\frac{2 \mathrm{e}^{-x}}{5} \\
\frac{3 \mathrm{e}^{4 x}}{5}-\frac{3 \mathrm{e}^{-x}}{5} & \frac{2 \mathrm{e}^{-x}}{5}+\frac{3 \mathrm{e}^{4 x}}{5}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(3 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-4 x}}{5} & -\frac{2\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-4 x}}{5} \\
-\frac{3\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-4 x}}{5} & \frac{\left(2 \mathrm{e}^{5 x}+3\right) \mathrm{e}^{-4 x}}{5}
\end{array}\right]\left[\begin{array}{c}
x-1 \\
-5 x-2
\end{array}\right] d x \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5} & \frac{2 \mathrm{e}^{4 x}}{5}-\frac{2 \mathrm{e}^{-x}}{5} \\
\frac{3 \mathrm{e}^{4 x}}{5}-\frac{3 \mathrm{e}^{-x}}{5} & \frac{2 \mathrm{e}^{-x}}{5}+\frac{3 \mathrm{e}^{4 x}}{5}
\end{array}\right]\left[\begin{array}{c}
\frac{\left(13 x \mathrm{e}^{5 x}-12 \mathrm{e}^{5 x}+2 x+2\right) \mathrm{e}^{-4 x}}{5} \\
-\frac{\left(13 x \mathrm{e}^{5 x}-12 \mathrm{e}^{5 x}-3 x-3\right) \mathrm{e}^{-4 x}}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
3 x-2 \\
-2 x+3
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
& =\left[\begin{array}{c}
-\frac{12 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5}+3 x-2 \\
\frac{3 \mathrm{e}^{4 x}}{5}+\frac{12 \mathrm{e}^{-x}}{5}-2 x+3
\end{array}\right]
\end{aligned}
$$

17.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
x-1 \\
-5 x-2
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
$$

Where $\vec{x}_{h}(x)$ is the homogeneous solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)$ and $\vec{x}_{p}(x)$ is a particular solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
3 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda-4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 2 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & 2 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 2 & 0 \\
3 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
4	1	1	No	$\left[\begin{array}{c}\frac{2}{3} \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{4 x} \\
& =\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right] e^{4 x}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{-x} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{4 x}}{3} \\
\mathrm{e}^{4 x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-x} \\
\mathrm{e}^{-x}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(x)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(x)=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{4 x}}{3} & -\mathrm{e}^{-x} \\
\mathrm{e}^{4 x} & \mathrm{e}^{-x}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(x)=\Phi \int \Phi^{-1} \vec{G}(x) d x
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-4 x}}{5} & \frac{3 \mathrm{e}^{-4 x}}{5} \\
-\frac{3 \mathrm{e}^{x}}{5} & \frac{2 \mathrm{e}^{x}}{5}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(x) & =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{4 x}}{3} & -\mathrm{e}^{-x} \\
\mathrm{e}^{4 x} & \mathrm{e}^{-x}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-4 x}}{5} & \frac{3 \mathrm{e}^{-4 x}}{5} \\
-\frac{3 \mathrm{e}^{x}}{5} & \frac{2 \mathrm{e}^{x}}{5}
\end{array}\right]\left[\begin{array}{c}
x-1 \\
-5 x-2
\end{array}\right] d x \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{4 x}}{3} & -\mathrm{e}^{-x} \\
\mathrm{e}^{4 x} & \mathrm{e}^{-x}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{-4 x}(4 x+3)}{5} \\
-\frac{\mathrm{e}^{x}(13 x+1)}{5}
\end{array}\right] d x \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{4 x}}{3} & -\mathrm{e}^{-x} \\
\mathrm{e}^{4 x} & \mathrm{e}^{-x}
\end{array}\right]\left[\begin{array}{c}
\frac{3 \mathrm{e}^{-4 x}(x+1)}{5} \\
-\frac{\mathrm{e}^{x}(13 x-12)}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
3 x-2 \\
-2 x+3
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
{\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{2 c_{1} \mathrm{e}^{4 x}}{3} \\
c_{1} \mathrm{e}^{4 x}
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \mathrm{e}^{-x} \\
c_{2} \mathrm{e}^{-x}
\end{array}\right]+\left[\begin{array}{c}
3 x-2 \\
-2 x+3
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{2 c_{1} \mathrm{e}^{4 x}}{3}-c_{2} \mathrm{e}^{-x}+3 x-2 \\
c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}-2 x+3
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
y_{1}(0)=-2 \tag{1}\\
y_{2}(0)=3
\end{array}\right]
$$

Substituting initial conditions into the above solution at $x=0$ gives

$$
\left[\begin{array}{c}
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{2 c_{1}}{3}-c_{2}-2 \\
c_{1}+c_{2}+3
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=0 \\
c_{2}=0
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
3 x-2 \\
-2 x+3
\end{array}\right]
$$

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18
dsolve $\left(\left[\operatorname{diff}\left(y_{\neq-} 1(x), x\right)=y_{Z_{-}} 1(x)+2 * y_{Z_{-}} 2(x)+x-1, \operatorname{diff}\left(y_{\neq-} 2(x), x\right)=3 * y_{\neq-} 1(x)+2 * y_{\neq-} 2(x)-5 * x-2\right.\right.$

$$
\begin{aligned}
& y_{1}(x)=-2+3 x \\
& y_{2}(x)=3-2 x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.316 (sec). Leaf size: 18
DSolve $\left[\left\{y 11^{\prime}[x]==y 1[x]+2 * y 2[x]+x-1, y 2{ }^{\prime}[x]==3 * y 1[x]+2 * y 2[x]-5 * x-2\right\},\{y 1[0]==-2, y 2[0]==3\},\{y 1[x]\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow 3 x-2 \\
& \mathrm{y} 2(x) \rightarrow 3-2 x
\end{aligned}
$$

17.4 problem 5

Internal problem ID [12824]
Internal file name [OUTPUT/11476_Saturday_November_04_2023_08_47_32_AM_68493840/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=\frac{2 y_{1}(x)}{x}-\frac{y_{2}(x)}{x^{2}}-3+\frac{1}{x}-\frac{1}{x^{2}} \\
& y_{2}^{\prime}(x)=2 y_{1}(x)+1-6 x
\end{aligned}
$$

With initial conditions

$$
\left[y_{1}(1)=-2, y_{2}(1)=-5\right]
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot

Solution by Maple
Time used: 0.031 (sec). Leaf size: 20

```
dsolve([diff(y__1 (x),x) = 2*y__1 (x)/x-y__2(x)/x^2-3+1/x-1/x^2, diff (y__2(x),x) = 2*y__1 (x)+1
```

$$
\begin{aligned}
& y_{1}(x)=-2 x \\
& y_{2}(x)=-1+x(-5 x+1)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 19

```
DSolve[{y1'[x]==2*y1[x]/x-y2[x]/x^2-3+1/x-1/x^2,y2'[x]==2*y1[x]+1-6*x},{y1[1]==-2,y2[1]==-5}
```

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow-2 x \\
& \mathrm{y} 2(x) \rightarrow-5 x^{2}+x-1
\end{aligned}
$$

17.5 problem 6

Internal problem ID [12825]
Internal file name [OUTPUT/11477_Saturday_November_04_2023_08_47_32_AM_78012659/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=\frac{5 y_{1}(x)}{x}+\frac{4 y_{2}(x)}{x}-2 x \\
& y_{2}^{\prime}(x)=-\frac{6 y_{1}(x)}{x}-\frac{5 y_{2}(x)}{x}+5 x
\end{aligned}
$$

With initial conditions

$$
\left[y_{1}(-1)=3, y_{2}(-1)=-3\right]
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 39

```
dsolve([diff(y__1 (x),x) = 5*y__ 1(x)/x+4*y__ 2(x)/x-2*x, diff (y__ 2(x),x) = -6*y__1 (x)/x-5*y__2
```

$$
\begin{aligned}
& y_{1}(x)=\frac{2 x^{3}+x^{2}-2}{x} \\
& y_{2}(x)=-\frac{2 x^{3}+2 x^{2}-6}{2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 33
DSolve $\left[\left\{y 11^{\prime}[x]==5 * y 1[x] / x+4 * y 2[x] / x-2 * x, y 2{ }^{\prime}[x]==-6 * y 1[x] / x-5 * y 2[x] / x+5 * x\right\},\{y 1[-1]==3, y 2[-1]=\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow 2 x^{2}+x-\frac{2}{x} \\
& \mathrm{y} 2(x) \rightarrow-\frac{x^{3}+x^{2}-3}{x}
\end{aligned}
$$

17.6 problem 13 (a)

17.6.1 Solution using Matrix exponential method 2446
17.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2447

Internal problem ID [12826]
Internal file name [OUTPUT/11478_Saturday_November_04_2023_08_47_33_AM_4687413/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 13 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{gathered}
y_{1}^{\prime}(x)=3 y_{1}(x)-2 y_{2}(x) \\
y_{2}^{\prime}(x)=-y_{1}(x)+y_{2}(x)
\end{gathered}
$$

With initial conditions

$$
\left[y_{1}(0)=1, y_{2}(0)=-1\right]
$$

17.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(-\sqrt{3}+3) \mathrm{e}^{-(\sqrt{3}-2) x}}{6}+\frac{\mathrm{e}^{(2+\sqrt{3}) x}(\sqrt{3}+3)}{6} & \frac{\left(-\mathrm{e}^{(2+\sqrt{3}) x}+\mathrm{e}^{-(\sqrt{3}-2) x}\right) \sqrt{3}}{3} \\
\frac{\left(-\mathrm{e}^{(2+\sqrt{3}) x}+\mathrm{e}^{-(\sqrt{3}-2) x}\right) \sqrt{3}}{6} & \frac{(\sqrt{3}+3) \mathrm{e}^{-(\sqrt{3}-2) x}}{6}-\frac{\mathrm{e}^{(2+\sqrt{3}) x}(\sqrt{3}-3)}{6}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A x} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{(-\sqrt{3}+3) \mathrm{e}^{-(\sqrt{3}-2) x}}{6}+\frac{\mathrm{e}^{(2+\sqrt{3}) x}(\sqrt{3}+3)}{6} & \frac{\left(-\mathrm{e}^{(2+\sqrt{3}) x}+\mathrm{e}^{-(\sqrt{3}-2) x}\right) \sqrt{3}}{3} \\
\frac{\left(-\mathrm{e}^{(2+\sqrt{3}) x}+\mathrm{e}^{-(\sqrt{3}-2) x}\right) \sqrt{3}}{6} & \frac{(\sqrt{3}+3) \mathrm{e}^{-(\sqrt{3}-2) x}}{6}-\frac{\mathrm{e}^{(2+\sqrt{3}) x}(\sqrt{3}-3)}{6}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{(-\sqrt{3}+3) \mathrm{e}^{-(\sqrt{3}-2) x}}{6}+\frac{\mathrm{e}^{(2+\sqrt{3}) x}(\sqrt{3}+3)}{6}-\frac{\left(-\mathrm{e}^{(2+\sqrt{3}) x}+\mathrm{e}^{-(\sqrt{3}-2) x}\right) \sqrt{3}}{3} \\
\frac{\left(-\mathrm{e}^{(2+\sqrt{3}) x}+\mathrm{e}^{-(\sqrt{3}-2) x}\right) \sqrt{3}}{6}-\frac{(\sqrt{3}+3) \mathrm{e}^{-(\sqrt{3}-2) x}}{6}+\frac{\mathrm{e}^{(2+\sqrt{3}) x}(\sqrt{3}-3)}{6}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{(1-\sqrt{3}) \mathrm{e}^{-(\sqrt{3}-2) x}}{2}+\frac{\mathrm{e}^{(2+\sqrt{3}) x}(1+\sqrt{3})}{2} \\
-\frac{\mathrm{e}^{-(\sqrt{3}-2) x}}{2}-\frac{\mathrm{e}^{(2+\sqrt{3}) x}}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

17.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -2 \\
-1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+\sqrt{3} \\
& \lambda_{2}=2-\sqrt{3}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2-\sqrt{3}$	1	real eigenvalue
$2+\sqrt{3}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2-\sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]-(2-\sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1+\sqrt{3} & -2 & 0 \\
-1 & \sqrt{3}-1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{1+\sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
1+\sqrt{3} & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1+\sqrt{3} & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{1+\sqrt{3}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{1+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{1+\sqrt{3}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{1+\sqrt{3}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{1+\sqrt{3}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{1+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{1+\sqrt{3}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{1+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{1+\sqrt{3}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2+\sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]-(2+\sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1-\sqrt{3} & -2 \\
-1 & -1-\sqrt{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1-\sqrt{3} & -2 & 0 \\
-1 & -1-\sqrt{3} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{1-\sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
1-\sqrt{3} & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1-\sqrt{3} & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{\sqrt{3}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{\sqrt{3}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{3}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{\sqrt{3}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{3}-1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$2+\sqrt{3}$	1	1	No	$\left[\begin{array}{c}-\frac{2}{\sqrt{3}-1} \\ 1\end{array}\right]$
$2-\sqrt{3}$	1	1	No	$\left[\begin{array}{c}-\frac{2}{-1-\sqrt{3}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $2+\sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{(2+\sqrt{3}) x} \\
& =\left[\begin{array}{c}
-\frac{2}{\sqrt{3}-1} \\
1
\end{array}\right] e^{(2+\sqrt{3}) x}
\end{aligned}
$$

Since eigenvalue $2-\sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{(2-\sqrt{3}) x} \\
& =\left[\begin{array}{c}
-\frac{2}{-1-\sqrt{3}} \\
1
\end{array}\right] e^{(2-\sqrt{3}) x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{(2+\sqrt{3}) x}}{\sqrt{3}-1} \\
\mathrm{e}^{(2+\sqrt{3}) x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{(2-\sqrt{3}) x}}{-1-\sqrt{3}} \\
\mathrm{e}^{(2-\sqrt{3}) x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{2}(\sqrt{3}-1) \mathrm{e}^{-(\sqrt{3}-2) x}-c_{1} \mathrm{e}^{(2+\sqrt{3}) x}(1+\sqrt{3}) \\
c_{1} \mathrm{e}^{(2+\sqrt{3}) x}+c_{2} \mathrm{e}^{-(\sqrt{3}-2) x}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
y_{1}(0)=1 \tag{1}\\
y_{2}(0)=-1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $x=0$ gives

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{1}+c_{2}\right) \sqrt{3}-c_{1}-c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=-\frac{1}{2} \\
c_{2}=-\frac{1}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
-\frac{(\sqrt{3}-1) \mathrm{e}^{-(\sqrt{3}-2) x}}{2}+\frac{\mathrm{e}^{(2+\sqrt{3}) x}(1+\sqrt{3})}{2} \\
-\frac{\mathrm{e}^{-(\sqrt{3}-2) x}}{2}-\frac{\mathrm{e}^{(2+\sqrt{3}) x}}{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 427: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 119

```
dsolve([diff (y__1(x),x) = 3*y__1(x)-2*y__2(x), diff (y__2(x),x) = -y__1(x)+y__2(x), y__1(0)
```

$$
\begin{aligned}
y_{1}(x)= & \left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \mathrm{e}^{(2+\sqrt{3}) x}+\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-(-2+\sqrt{3}) x} \\
y_{2}(x)= & -\frac{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \mathrm{e}^{(2+\sqrt{3}) x} \sqrt{3}}{2}+\frac{\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-(-2+\sqrt{3}) x} \sqrt{3}}{2} \\
& +\frac{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \mathrm{e}^{(2+\sqrt{3}) x}}{2}+\frac{\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-(-2+\sqrt{3}) x}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 79
DSolve $\left[\left\{y 11^{\prime}[x]==3 * y 1[x]-2 * y 2[x], y 2{ }^{\prime}[x]==-y 1[x]+y 2[x]\right\},\{y 1[0]==1, y 2[0]==-1\},\{y 1[x], y 2[x]\}, x, I\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow \frac{1}{2} e^{-((\sqrt{3}-2) x)}\left((1+\sqrt{3}) e^{2 \sqrt{3} x}+1-\sqrt{3}\right) \\
& \mathrm{y} 2(x) \rightarrow-\frac{1}{2} e^{-((\sqrt{3}-2) x)}\left(e^{2 \sqrt{3} x}+1\right)
\end{aligned}
$$

17.7 problem 13 (b(i))

Internal problem ID [12827]
Internal file name [OUTPUT/11479_Saturday_November_04_2023_08_47_33_AM_58002003/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 13 ($\mathrm{b}(\mathrm{i})$).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=\sin (x) y_{1}(x)+\sqrt{x} y_{2}(x)+\ln (x) \\
& y_{2}^{\prime}(x)=\tan (x) y_{1}(x)-\mathrm{e}^{x} y_{2}(x)+1
\end{aligned}
$$

With initial conditions

$$
\left[y_{1}(1)=1, y_{2}(1)=-1\right]
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
X Solution by Maple
dsolve $\left(\left[\operatorname{diff}\left(y_{\neq-} 1(x), x\right)=\sin (x) * y_{\neq} 1(x)+x^{\wedge}(1 / 2) * y_{\neq-} 2(x)+\ln (x), \operatorname{diff}\left(y_{\neq-} 2(x), x\right)=\tan (x) * y_{\ldots}\right.\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{y 11^{\prime}[x]==\operatorname{Sin}[x] * y 1[x]+\operatorname{Sqrt}[x] * y 2[x]+\log [x], y 2{ }^{\prime}[x]==T a n[x] * y 1[x]-\operatorname{Exp}[x] * y 2[x]+1\right\},\{y 1[1\right.$
Not solved

17.8 problem 13 (b(ii))

Internal problem ID [12828]
Internal file name [OUTPUT/11480_Saturday_November_04_2023_08_47_33_AM_12439869/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 13 (b(ii)).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t Solve

$$
\begin{aligned}
y_{1}^{\prime}(x) & =\sin (x) y_{1}(x)+\sqrt{x} y_{2}(x)+\ln (x) \\
y_{2}^{\prime}(x) & =\tan (x) y_{1}(x)-\mathrm{e}^{x} y_{2}(x)+1
\end{aligned}
$$

With initial conditions

$$
\left[y_{1}(2)=1, y_{2}(2)=-1\right]
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
X Solution by Maple
dsolve $\left(\left[\operatorname{diff}\left(y_{\neq-} 1(x), x\right)=\sin (x) * y_{\neq} 1(x)+x^{\wedge}(1 / 2) * y_{\neq-} 2(x)+\ln (x), \operatorname{diff}\left(y_{\neq-} 2(x), x\right)=\tan (x) * y_{\ldots}\right.\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{y 11^{\prime}[x]==\operatorname{Sin}[x] * y 1[x]+\operatorname{Sqrt}[x] * y 2[x]+\log [x], y 2{ }^{\prime}[x]==\operatorname{Tan}[x] * y 1[x]-\operatorname{Exp}[x] * y 2[x]+1\right\},\{y 1[2\right.$
Not solved

17.9 problem 13 (c(i))

Internal problem ID [12829]
Internal file name [OUTPUT/11481_Saturday_November_04_2023_08_47_33_AM_96590617/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 13 (c(i)).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t
Solve

$$
\begin{aligned}
y_{1}^{\prime}(x) & =\mathrm{e}^{-x} y_{1}(x)-\sqrt{x+1} y_{2}(x)+x^{2} \\
y_{2}^{\prime}(x) & =\frac{y_{1}(x)}{x^{2}-4 x+4}
\end{aligned}
$$

With initial conditions

$$
\left[y_{1}(0)=0, y_{2}(0)=1\right]
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot

X Solution by Maple

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{y 11^{\prime}[x]==\operatorname{Exp}[-x] * y 1[x]-\operatorname{Sqrt}[x+1] * y 2[x]+x^{\wedge} 2, y 2{ }^{\prime}[x]==y 1[x] /(x-2)^{\wedge} 2\right\},\{y 1[0]==0, y 2[0]==1\}\right.$
Not solved

17.10 problem 13 (c(ii))

Internal problem ID [12830]
Internal file name [OUTPUT/11482_Saturday_November_04_2023_08_47_33_AM_94405046/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 7. Systems of First-Order Differential Equations. Exercises page 329
Problem number: 13 (c(ii)).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=\mathrm{e}^{-x} y_{1}(x)-\sqrt{x+1} y_{2}(x)+x^{2} \\
& y_{2}^{\prime}(x)=\frac{y_{1}(x)}{x^{2}-4 x+4}
\end{aligned}
$$

With initial conditions

$$
\left[y_{1}(3)=1, y_{2}(3)=0\right]
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
X Solution by Maple
dsolve $\left(\left[\operatorname{diff}\left(y_{-} 1(x), x\right)=\exp (-x) * y_{Z_{-}} 1(x)-(1+x)^{\wedge}(1 / 2) * y_{y_{-}} 2(x)+x^{\wedge} 2, \operatorname{diff}\left(y_{-_} 2(x), x\right)=y_{-_} 1(x)\right.\right.$

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{y 11^{\prime}[x]==\operatorname{Exp}[-x] * y 1[x]-\operatorname{Sqrt}[x+1] * y 2[x]+x^{\wedge} 2, y 2{ }^{\prime}[x]==y 1[x] /(x-2)^{\wedge} 2\right\},\{y 1[3]==1, y 2[3]==0\}\right.$
Not solved

18 Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page 362

18.1 problem 1 2459
18.2 problem 2 2464
18.3 problem 3 2469
18.4 problem 4 2477
18.5 problem 5 2483
18.6 problem 6 2491
18.7 problem 6 2499
18.8 problem 7 2507

18.1 problem 1

Internal problem ID [12831]
Internal file name [OUTPUT/11483_Saturday_November_04_2023_08_47_34_AM_14623495/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page
362
Problem number: 1.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{cc}
-2 & -4 \\
1 & 3
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -4 \\
1 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
-2-\lambda & -4 \\
1 & 3-\lambda
\end{array}\right] & =0 \\
\lambda^{2}-\lambda-2 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
-2 & -4 \\
1 & 3
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
-2 & -4 \\
1 & 3
\end{array}\right]-\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1 & -4 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & -4 & 0 \\
1 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-4 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-4 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-4 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-4 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-4 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
$$

Considering $\lambda=2$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
-2 & -4 \\
1 & 3
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
-2 & -4 \\
1 & 3
\end{array}\right]-\left[\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-4 & -4 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-4 & -4 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{cc|c}
-4 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-1	1	2	No	$\left[\begin{array}{c}-4 \\ 1\end{array}\right]$
2	1	2	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right] \\
& P=\left[\begin{array}{cc}
-4 & -1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cc}
-2 & -4 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
-4 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-4 & -1 \\
1 & 1
\end{array}\right]^{-1}
$$

18.2 problem 2

Internal problem ID [12832]
Internal file name [OUTPUT/11484_Saturday_November_04_2023_08_47_34_AM_17140583/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page
362
Problem number: 2.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{cc}
-3 & -1 \\
2 & -1
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & -1 \\
2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
-3-\lambda & -1 \\
2 & -1-\lambda
\end{array}\right] & =0 \\
\lambda^{2}+4 \lambda+5 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-2-i$	1	complex eigenvalue
$-2+i$	1	complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-2-i$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cr}
-3 & -1 \\
2 & -1
\end{array}\right]-(-2-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
-3 & -1 \\
2 & -1
\end{array}\right]-\left[\begin{array}{cc}
-2-i & 0 \\
0 & -2-i
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1+i & -1 \\
2 & 1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+i & -1 & 0 \\
2 & 1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{2}-\frac{i}{2}\right) t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-i \\
2
\end{array}\right]
$$

Considering $\lambda=-2+i$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
-3 & -1 \\
2 & -1
\end{array}\right]-(-2+i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
-3 & -1 \\
2 & -1
\end{array}\right]-\left[\begin{array}{cc}
-2+i & 0 \\
0 & -2+i
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1-i & -1 \\
2 & 1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-i & -1 & 0 \\
2 & 1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+i \\
2
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
$-2-i$	1	2	No	$\left[\begin{array}{c}-1-i \\ 2\end{array}\right]$
$-2+i$	1	2	No	$\left[\begin{array}{c}-1+i \\ 2\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
-2-i & 0 \\
0 & -2+i
\end{array}\right] \\
& P=\left[\begin{array}{cc}
-1-i & -1+i \\
2 & 2
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cc}
-3 & -1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1-i & -1+i \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
-2-i & 0 \\
0 & -2+i
\end{array}\right]\left[\begin{array}{cc}
-1-i & -1+i \\
2 & 2
\end{array}\right]^{-1}
$$

18.3 problem 3

Internal problem ID [12833]
Internal file name [OUTPUT/11485_Saturday_November_04_2023_08_47_34_AM_93570398/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page
362
Problem number: 3 .
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & 1-\lambda & -1 \\
-2 & 0 & -1-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+\lambda^{2}-\lambda+1 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =i \\
\lambda_{3} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
i	1	complex eigenvalue
$-i$	1	complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
-2 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
-2 & 0 & -2 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-2 & 0 & -2 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 0 & -2 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 0 & -2 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Considering $\lambda=i$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]-(i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]-\left[\begin{array}{ccc}
i & 0 & 0 \\
0 & i & 0 \\
0 & 0 & i
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
1-i & 0 & 1 \\
0 & 1-i & -1 \\
-2 & 0 & -1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1-i & 0 & 1 & 0 \\
0 & 1-i & -1 & 0 \\
-2 & 0 & -1-i & 0
\end{array}\right]} \\
R_{3}=R_{3}+(1+i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1-i & 0 & 1 & 0 \\
0 & 1-i & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1-i & 0 & 1 \\
0 & 1-i & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{2}-\frac{i}{2}\right) t, v_{2}=\left(\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) t \\
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-i \\
1+i \\
2
\end{array}\right]
$$

Considering $\lambda=-i$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]-(-i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]-\left[\begin{array}{ccc}
-i & 0 & 0 \\
0 & -i & 0 \\
0 & 0 & -i
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
1+i & 0 & 1 \\
0 & 1+i & -1 \\
-2 & 0 & -1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1+i & 0 & 1 & 0 \\
0 & 1+i & -1 & 0 \\
-2 & 0 & -1+i & 0
\end{array}\right]} \\
R_{3}=R_{3}+(1-i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1+i & 0 & 1 & 0 \\
0 & 1+i & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1+i & 0 & 1 \\
0 & 1+i & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{2}+\frac{i}{2}\right) t, v_{2}=\left(\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) t \\
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+i \\
1-i \\
2
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
1	1	3	No	$\left[\begin{array}{c}0 \\ 1 \\ 0\end{array}\right]$
i	1	3	No	$\left[\begin{array}{c}-1-i \\ 1+i \\ 2\end{array}\right]$
$-i$	1	3	No	$\left[\begin{array}{c}-1+i \\ 1-i \\ 2\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
0 & -1-i & -1+i \\
1 & 1+i & 1-i \\
0 & 2 & 2
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-2 & 0 & -1
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1-i & -1+i \\
1 & 1+i & 1-i \\
0 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right]\left[\begin{array}{ccc}
0 & -1-i & -1+i \\
1 & 1+i & 1-i \\
0 & 2 & 2
\end{array}\right]^{-1}
$$

18.4 problem 4

Internal problem ID [12834]
Internal file name [OUTPUT/11486_Saturday_November_04_2023_08_47_35_AM_37651106/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page
362
Problem number: 4.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
3-\lambda & 1 & -1 \\
1 & 3-\lambda & -1 \\
3 & 3 & -1-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+5 \lambda^{2}-8 \lambda+4 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
2	2	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{lll}
3 & 1 & -1 \\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{lll}
3 & 1 & -1 \\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & -1 \\
3 & 3 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
2 & 1 & -1 & 0 \\
1 & 2 & -1 & 0 \\
3 & 3 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{rrr|r}
2 & 1 & -1 & 0 \\
0 & \frac{3}{2} & -\frac{1}{2} & 0 \\
3 & 3 & -2 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 1 & -1 & 0 \\
0 & \frac{3}{2} & -\frac{1}{2} & 0 \\
0 & \frac{3}{2} & -\frac{1}{2} & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 1 & -1 & 0 \\
0 & \frac{3}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & \frac{3}{2} & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}, v_{2}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{l}
\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]
$$

Considering $\lambda=2$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{lll}
3 & 1 & -1 \\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{lll}
3 & 1 & -1 \\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 1 & -1 \\
1 & 1 & -1 \\
3 & 3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
1 & 1 & -1 & 0 \\
1 & 1 & -1 & 0 \\
3 & 3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{llc|l}
1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
3 & 3 & -3 & 0
\end{array}\right] \\
R_{3}=R_{3}-3 R_{1} \Longrightarrow\left[\begin{array}{llc|c}
1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t+s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t+s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-t+s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t+s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t+s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
1	1	3	No	$\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$
2	2	3	No	$\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]^{-1}
$$

18.5 problem 5

Internal problem ID [12835]
Internal file name [OUTPUT/11487_Saturday_November_04_2023_08_47_35_AM_83219047/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page
362
Problem number: 5.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
7-\lambda & -1 & 6 \\
-10 & 4-\lambda & -12 \\
-2 & 1 & -1-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+10 \lambda^{2}-31 \lambda+30 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue
5	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=2$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
5 & -1 & 6 \\
-10 & 2 & -12 \\
-2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
5 & -1 & 6 & 0 \\
-10 & 2 & -12 & 0 \\
-2 & 1 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
5 & -1 & 6 & 0 \\
0 & 0 & 0 & 0 \\
-2 & 1 & -3 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+\frac{2 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
5 & -1 & 6 & 0 \\
0 & 0 & 0 & 0 \\
0 & \frac{3}{5} & -\frac{3}{5} & 0
\end{array}\right]
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
5 & -1 & 6 & 0 \\
0 & \frac{3}{5} & -\frac{3}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
5 & -1 & 6 \\
0 & \frac{3}{5} & -\frac{3}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Considering $\lambda=3$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
4 & -1 & 6 \\
-10 & 1 & -12 \\
-2 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
4 & -1 & 6 & 0 \\
-10 & 1 & -12 & 0 \\
-2 & 1 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{5 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
4 & -1 & 6 & 0 \\
0 & -\frac{3}{2} & 3 & 0 \\
-2 & 1 & -4 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
4 & -1 & 6 & 0 \\
0 & -\frac{3}{2} & 3 & 0 \\
0 & \frac{1}{2} & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
4 & -1 & 6 & 0 \\
0 & -\frac{3}{2} & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4 & -1 & 6 \\
0 & -\frac{3}{2} & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

Considering $\lambda=5$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]-(5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]-\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
2 & -1 & 6 \\
-10 & -1 & -12 \\
-2 & 1 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
2 & -1 & 6 & 0 \\
-10 & -1 & -12 & 0 \\
-2 & 1 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+5 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2 & -1 & 6 & 0 \\
0 & -6 & 18 & 0 \\
-2 & 1 & -6 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2 & -1 & 6 & 0 \\
0 & -6 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & -1 & 6 \\
0 & -6 & 18 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{3 t}{2}, v_{2}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{3 t}{2} \\
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 t}{2} \\
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{3 t}{2} \\
3 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{3}{2} \\
3 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{3 t}{2} \\
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{2} \\
3 \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{3 t}{2} \\
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 \\
6 \\
2
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
2	1	3	No	$\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$
3	1	3	No	$\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$
5	1	3	No	$\left[\begin{array}{c}-3 \\ 6 \\ 2\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
-1 & -1 & -3 \\
1 & 2 & 6 \\
1 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
7 & -1 & 6 \\
-10 & 4 & -12 \\
-2 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -1 & -3 \\
1 & 2 & 6 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{ccc}
-1 & -1 & -3 \\
1 & 2 & 6 \\
1 & 1 & 2
\end{array}\right]^{-1}
$$

18.6 problem 6

Internal problem ID [12836]
Internal file name [OUTPUT/11488_Saturday_November_04_2023_08_47_35_AM_69163266/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page
362
Problem number: 6.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cccc}
1-\lambda & 1 & 1 & 1 \\
1 & 1-\lambda & 1 & 1 \\
1 & 1 & 1-\lambda & 1 \\
1 & 1 & 1 & 1-\lambda
\end{array}\right] & =0 \\
& =0 \\
& =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	3	real eigenvalue
4	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=0$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{array}{rl}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0
\end{array} 0\right.\right. \\
0 & 1
\end{array} 0
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is

$$
\begin{gathered}
{\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{1} \Longrightarrow
\end{gathered}\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Let $v_{4}=r$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t-s-r\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t-s-r \\
t \\
s \\
r
\end{array}\right]=\left[\begin{array}{c}
-t-s-r \\
t \\
s \\
r
\end{array}\right]
$$

Since there are three free Variable, we have found three eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t-s-r \\
t \\
s \\
r
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
s \\
0
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ and $r=1$ then the above becomes

$$
\left[\begin{array}{c}
-t-s-r \\
t \\
s \\
r
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the three eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

Considering $\lambda=4$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
& A \boldsymbol{v}=\lambda \boldsymbol{v} \\
& A \boldsymbol{v}-\lambda \boldsymbol{v}=\mathbf{0} \\
& (A-\lambda I) \boldsymbol{v}=\mathbf{0} \\
& \left(\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]-(4)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]-\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cccc}
-3 & 1 & 1 & 1 \\
1 & -3 & 1 & 1 \\
1 & 1 & -3 & 1 \\
1 & 1 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-3 & 1 & 1 & 1 & 0 \\
1 & -3 & 1 & 1 & 0 \\
1 & 1 & -3 & 1 & 0 \\
1 & 1 & 1 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & 1 & 0 \\
0 & -\frac{8}{3} & \frac{4}{3} & \frac{4}{3} & 0 \\
1 & 1 & -3 & 1 & 0 \\
1 & 1 & 1 & -3 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & 1 & 0 \\
0 & -\frac{8}{3} & \frac{4}{3} & \frac{4}{3} & 0 \\
0 & \frac{4}{3} & -\frac{8}{3} & \frac{4}{3} & 0 \\
1 & 1 & 1 & -3 & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & 1 & 0 \\
0 & -\frac{8}{3} & \frac{4}{3} & \frac{4}{3} & 0 \\
0 & \frac{4}{3} & -\frac{8}{3} & \frac{4}{3} & 0 \\
0 & \frac{4}{3} & \frac{4}{3} & -\frac{8}{3} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & 1 & 0 \\
0 & -\frac{8}{3} & \frac{4}{3} & \frac{4}{3} & 0 \\
0 & 0 & -2 & 2 & 0 \\
0 & \frac{4}{3} & \frac{4}{3} & -\frac{8}{3} & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & 1 & 0 \\
0 & -\frac{8}{3} & \frac{4}{3} & \frac{4}{3} & 0 \\
0 & 0 & -2 & 2 & 0 \\
0 & 0 & 2 & -2 & 0
\end{array}\right] \\
R_{4}=R_{4}+R_{3}
\end{gathered}\left[\begin{array}{ccc|c}
-3 & 1 & 1 & 1
\end{array} 0\right.
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-3 & 1 & 1 & 1 \\
0 & -\frac{8}{3} & \frac{4}{3} & \frac{4}{3} \\
0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t, v_{3}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
0	3		No	$\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right]$
4	1	4	No	$\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \\
& P=\left[\begin{array}{cccc}
-1 & -1 & -1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
-1 & -1 & -1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]\left[\begin{array}{cccc}
-1 & -1 & -1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]^{-1}
$$

18.7 problem 6

Internal problem ID [12837]
Internal file name [OUTPUT/11489_Saturday_November_04_2023_08_47_35_AM_65202513/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page
362
Problem number: 6.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 6 & 10 & 14 \\
3 & 9 & 15 & 21 \\
6 & 18 & 30 & 42
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 6 & 10 & 14 \\
3 & 9 & 15 & 21 \\
6 & 18 & 30 & 42
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right. & =0 \\
\operatorname{det}\left[\begin{array}{cccc}
1-\lambda & 3 \\
2 & 6-\lambda & 10 & 14 \\
3 & 9 & 15-\lambda & 21 \\
6 & 18 & 30 & 42-\lambda
\end{array}\right] & =0 \\
\lambda^{4}-64 \lambda^{3} & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the
roots gives

$$
\begin{aligned}
& \lambda_{1}=64 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	3	real eigenvalue
64	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=0$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
& A \boldsymbol{v}=\lambda \boldsymbol{v} \\
&\left(\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 6 & 10 & 14 \\
3 & 9 & 15 & 21 \\
6 & 18 & 30 & 42
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
\boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
0 & 1 & 0 \\
0 \\
0 & 0 & 1 \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
0 & 0 & 0
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
&\left(\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 6 & 10 & 14 \\
3 & 9 & 15 & 21 \\
6 & 18 & 30 & 42
\end{array}\right]-\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 6 & 10 & 14 \\
3 & 9 & 15 & 21 \\
6 & 18 & 30 & 42
\end{array}\right]\left[\begin{array}{l}
{\left[\begin{array}{l}
1 \\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]}
\end{array}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right.}
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The aug-
mented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
1 & 3 & 5 & 7 & 0 \\
2 & 6 & 10 & 14 & 0 \\
3 & 9 & 15 & 21 & 0 \\
6 & 18 & 30 & 42 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
1 & 3 & 5 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 \\
3 & 9 & 15 & 21 & 0 \\
6 & 18 & 30 & 42 & 0
\end{array}\right] \\
R_{3}=R_{3}-3 R_{1} \Longrightarrow\left[\begin{array}{llll|l}
1 & 3 & 5 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
6 & 18 & 30 & 42 & 0
\end{array}\right] \\
R_{4}=R_{4}-6 R_{1} \Longrightarrow\left[\begin{array}{llll|l}
1 & 3 & 5 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{llll}
1 & 3 & 5 & 7 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Let $v_{4}=r$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-3 t-5 s-7 r\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-3 t-5 s-7 r \\
t \\
s \\
r
\end{array}\right]=\left[\begin{array}{c}
-3 t-5 s-7 r \\
t \\
s \\
r
\end{array}\right]
$$

Since there are three free Variable, we have found three eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-3 t-5 s-7 r \\
t \\
s \\
r
\end{array}\right] } & =\left[\begin{array}{c}
-3 t \\
t \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-5 s \\
0 \\
s \\
0
\end{array}\right] \\
& =t\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{c}
-7 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ and $r=1$ then the above becomes

$$
\left[\begin{array}{c}
-3 t-5 s-7 r \\
t \\
s \\
r
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-7 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the three eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

Considering $\lambda=64$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
& A \boldsymbol{v}=\lambda \boldsymbol{v} \\
& A \boldsymbol{v}-\lambda \boldsymbol{v}=\mathbf{0} \\
& (A-\lambda I) \boldsymbol{v}=\mathbf{0} \\
& \left(\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 6 & 10 & 14 \\
3 & 9 & 15 & 21 \\
6 & 18 & 30 & 42
\end{array}\right]-(64)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 6 & 10 & 14 \\
3 & 9 & 15 & 21 \\
6 & 18 & 30 & 42
\end{array}\right]-\left[\begin{array}{cccc}
64 & 0 & 0 & 0 \\
0 & 64 & 0 & 0 \\
0 & 0 & 64 & 0 \\
0 & 0 & 0 & 64
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cccc}
-63 & 3 & 5 & 7 \\
2 & -58 & 10 & 14 \\
3 & 9 & -49 & 21 \\
6 & 18 & 30 & -22
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-63 & 3 & 5 & 7 & 0 \\
2 & -58 & 10 & 14 & 0 \\
3 & 9 & -49 & 21 & 0 \\
6 & 18 & 30 & -22 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{63} \Longrightarrow\left[\begin{array}{cccc|c}
-63 & 3 & 5 & 7 & 0 \\
0 & -\frac{1216}{21} & \frac{640}{63} & \frac{128}{9} & 0 \\
3 & 9 & -49 & 21 & 0 \\
6 & 18 & 30 & -22 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}+\frac{R_{1}}{21} \Longrightarrow\left[\begin{array}{cccc|c}
-63 & 3 & 5 & 7 & 0 \\
0 & -\frac{1216}{21} & \frac{640}{63} & \frac{128}{9} & 0 \\
0 & \frac{64}{7} & -\frac{1024}{21} & \frac{64}{3} & 0 \\
6 & 18 & 30 & -22 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{2 R_{1}}{21} \Longrightarrow\left[\begin{array}{cccc|c}
-63 & 3 & 5 & 7 & 0 \\
0 & -\frac{1216}{21} & \frac{640}{63} & \frac{128}{9} & 0 \\
0 & \frac{64}{7} & -\frac{1024}{21} & \frac{64}{3} & 0 \\
0 & \frac{128}{7} & \frac{640}{21} & -\frac{64}{3} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{3 R_{2}}{19} \Longrightarrow\left[\begin{array}{cccc|c}
-63 & 3 & 5 & 7 & 0 \\
0 & -\frac{1216}{21} & \frac{640}{63} & \frac{128}{9} & 0 \\
0 & 0 & -\frac{896}{19} & \frac{448}{19} & 0 \\
0 & \frac{128}{7} & \frac{640}{21} & -\frac{64}{3} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{6 R_{2}}{19} \Longrightarrow\left[\begin{array}{cccc|c}
-63 & 3 & 5 & 7 & 0 \\
0 & -\frac{1216}{21} & \frac{640}{63} & \frac{128}{9} & 0 \\
0 & 0 & -\frac{896}{19} & \frac{448}{19} & 0 \\
0 & 0 & \frac{640}{19} & -\frac{320}{19} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{5 R_{3}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
-63 & 3 & 5 & 7 & 0 \\
0 & -\frac{1216}{21} & \frac{640}{63} & \frac{128}{9} & 0 \\
0 & 0 & -\frac{896}{19} & \frac{448}{19} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-63 & 3 & 5 & 7 \\
0 & -\frac{1216}{21} & \frac{640}{63} & \frac{128}{9} \\
0 & 0 & -\frac{896}{19} & \frac{448}{19} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{6}, v_{2}=\frac{t}{3}, v_{3}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{6} \\
\frac{t}{3} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{6} \\
\frac{t}{3} \\
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{6} \\
\frac{t}{3} \\
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{6} \\
\frac{1}{3} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\frac{t}{6} \\
\frac{t}{3} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{6} \\
\frac{1}{3} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\frac{t}{6} \\
\frac{t}{3} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
3 \\
6
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
0	3		No	$\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0\end{array}\right]$
64	1	4	No	$\left[\begin{array}{c}-5 \\ 0 \\ 1 \\ 0\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 64
\end{array}\right] \\
& P=\left[\begin{array}{cccc}
-3 & -5 & -7 & 1 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 6
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 6 & 10 & 14 \\
3 & 9 & 15 & 21 \\
6 & 18 & 30 & 42
\end{array}\right]=\left[\begin{array}{cccc}
-3 & -5 & -7 & 1 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 6
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 64
\end{array}\right]\left[\begin{array}{cccc}
-3 & -5 & -7 & 1 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 6
\end{array}\right]^{-1}
$$

18.8 problem 7

Internal problem ID [12838]
Internal file name [OUTPUT/11490_Saturday_November_04_2023_08_47_36_AM_4836427/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.2 page 362
Problem number: 7.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{lllll}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to
find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\lambda\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)=0 \\
& \operatorname{det}\left[\begin{array}{ccccc}
1-\lambda & 3 & 5 & 2 & 4 \\
5 & 2-\lambda & 4 & 1 & 3 \\
4 & 1 & 3-\lambda & 5 & 2 \\
3 & 5 & 2 & 4-\lambda & 1 \\
2 & 4 & 1 & 3 & 5-\lambda
\end{array}\right]=0 \\
& -\lambda^{5}+15 \lambda^{4}+125 \lambda-1875=0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=15 \\
& \lambda_{2}=5^{\frac{3}{4}} \\
& \lambda_{3}=i 5^{\frac{3}{4}} \\
& \lambda_{4}=-5^{\frac{3}{4}} \\
& \lambda_{5}=-i 5^{\frac{3}{4}}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
15	1	real eigenvalue
$-5^{\frac{3}{4}}$	1	real eigenvalue
$5^{\frac{3}{4}}$	1	real eigenvalue
$-i 5^{\frac{3}{4}}$	1	complex eigenvalue
$i 5^{\frac{3}{4}}$	1	complex eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=15$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
& A \boldsymbol{v}=\lambda \boldsymbol{v} \\
& A \boldsymbol{v}-\lambda \boldsymbol{v}=\mathbf{0} \\
& (A-\lambda I) \boldsymbol{v}=\mathbf{0} \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-(15)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left[\begin{array}{ccccc}
15 & 0 & 0 & 0 & 0 \\
0 & 15 & 0 & 0 & 0 \\
0 & 0 & 15 & 0 & 0 \\
0 & 0 & 0 & 15 & 0 \\
0 & 0 & 0 & 0 & 15
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccccc}
-14 & 3 & 5 & 2 & 4 \\
5 & -13 & 4 & 1 & 3 \\
4 & 1 & -12 & 5 & 2 \\
3 & 5 & 2 & -11 & 1 \\
2 & 4 & 1 & 3 & -10
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
5 & -13 & 4 & 1 & 3 & 0 \\
4 & 1 & -12 & 5 & 2 & 0 \\
3 & 5 & 2 & -11 & 1 & 0 \\
2 & 4 & 1 & 3 & -10 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+\frac{5 R_{1}}{14} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
4 & 1 & -12 & 5 & 2 & 0 \\
3 & 5 & 2 & -11 & 1 & 0 \\
2 & 4 & 1 & 3 & -10 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{2 R_{1}}{7} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & \frac{13}{7} & -\frac{74}{7} & \frac{39}{7} & \frac{22}{7} & 0 \\
3 & 5 & 2 & -11 & 1 & 0 \\
2 & 4 & 1 & 3 & -10 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{3 R_{1}}{14} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & \frac{13}{7} & -\frac{74}{7} & \frac{39}{7} & \frac{22}{7} & 0 \\
0 & \frac{79}{14} & \frac{43}{14} & -\frac{74}{7} & \frac{13}{7} & 0 \\
2 & 4 & 1 & 3 & -10 & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{R_{1}}{7} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & \frac{13}{7} & -\frac{74}{7} & \frac{39}{7} & \frac{22}{7} & 0 \\
0 & \frac{79}{14} & \frac{43}{14} & -\frac{74}{7} & \frac{13}{7} & 0 \\
0 & \frac{31}{7} & \frac{12}{7} & \frac{23}{7} & -\frac{66}{7} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{26 R_{2}}{167} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & 0 & -\frac{1615}{167} & \frac{975}{167} & \frac{640}{167} & 0 \\
0 & \frac{79}{14} & \frac{43}{14} & -\frac{74}{7} & \frac{13}{7} & 0 \\
0 & \frac{31}{7} & \frac{12}{7} & \frac{23}{7} & -\frac{66}{7} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=R_{4}+\frac{79 R_{2}}{167} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & 0 & -\frac{1615}{167} & \frac{975}{167} & \frac{640}{167} & 0 \\
0 & 0 & \frac{970}{167} & -\frac{1630}{167} & \frac{660}{167} & 0 \\
0 & \frac{31}{7} & \frac{12}{7} & \frac{23}{7} & -\frac{66}{7} & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{62 R_{2}}{167} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & 0 & -\frac{1615}{167} & \frac{975}{167} & \frac{640}{167} & 0 \\
0 & 0 & \frac{970}{107} & -\frac{1630}{167} & \frac{660}{167} & 0 \\
0 & 0 & \frac{645}{167} & \frac{655}{167} & -\frac{1300}{167} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{194 R_{3}}{323} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & 0 & -\frac{1615}{167} & \frac{975}{167} & \frac{640}{167} & 0 \\
0 & 0 & 0 & -\frac{2020}{323} & \frac{2020}{323} & 0 \\
0 & 0 & \frac{645}{167} & \frac{655}{167} & -\frac{1300}{167} & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{129 R_{3}}{323} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & 0 & -\frac{1615}{167} & \frac{975}{167} & \frac{640}{167} & 0 \\
0 & 0 & 0 & -\frac{2020}{323} & \frac{2020}{323} & 0 \\
0 & 0 & 0 & \frac{2020}{323} & -\frac{2020}{323} & 0
\end{array}\right] \\
& R_{5}=R_{5}+R_{4} \Longrightarrow\left[\begin{array}{ccccc|c}
-14 & 3 & 5 & 2 & 4 & 0 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} & 0 \\
0 & 0 & -\frac{1615}{167} & \frac{975}{167} & \frac{640}{167} & 0 \\
0 & 0 & 0 & -\frac{2020}{323} & \frac{2020}{323} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
-14 & 3 & 5 & 2 & 4 \\
0 & -\frac{167}{14} & \frac{81}{14} & \frac{12}{7} & \frac{31}{7} \\
0 & 0 & -\frac{1615}{167} & \frac{975}{167} & \frac{640}{167} \\
0 & 0 & 0 & -\frac{2020}{323} & \frac{2020}{323} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t, v_{3}=t, v_{4}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
t \\
t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Considering $\lambda=-5^{\frac{3}{4}}$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
& A \boldsymbol{v}=\lambda \boldsymbol{v} \\
& A \boldsymbol{v}-\lambda \boldsymbol{v}=\mathbf{0} \\
& (A-\lambda I) \boldsymbol{v}=\mathbf{0} \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left(-5^{\frac{3}{4}}\right)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left[\begin{array}{ccccc}
-5^{\frac{3}{4}} & 0 & 0 & 0 & 0 \\
0 & -5^{\frac{3}{4}} & 0 & 0 & 0 \\
0 & 0 & -5^{\frac{3}{4}} & 0 & 0 \\
0 & 0 & 0 & -5^{\frac{3}{4}} & 0 \\
0 & 0 & 0 & 0 & -5^{\frac{3}{4}}
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccccc}
1+5^{\frac{3}{4}} & 3 & 5 & 2 & 4 \\
5 & 2+5^{\frac{3}{4}} & 4 & 1 & 3 \\
4 & 1 & 3+5^{\frac{3}{4}} & 5 & 2 \\
3 & 5 & 2 & 4+5^{\frac{3}{4}} & 1 \\
2 & 4 & 1 & 3 & 5+5^{\frac{3}{4}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{ccccc|c}
1+5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
5 & 2+5^{\frac{3}{4}} & 4 & 1 & 3 & 0 \\
4 & 1 & 3+5^{\frac{3}{4}} & 5 & 2 & 0 \\
3 & 5 & 2 & 4+5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5+5^{\frac{3}{4}} & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-\frac{5 R_{1}}{1+5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1+5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{5 \sqrt{5}+35^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & \frac{45^{\frac{3}{4}-21}}{1+5^{\frac{3}{4}}} & \frac{5^{\frac{3}{4}}-9}{1+5^{\frac{3}{4}}} & \frac{35^{\frac{3}{4}}-17}{1+5^{\frac{3}{4}}} & 0 \\
4 & 1 & 3+5^{\frac{3}{4}} & 5 & 2 & 0 \\
3 & 5 & 2 & 4+5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5+5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{4 R_{1}}{1+5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1+5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{5 \sqrt{5}+35^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & \frac{45^{\frac{3}{4}}-21}{1+5^{\frac{3}{4}}} & \frac{5^{\frac{3}{4}-9}}{1+5^{\frac{3}{4}}} & \frac{35^{\frac{3}{4}}-17}{1+5^{\frac{3}{4}}} & 0 \\
0 & \frac{5^{\frac{3}{4}}-11}{1+5^{\frac{3}{4}}} & \frac{5 \sqrt{5}+45^{\frac{3}{4}}-17}{1+5^{\frac{3}{4}}} & \frac{55^{\frac{3}{4}-3}}{1+5^{\frac{3}{4}}} & \frac{25^{\frac{3}{4}-14}}{1+5^{\frac{3}{4}}} & 0 \\
3 & 5 & 2 & 4+5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5+5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{3 R_{1}}{1+5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1+5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{5 \sqrt{5}+35^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & \frac{45^{\frac{3}{4}}-21}{1+5^{\frac{3}{4}}} & \frac{5^{\frac{3}{4}}-9}{1+5^{\frac{3}{4}}} & \frac{35^{\frac{3}{4}}-17}{1+5^{\frac{3}{4}}} & 0 \\
0 & \frac{5^{\frac{3}{4}}-11}{1+5^{\frac{3}{4}}} & \frac{5 \sqrt{5}+45^{\frac{3}{4}}-17}{1+5^{\frac{3}{4}}} & \frac{55^{\frac{3}{4}-3}}{1+5^{\frac{3}{4}}} & \frac{25^{\frac{3}{4}-14}}{1+5^{\frac{3}{4}}} & 0 \\
0 & \frac{55^{\frac{3}{4}-4}}{1+5^{\frac{3}{4}}} & \frac{25^{\frac{3}{4}-13}}{1+5^{\frac{3}{4}}} & \frac{5 \sqrt{5}+55^{\frac{3}{4}}-2}{1+5^{\frac{3}{4}}} & \frac{5^{\frac{3}{4}}-11}{1+5^{\frac{3}{4}}} & 0 \\
2 & 4 & 1 & 3 & 5+5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{2 R_{1}}{1+5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1+5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{5 \sqrt{5}+35^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & \frac{45^{\frac{3}{4}}-21}{1+5^{\frac{3}{4}}} & \frac{5^{\frac{3}{4}-9}}{1+5^{\frac{3}{4}}} & \frac{35^{\frac{3}{4}}-17}{1+5^{\frac{3}{4}}} & 0 \\
0 & \frac{5^{\frac{3}{4}}-11}{1+5^{\frac{3}{4}}} & \frac{5 \sqrt{5}+45^{\frac{3}{4}}-17}{1+5^{\frac{3}{4}}} & \frac{55^{\frac{3}{4}-3}}{1+5^{\frac{3}{4}}} & \frac{25^{\frac{3}{4}}-14}{1+5^{\frac{3}{4}}} & 0 \\
0 & \frac{55^{\frac{3}{4}-4}}{1+5^{\frac{3}{4}}} & \frac{25^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & \frac{5 \sqrt{5}+55^{\frac{3}{4}}-2}{1+5^{\frac{3}{4}}} & \frac{5^{\frac{3}{4}}-11}{1+5^{\frac{3}{4}}} & 0 \\
0 & \frac{45^{\frac{3}{4}}-2}{1+5^{\frac{3}{4}}} & \frac{5^{\frac{3}{4}-9}}{1+5^{\frac{3}{4}}} & \frac{35^{\frac{3}{4}-1}}{1+5^{\frac{3}{4}}} & \frac{5 \sqrt{5}+65^{\frac{3}{4}}-3}{1+5^{\frac{3}{4}}} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=R_{4}-\frac{\left(-135 \sqrt{5}+505^{\frac{1}{4}}+565^{\frac{3}{4}}+85\right) R_{3}}{-110 \sqrt{5}+1755^{\frac{1}{4}}-385^{\frac{3}{4}}+115} \Longrightarrow\left[\begin{array}{ccc}
1+5^{\frac{3}{4}} & 3 & 5 \\
0 & \frac{5 \sqrt{5}+35^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & \frac{45^{\frac{3}{4}}-21}{1+5^{\frac{3}{4}}} \\
0 & 0 & \frac{-110 \sqrt{5}+1755^{\frac{1}{4}}-385^{\frac{3}{4}}+115}{\left(5 \sqrt{5}+35^{\frac{3}{4}}-13\right)\left(1+5^{\frac{3}{4}}\right)} \\
0 & 0 & 0 \\
0 & 0 & \frac{-110 \sqrt{5}+255^{\frac{1}{4}}+525^{\frac{3}{4}}+75}{\left(5 \sqrt{5}+35^{\frac{3}{4}}-13\right)\left(1+5^{\frac{3}{4}}\right)}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& R_{5}=R_{5}-\frac{\left(-110 \sqrt{5}+255^{\frac{1}{4}}+525^{\frac{3}{4}}+75\right) R_{3}}{-110 \sqrt{5}+1755^{\frac{1}{4}}-385^{\frac{3}{4}}+115} \Longrightarrow\left[\begin{array}{ccc}
1+5^{\frac{3}{4}} & 3 \\
0 & \frac{5 \sqrt{5}+35^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & 5 \\
0 & 0 & \frac{45^{\frac{3}{4}}-21}{1+5^{\frac{3}{4}}} \\
0 & 0 & \left(5 \sqrt{5}+35^{\frac{3}{4}}-13\right)\left(1+5^{\frac{3}{4}}\right) \\
0 & 0 \\
0 & 0 & 0 \\
R_{5}=R_{5}+\frac{\left(5815^{\frac{3}{4}}-18295^{\frac{1}{4}}+677 \sqrt{5}-813\right) R_{4}}{4485^{\frac{3}{4}}-205^{\frac{1}{4}}-790 \sqrt{5}+382} \Longrightarrow\left[\begin{array}{ccc}
1+5^{\frac{3}{4}} & 3 \\
0 & \frac{5 \sqrt{5}+35^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & \frac{45^{\frac{3}{4}}-21}{1+5^{\frac{3}{4}}} \\
0 & 0 & \frac{-110 \sqrt{5}+1755^{\frac{1}{4}-385^{\frac{3}{4}}+115}}{\left(5 \sqrt{5}+35^{\frac{3}{4}}-13\right)\left(1+5^{\frac{3}{4}}\right)} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right.
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
1+5^{\frac{3}{4}} & 3 & 5 & 2 \\
0 & \frac{5 \sqrt{5}+35^{\frac{3}{4}}-13}{1+5^{\frac{3}{4}}} & \frac{45^{\frac{3}{4}}-21}{1+5^{\frac{3}{4}}} & \frac{5^{\frac{3}{4}-9}}{1+5^{\frac{3}{4}}} \\
0 & 0 & \frac{-110 \sqrt{5}+1755^{\frac{1}{4}}-385^{\frac{3}{4}}+115}{\left(5 \sqrt{5}+35^{\frac{3}{4}}-13\right)\left(1+5^{\frac{3}{4}}\right)} & \frac{55 \sqrt{5}+1255^{\frac{1}{4}}-545^{\frac{3}{4}}-60}{\left(5 \sqrt{5}+35^{\frac{3}{4}}-13\right)\left(1+5^{\frac{3}{4}}\right)} \\
0 & 0 & 0 & \frac{-19750 \sqrt{5}+9550-5005^{\frac{1}{4}}+112005^{\frac{3}{4}}}{\left(385^{\left.\frac{3}{4}-1755^{\frac{1}{4}}+110 \sqrt{5}-115\right)\left(5 \sqrt{5}+35^{\frac{3}{4}}-13\right)\left(1+5^{\frac{3}{4}}\right)}\right.} \frac{\left(385^{\frac{3}{4}}-1755^{\frac{1}{4}}+\right.}{2050} \\
0 & 0 & 0 & 0
\end{array}\right.
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6\right) t, v_{2}=-\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}+\sqrt{5}+4\right) t, v_{3}=-(\right.$

Hence the solution is

$$
\left[\begin{array}{c}
\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6\right) t \\
-\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}+\sqrt{5}+4\right) t \\
-\left(5^{\frac{3}{4}}+35^{\frac{1}{4}}+2 \sqrt{5}+4\right) t \\
\left(5^{\frac{1}{4}}+1\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6\right) t \\
-\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}+\sqrt{5}+4\right) t \\
-\left(5^{\frac{3}{4}}+35^{\frac{1}{4}}+2 \sqrt{5}+4\right) t \\
\left(5^{\frac{1}{4}}+1\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6\right) t \\
-\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}+\sqrt{5}+4\right) t \\
-\left(5^{\frac{3}{4}}+35^{\frac{1}{4}}+2 \sqrt{5}+4\right) t \\
\left(5^{\frac{1}{4}}+1\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6 \\
-5^{\frac{3}{4}}-25^{\frac{1}{4}}-\sqrt{5}-4 \\
-5^{\frac{3}{4}}-35^{\frac{1}{4}}-2 \sqrt{5}-4 \\
5^{\frac{1}{4}}+1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6\right) t \\
-\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}+\sqrt{5}+4\right) t \\
-\left(5^{\frac{3}{4}}+35^{\frac{1}{4}}+2 \sqrt{5}+4\right) t \\
\left(5^{\frac{1}{4}}+1\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6 \\
-5^{\frac{3}{4}}-25^{\frac{1}{4}}-\sqrt{5}-4 \\
-5^{\frac{3}{4}}-35^{\frac{1}{4}}-2 \sqrt{5}-4 \\
5^{\frac{1}{4}}+1 \\
1
\end{array}\right]
$$

Considering $\lambda=5^{\frac{3}{4}}$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
& A \boldsymbol{v}=\lambda \boldsymbol{v} \\
& A \boldsymbol{v}-\lambda \boldsymbol{v}=\mathbf{0} \\
& (A-\lambda I) \boldsymbol{v}=\mathbf{0} \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left(5^{\frac{3}{4}}\right)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left[\begin{array}{ccccc}
5^{\frac{3}{4}} & 0 & 0 & 0 & 0 \\
0 & 5^{\frac{3}{4}} & 0 & 0 & 0 \\
0 & 0 & 5^{\frac{3}{4}} & 0 & 0 \\
0 & 0 & 0 & 5^{\frac{3}{4}} & 0 \\
0 & 0 & 0 & 0 & 5^{\frac{3}{4}}
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccccc}
1-5^{\frac{3}{4}} & 3 & 5 & 2 & 4 \\
5 & 2-5^{\frac{3}{4}} & 4 & 1 & 3 \\
4 & 1 & 3-5^{\frac{3}{4}} & 5 & 2 \\
3 & 5 & 2 & 4-5^{\frac{3}{4}} & 1 \\
2 & 4 & 1 & 3 & 5-5^{\frac{3}{4}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{ccccc|c}
1-5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
5 & 2-5^{\frac{3}{4}} & 4 & 1 & 3 & 0 \\
4 & 1 & 3-5^{\frac{3}{4}} & 5 & 2 & 0 \\
3 & 5 & 2 & 4-5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5-5^{\frac{3}{4}} & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-\frac{5 R_{1}}{1-5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1-5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{45^{\frac{3}{4}}+21}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+9}{5^{\frac{3}{4}}-1} & \frac{35^{\frac{3}{4}}+17}{5^{\frac{3}{4}}-1} & 0 \\
4 & 1 & 3-5^{\frac{3}{4}} & 5 & 2 & 0 \\
3 & 5 & 2 & 4-5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5-5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{4 R_{1}}{1-5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1-5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{45^{\frac{3}{4}}+21}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+9}{5^{\frac{3}{4}}-1} & \frac{35^{\frac{3}{4}}+17}{5^{\frac{3}{4}}-1} & 0 \\
0 & \frac{5^{\frac{3}{4}}+11}{5^{\frac{3}{4}}-1} & \frac{-5 \sqrt{5}+5^{\frac{3}{4}}+17}{5^{\frac{3}{4}}-1} & \frac{55^{\frac{3}{4}}+3}{5^{\frac{3}{4}}-1} & \frac{25^{\frac{3}{4}}+14}{5^{\frac{3}{4}}-1} & 0 \\
3 & 5 & 2 & 4-5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5-5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{3 R_{1}}{1-5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1-5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{45^{\frac{3}{4}}+21}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+9}{5^{\frac{3}{4}}-1} & \frac{35^{\frac{3}{4}}+17}{5^{\frac{3}{4}}-1} & 0 \\
0 & \frac{5^{\frac{3}{4}}+11}{5^{\frac{3}{4}}-1} & \frac{-5 \sqrt{5}+45^{\frac{3}{4}}+17}{5^{\frac{3}{4}}-1} & \frac{55^{\frac{3}{4}}+3}{5^{\frac{3}{4}}-1} & \frac{25^{\frac{3}{4}}+14}{5^{\frac{3}{4}}-1} & 0 \\
0 & \frac{55^{\frac{3}{3}}+4}{5^{\frac{3}{4}}-1} & \frac{25^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{-5 \sqrt{5}+55^{\frac{3}{4}}+2}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+11}{5^{\frac{3}{4}}-1} & 0 \\
2 & 4 & 1 & 3 & 5-5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{2 R_{1}}{1-5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1-5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{45^{\frac{3}{3}}+21}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+9}{5^{\frac{3}{4}}-1} & \frac{35^{\frac{3}{4}}+17}{5^{\frac{3}{4}}-1} & 0 \\
0 & \frac{5^{\frac{3}{4}}+11}{5^{\frac{3}{4}}-1} & \frac{-5 \sqrt{5}+45^{\frac{3}{4}}+17}{5^{\frac{3}{4}}-1} & \frac{55^{\frac{3}{4}}+3}{5^{\frac{3}{4}}-1} & \frac{25^{\frac{3}{4}}+14}{5^{\frac{3}{4}}-1} & 0 \\
0 & \frac{55^{\frac{3}{4}}+4}{5^{\frac{3}{4}}-1} & \frac{25^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{-5 \sqrt{5}+55^{\frac{3}{4}}+2}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+11}{5^{\frac{3}{4}}-1} & 0 \\
0 & \frac{45^{\frac{3}{4}}+2}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+9}{5^{\frac{3}{4}}-1} & \frac{35^{\frac{3}{4}}+1}{5^{\frac{3}{4}}-1} & \frac{-5 \sqrt{5}+65^{\frac{3}{4}}+3}{5^{\frac{3}{4}}-1} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(5^{3}+11\right) R_{2}\left[\begin{array}{cccc}
1-5^{\frac{3}{4}} & 3 & 5 & 2 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{45^{\frac{3}{4}}+21}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+9}{5^{\frac{3}{4}}-1}
\end{array}\right. \\
& R_{3}=R_{3}-\frac{\left(5^{\frac{3}{4}}+11\right) R_{2}}{-5 \sqrt{5}+35^{\frac{3}{4}}+13} \Longrightarrow \\
& 0 \quad 0 \quad \frac{-110 \sqrt{5}-1755^{\frac{1}{4}}+385^{\frac{3}{4}}+115}{\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\frac{3}{4}}-1\right)} \quad \frac{55 \sqrt{5}-1255^{\frac{1}{4}}+545^{\frac{3}{4}}-60}{\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\frac{3}{4}}-1\right.} \\
& 0 \quad \frac{55^{\frac{3}{4}}+4}{5^{\frac{3}{4}}-1} \quad \frac{25^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} \\
& \frac{-5 \sqrt{5}+55^{\frac{3}{4}}+2}{5^{\frac{3}{4}}-1} \\
& 0 \begin{array}{lll}
\frac{45^{\frac{3}{4}}+2}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+9}{5^{\frac{3}{4}}-1} & \frac{35^{\frac{3}{4}}+1}{5^{\frac{3}{4}}-1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=R_{4}-\frac{\left(-135 \sqrt{5}-505^{\frac{1}{4}}-565^{\frac{3}{4}}+85\right) R_{3}}{-110 \sqrt{5}-1755^{\frac{1}{4}}+385^{\frac{3}{4}}+115} \Longrightarrow\left[\begin{array}{ccc}
1-5^{\frac{3}{4}} & 3 & 5 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{45^{\frac{3}{3}}+21}{5^{\frac{3}{4}}-1} \\
0 & 0 & \frac{-110 \sqrt{5}-1755^{\frac{1}{4}}+385^{\frac{3}{4}}+115}{\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\frac{3}{4}}-1\right)} \\
0 & 0 & 0 \\
0 & 0 & \frac{-110 \sqrt{5}-255^{\frac{1}{4}}-525^{\frac{3}{4}}+75}{\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\frac{3}{4}}-1\right)}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& R_{5}=R_{5}-\frac{\left(-110 \sqrt{5}-255^{\frac{1}{4}}-525^{\frac{3}{4}}+75\right) R_{3}}{-110 \sqrt{5}-1755^{\frac{1}{4}}+385^{\frac{3}{4}}+115} \Longrightarrow\left[\begin{array}{ccc}
1-5^{\frac{3}{4}} & 3 & 5 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}-1}} & \frac{45^{\frac{3}{4}}}{5^{\frac{3}{4}}-11} \\
0 & 0 & \frac{-110 \sqrt{5}-1755^{\frac{1}{4}}+385^{\frac{3}{4}}+115}{\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\frac{3}{4}}-1\right)} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right. \\
& R_{5}=R_{5}+\frac{\left(5815^{\frac{3}{4}}-18295^{\frac{1}{4}}-677 \sqrt{5}+813\right) R_{4}}{4485^{\frac{3}{4}}-205^{\frac{1}{4}}+790 \sqrt{5}-382} \Longrightarrow\left[\begin{array}{ccc}
1-5^{\frac{3}{4}} & 3 & 5 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{45^{\frac{3}{4}}+21}{5^{\frac{3}{4}}-1} \\
0 & 0 & \frac{-110 \sqrt{5}-1755^{\frac{1}{4}}+385^{\frac{3}{4}}+115}{\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\frac{3}{4}}-1\right)} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right.
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
1-5^{\frac{3}{4}} & 3 & 5 & 2 \\
0 & \frac{-5 \sqrt{5}+35^{\frac{3}{4}}+13}{5^{\frac{3}{4}}-1} & \frac{45^{\frac{3}{3}}+21}{5^{\frac{3}{4}}-1} & \frac{5^{\frac{3}{4}}+9}{5^{\frac{3}{4}-1}} \\
0 & 0 & \frac{-110 \sqrt{5}-1755^{\frac{1}{4}}+385^{\frac{3}{4}}+115}{\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\frac{3}{4}}-1\right)} & \frac{55 \sqrt{5}-1255^{\frac{1}{4}}+545^{\frac{3}{4}}-60}{\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\frac{3}{4}}-1\right)} \\
0 & 0 & 0 & \frac{19750 \sqrt{5}-9550-5005^{\frac{1}{4}}+112005^{\frac{3}{4}}}{\left(-110 \sqrt{5}-1755^{\frac{1}{4}}+385^{\frac{3}{4}}+115\right)\left(-5 \sqrt{5}+35^{\frac{3}{4}}+13\right)\left(5^{\left.\frac{3}{4}-1\right)}\right.} \overline{(-110 \sqrt{5}-} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}-3 \sqrt{5}-6\right) t, v_{2}=\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4\right) t, v_{3}=\left(5^{\frac{3}{3}}\right.\right.$

Hence the solution is

$$
\left[\begin{array}{c}
-\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}-3 \sqrt{5}-6\right) t \\
\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4\right) t \\
\left(5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4\right) t \\
-\left(5^{\frac{1}{4}}-1\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}-3 \sqrt{5}-6\right) t \\
\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4\right) t \\
\left(5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4\right) t \\
-\left(5^{\frac{1}{4}}-1\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}-3 \sqrt{5}-6\right) t \\
\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4\right) t \\
\left(5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4\right) t \\
-\left(5^{\frac{1}{4}}-1\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-25^{\frac{3}{4}}-45^{\frac{1}{4}}+3 \sqrt{5}+6 \\
5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4 \\
5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4 \\
-5^{\frac{1}{4}}+1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\left(25^{\frac{3}{4}}+45^{\frac{1}{4}}-3 \sqrt{5}-6\right) t \\
\left(5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4\right) t \\
\left(5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4\right) t \\
-\left(5^{\frac{1}{4}}-1\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-25^{\frac{3}{4}}-45^{\frac{1}{4}}+3 \sqrt{5}+6 \\
5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4 \\
5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4 \\
-5^{\frac{1}{4}}+1 \\
1
\end{array}\right]
$$

Considering $\lambda=-i 5^{\frac{3}{4}}$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
& A \boldsymbol{v}=\lambda \boldsymbol{v} \\
& A \boldsymbol{v}-\lambda \boldsymbol{v}=\mathbf{0} \\
& (A-\lambda I) \boldsymbol{v}=\mathbf{0} \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left(-i 5^{\frac{3}{4}}\right)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left[\begin{array}{ccccc}
-i 5^{\frac{3}{4}} & 0 & 0 & 0 & 0 \\
0 & -i 5^{\frac{3}{4}} & 0 & 0 & 0 \\
0 & 0 & -i 5^{\frac{3}{4}} & 0 & 0 \\
0 & 0 & 0 & -i 5^{\frac{3}{4}} & 0 \\
0 & 0 & 0 & 0 & -i 5^{\frac{3}{4}}
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccccc}
1+i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 \\
5 & 2+i 5^{\frac{3}{4}} & 4 & 1 & 3 \\
4 & 1 & 3+i 5^{\frac{3}{4}} & 5 & 2 \\
3 & 5 & 2 & 4+i 5^{\frac{3}{4}} & 1 \\
2 & 4 & 1 & 3 & 5+i 5^{\frac{3}{4}}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{ccccc|c}
1+i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
5 & 2+i 5^{\frac{3}{4}} & 4 & 1 & 3 & 0 \\
4 & 1 & 3+i 5^{\frac{3}{4}} & 5 & 2 & 0 \\
3 & 5 & 2 & 4+i 5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5+i 5^{\frac{3}{4}} & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-\frac{5 R_{1}}{1+i 5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1+i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}}-21 i}{i-5^{\frac{3}{4}}} & \frac{-5^{\frac{3}{4}}-9 i}{i-5^{\frac{3}{4}}} & \frac{-35^{\frac{3}{4}}-17 i}{i-5^{\frac{3}{4}}} & 0 \\
4 & 1 & 3+i 5^{\frac{3}{4}} & 5 & 2 & 0 \\
3 & 5 & 2 & 4+i 5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5+i 5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{4 R_{1}}{1+i 5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|l}
1+i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}}-21 i}{i-5^{\frac{3}{4}}} & \frac{-5^{\frac{3}{4}-9 i}}{i-5^{\frac{3}{4}}} & \frac{-35^{\frac{3}{4}}-17 i}{i-5^{\frac{3}{4}}} & 0 \\
0 & \frac{-5^{\frac{3}{4}-1 i i}}{i-5^{\frac{3}{4}}} & \frac{5 i \sqrt{5}+45^{\frac{3}{4}}+17 i}{-i+5^{\frac{3}{4}}} & \frac{-55^{\frac{3}{4}}-3 i}{i-5^{\frac{3}{4}}} & \frac{-25^{\frac{3}{4}}-14 i}{i-5^{\frac{3}{4}}} & 0 \\
3 & 5 & 2 & 4+i 5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5+i 5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{3 R_{1}}{1+i 5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1+i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}-21 i}}{i-5^{\frac{3}{4}}} & \frac{-5^{\frac{3}{4}}-9 i}{i-5^{\frac{3}{4}}} & \frac{-35^{\frac{3}{4}}-17 i}{i-5^{\frac{3}{4}}} & 0 \\
0 & \frac{-5^{\frac{3}{4}-11 i}}{i-5^{\frac{3}{4}}} & \frac{5 i \sqrt{5}+45^{\frac{3}{4}}+17 i}{-i+5^{\frac{3}{4}}} & \frac{-55^{\frac{3}{4}}-3 i}{i-5^{\frac{3}{4}}} & \frac{-25^{\frac{3}{4}}-14 i}{i-5^{\frac{3}{4}}} & 0 \\
0 & \frac{-55^{\frac{3}{4}}-4 i}{i-5^{\frac{3}{4}}} & \frac{-25^{\frac{3}{4}}-13 i}{i-5^{\frac{3}{4}}} & \frac{5 i \sqrt{5}+55^{\frac{3}{4}}+2 i}{-i+5^{\frac{3}{4}}} & \frac{-5^{\frac{3}{4}}-11 i}{i-5^{\frac{3}{4}}} & 0 \\
2 & 4 & 1 & 3 & 5+i 5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{2 R_{1}}{1+i 5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1+i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}-21 i}}{i-5^{\frac{3}{4}}} & \frac{-5^{\frac{3}{4}}-9 i}{i-5^{\frac{3}{4}}} & \frac{-35^{\frac{3}{4}}-17 i}{i-5^{\frac{3}{4}}} & 0 \\
0 & \frac{-5^{\frac{3}{4}}-11 i}{i-5^{\frac{3}{4}}} & \frac{5 i \sqrt{5}+45^{\frac{3}{4}}+17 i}{-i+5^{\frac{3}{4}}} & \frac{-55^{\frac{3}{4}}-3 i}{i-5^{\frac{3}{4}}} & \frac{-25^{\frac{3}{4}}-14 i}{i-5^{\frac{3}{4}}} & 0 \\
0 & \frac{-55^{\frac{3}{4}-4 i}}{i-5^{\frac{3}{4}}} & \frac{-25^{\frac{3}{4}-13 i}}{i-5^{\frac{3}{4}}} & \frac{5 i \sqrt{5}+55^{\frac{3}{4}}+2 i}{-i+5^{\frac{3}{4}}} & \frac{-5^{\frac{3}{4}}-11 i}{i-5^{\frac{3}{4}}} & 0 \\
0 & \frac{-45^{\frac{3}{4}}-2 i}{i-5^{\frac{3}{4}}} & \frac{-5^{\frac{3}{4}}-9 i}{i-5^{\frac{3}{4}}} & \frac{-35^{\frac{3}{4}-i}}{i-5^{\frac{3}{4}}} & \frac{5 i \sqrt{5}+65^{\frac{3}{4}}+3 i}{-i+5^{\frac{3}{4}}} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1+i 5^{\frac{3}{4}} & 3 & 5 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}}-21 i}{i-5^{\frac{3}{4}}} \\
0 & 0 & \left(-5 \sqrt{5}+355^{4}-13\right)(2-5
\end{array}\right.} \\
& R_{3}=R_{3}-\frac{\left(-5^{\frac{3}{4}}-11 i\right)\left(-i+5^{\frac{3}{4}}\right) R_{2}}{\left(i-5^{\frac{3}{4}}\right)\left(5 i \sqrt{5}+35^{\frac{3}{4}}+13 i\right)} \Longrightarrow \\
& 0 \quad 0 \quad \frac{110 i \sqrt{5}+1755^{\frac{1}{4}}+115 i+}{\left(-5 \sqrt{5}+35^{3}-13\right)(} \\
& 0 \\
& \frac{-55^{\frac{3}{4}-4 i}}{i-5^{\frac{3}{4}}} \\
& \left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)\left(i-5^{\frac{3}{4}}\right) \\
& \frac{-25^{\frac{3}{4}}-13 i}{i-5^{\frac{3}{4}}} \\
& 0 \quad \frac{-45^{\frac{3}{4}-2 i}}{i-5^{\frac{3}{4}}} \quad \frac{-5^{\frac{3}{4}}-9 i}{i-5^{\frac{3}{4}}} \\
& R_{4}=R_{4}-\frac{\left(-55^{\frac{3}{4}}-4 i\right)\left(-i+5^{\frac{3}{4}}\right) R_{2}}{\left(i-5^{\frac{3}{4}}\right)\left(5 i \sqrt{5}+35^{\frac{3}{4}}+13 i\right)} \Longrightarrow \\
& {\left[\begin{array}{ccc}
1+i 5^{\frac{3}{4}} & 3 & 5 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}}-21 i}{i-5^{\frac{3}{4}}}
\end{array}\right.} \\
& 0 \quad 0 \quad \frac{110 i \sqrt{5}+1755^{\frac{1}{4}}+115 i+385^{\frac{3}{4}}}{\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)\left(i-5^{\frac{3}{4}}\right)} \quad \frac{-55 \sqrt{5}-}{\left(1+i 5^{\frac{3}{4}}\right)} \\
& 0 \quad 0 \quad \frac{-565^{\frac{3}{4}}+505^{\frac{1}{4}}+135 i \sqrt{5}+85 i}{\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)\left(i-5^{\frac{3}{4}}\right)} \quad \frac{25 i \sqrt{5}+2}{(-5 \sqrt{5}+} \\
& 0 \quad \frac{-45^{\frac{3}{4}-2 i}}{i-5^{\frac{3}{4}}} \quad \frac{-5^{\frac{3}{4}}-9 i}{i-5^{\frac{3}{4}}} \\
& {\left[\begin{array}{ccc}
1+i 5^{\frac{3}{4}} & 3 & 5 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}-21 i}}{i-5^{\frac{3}{4}}} \\
0 & 0 & \left.\frac{110 i \sqrt{5}+1755^{\frac{1}{4}}+115 i}{\left(-5 \sqrt{5}+35^{3}\right.}+13\right)(i-5
\end{array}\right.} \\
& R_{5}=R_{5}-\frac{\left(-45^{\frac{3}{4}}-2 i\right)\left(-i+5^{\frac{3}{4}}\right) R_{2}}{\left(i-5^{\frac{3}{4}}\right)\left(5 i \sqrt{5}+35^{\frac{3}{4}}+13 i\right)} \Longrightarrow \\
& \begin{array}{ccr}
1+i 5^{4} & 3 & 5 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}}}{i-5} \\
0 & 0 & \frac{110 i \sqrt{5}+1755^{\frac{1}{4}}}{\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}\right.}
\end{array} \\
& 0 \\
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right.} \\
& R_{4}=R_{4}-\frac{\left(-565^{\frac{3}{4}}+505^{\frac{1}{4}}+135 i \sqrt{5}+85 i\right) R_{3}}{110 i \sqrt{5}+1755^{\frac{1}{4}}+115 i+385^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccc}
1+i 5^{\frac{3}{4}} & 3 & 5 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}}-21 i}{i-5^{\frac{3}{4}}} \\
0 & 0 & \frac{110 i \sqrt{5}+1755^{\frac{1}{4}}+115 i+385^{\frac{3}{4}}}{\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)\left(i-5^{\frac{3}{4}}\right)} \\
0 & 0 & 0 \\
0 & 0 & \frac{-525^{\frac{3}{4}}+255^{\frac{1}{4}}+110 i \sqrt{5}+75 i}{\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)\left(i-5^{\frac{3}{4}}\right)}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& R_{5}=R_{5}-\frac{\left(-525^{\frac{3}{4}}+255^{\frac{1}{4}}+110 i \sqrt{5}+75 i\right) R_{3}}{110 i \sqrt{5}+1755^{\frac{1}{4}}+115 i+385^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{110 i \sqrt{5}+1755^{\frac{1}{4}}+115 i+385^{\frac{3}{4}}}{\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)\left(i-5^{\frac{3}{4}}\right)} \\
0 \\
0 & 0
\end{array}\right. \\
& R_{5}=R_{5}+\frac{\left(5815^{\frac{3}{4}}+677 i \sqrt{5}+813 i+18295^{\frac{1}{4}}\right)\left(5 \sqrt{5}-3 i 5^{\frac{3}{4}}+13\right)\left(-i+5^{\frac{3}{4}}\right)^{2} R_{4}}{2\left(1+i 5^{\frac{3}{4}}\right)\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)\left(4155^{\frac{3}{4}}+19855^{\frac{1}{4}}+725 i \sqrt{5}-141 i\right)} \Longrightarrow\left[\begin{array}{c}
1+i 5^{\frac{3}{4}} \\
0 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
\frac{5 i \sqrt{2}}{} \\
0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
1+i 5^{\frac{3}{4}} & 3 & 5 & 2 \\
0 & \frac{5 i \sqrt{5}+35^{\frac{3}{4}}+13 i}{-i+5^{\frac{3}{4}}} & \frac{-45^{\frac{3}{4}}-21 i}{i-5^{\frac{3}{4}}} & \frac{-5^{\frac{3}{4}}-9 i}{i-5^{\frac{3}{4}}} \\
0 & 0 & \frac{110 i \sqrt{5}+1755^{\frac{1}{4}}+115 i+385^{\frac{3}{4}}}{\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)\left(i-5^{\frac{3}{4}}\right)} & \frac{-55 \sqrt{5-125 i 5^{\frac{1}{4}}-54 i 5^{\frac{3}{4}}-60}}{\left(1+i 5^{\frac{3}{4}}\right)\left(-5 \sqrt{5}+3 i 5^{\frac{3}{4}}-13\right)} \\
0 & 0 & 0 & \frac{207505^{\frac{3}{4}}+992505^{\frac{1}{4}}+36250 i \sqrt{5}-7050 i}{\left(5 \sqrt{5}-3 i 5^{\frac{3}{4}}+13\right)\left(-i+5^{\frac{3}{4}}\right)^{2}\left(110 i \sqrt{5}+1755^{\left.\frac{1}{4}+115 i+385^{\frac{3}{4}}\right)}\right.} \overline{\left(1+i 5^{\frac{3}{4}}\right)} \\
0 & 0 & 0 & 0
\end{array}\right.
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t\left(1120939140 i-2273402765^{\frac{3}{4}}-5139245805^{\frac{1}{4}}+502641300 i \sqrt{5}\right)}{-221544380 i+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 i \sqrt{5}}, v_{2}=\frac{t(-28}{\left(35^{\frac{3}{4}}+25 i \sqrt{5}+2 i\right)}\right.$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t\left(1120939140 \mathrm{I}-2273402765^{\frac{3}{4}}-5139245805^{\frac{1}{4}}+502641300 \mathrm{I} \sqrt{5}\right)}{-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}} \\
\frac{t\left(-289010568883680 \mathrm{I}+6841985227689285^{\frac{3}{4}}+15282890690641605^{\frac{1}{4}}-130209759077280 \mathrm{I} \sqrt{5}\right)}{\left(35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}\right)\left(2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}\right)} \\
-\frac{t\left(1202774792474240 \mathrm{I}+3129626037953925^{\frac{3}{4}}+6899287523062405^{\frac{1}{4}}+531127942499840 \mathrm{I} \sqrt{5}\right)}{\left(35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}\right)\left(2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}\right)} \\
\frac{t\left(81445^{\frac{1}{4}}+7004 \mathrm{I}+4440 \mathrm{I} \sqrt{5}+33565^{\frac{3}{4}}\right)}{2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left.\left[\begin{array}{c}
\frac{t\left(1120939140 \mathrm{I}-2273402765^{\frac{3}{4}}-5139245805^{\frac{1}{4}}+502641300 \mathrm{I} \sqrt{5}\right)}{-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}} \\
\frac{t\left(-289010568883680 \mathrm{I}+6841985227689285^{\frac{3}{4}}+15282890690641605^{\frac{1}{4}}-130209759077280 \mathrm{I} \sqrt{5}\right)}{\left(35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}\right)\left(2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}\right)} \\
-\frac{t\left(1202774792474240 \mathrm{I}+3129626037953925^{\frac{3}{4}}+6899287523062405^{\frac{1}{4}}+531127942499840 \mathrm{I} \sqrt{5}\right)}{\left(35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\left.\frac{1}{4}-129265180 \mathrm{I} \sqrt{5}\right)\left(2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}\right)}\right.} \\
\frac{t\left(81445^{\frac{1}{4}}+7004 \mathrm{I}+4440 \mathrm{I} \sqrt{5}+33565^{\frac{3}{4}}\right)}{2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}} \\
t
\end{array}\right]=t\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\frac{t\left(1120939140 \mathrm{I}-2273402765^{\frac{3}{4}}-5139245805^{\frac{1}{4}}+502641300 \mathrm{I} \sqrt{5}\right)}{-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}} \\
\frac{t\left(-289010568883680 \mathrm{I}+6841985227689285^{\frac{3}{4}}+15282890690641605^{\frac{1}{4}}-130209759077280 \mathrm{I} \sqrt{5}\right)}{\left(35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}\right)\left(2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}\right)} \\
-\frac{t\left(1202774792474240 \mathrm{I}+3129626037953925^{\frac{3}{4}}+6899287523062405^{\frac{1}{4}}+531127942499840 \mathrm{I} \sqrt{5}\right)}{\left(35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}\right)\left(2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}\right)} \\
\frac{t\left(81445^{\frac{1}{4}}+7004 \mathrm{I}+4440 \mathrm{I} \sqrt{5}+33565^{\frac{3}{4}}\right)}{2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}} \\
t
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\frac{t\left(1120939140 \mathrm{I}-2273402765^{\frac{3}{4}}-5139245805^{\frac{1}{4}}+502641300 \mathrm{I} \sqrt{5}\right)}{-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}} \\
\frac{t\left(-289010568883680 \mathrm{I}+6841985227689285^{\frac{3}{4}}+15282890690641605^{\frac{1}{4}}-130209759077280 \mathrm{I} \sqrt{5}\right)}{\left(35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}\right)\left(2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}\right)} \\
-\frac{t\left(1202774792474240 \mathrm{I}+3129626037953925^{\frac{3}{4}}+6899287523062405^{\frac{1}{4}}+531127942499840 \mathrm{I} \sqrt{5}\right)}{\left(35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-221544380 \mathrm{I}+4090451645^{\frac{3}{4}}+8692131005^{\frac{1}{4}}-129265180 \mathrm{I} \sqrt{5}\right)\left(2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}\right)} \\
\frac{t\left(81445^{\frac{1}{4}}+7004 \mathrm{I}+4440 \mathrm{I} \sqrt{5}+33565^{\frac{3}{4}}\right)}{2800 \mathrm{I} \sqrt{5}+9784 \mathrm{I}-16405^{\frac{1}{4}}+5565^{\frac{3}{4}}} \\
t
\end{array}\right.
$$

Considering $\lambda=i 5^{\frac{3}{4}}$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
& A \boldsymbol{v}=\lambda \boldsymbol{v} \\
& A \boldsymbol{v}-\lambda \boldsymbol{v}=\mathbf{0} \\
& (A-\lambda I) \boldsymbol{v}=\mathbf{0} \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left(i 5^{\frac{3}{4}}\right)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]-\left[\begin{array}{ccccc}
i 5^{\frac{3}{4}} & 0 & 0 & 0 & 0 \\
0 & i 5^{\frac{3}{4}} & 0 & 0 & 0 \\
0 & 0 & i 5^{\frac{3}{4}} & 0 & 0 \\
0 & 0 & 0 & i 5^{\frac{3}{4}} & 0 \\
0 & 0 & 0 & 0 & i 5^{\frac{3}{4}}
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccccc}
1-i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 \\
5 & 2-i 5^{\frac{3}{4}} & 4 & 1 & 3 \\
4 & 1 & 3-i 5^{\frac{3}{4}} & 5 & 2 \\
3 & 5 & 2 & 4-i 5^{\frac{3}{4}} & 1 \\
2 & 4 & 1 & 3 & 5-i 5^{\frac{3}{4}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
1-i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
5 & 2-i 5^{\frac{3}{4}} & 4 & 1 & 3 & 0 \\
4 & 1 & 3-i 5^{\frac{3}{4}} & 5 & 2 & 0 \\
3 & 5 & 2 & 4-i 5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5-i 5^{\frac{3}{4}} & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{5 R_{1}}{1-i 5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1-i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{35^{\frac{3}{4}-5 i \sqrt{5}-13 i}}{5^{\frac{3}{4}}+i} & \frac{45^{\frac{3}{4}-21 i}}{5^{\frac{3}{4}}+i} & \frac{5^{\frac{3}{4}-9 i}}{5^{\frac{3}{4}}+i} & \frac{35^{\frac{3}{4}-17 i}}{5^{\frac{3}{4}}+i} & 0 \\
4 & 1 & 3-i 5^{\frac{3}{4}} & 5 & 2 & 0 \\
3 & 5 & 2 & 4-i 5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5-i 5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{4 R_{1}}{1-i 5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1-i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{35^{\frac{3}{4}-5 i \sqrt{5}-13 i}}{5^{\frac{3}{4}}+i} & \frac{45^{\frac{3}{4}}-21 i}{5^{\frac{3}{4}}+i} & \frac{5^{\frac{3}{4}-9 i}}{5^{\frac{3}{4}}+i} & \frac{35^{\frac{3}{4}}-17 i}{5^{\frac{3}{4}}+i} & 0 \\
0 & \frac{5^{\frac{3}{4}}-11 i}{5^{\frac{3}{4}}+i} & \frac{45^{\frac{3}{4}-5 i \sqrt{5}-17 i}}{5^{\frac{3}{4}}+i} & \frac{55^{\frac{3}{4}}-3 i}{5^{\frac{3}{4}}+i} & \frac{25^{\frac{3}{4}-14 i}}{5^{\frac{3}{4}}+i} & 0 \\
3 & 5 & 2 & 4-i 5^{\frac{3}{4}} & 1 & 0 \\
2 & 4 & 1 & 3 & 5-i 5^{\frac{3}{4}} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{3 R_{1}}{1-i 5^{\frac{3}{4}}} \Longrightarrow\left[\begin{array}{ccccc|c}
1-i 5^{\frac{3}{4}} & 3 & 5 & 2 & 4 & 0 \\
0 & \frac{35^{\frac{3}{4}}-5 i \sqrt{5}-13 i}{5^{\frac{3}{4}}+i} & \frac{45^{\frac{3}{4}-21 i}}{5^{\frac{3}{4}}+i} & \frac{5^{\frac{3}{4}-9 i}}{5^{\frac{3}{4}}+i} & \frac{35^{\frac{3}{4}}-17 i}{5^{\frac{3}{4}}+i} & 0 \\
0 & \frac{5^{\frac{3}{4}}-11 i}{5^{\frac{3}{4}}+i} & \frac{45^{\frac{3}{4}}-5 i \sqrt{5}-17 i}{5^{\frac{3}{4}}+i} & \frac{55^{\frac{3}{4}}-3 i}{5^{\frac{3}{4}}+i} & \frac{25^{\frac{3}{4}}-14 i}{5^{\frac{3}{4}}+i} & 0 \\
0 & \frac{55^{\frac{3}{4}-4 i}}{5^{\frac{3}{4}}+i} & \frac{25^{\frac{3}{4}}-13 i}{5^{\frac{3}{4}}+i} & \frac{55^{\frac{3}{4}-5 i \sqrt{5}-2 i}}{5^{\frac{3}{4}}+i} & \frac{5^{\frac{3}{4}-11 i}}{5^{\frac{3}{4}}+i} & 0 \\
2 & 4 & 1 & 3 & 5-i 5^{\frac{3}{4}} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1-i 5^{\frac{3}{4}} & 3 & 5 & 2 \\
0 & \frac{35^{\frac{3}{4}-5 \sqrt{5}-13 i}}{5^{\frac{3}{4}}+i} & \frac{45^{\frac{3^{4}}{4}-21 i}}{5^{\frac{2}{4}}+i} & \frac{5^{\frac{3}{4}-9 i}}{5^{\frac{3}{4}}+i}
\end{array}\right.} \\
& R_{3}=R_{3}-\frac{\left(5^{\frac{3}{4}}-11 i\right) R_{2}}{35^{\frac{3}{4}}-5 i \sqrt{5}-13 i} \Longrightarrow\left[\begin{array}{cccc}
0 & 0 & \frac{385^{\frac{3}{4}}+1755^{\frac{1}{4}-1}-10 i \sqrt{5}-115 i}{255^{\frac{1}{4}}+105^{\frac{3}{4}}+20 i \sqrt{5}+13 i} & \frac{545^{\frac{3}{4}}+1255^{\frac{1}{4}}+55 i \sqrt{5}+60}{\left(3 i 5^{\frac{3}{4}}+5 \sqrt{5}+13\right)\left(5^{\frac{3}{4}}+i\right)} \\
0 & \frac{55^{\frac{3}{3}}-4 i}{5^{\frac{3}{4}}+i} & \frac{25^{\frac{3}{4}-13 i}}{5^{\frac{3}{4}}+i} & \frac{55^{\frac{3}{4}-5 i \sqrt{5}-2 i}}{5^{\frac{3}{4}}+i} \\
0 & \frac{45^{\frac{3}{4}}-2 i}{5^{\frac{3}{4}}+i} & \frac{5^{\frac{3}{4}-9 i}}{5^{\frac{3}{4}}+i} & \frac{35^{\frac{3}{4}}-i}{5^{\frac{3}{4}}+i}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cr}
1-i 5^{\frac{3}{4}} & 3 \\
0 & \frac{35^{\frac{3}{4}-5 i}-5}{5^{\frac{3}{4}}}
\end{array}\right.} \\
& R_{4}=R_{4}-\frac{\left(-135 i \sqrt{5}+505^{\frac{1}{4}}-565^{\frac{3}{4}}-85 i\right)\left(255^{\frac{1}{4}}+105^{\frac{3}{4}}+20 i \sqrt{5}+13 i\right) R_{3}}{\left(3 i 5^{\frac{3}{4}}+5 \sqrt{5}+13\right)\left(5^{\frac{3}{4}}+i\right)\left(385^{\frac{3}{4}}+1755^{\frac{1}{4}}-110 i \sqrt{5}-115 i\right)} \Longrightarrow \\
& 0 \\
& 0 \\
& 0 \\
& R_{5}=R_{5}-\frac{\left(-110 i \sqrt{5}+255^{\frac{1}{4}}-525^{\frac{3}{4}}-75 i\right)\left(255^{\frac{1}{4}}+105^{\frac{3}{4}}+20 i \sqrt{5}+13 i\right) R_{3}}{\left(3 i 5^{\frac{3}{4}}+5 \sqrt{5}+13\right)\left(5^{\frac{3}{4}}+i\right)\left(385^{\frac{3}{4}}+1755^{\frac{1}{4}}-110 i \sqrt{5}-115 i\right)} \Longrightarrow \\
& R_{5}=R_{5}-\frac{\left(9539 i 5^{\frac{3}{4}}+49918 \sqrt{5}+121172+13851 i 5^{\frac{1}{4}}\right)\left(385^{\frac{3}{4}}+1755^{\frac{1}{4}}-110 i \sqrt{5}-115 i\right)\left(255^{\frac{1}{4}}+10\right.}{4\left(i 5^{\frac{3}{4}}-1\right)^{2}\left(38 i 5^{\frac{3}{4}}+175 i 5^{\frac{1}{4}}+110 \sqrt{5}+115\right)\left(301804 i 5^{\frac{3}{4}}+578435 i 5^{\frac{1}{4}}+4210\right.}
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
1-i 5^{\frac{3}{4}} & 3 & 5 & 2 \\
0 & \frac{35^{\frac{3}{4}-5 i \sqrt{5}-13 i}}{5^{\frac{3}{4}}+i} & \frac{45^{\frac{3}{4}-21 i}}{5^{\frac{3}{4}}+i} & \frac{5^{\frac{3}{4}-9 i}}{5^{\frac{3}{4}}+i} \\
0 & 0 & \frac{385^{\frac{3}{4}}+1755^{\frac{1}{4}}-110 i \sqrt{5}-115 i}{255^{\frac{1}{4}}+105^{\frac{3}{4}}+20 i \sqrt{5}+13 i} & \frac{545^{\frac{3}{4}}+1255^{\frac{1}{4}}+55 i \sqrt{5}+60 i}{\left(3 i 5^{\frac{3}{4}}+5 \sqrt{5}+13\right)\left(5^{\frac{3}{4}}+i\right)} \\
0 & 0 & 0 & \frac{60360800 i 5^{\frac{3}{4}}+115687000 i 5^{\frac{1}{4}}+84200000 \sqrt{5}+214454800}{\left(385^{\frac{3}{4}}+1755^{\frac{1}{4}}-110 i \sqrt{5}-115 i\right)\left(255^{\frac{1}{4}}+105^{\frac{3}{4}}+20 i \sqrt{5}+13 i\right)\left(3 i 5^{\frac{3}{4}}+5 \sqrt{5}+\right.} \\
0 & 0 & 0 & 0
\end{array}\right.
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t\left(-535254249891900 i+9528963115734905^{\frac{3}{4}}-239503585554020 i \sqrt{5}+21309400721765505\right.}{-2632502774254600 i+5629481895209905^{\frac{3}{4}}-1173944063380280 i \sqrt{5}+1253785384570450}\right.$ Hence the solution is

Expression too large to display

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t\left(-535254249891900 \mathrm{I}+9528963115734905^{\frac{3}{4}}-239503585554020 \mathrm{I} \sqrt{5}+21309400721765505^{\frac{1}{4}}\right)}{-2632502774254600 \mathrm{I}+5629481895209905^{\frac{3}{4}}-1173944063380280 \mathrm{I} \sqrt{5}+12537853845704505^{\frac{1}{4}}} \\
-\frac{t\left(-279647606192588874424118000-125061156607937918635653000 \sqrt{5}+275916074995980288803494400 \mathrm{I} 5^{\frac{1}{4}}+123392714\right.}{\left(-35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-2632502774254600 \mathrm{I}+5629481895209905^{\frac{3}{4}}-1173944063380280 \mathrm{I} \sqrt{5}+12537853845704505^{\frac{1}{4}}\right)(7796255 \sqrt{5}+500} \\
\frac{t\left(128836653867695981523763000+57624394302796252937306600 \sqrt{5}+212210843887447208725771600 \mathrm{I} 5^{\frac{1}{4}}+94898966142\right.}{\left(-35^{\frac{3}{4}}+25 \mathrm{I} \sqrt{5}+2 \mathrm{I}\right)\left(-2632502774254600 \mathrm{I}+5629481895209905^{\frac{3}{4}}-117394063380280 \mathrm{I} \sqrt{5}+12537853845704505^{\frac{1}{4}}\right)(7796255 \sqrt{5}+5001} \\
-\frac{t\left(-220552977 \mathrm{I} 5^{\frac{3}{4}}-481030535 \mathrm{I} 5^{\frac{1}{4}}+1082903250+492353920 \sqrt{5}\right)}{7796255 \sqrt{5}+500150175 \mathrm{I} 5^{\frac{1}{4}}+212756722 \mathrm{I} 5^{\frac{3}{4}}-19119640} \\
t
\end{array}\right.
$$

Or, by letting $t=1$ then the eigenvector is

> Expression too large to display

Which can be normalized to
Expression too large to display
The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
15	1	5	No	$\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$
$-5^{\frac{3}{4}}$	1	5	No	$\left[\begin{array}{c}25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6 \\ -5^{\frac{3}{4}}-25^{\frac{1}{4}}-\sqrt{5}-4 \\ -5^{\frac{3}{4}}-35^{\frac{1}{4}}-2 \sqrt{5}-4 \\ 5^{\frac{1}{4}}+1 \\ 1\end{array}\right]$
$5^{\frac{3}{4}}$	1	5	No	$\left[\begin{array}{c}-25^{\frac{3}{4}}-45^{\frac{1}{4}}+3 \sqrt{5}+6 \\ 5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4 \\ 5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4 \\ -5^{\frac{1}{4}}+1 \\ 1\end{array}\right]$
$-i 5^{\frac{3}{4}}$	1	5	No	
$i 5^{\frac{3}{4}}$	1	5	No	

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where
$D=\left[\begin{array}{ccccc}15 & 0 & 0 & 0 & 0 \\ 0 & -5^{\frac{3}{4}} & 0 & 0 & 0 \\ 0 & 0 & 5^{\frac{3}{4}} & 0 & 0 \\ 0 & 0 & 0 & -i 5^{\frac{3}{4}} & 0 \\ 0 & 0 & 0 & 0 & i 5^{\frac{3}{4}}\end{array}\right]$
$P=\left[\begin{array}{ccc}1 & 25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6 & -25^{\frac{3}{4}}-45^{\frac{1}{4}}+3 \sqrt{5}+6 \\ 1 & -5^{\frac{3}{4}}-25^{\frac{1}{4}}-\sqrt{5}-4 & 5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4 \\ 1 & -5^{\frac{3}{4}}-35^{\frac{1}{4}}-2 \sqrt{5}-4 & 5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4 \\ 1 & 5^{\frac{1}{4}}+1 & -\frac{1120939140 i-2273402765^{\frac{3}{4}}}{-221544380 i+4090451645^{\frac{3}{4}}} \\ \left.135^{\frac{3}{4}}+25 i \sqrt{5}+2 i\right)\left(-221544380 i+4090451645^{\frac{3}{4}}+8699213\right. \\ 1 & 1 & -5^{\frac{1}{4}}+1\end{array}\right.$
Therefore

$$
\left[\begin{array}{ccccc}
1 & 3 & 5 & 2 & 4 \\
5 & 2 & 4 & 1 & 3 \\
4 & 1 & 3 & 5 & 2 \\
3 & 5 & 2 & 4 & 1 \\
2 & 4 & 1 & 3 & 5
\end{array}\right]=\left[\begin{array}{ccc}
1 & 25^{\frac{3}{4}}+45^{\frac{1}{4}}+3 \sqrt{5}+6 & -25^{\frac{3}{4}}-45^{\frac{1}{4}}+3 \sqrt{5}+6 \\
1 & -5^{\frac{3}{4}}-25^{\frac{1}{4}}-\sqrt{5}-4 & 5^{\frac{3}{4}}+25^{\frac{1}{4}}-\sqrt{5}-4 \\
1 & -5^{\frac{3}{4}}-35^{\frac{1}{4}}-2 \sqrt{5}-4 & 5^{\frac{3}{4}}+35^{\frac{1}{4}}-2 \sqrt{5}-4 \\
1 & 5^{\frac{1}{4}}+1 & -\frac{1120}{\left(35^{\frac{3}{4}}+25 i \sqrt{5}+2 i\right)(-2215443880 i+} \\
1 & -5^{\frac{1}{4}}+1 \\
1 & 1 & 1
\end{array}\right.
$$

19 Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
19.1 problem 1 2537
19.2 problem 2 (2549
19.3 problem 3 2562
19.4 problem 4 2575
19.5 problem 5 a 2576
19.6 problem 5 c 2585
19.7 problem 6 a 2597
19.8 problem 6 c 2598
19.9 problem 7 2599
19.10problem 8 2611
19.11problem 9 2624
19.12 problem 10 2637
19.13problem 11 2650
19.14problem 12 2662
19.15problem 13 2673
19.16problem 14 2690
19.17 problem 15 2713
19.18problem 16 2730

19.1 problem 1

$$
\text { 19.1.1 Solution using Matrix exponential method } 2537
$$

19.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2539
19.1.3 Maple step by step solution 2544

Internal problem ID [12839]
Internal file name [OUTPUT/11491_Saturday_November_04_2023_09_17_37_AM_72152883/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=2 y_{1}(x)-3 y_{2}(x)+5 \mathrm{e}^{x} \\
& y_{2}^{\prime}(x)=y_{1}(x)+4 y_{2}(x)-2 \mathrm{e}^{-x}
\end{aligned}
$$

19.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
5 \mathrm{e}^{x} \\
-2 \mathrm{e}^{-x}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
$$

Where $\vec{x}_{h}(x)$ is the homogeneous solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)$ and $\vec{x}_{p}(x)$ is a particular solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{3 x} \cos (\sqrt{2} x)-\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} & -\frac{3 \mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} \\
\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} & \mathrm{e}^{3 x} \cos (\sqrt{2} x)+\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}-2 \cos (\sqrt{2} x))}{2} & -\frac{3 \mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} \\
\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} & \frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}+2 \cos (\sqrt{2} x))}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}-2 \cos (\sqrt{2} x))}{2} & -\frac{3 \mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} \\
\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} & \frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}+2 \cos (\sqrt{2} x))}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}-2 \cos (\sqrt{2} x)) c_{1}}{2}-\frac{3 \mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2} c_{2}}{2} \\
\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2} c_{1}}{2}+\frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}+2 \cos (\sqrt{2} x)) c_{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\left(\sqrt{2}\left(c_{1}+3 c_{2}\right) \sin (\sqrt{2} x)-2 \cos (\sqrt{2} x) c_{1}\right) \mathrm{e}^{3 x}}{2} \\
\frac{\mathrm{e}^{3 x}\left(\sqrt{2}\left(c_{1}+c_{2}\right) \sin (\sqrt{2} x)+2 \cos (\sqrt{2} x) c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(x)=e^{A x} \int e^{-A x} \vec{G}(x) d x
$$

But

$$
\begin{aligned}
e^{-A x} & =\left(e^{A x}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{(\sin (\sqrt{2} x) \sqrt{2}+2 \cos (\sqrt{2} x)) \mathrm{e}^{-3 x}}{2} & \frac{3 \sin (\sqrt{2} x) \sqrt{2} \mathrm{e}^{-3 x}}{2} \\
-\frac{\sin (\sqrt{2} x) \sqrt{2} \mathrm{e}^{-3 x}}{2} & -\frac{(\sin (\sqrt{2} x) \sqrt{2}-2 \cos (\sqrt{2} x)) \mathrm{e}^{-3 x}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(x) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}-2 \cos (\sqrt{2} x))}{2} & -\frac{3 \mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} \\
\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} & \frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}+2 \cos (\sqrt{2} x))}{2}
\end{array}\right] \int\left[\begin{array}{c}
\frac{(\sin (\sqrt{2} x) \sqrt{2}+2 \cos (\sqrt{2} x)) \mathrm{e}^{-3 x}}{2} \\
-\frac{\sin (\sqrt{2} x) \sqrt{2} \mathrm{e}^{-3 x}}{2}
\end{array}\right]-\frac{(\mathrm{s}}{2} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}-2 \cos (\sqrt{2} x))}{2} & -\frac{3 \mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} \\
\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} & \frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}+2 \cos (\sqrt{2} x))}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{\left(2 \mathrm{e}^{-4 x}-15 \mathrm{e}^{-2 x}\right) \cos (\sqrt{2} x)}{6}+\frac{2 \sqrt{2} \mathrm{e}^{-4 x}}{\left(2 \mathrm{e}^{-4 x}+5 \mathrm{e}^{-2 x}\right) \cos (\sqrt{2} x)} \\
6
\end{array}\right] \frac{\sin (\sqrt{2} x)\left(\mathrm{e}^{-}\right.}{} \\
& =\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{3} \\
\frac{5 \mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{-x}}{3}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
& =\left[\begin{array}{c}
-\frac{\sqrt{2}\left(c_{1}+3 c_{2}\right) \mathrm{e}^{3 x} \sin (\sqrt{2} x)}{2}+\mathrm{e}^{3 x} \cos (\sqrt{2} x) c_{1}-\frac{5 \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{3} \\
\frac{\sqrt{2}\left(c_{1}+c_{2}\right) \mathrm{e}^{3 x} \sin (\sqrt{2} x)}{2}+\mathrm{e}^{3 x} \cos (\sqrt{2} x) c_{2}+\frac{5 \mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{-x}}{3}
\end{array}\right]
\end{aligned}
$$

19.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
5 \mathrm{e}^{x} \\
-2 \mathrm{e}^{-x}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
$$

Where $\vec{x}_{h}(x)$ is the homogeneous solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)$ and $\vec{x}_{p}(x)$ is a particular solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -3 \\
1 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda+11=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3+i \sqrt{2} \\
& \lambda_{2}=3-i \sqrt{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$3-i \sqrt{2}$	1	complex eigenvalue
$3+i \sqrt{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3-i \sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right]-(3-i \sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
i \sqrt{2}-1 & -3 \\
1 & 1+i \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
i \sqrt{2}-1 & -3 & 0 \\
1 & 1+i \sqrt{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{i \sqrt{2}-1} \Longrightarrow\left[\begin{array}{cc|c}
i \sqrt{2}-1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
i \sqrt{2}-1 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{i \sqrt{2}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{\mathrm{I} \sqrt{2}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{i \sqrt{2}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{\mathrm{I} \sqrt{2}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{i \sqrt{2}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{\mathrm{I} \sqrt{2}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{i \sqrt{2}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{\mathrm{I} \sqrt{2}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{i \sqrt{2}-1} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3+i \sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right]-(3+i \sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1-i \sqrt{2} & -3 \\
1 & 1-i \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-i \sqrt{2} & -3 & 0 \\
1 & 1-i \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{-1-i \sqrt{2}} \Longrightarrow\left[\begin{array}{cc|c}
-1-i \sqrt{2} & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-i \sqrt{2} & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{3 t}{1+i \sqrt{2}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{3 t}{1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 t}{1+i \sqrt{2}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{3 t}{1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{3}{1+i \sqrt{2}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{3 t}{1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{1+i \sqrt{2}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{3 t}{1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{1+i \sqrt{2}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$3+i \sqrt{2}$	1	1	No	$\left[\begin{array}{c}-\frac{3}{1+i \sqrt{2}} \\ 1\end{array}\right]$
$3-i \sqrt{2}$	1	1	No	$\left[\begin{array}{c}-\frac{3}{1-i \sqrt{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{(3+i \sqrt{2}) x}}{1+i \sqrt{2}} \\
\mathrm{e}^{(3+i \sqrt{2}) x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{(3-i \sqrt{2}) x}}{1-i \sqrt{2}} \\
\mathrm{e}^{(3-i \sqrt{2}) x}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(x)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(x)=\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{(3+i \sqrt{2}) x}}{1+i \sqrt{2}} & -\frac{3 \mathrm{e}^{(3-i \sqrt{2}) x}}{1-i \sqrt{2}} \\
\mathrm{e}^{(3+i \sqrt{2}) x} & \mathrm{e}^{(3-i \sqrt{2}) x}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(x)=\Phi \int \Phi^{-1} \vec{G}(x) d x
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{i \sqrt{2} \mathrm{e}^{-(3+i \sqrt{2}) x}}{4} & -\frac{\sqrt{2} \mathrm{e}^{-(3+i \sqrt{2}) x}(i-\sqrt{2})}{4} \\
\frac{i \sqrt{2} \mathrm{e}^{(i \sqrt{2}-3) x}}{4} & \frac{\mathrm{e}^{(i \sqrt{2}-3) x} \sqrt{2}(i+\sqrt{2})}{4}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
& \vec{x}_{p}(x)=\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{(3+i \sqrt{2}) x}}{1+i \sqrt{2}} & -\frac{3 \mathrm{e}^{(3-i \sqrt{2}) x}}{1-i \sqrt{2}} \\
\mathrm{e}^{(3+i \sqrt{2}) x} & \mathrm{e}^{(3-i \sqrt{2}) x}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{i \sqrt{2} \mathrm{e}^{-(3+i \sqrt{2}) x}}{4} & -\frac{\sqrt{2} \mathrm{e}^{-(3+i \sqrt{2}) x}(i-\sqrt{2})}{4} \\
\frac{i \sqrt{2} \mathrm{e}^{(i \sqrt{2}-3) x}}{4} & \frac{\mathrm{e}^{(i \sqrt{2}-3) x} \sqrt{2}(i+\sqrt{2})}{4}
\end{array}\right]\left[\begin{array}{c}
5 \mathrm{e}^{x} \\
-2 \mathrm{e}^{-x}
\end{array}\right] d x \\
&=\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{(3+i \sqrt{2}) x}}{1+i \sqrt{2}} & -\frac{3 \mathrm{e}^{(3-i \sqrt{2}) x}}{1-i \sqrt{2}} \\
\mathrm{e}^{(3+i \sqrt{2}) x} & \mathrm{e}^{(3-i \sqrt{2}) x}
\end{array}\right]\left[\begin{array}{c}
-\frac{5 \sqrt{2}\left(\frac{2 \mathrm{e}^{-(i \sqrt{2}+4) x}(-i+\sqrt{2})}{5}+i \mathrm{e}^{-(2+i \sqrt{2}) x}\right)}{4} \\
-\frac{\left((i+\sqrt{2}) \mathrm{e}^{(i \sqrt{2}-4) x}-\frac{5 i \mathrm{e}^{(i \sqrt{2}-2) x}}{2}\right) \sqrt{2}}{2}
\end{array}\right] d x \\
&\left.-\frac{\left[\begin{array}{c}
\end{array}\right]}{}\right] \\
&=\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{(3+i \sqrt{2}) x}}{1+i \sqrt{2}} & -\frac{3 \mathrm{e}^{(3-i \sqrt{2}) x}}{1-i \sqrt{2}} \\
\mathrm{e}^{(3+i \sqrt{2}) x} & \mathrm{e}^{(3-i \sqrt{2}) x}
\end{array}\right]\left[\begin{array}{c}
\frac{\sqrt{2}(-5 \sqrt{2}+20 i) \mathrm{e}^{-(2+i \sqrt{2}) x}+12 \mathrm{e}^{-(i \sqrt{2}+4) x}}{4(2+i \sqrt{2})(i \sqrt{2}+4)} \\
\frac{\sqrt{2}(20 i+5 \sqrt{2}) \mathrm{e}^{(i \sqrt{2}-2) x}-12 \mathrm{e}^{(i \sqrt{2}-4) x}}{-24+24 i \sqrt{2}}
\end{array}\right] \\
&=\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{3} \\
\frac{5 \mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{-x}}{3}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
{\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{3 c_{1} \mathrm{e}^{(3+i \sqrt{2}) x}}{1+i \sqrt{2}} \\
c_{1} \mathrm{e}^{(3+i \sqrt{2}) x}
\end{array}\right]+\left[\begin{array}{c}
-\frac{3 c_{2} \mathrm{e}^{(3-i \sqrt{2}) x}}{1-i \sqrt{2}} \\
c_{2} \mathrm{e}^{(3-i \sqrt{2}) x}
\end{array}\right]+\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{3} \\
\frac{5 \mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{-x}}{3}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{2}(-1-i \sqrt{2}) \mathrm{e}^{-(i \sqrt{2}-3) x}+(i \sqrt{2}-1) c_{1} \mathrm{e}^{(3+i \sqrt{2}) x}-\frac{5 \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{3} \\
c_{1} \mathrm{e}^{(3+i \sqrt{2}) x}+c_{2} \mathrm{e}^{-(i \sqrt{2}-3) x}+\frac{5 \mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{-x}}{3}
\end{array}\right]
$$

19.1.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=2 y_{1}(x)-3 y_{2}(x)+5 \mathrm{e}^{x}, y_{2}^{\prime}(x)=y_{1}(x)+4 y_{2}(x)-\frac{2}{\mathrm{e}^{x}}\right]
$$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y \rightarrow^{\prime}(x)=\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{c}
5 \mathrm{e}^{x} \\
\frac{4 \mathrm{e}^{x} y_{2}(x)+y_{1}(x) \mathrm{e}^{x}-2}{\mathrm{e}^{x}}-y_{1}(x)-4 y_{2}(x)
\end{array}\right]
$$

- System to solve

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{c}
5 \mathrm{e}^{x} \\
0
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
5 \mathrm{e}^{x} \\
0
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow}(x)=A \cdot y^{\rightarrow}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[3-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
-\frac{3}{1-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right],\left[3+\mathrm{I} \sqrt{2},\left[\begin{array}{c}
-\frac{3}{1+\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[3-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
-\frac{3}{1-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(3-\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}-\frac{3}{1-\mathrm{I} \sqrt{2}} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{3 x} \cdot(\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)) \cdot\left[\begin{array}{c}
-\frac{3}{1-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
-\frac{3(\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x))}{1-\mathrm{I} \sqrt{2}} \\
\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution of the system of ODEs can be written in terms of the particular solution $y \rightarrow$

$$
y_{\longrightarrow}^{\rightarrow}(x)=c_{1} y^{\rightarrow}(x)+c_{2} y^{\rightarrow}(x)+y^{\rightarrow}{ }_{p}(x)
$$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cc}
\mathrm{e}^{3 x}(-\cos (\sqrt{2} x)-\sin (\sqrt{2} x) \sqrt{2}) & \mathrm{e}^{3 x}(-\cos (\sqrt{2} x) \sqrt{2}+\sin (\sqrt{2} x)) \\
\mathrm{e}^{3 x} \cos (\sqrt{2} x) & -\mathrm{e}^{3 x} \sin (\sqrt{2} x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cc}
\mathrm{e}^{3 x}(-\cos (\sqrt{2} x)-\sin (\sqrt{2} x) \sqrt{2}) & \mathrm{e}^{3 x}(-\cos (\sqrt{2} x) \sqrt{2}+\sin (\sqrt{2} x)) \\
\mathrm{e}^{3 x} \cos (\sqrt{2} x) & -\mathrm{e}^{3 x} \sin (\sqrt{2} x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{c}
-1 \\
1
\end{array}-\right.}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cc}
\frac{(\cos (\sqrt{2} x) \sqrt{2}-\sin (\sqrt{2} x)) \sqrt{2} \mathrm{e}^{3 x}}{2} & -\frac{3 \mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} \\
\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) \sqrt{2}}{2} & \frac{\mathrm{e}^{3 x}(\sin (\sqrt{2} x) \sqrt{2}+2 \cos (\sqrt{2} x))}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$

$$
{\underset{\sim}{\rightarrow}}^{\rightarrow}(x)=\Phi(x) \cdot \vec{v}(x)
$$

- Take the derivative of the particular solution

$$
y_{-}^{\rightarrow}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
y_{-}^{\rightarrow}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
y_{-}^{\rightarrow}(x)=\left[\begin{array}{c}
\frac{5 \mathrm{e}^{x}\left(\mathrm{e}^{2 x} \cos (\sqrt{2} x)-1\right)}{2} \\
\frac{5 \mathrm{e}^{x}\left(\mathrm{e}^{2 x} \sqrt{2} \sin (\sqrt{2} x)-\mathrm{e}^{2 x} \cos (\sqrt{2} x)+1\right)}{6}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
y_{\longrightarrow}^{\rightarrow}(x)=c_{1} y \longrightarrow_{1}(x)+c_{2} y_{2}^{\rightarrow}(x)+\left[\begin{array}{c}
\frac{5 \mathrm{e}^{x}\left(\mathrm{e}^{2 x} \cos (\sqrt{2} x)-1\right)}{2} \\
\frac{5 \mathrm{e}^{x}\left(\mathrm{e}^{2 x} \sqrt{2} \sin (\sqrt{2} x)-\mathrm{e}^{2 x} \cos (\sqrt{2} x)+1\right)}{6}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{3 x}\left(\sqrt{2} c_{2}+c_{1}-\frac{5}{2}\right) \cos (\sqrt{2} x)-\mathrm{e}^{3 x}\left(\sqrt{2} c_{1}-c_{2}\right) \sin (\sqrt{2} x)-\frac{5 \mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{3 x}\left(6 c_{1}-5\right) \cos (\sqrt{2} x)}{6}-\mathrm{e}^{3 x}\left(c_{2}-\frac{5 \sqrt{2}}{6}\right) \sin (\sqrt{2} x)+\frac{5 \mathrm{e}^{x}}{6}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{y_{1}(x)=-\mathrm{e}^{3 x}\left(\sqrt{2} c_{2}+c_{1}-\frac{5}{2}\right) \cos (\sqrt{2} x)-\mathrm{e}^{3 x}\left(\sqrt{2} c_{1}-c_{2}\right) \sin (\sqrt{2} x)-\frac{5 \mathrm{e}^{x}}{2}, y_{2}(x)=\frac{\mathrm{e}^{3 x}\left(6 c_{1}-5\right)}{}\right.
$$

Solution by Maple
Time used: 0.157 (sec). Leaf size: 112

```
dsolve([diff (y__1(x),x)=2*\mp@subsup{y}{__}{\prime}1(x)-3*\mp@subsup{y}{__}{\prime}2(x)+5*\operatorname{exp}(x),\operatorname{diff}(\mp@subsup{y}{__-}{\prime}2(x),x)=y __ 1(x)+4*\mp@subsup{y}{__}{\prime}2(x)-2*\operatorname{exp}
```

$$
\begin{aligned}
y_{1}(x)= & \mathrm{e}^{3 x} \cos (\sqrt{2} x) c_{2}+\mathrm{e}^{3 x} \sin (\sqrt{2} x) c_{1}+\frac{\mathrm{e}^{-x}}{3}-\frac{5 \mathrm{e}^{x}}{2} \\
y_{2}(x)= & -\frac{\mathrm{e}^{3 x} \cos (\sqrt{2} x) c_{2}}{3}+\frac{\mathrm{e}^{3 x} \sqrt{2} \sin (\sqrt{2} x) c_{2}}{3} \\
& -\frac{\mathrm{e}^{3 x} \sin (\sqrt{2} x) c_{1}}{3}-\frac{\mathrm{e}^{3 x} \sqrt{2} \cos (\sqrt{2} x) c_{1}}{3}+\frac{\mathrm{e}^{-x}}{3}+\frac{5 \mathrm{e}^{x}}{6}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 108
DSolve $\left[\left\{y 11^{\prime}[x]==2 * y 1[x]-3 * y 2[x]+5 * \operatorname{Exp}[x], y 2{ }^{\prime}[x]==y 1[x]+4 * y 2[x]-2 * \operatorname{Exp}[-x]\right\},\{y 1[x], y 2[x]\}, x, \operatorname{In}\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow-\frac{1}{2} e^{x}\left(-2 c_{1} e^{2 x} \cos (\sqrt{2} x)+\sqrt{2}\left(c_{1}+3 c_{2}\right) e^{2 x} \sin (\sqrt{2} x)+5\right) \\
& \mathrm{y} 2(x) \rightarrow \frac{5 e^{x}}{6}+c_{2} e^{3 x} \cos (\sqrt{2} x)+\frac{\left(c_{1}+c_{2}\right) e^{3 x} \sin (\sqrt{2} x)}{\sqrt{2}}
\end{aligned}
$$

19.2 problem 2

19.2.1 Solution using Matrix exponential method 2549
19.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2551
19.2.3 Maple step by step solution . 2557

Internal problem ID [12840]
Internal file name [OUTPUT/11492_Monday_November_06_2023_01_31_00_PM_64086885/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=y_{2}(x)-2 y_{1}(x)+2 \cos (x) \sin (x) \\
& y_{2}^{\prime}(x)=-3 y_{1}(x)+y_{2}(x)-8 \cos (x)^{3}+6 \cos (x)
\end{aligned}
$$

19.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
2 \cos (x) \sin (x) \\
-8 \cos (x)^{3}+6 \cos (x)
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
$$

Where $\vec{x}_{h}(x)$ is the homogeneous solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)$ and $\vec{x}_{p}(x)$ is a particular solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} & \frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} \\
-2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}} & \frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} \\
-2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} & \left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}} & \frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} \\
-2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} & \left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} c_{2}}{3} \\
-2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} c_{1}+\left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}} c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-\frac{x}{2}\left(\sqrt{3}\left(c_{1}-\frac{2 c_{2}}{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)-\cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}\right)} \\
-2 \mathrm{e}^{-\frac{x}{2}\left(\sqrt{3}\left(c_{1}-\frac{c_{2}}{2}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) c_{2}}{2}\right)}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(x)=e^{A x} \int e^{-A x} \vec{G}(x) d x
$$

But

$$
\begin{aligned}
e^{-A x} & =\left(e^{A x}\right)^{-1} \\
& =\left[\begin{array}{cc}
\left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{\frac{x}{2}} & -\frac{2 \sqrt{3} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3} \\
2 \sqrt{3} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) & \left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{\frac{x}{2}}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(x) & =\left[\begin{array}{cc}
\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}} & \frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} \\
-2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} & \left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}}
\end{array}\right] \int\left[\begin{array}{c}
\left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\mathrm{s}\right. \\
2 \sqrt{3} \mathrm{e}^{\frac{x}{2}} \mathrm{~s}
\end{array}\right. \\
& =\left[\begin{array}{cc}
\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}} & \frac{2 \mathrm{e}^{-\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}}{3} \\
-2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} & \left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}}
\end{array}\right]\left[\begin{array}{c}
80 \mathrm{e}^{\frac{x}{2}}\left(\left(\frac{12 \cos (x)^{3}}{5}+\left(-\frac{9}{2}\right.\right.\right. \\
\frac{72 \mathrm{e}^{\frac{x}{2}}\left(\left(\frac{7 \cos (x)^{3}}{9}+(-\right.\right.}{13}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{7 \sin (2 x)}{13}-\frac{6 \sin (3 x)}{73}+\frac{16 \cos (3 x)}{73}-\frac{4 \cos (2 x)}{13} \\
\frac{9 \sin (2 x)}{13}-\frac{60 \sin (3 x)}{73}+\frac{14 \cos (3 x)}{73}+\frac{6 \cos (2 x)}{13}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
& =\left[\begin{array}{c}
-\sqrt{3}\left(c_{1}-\frac{2 c_{2}}{3}\right) \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{1}-\frac{4 \cos (2 x)}{13}+\frac{16 \cos (3 x)}{73}+\frac{7 \sin (2 x)}{13}-\frac{6 \sin (3 x)}{73} \\
-2 \sqrt{3}\left(c_{1}-\frac{c_{2}}{2}\right) \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+\cos \left(\frac{\sqrt{3} x}{2}\right) \mathrm{e}^{-\frac{x}{2}} c_{2}+\frac{6 \cos (2 x)}{13}+\frac{14 \cos (3 x)}{73}+\frac{9 \sin (2 x)}{13}-\frac{60 \sin (3 x)}{73}
\end{array}\right]
\end{aligned}
$$

19.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
2 \cos (x) \sin (x) \\
-8 \cos (x)^{3}+6 \cos (x)
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
$$

Where $\vec{x}_{h}(x)$ is the homogeneous solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)$ and $\vec{x}_{p}(x)$ is a particular solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 1 \\
-3 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}-\frac{i \sqrt{3}}{2}$	1	complex eigenvalue
$-\frac{1}{2}+\frac{i \sqrt{3}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right]-\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } \\
&=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{3}{2}+\frac{i \sqrt{3}}{2} & 1 \\
-3 & \frac{3}{2}+\frac{i \sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\frac{3}{2}+\frac{i \sqrt{3}}{2} & 1 & 0 \\
-3 & \frac{3}{2}+\frac{i \sqrt{3}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{3 R_{1}}{-\frac{3}{2}+\frac{i \sqrt{3}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3}{2}+\frac{i \sqrt{3}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3}{2}+\frac{i \sqrt{3}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{i \sqrt{3}-3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{i \sqrt{3}-3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-3} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right]-\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{3}{2}-\frac{i \sqrt{3}}{2} & 1 & 0 \\
-3 & \frac{3}{2}-\frac{i \sqrt{3}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{-\frac{3}{2}-\frac{i \sqrt{3}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3}{2}-\frac{i \sqrt{3}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3}{2}-\frac{i \sqrt{3}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{i \sqrt{3}+3}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{\mathrm{I} \sqrt{3}+3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{i \sqrt{3}+3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{\mathrm{I} \sqrt{3}+3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{i \sqrt{3}+3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{\mathrm{I} \sqrt{3}+3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{i \sqrt{3}+3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{\mathrm{I} \sqrt{3}+3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{i \sqrt{3}+3} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{2}+\frac{i \sqrt{3}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{3}+\frac{i \sqrt{3}}{2} \\ 1\end{array}\right]$
$-\frac{1}{2}-\frac{i \sqrt{3}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{3}-\frac{i \sqrt{3}}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\frac{\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}}{\frac{3}{2}+\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}}{\frac{3}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(x)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(x)=\left[\begin{array}{ll}
\frac{\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}}{\frac{3}{2}+\frac{i \sqrt{3}}{2}} & \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} & \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(x)=\Phi \int \Phi^{-1} \vec{G}(x) d x
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
i \sqrt{3} \mathrm{e}^{-\frac{(i \sqrt{3}-1) x}{2}} & -\frac{(3 i-\sqrt{3}) \sqrt{3} \mathrm{e}^{-\frac{(i \sqrt{3}-1) x}{2}}}{6} \\
-i \sqrt{3} \mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}} & \frac{\sqrt{3} \mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}}(\sqrt{3}+3 i)}{6}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}}{\frac{3}{2}+\frac{i \sqrt{3}}{2}} & \frac{\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}}{\frac{3}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} & \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{array}\right] \int\left[\begin{array}{c}
4 \cos (x) \mathrm{e}^{-\frac{(i \sqrt{3}-1) x}{2}}\left(\frac{3}{4}+i\left(\cos (x)^{2}+\frac{\sin (x)}{2}-\frac{3}{4}\right) \sqrt{3}-\cos (x)^{2}\right. \\
4\left(\frac{3}{4}-i\left(\cos (x)^{2}+\frac{\sin (x)}{2}-\frac{3}{4}\right) \sqrt{3}-\cos (x)^{2}\right) \cos (x) \mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}}
\end{array}\right. \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}}{\frac{3}{2}+\frac{i \sqrt{3}}{2}} & \frac{\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}}{\frac{3}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} & \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{array}\right]\left[\begin{array}{l}
\frac{((68 i \sqrt{3}+12) \cos (2 x)+(-12 i \sqrt{3}-20) \cos (3 x)-14 i \sin (2 x) \sqrt{3}-48 i \sqrt{3} \sin (3 x)-54 \sin (2 x}{-116+24 i \sqrt{3}} \\
\frac{((68 i \sqrt{3}-12) \cos (2 x)+(-12 i \sqrt{3}+20) \cos (3 x)-14 i \sin (2 x) \sqrt{3}-48 i \sqrt{3} \sin (3 x)+54 \sin (2}{(i \sqrt{3}+17)(i \sqrt{3}+7)}
\end{array}\right. \\
& =\left[\begin{array}{c}
\frac{4}{13}+\frac{64 \cos (x)^{3}}{73}+\frac{8(-73-39 \sin (x)) \cos (x)^{2}}{949}+\frac{2(-312+511 \sin (x)) \cos (x)}{949}+\frac{6 \sin (x)}{73} \\
-\frac{6}{13}+\frac{56 \cos (x)^{3}}{73}+\frac{12(73-260 \sin (x)) \cos (x)^{2}}{949}+\frac{6(-91+219 \sin (x)) \cos (x)}{949}+\frac{60 \sin (x)}{73}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
{\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{\left.c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right.}\right) x}{\frac{3}{2}+\frac{i \sqrt{3}}{2}} \\
c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{2}\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}{\frac{3}{2}-\frac{i \sqrt{3}}{2}} \\
c_{2} \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{array}\right]+\left[\begin{array}{c}
\frac{4}{13}+\frac{64 \cos (x)^{3}}{73}+\frac{8(-73-39 \sin (x)) \cos (x)^{2}}{949}+\frac{2(-312+51}{949} \\
-\frac{6}{13}+\frac{56 \cos (x)^{3}}{73}+\frac{12(73-260 \sin (x)) \cos (x)^{2}}{949}+\frac{6(-91+2]}{}
\end{array}\right.
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{r}
\frac{c_{2}(i \sqrt{3}+3) \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{6}-\frac{(i \sqrt{3}-3) c_{1} \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{6}+\frac{64 \cos (x)^{3}}{73}+\frac{(-1872 \sin (x)-3504) \cos (x)^{2}}{5694}+\frac{(6132 \sin (x)-374}{5694} \\
c_{1} \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}+c_{2} \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}-\frac{6}{13}+\frac{56 \cos (x)^{3}}{73}+\frac{12(73-260 \sin (x)) \cos (x)^{2}}{949}+\frac{6(-91+219 \sin (x)) \operatorname{cc}}{949}
\end{array}\right.
$$

19.2.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=y_{2}(x)-2 y_{1}(x)+2 \cos (x) \sin (x), y_{2}^{\prime}(x)=-3 y_{1}(x)+y_{2}(x)-8 \cos (x)^{3}+6 \cos (x)\right]
$$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y_{-}^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{c}
2 \cos (x) \sin (x) \\
-8 \cos (x)^{3}+6 \cos (x)
\end{array}\right]
$$

- \quad System to solve

$$
y_{-}^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{c}
2 \cos (x) \sin (x) \\
-8 \cos (x)^{3}+6 \cos (x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
2 \cos (x) \sin (x) \\
-8 \cos (x)^{3}+6 \cos (x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow^{\prime}}(x)=A \cdot y^{\rightarrow}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sqrt{3} \\
\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[y{\underset{1}{ }}^{y_{1}}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{6} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], y{ }_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{6}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $y \xrightarrow{\rightarrow}$

$$
y^{\rightarrow}(x)=c_{1} y^{\rightarrow} 1(x)+c_{2} y^{\rightarrow} 2(x)+y^{\rightarrow} p(x)
$$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}}\left(\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{6}\right) & \mathrm{e}^{-\frac{x}{2}}\left(\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{6}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}\left(\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{6}\right)} \mathrm{e}^{-\frac{x}{2}}\left(\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{6}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{6} \\
1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cc}
\frac{\left(\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)-3 \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \sqrt{3} \mathrm{e}^{-\frac{x}{2}}}{3} & \frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} \\
-2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3} & \left(\cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}\right) \mathrm{e}^{-\frac{x}{2}}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $y_{-}^{\rightarrow}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
y_{-}^{\rightarrow}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$ $\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
y_{\longrightarrow}^{\rightarrow}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
y_{-}^{\rightarrow}(x)=\left[\begin{array}{c}
\frac{4}{13}+\frac{84 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{949}-\frac{1492 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2847}+\frac{64 \cos (x)^{3}}{73}+\frac{8(-73-39 \sin (x)) \cos (x)^{2}}{949}+\frac{2(-312}{949}+\frac{688 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{949}+\frac{56 \cos (x)^{3}}{73}+\frac{12(73-260 \sin (x)) \cos (x)^{2}}{949}+\frac{6(-91}{949}-\frac{620 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{13}-\frac{6(1)}{}
\end{array}\right.
$$

- Plug particular solution back into general solution

$$
y_{-}^{\rightarrow}(x)=c_{1} y_{-1}^{\rightarrow}(x)+c_{2} y_{-}^{\rightarrow}(x)+\left[\begin{array}{c}
\frac{4}{13}+\frac{84 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{949}-\frac{1492 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2847}+\frac{64 \cos (x)^{3}}{73}+8 \\
-\frac{6}{13}-\frac{620 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{949}-\frac{788 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{949}+\frac{56 \cos (x)^{3}}{73}+
\end{array}\right.
$$

- Substitute in vector of dependent variables
- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=\frac{4}{13}+\frac{\left(\frac{c_{2} \sqrt{3}}{3}+c_{1}+\frac{168}{949}\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{x}{2}}\left(\left(c_{1}-\frac{2984}{949}\right) \sqrt{3}-3 c_{2}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{6}+\frac{64 \cos (x)^{3}}{73}+\frac{8(-73-39 \sin (x)}{949}\right.
$$

Solution by Maple
Time used: 1.578 (sec). Leaf size: 146

```
dsolve([diff (y__1(x),x)=y__2(x)-2*\mp@subsup{y}{__}{\prime}1(x)+\operatorname{sin}(2*x),\operatorname{diff}(y__2(x),x)=-3*\mp@subsup{y}{__}{\prime}1(x)+y__2(x)-2*\operatorname{cos}(
```

$$
\begin{aligned}
y_{1}(x)= & c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1} \\
& +\frac{16 \cos (3 x)}{73}-\frac{4 \cos (2 x)}{13}-\frac{6 \sin (3 x)}{73}+\frac{7 \sin (2 x)}{13} \\
y_{2}(x)= & \frac{3 c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}}{2} \\
& -\frac{\mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{1}}{2}-\frac{60 \sin (3 x)}{73}+\frac{9 \sin (2 x)}{13}+\frac{14 \cos (3 x)}{73}+\frac{6 \cos (2 x)}{13}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 4.455 (sec). Leaf size: 223
DSolve $\left[\left\{y 11^{\prime}[x]==y 2[x]-2 * y 1[x]+\operatorname{Sin}[2 * x], y 2{ }^{\prime}[x]==-3 * y 1[x]+y 2[x]-2 * \operatorname{Cos}[3 * x]\right\},\{y 1[x], y 2[x]\}, x\right.$, In

$$
\begin{aligned}
\mathrm{y} 1(x) \rightarrow & \frac{7}{13} \sin (2 x)-\frac{6}{73} \sin (3 x)-\frac{4}{13} \cos (2 x)+\frac{16}{73} \cos (3 x) \\
& +c_{1} e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)-\sqrt{3} c_{1} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\sqrt{3}} \\
\mathrm{y} 2(x) \rightarrow & \frac{9}{13} \sin (2 x)-\frac{60}{73} \sin (3 x)+\frac{6}{13} \cos (2 x)+\frac{14}{73} \cos (3 x) \\
& +c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)-2 \sqrt{3} c_{1} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)+\sqrt{3} c_{2} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{aligned}
$$

19.3 problem 3

19.3.1 Solution using Matrix exponential method 2562
19.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2563
19.3.3 Maple step by step solution . 2571

Internal problem ID [12841]
Internal file name [OUTPUT/11493_Monday_November_06_2023_01_31_03_PM_19236192/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=2 y_{2}(x) \\
& y_{2}^{\prime}(x)=3 y_{1}(x) \\
& y_{3}^{\prime}(x)=2 y_{3}(x)-y_{1}(x)
\end{aligned}
$$

19.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{\sqrt{6} x}}{2}+\frac{\mathrm{e}^{-\sqrt{6} x}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x}\right) \sqrt{6}}{6} & 0 \\
\frac{\left(-\mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x}\right) \sqrt{6}}{4} & \frac{\mathrm{e}^{\sqrt{6} x}}{2}+\frac{\mathrm{e}^{-\sqrt{6} x}}{2} & 0 \\
\frac{(\sqrt{6}-2) \mathrm{e}^{-\sqrt{6} x}}{4}+\frac{(-\sqrt{6}-2) \mathrm{e}^{\sqrt{6} x}}{4}+\mathrm{e}^{2 x} & \frac{(\sqrt{6}-3) \mathrm{e}^{-\sqrt{6} x}}{6}+\frac{(-\sqrt{6}-3) \mathrm{e}^{\sqrt{6} x}}{6}+\mathrm{e}^{2 x} & \mathrm{e}^{2 x}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(x)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{\mathrm{e}^{\sqrt{6} x}}{2}+\frac{\mathrm{e}^{-\sqrt{6} x}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x}\right) \sqrt{6}}{6} & 0 \\
\frac{\left(-\mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x}\right) \sqrt{6}}{4} & \frac{\mathrm{e}^{\sqrt{6} x}}{2}+\frac{\mathrm{e}^{-\sqrt{6} x}}{2} \\
\frac{(\sqrt{6}-2) \mathrm{e}^{-\sqrt{6} x}}{4}+\frac{(-\sqrt{6}-2) \mathrm{e}^{\sqrt{6} x}}{4}+\mathrm{e}^{2 x} & \frac{(\sqrt{6}-3) \mathrm{e}^{-\sqrt{6} x}}{6}+\frac{(-\sqrt{6}-3) \mathrm{e}^{\sqrt{6} x}}{6}+\mathrm{e}^{2 x} & \mathrm{e}^{2 x}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& {\left[\frac{\mathrm{e}^{\sqrt{6} x}}{2}+\frac{\mathrm{e}^{-\sqrt{6} x}}{2}\right) c_{1}+\frac{\left(-\mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x}\right) \sqrt{6} c_{2}}{6}} \\
& =\begin{array}{c}
\frac{\left(-\mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x}\right) \sqrt{6} c_{1}}{4}+\left(\frac{\mathrm{e}^{\sqrt{6} x}}{2}+\frac{\mathrm{e}^{-\sqrt{6} x}}{2}\right) c_{2}
\end{array} \\
& \left.\left(\frac{(\sqrt{6}-2) \mathrm{e}^{-\sqrt{6} x}}{4}+\frac{(-\sqrt{6}-2) \mathrm{e}^{\sqrt{6} x}}{4}+\mathrm{e}^{2 x}\right) c_{1}+\left(\frac{(\sqrt{6}-3) \mathrm{e}^{-\sqrt{6} x}}{6}+\frac{(-\sqrt{6}-3) \mathrm{e}^{\sqrt{6} x}}{6}+\mathrm{e}^{2 x}\right) c_{2}+\mathrm{e}^{2 x} c_{3}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{2} \sqrt{6}+3 c_{1}\right) \mathrm{e}^{-\sqrt{6} x}}{6}+\frac{\mathrm{e}^{\sqrt{6} x}\left(\frac{c_{2} \sqrt{6}}{3}+c_{1}\right)}{2} \\
\frac{\left(-c_{1} \sqrt{6}+2 c_{2}\right) \mathrm{e}^{-\sqrt{6} x}}{4}+\frac{\mathrm{e}^{\sqrt{6} x}\left(c_{1} \sqrt{6}+2 c_{2}\right)}{4} \\
\frac{\left(\left(3 c_{1}+2 c_{2}\right) \sqrt{6}-6 c_{1}-6 c_{2}\right) \mathrm{e}^{-\sqrt{6} x}}{12}+\frac{\left(\left(-3 c_{1}-2 c_{2}\right) \sqrt{6}-6 c_{1}-6 c_{2}\right) \mathrm{e}^{\sqrt{6} x}}{12}+\mathrm{e}^{2 x}\left(c_{1}+c_{2}+c_{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 2 & 0 \\
3 & -\lambda & 0 \\
-1 & 0 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-2 \lambda^{2}-6 \lambda+12=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\sqrt{6} \\
& \lambda_{2}=-\sqrt{6} \\
& \lambda_{3}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
$\sqrt{6}$	1	real eigenvalue
$-\sqrt{6}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2 & 2 & 0 & 0 \\
3 & -2 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{lll|l}
-2 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\sqrt{6}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right]-(\sqrt{6})\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-\sqrt{6} & 2 & 0 & 0 \\
3 & -\sqrt{6} & 0 & 0 \\
-1 & 0 & -\sqrt{6}+2 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+\frac{\sqrt{6} R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-\sqrt{6} & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & -\sqrt{6}+2 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{\sqrt{6} R_{1}}{6} \Longrightarrow\left[\begin{array}{ccc|c}
-\sqrt{6} & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -\frac{\sqrt{6}}{3} & -\sqrt{6}+2 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-\sqrt{6} & 2 & 0 & 0 \\
0 & -\frac{\sqrt{6}}{3} & -\sqrt{6}+2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-\sqrt{6} & 2 & 0 \\
0 & -\frac{\sqrt{6}}{3} & -\sqrt{6}+2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-(\sqrt{6}-2) t, v_{2}=(\sqrt{6}-3) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-(\sqrt{6}-2) t \\
(\sqrt{6}-3) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-(\sqrt{6}-2) t \\
(\sqrt{6}-3) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-(\sqrt{6}-2) t \\
(\sqrt{6}-3) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\sqrt{6}+2 \\
\sqrt{6}-3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-(\sqrt{6}-2) t \\
(\sqrt{6}-3) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{6}+2 \\
\sqrt{6}-3 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-\sqrt{6}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right]-(-\sqrt{6})\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
\sqrt{6} & 2 & 0 & 0 \\
3 & \sqrt{6} & 0 & 0 \\
-1 & 0 & \sqrt{6}+2 & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{\sqrt{6} R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
\sqrt{6} & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & \sqrt{6}+2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{\sqrt{6} R_{1}}{6} \Longrightarrow\left[\begin{array}{ccc|c}
\sqrt{6} & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \frac{\sqrt{6}}{3} & \sqrt{6}+2 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
\sqrt{6} & 2 & 0 & 0 \\
0 & \frac{\sqrt{6}}{3} & \sqrt{6}+2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
\sqrt{6} & 2 & 0 \\
0 & \frac{\sqrt{6}}{3} & \sqrt{6}+2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(\sqrt{6}+2) t, v_{2}=-(\sqrt{6}+3) t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
(\sqrt{6}+2) t \\
-(\sqrt{6}+3) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(\sqrt{6}+2) t \\
-(\sqrt{6}+3) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(\sqrt{6}+2) t \\
-(\sqrt{6}+3) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\sqrt{6}+2 \\
-\sqrt{6}-3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(\sqrt{6}+2) t \\
-(\sqrt{6}+3) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{6}+2 \\
-\sqrt{6}-3 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
	1	1	No	$\left[\begin{array}{c}-\sqrt{6}+2 \\ -\frac{(\sqrt{6}-2) \sqrt{6}}{2} \\ 1\end{array}\right]$
$-\sqrt{6}$	1	1	No	$\left[\begin{array}{c}\frac{\sqrt{6}+2}{(-\sqrt{6}-2) \sqrt{6}} \\ 2 \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}0 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\sqrt{6}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{\sqrt{6} x} \\
& =\left[\begin{array}{c}
-\sqrt{6}+2 \\
-\frac{(\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right] e^{\sqrt{6} x}
\end{aligned}
$$

Since eigenvalue $-\sqrt{6}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{-\sqrt{6} x} \\
& =\left[\begin{array}{c}
\sqrt{6}+2 \\
\frac{(-\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right] e^{-\sqrt{6} x}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(x) & =\vec{v}_{3} e^{2 x} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{2 x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{\sqrt{6} x}(-\sqrt{6}+2) \\
-\frac{\mathrm{e}^{\sqrt{6} x}(\sqrt{6}-2) \sqrt{6}}{2} \\
\mathrm{e}^{\sqrt{6} x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-\sqrt{6} x}(\sqrt{6}+2) \\
\frac{\mathrm{e}^{-\sqrt{6} x}(-\sqrt{6}-2) \sqrt{6}}{2} \\
\mathrm{e}^{-\sqrt{6} x}
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{2 x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{-\sqrt{6} x}(\sqrt{6}+2)-\mathrm{e}^{\sqrt{6} x} c_{1}(\sqrt{6}-2) \\
-c_{2}(\sqrt{6}+3) \mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x} c_{1}(\sqrt{6}-3) \\
c_{1} \mathrm{e}^{\sqrt{6} x}+c_{2} \mathrm{e}^{-\sqrt{6} x}+c_{3} \mathrm{e}^{2 x}
\end{array}\right]
$$

19.3.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=2 y_{2}(x), y_{2}^{\prime}(x)=3 y_{1}(x), y_{3}^{\prime}(x)=2 y_{3}(x)-y_{1}(x)\right]
$$

- Define vector

$$
y_{-}^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow}(x)=\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right] \cdot \underline{\longrightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 2 & 0 \\
3 & 0 & 0 \\
-1 & 0 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow}(x)=A \cdot y \xrightarrow{\rightarrow}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[\sqrt{6},\left[\begin{array}{c}
-\sqrt{6}+2 \\
-\frac{(\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right]\right],\left[-\sqrt{6},\left[\begin{array}{c}
\sqrt{6}+2 \\
\frac{(-\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y^{\rightarrow}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[\sqrt{6},\left[\begin{array}{c}
-\sqrt{6}+2 \\
-\frac{(\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{2}^{\rightarrow}=\mathrm{e}^{\sqrt{6} x} \cdot\left[\begin{array}{c}
-\sqrt{6}+2 \\
-\frac{(\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\sqrt{6},\left[\begin{array}{c}
\sqrt{6}+2 \\
\frac{(-\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
y_{3}=\mathrm{e}^{-\sqrt{6} x} \cdot\left[\begin{array}{c}
\sqrt{6}+2 \\
\frac{(-\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
y_{\square}^{\rightarrow}=c_{1} y^{\rightarrow}{ }_{-}+c_{2} y^{\rightarrow}+c_{3} y \rightarrow{ }_{3}
$$

- Substitute solutions into the general solution

$$
y^{\rightarrow}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\sqrt{6} x} \cdot\left[\begin{array}{c}
-\sqrt{6}+2 \\
-\frac{(\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{-\sqrt{6} x} \cdot\left[\begin{array}{c}
\sqrt{6}+2 \\
\frac{(-\sqrt{6}-2) \sqrt{6}}{2} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{3} \mathrm{e}^{-\sqrt{6} x}(\sqrt{6}+2)-\mathrm{e}^{\sqrt{6} x} c_{2}(\sqrt{6}-2) \\
-c_{3}(\sqrt{6}+3) \mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x} c_{2}(\sqrt{6}-3) \\
c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{\sqrt{6} x}+c_{3} \mathrm{e}^{-\sqrt{6} x}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=c_{3} \mathrm{e}^{-\sqrt{6} x}(\sqrt{6}+2)-\mathrm{e}^{\sqrt{6} x} c_{2}(\sqrt{6}-2), y_{2}(x)=-c_{3}(\sqrt{6}+3) \mathrm{e}^{-\sqrt{6} x}+\mathrm{e}^{\sqrt{6} x} c_{2}(\sqrt{6}-3), y_{3}\right.
$$

Solution by Maple
Time used: 0.062 (sec). Leaf size: 107

$$
\begin{aligned}
& y_{1}(x)=\mathrm{e}^{\sqrt{6} x} c_{2}+c_{3} \mathrm{e}^{-\sqrt{6} x} \\
& y_{2}(x)=\frac{\sqrt{6}\left(\mathrm{e}^{\sqrt{6} x} c_{2}-c_{3} \mathrm{e}^{-\sqrt{6} x}\right)}{2} \\
& y_{3}(x)=\frac{2 \mathrm{e}^{2 x} c_{1}}{(2+\sqrt{6})(-2+\sqrt{6})}+\frac{\mathrm{e}^{-\sqrt{6} x} c_{3}}{2+\sqrt{6}}-\frac{\mathrm{e}^{\sqrt{6} x} c_{2}}{-2+\sqrt{6}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 232
DSolve $\left[\left\{y 1{ }^{\prime}[x]==2 * y 2[x], y 2{ }^{\prime}[x]==3 * y 1[x], y 3 '[x]==2 * y 3[x]-y 1[x]\right\},\{y 1[x], y 2[x], y 3[x]\}, x\right.$, Include

$$
\begin{array}{r}
\mathrm{y} 1(x) \rightarrow \frac{1}{6} e^{-\sqrt{6} x}\left(3 c_{1}\left(e^{2 \sqrt{6} x}+1\right)+\sqrt{6} c_{2}\left(e^{2 \sqrt{6} x}-1\right)\right) \\
\mathrm{y} 2(x) \rightarrow \frac{1}{4} e^{-\sqrt{6} x}\left(\sqrt{6} c_{1}\left(e^{2 \sqrt{6} x}-1\right)+2 c_{2}\left(e^{2 \sqrt{6} x}+1\right)\right) \\
\begin{aligned}
\mathrm{y} 3(x) & \rightarrow \frac{1}{12} e^{-\sqrt{6} x}\left(2\left(c_{2}\left(-(3+\sqrt{6}) e^{2 \sqrt{6} x}+6 e^{(2+\sqrt{6}) x}-3+\sqrt{6}\right)+6 c_{3} e^{(2+\sqrt{6}) x}\right)\right. \\
& \left.-3 c_{1}\left((2+\sqrt{6}) e^{2 \sqrt{6} x}-4 e^{(2+\sqrt{6}) x}+2-\sqrt{6}\right)\right)
\end{aligned}
\end{array}
$$

19.4 problem 4

Internal problem ID [12842]
Internal file name [OUTPUT/11494_Monday_November_06_2023_01_31_03_PM_39604673/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page
379
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=2 y_{1}(x) x-x^{2} y_{2}(x)+4 x \\
& y_{2}^{\prime}(x)=y_{1}(x) \mathrm{e}^{x}+3 \mathrm{e}^{-x} y_{2}(x)-4 \cos (x)^{3}+3 \cos (x)
\end{aligned}
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
X Solution by Maple

```
dsolve([diff(y__1 (x),x)=2*x*y__1(x)-x^2*y__ 2(x)+4*x, diff (y__2(x),x)=exp(x)*y__1(x)+3*exp(-x)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[{y1'[x]==2*x*y1[x]-x^2*y2[x]+4*x,y2'[x]==Exp[x]*y1[x]+3*Exp[-x]*y2[x]-Cos[3*x]},{y1[x
```

Not solved

19.5 problem 5 a

19.5.1 Solution using Matrix exponential method 2576
19.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2577
19.5.3 Maple step by step solution . 2582

Internal problem ID [12843]
Internal file name [OUTPUT/11495_Monday_November_06_2023_01_31_03_PM_20314798/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 5 a.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=2 y_{1}(x)-3 y_{2}(x) \\
& y_{2}^{\prime}(x)=y_{1}(x)-2 y_{2}(x)
\end{aligned}
$$

19.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2}\right) c_{2} \\
\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}\left(c_{1}-c_{2}\right)}{2} \\
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}\left(c_{1}-c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -3 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
2 & -3 \\
1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\\
{\left[\begin{array}{ll}
3 & -3 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & -3 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
3 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -3 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -3 & 0 \\
1 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1	1	No	$\left[\begin{array}{l}3 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{x} \\
& =\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{x}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{-x} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
3 \mathrm{e}^{x} \\
\mathrm{e}^{x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-x} \\
\mathrm{e}^{-x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
3 c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \\
c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 428: Phase plot

19.5.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=2 y_{1}(x)-3 y_{2}(x), y_{2}^{\prime}(x)=y_{1}(x)-2 y_{2}(x)\right]
$$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow}{ }^{\prime}(x)=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y_{\sim}^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
y_{\longrightarrow^{\prime}}(x)=A \cdot y_{乙}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\sim}{\rightarrow}}^{\rightarrow}=\mathrm{e}^{-x} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{-}^{\rightarrow}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
y_{-}^{\overrightarrow{-}}=c_{1} y_{-}+c_{2} y_{-}
$$

- Substitute solutions into the general solution

$$
y \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{x} \\
c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{x}, y_{2}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

```
dsolve([diff(y__1(x),x)=2*y__1(x)-3*y__2(x), diff(y__2(x),x)=y__1(x)-2*y__2(x)],singsol=all)
```

$$
\begin{aligned}
& y_{1}(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \\
& y_{2}(x)=\frac{c_{1} \mathrm{e}^{x}}{3}+c_{2} \mathrm{e}^{-x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 81
DSolve $\left[\left\{y 11^{\prime}[x]==-2 * y 1[x]-3 * y 2[x], y 2{ }^{\prime}[x]==y 1[x]-2 * y 2[x]\right\},\{y 1[x], y 2[x]\}, x\right.$, IncludeSingularSolut

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow e^{-2 x}\left(c_{1} \cos (\sqrt{3} x)-\sqrt{3} c_{2} \sin (\sqrt{3} x)\right) \\
& \mathrm{y} 2(x) \rightarrow \frac{1}{3} e^{-2 x}\left(3 c_{2} \cos (\sqrt{3} x)+\sqrt{3} c_{1} \sin (\sqrt{3} x)\right)
\end{aligned}
$$

19.6 problem 5 c

19.6.1 Solution using Matrix exponential method 2585
19.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2587
19.6.3 Maple step by step solution . 2592

Internal problem ID [12844]
Internal file name [OUTPUT/11496_Monday_November_06_2023_01_31_04_PM_69505427/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 5 c.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=2 y_{1}(x)-3 y_{2}(x)+4 x-2 \\
& y_{2}^{\prime}(x)=y_{1}(x)-2 y_{2}(x)+3 x
\end{aligned}
$$

19.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
4 x-2 \\
3 x
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
$$

Where $\vec{x}_{h}(x)$ is the homogeneous solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)$ and $\vec{x}_{p}(x)$ is a particular solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2}\right) c_{2} \\
\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}\left(c_{1}-c_{2}\right)}{2} \\
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}\left(c_{1}-c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(x)=e^{A x} \int e^{-A x} \vec{G}(x) d x
$$

But

$$
\begin{aligned}
e^{-A x} & =\left(e^{A x}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2} & -\frac{3 \mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(x) & =\left[\begin{array}{ll}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2} & -\frac{3 \mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2}
\end{array}\right]\left[\begin{array}{c}
4 x-2 \\
3 x
\end{array}\right] d x \\
& =\left[\begin{array}{ll}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{(3-3 x) \mathrm{e}^{-x}}{2}+\frac{(5 x-3) \mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{-x}(1-x)}{2}+\frac{(5 x-3) \mathrm{e}^{x}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
x \\
2 x-1
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
& =\left[\begin{array}{c}
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{-x}}{2}+\frac{\left(3 c_{1}-3 c_{2}\right) \mathrm{e}^{x}}{2}+x \\
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}\left(c_{1}-c_{2}\right)}{2}+2 x-1
\end{array}\right]
\end{aligned}
$$

19.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
4 x-2 \\
3 x
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
$$

Where $\vec{x}_{h}(x)$ is the homogeneous solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)$ and $\vec{x}_{p}(x)$ is a particular solution to $\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -3 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
2 & -3 \\
1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
3 & -3 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & -3 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
3 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & -3 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -3 & 0 \\
1 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{l}3 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{-x} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-x}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{x} \\
& =\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-x} \\
\mathrm{e}^{-x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
3 \mathrm{e}^{x} \\
\mathrm{e}^{x}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(x)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(x)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & 3 \mathrm{e}^{x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(x)=\Phi \int \Phi^{-1} \vec{G}(x) d x
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{-x}}{2} & -\frac{\mathrm{e}^{-x}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(x) & =\left[\begin{array}{cc}
\mathrm{e}^{-x} & 3 \mathrm{e}^{x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{-x}}{2} & -\frac{\mathrm{e}^{-x}}{2}
\end{array}\right]\left[\begin{array}{c}
4 x-2 \\
3 x
\end{array}\right] d x \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-x} & 3 \mathrm{e}^{x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right] \int\left[\begin{array}{c}
\mathrm{e}^{x}\left(\frac{5 x}{2}+1\right) \\
\mathrm{e}^{-x}\left(\frac{x}{2}-1\right)
\end{array}\right] d x \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-x} & 3 \mathrm{e}^{x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right]\left[\begin{array}{c}
\frac{(5 x-3) \mathrm{e}^{x}}{2} \\
-\frac{(x-1) \mathrm{e}^{-x}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
x \\
2 x-1
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
{\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right] } & =\left[\begin{array}{c}
c_{1} \mathrm{e}^{-x} \\
c_{1} \mathrm{e}^{-x}
\end{array}\right]+\left[\begin{array}{c}
3 c_{2} \mathrm{e}^{x} \\
c_{2} \mathrm{e}^{x}
\end{array}\right]+\left[\begin{array}{c}
x \\
2 x-1
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{x}+x \\
c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+2 x-1
\end{array}\right]
$$

19.6.3 Maple step by step solution

Let's solve
$\left[y_{1}^{\prime}(x)=2 y_{1}(x)-3 y_{2}(x)+4 x-2, y_{2}^{\prime}(x)=y_{1}(x)-2 y_{2}(x)+3 x\right]$

- Define vector

$$
y_{\underline{\rightarrow}}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y \overrightarrow{-}^{\prime}(x)=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{c}
4 x-2 \\
3 x
\end{array}\right]
$$

- \quad System to solve

$$
y \overrightarrow{-}^{\prime}(x)=\left[\begin{array}{cc}
2 & -3 \\
1 & -2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{c}
4 x-2 \\
3 x
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
4 x-2 \\
3 x
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow}{ }^{\prime}(x)=A \cdot y^{\rightarrow}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{-}^{\rightarrow}=\mathrm{e}^{-x} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}^{\rightarrow}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $y \xrightarrow{\rightarrow}$

$$
y^{\rightarrow}(x)=c_{1} y^{\rightarrow}+c_{2} y^{\rightarrow}+y^{\rightarrow}(x)
$$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & 3 \mathrm{e}^{x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & 3 \mathrm{e}^{x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
1 & 3 \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$

$$
y^{\rightarrow} p(x)=\Phi(x) \cdot \vec{v}(x)
$$

- Take the derivative of the particular solution

$$
y_{-}^{\rightarrow}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
y_{-}^{\rightarrow}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
{\underset{\sim}{\rightarrow}}_{\rightarrow}(x)=\left[\begin{array}{c}
x+\frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
2 x-1+\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
y_{\longrightarrow}^{\rightarrow}(x)=c_{1} y \xrightarrow{\rightarrow}+c_{2} y \xrightarrow{\rightarrow} 2+\left[\begin{array}{c}
x+\frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
2 x-1+\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{x}+x+\frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2} \\
c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+2 x-1+\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{x}+x+\frac{3 \mathrm{e}^{-x}}{2}-\frac{3 \mathrm{e}^{x}}{2}, y_{2}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+2 x-1+\frac{3 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

```
dsolve([diff (y__ 1(x),x)=2*y__1(x)-3*y__ 2(x)+4*x-2, diff (y__ 2(x),x)=y__ 1(x)-2*y__ 2(x)+3*x],sin
```

$$
\begin{aligned}
& y_{1}(x)=c_{2} \mathrm{e}^{x}+\mathrm{e}^{-x} c_{1}+x \\
& y_{2}(x)=\frac{c_{2} \mathrm{e}^{x}}{3}+\mathrm{e}^{-x} c_{1}-1+2 x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 3.724 (sec). Leaf size: 101
DSolve $\left[\left\{y 11^{\prime}[x]==-2 * y 1[x]-3 * y 2[x]+4 * x-2, y 2{ }^{\prime}[x]==y 1[x]-2 * y 2[x]+3 * x\right\},\{y 1[x], y 2[x]\}, x\right.$, IncludeSin

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow-\frac{x}{7}+c_{1} e^{-2 x} \cos (\sqrt{3} x)-\sqrt{3} c_{2} e^{-2 x} \sin (\sqrt{3} x)+\frac{4}{49} \\
& \mathrm{y} 2(x) \rightarrow \frac{10 x}{7}+c_{2} e^{-2 x} \cos (\sqrt{3} x)+\frac{c_{1} e^{-2 x} \sin (\sqrt{3} x)}{\sqrt{3}}-\frac{33}{49}
\end{aligned}
$$

19.7 problem 6 a

Internal problem ID [12845]
Internal file name [OUTPUT/11497_Monday_November_06_2023_01_31_04_PM_8086785/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page
379
Problem number: 6 a.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=\frac{5 y_{1}(x)}{x}+\frac{4 y_{2}(x)}{x} \\
& y_{2}^{\prime}(x)=-\frac{6 y_{1}(x)}{x}-\frac{5 y_{2}(x)}{x}
\end{aligned}
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 34

```
dsolve([diff(y__1(x),x)=5/x*y__1(x)+4/x*y__2(x),diff(y__2(x),x)=-6/x*y__1(x)-5/x*y__2(x)],si
```

$$
\begin{aligned}
& y_{1}(x)=\frac{c_{1} x^{2}+c_{2}}{x} \\
& y_{2}(x)=-\frac{2 c_{1} x^{2}+3 c_{2}}{2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 34
DSolve $\left[\left\{y 11^{\prime}[x]==5 / x * y 1[x]+4 / x * y 2[x], y 2{ }^{\prime}[x]==-6 / x * y 1[x]-5 / x * y 2[x]\right\},\{y 1[x], y 2[x]\}, x\right.$, IncludeSin

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow \frac{c_{1}}{x}+c_{2} x \\
& \mathrm{y} 2(x) \rightarrow-\frac{3 c_{1}}{2 x}-c_{2} x
\end{aligned}
$$

19.8 problem 6 c

Internal problem ID [12846]
Internal file name [OUTPUT/11498_Monday_November_06_2023_01_31_04_PM_4917633/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page
379
Problem number: 6 c.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=\frac{5 y_{1}(x)}{x}+\frac{4 y_{2}(x)}{x}-2 x \\
& y_{2}^{\prime}(x)=-\frac{6 y_{1}(x)}{x}-\frac{5 y_{2}(x)}{x}+5 x
\end{aligned}
$$

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 44

```
dsolve([diff(y__1 (x),x)=5/x*y__1(x)+4/x*y__2(x) -2*x, diff(y__2(x),x)=-6/x*y__1 (x)-5/x*y__2(x)
```

$$
\begin{aligned}
& y_{1}(x)=\frac{c_{1} x^{2}+2 x^{3}+c_{2}}{x} \\
& y_{2}(x)=-\frac{2 c_{1} x^{2}+2 x^{3}+3 c_{2}}{2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 44

```
DSolve[{y1'[x]==5/x*y1[x]+4/x*y2[x]-2*x,y2'[x]==-6/x*y1[x]-5/x*y2[x]+5*x},{y1[x],y2[x]},x,In
```

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow 2 x^{2}+c_{2} x+\frac{c_{1}}{x} \\
& \mathrm{y} 2(x) \rightarrow-x^{2}-c_{2} x-\frac{3 c_{1}}{2 x}
\end{aligned}
$$

19.9 problem 7

19.9.1 Solution using Matrix exponential method 2599
19.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2600
19.9.3 Maple step by step solution . 2607

Internal problem ID [12847]
Internal file name [OUTPUT/11499_Monday_November_06_2023_01_31_04_PM_90196884/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
y_{1}^{\prime}(x) & =2 y_{1}(x)+y_{2}(x)-2 y_{3}(x) \\
y_{2}^{\prime}(x) & =3 y_{2}(x)-2 y_{3}(x) \\
y_{3}^{\prime}(x) & =3 y_{1}(x)+y_{2}(x)-3 y_{3}(x)
\end{aligned}
$$

19.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
-\mathrm{e}^{2 x}+3 \mathrm{e}^{x}-\mathrm{e}^{-x} & -\mathrm{e}^{x}+\mathrm{e}^{2 x} & -\mathrm{e}^{x}+\mathrm{e}^{-x} \\
3 \mathrm{e}^{x}-2 \mathrm{e}^{2 x}-\mathrm{e}^{-x} & -\mathrm{e}^{x}+2 \mathrm{e}^{2 x} & -\mathrm{e}^{x}+\mathrm{e}^{-x} \\
-2 \mathrm{e}^{-x}-\mathrm{e}^{2 x}+3 \mathrm{e}^{x} & -\mathrm{e}^{x}+\mathrm{e}^{2 x} & -\mathrm{e}^{x}+2 \mathrm{e}^{-x}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
-\mathrm{e}^{2 x}+3 \mathrm{e}^{x}-\mathrm{e}^{-x} & -\mathrm{e}^{x}+\mathrm{e}^{2 x} & -\mathrm{e}^{x}+\mathrm{e}^{-x} \\
3 \mathrm{e}^{x}-2 \mathrm{e}^{2 x}-\mathrm{e}^{-x} & -\mathrm{e}^{x}+2 \mathrm{e}^{2 x} & -\mathrm{e}^{x}+\mathrm{e}^{-x} \\
-2 \mathrm{e}^{-x}-\mathrm{e}^{2 x}+3 \mathrm{e}^{x} & -\mathrm{e}^{x}+\mathrm{e}^{2 x} & -\mathrm{e}^{x}+2 \mathrm{e}^{-x}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\mathrm{e}^{2 x}+3 \mathrm{e}^{x}-\mathrm{e}^{-x}\right) c_{1}+\left(-\mathrm{e}^{x}+\mathrm{e}^{2 x}\right) c_{2}+\left(-\mathrm{e}^{x}+\mathrm{e}^{-x}\right) c_{3} \\
\left(3 \mathrm{e}^{x}-2 \mathrm{e}^{2 x}-\mathrm{e}^{-x}\right) c_{1}+\left(-\mathrm{e}^{x}+2 \mathrm{e}^{2 x}\right) c_{2}+\left(-\mathrm{e}^{x}+\mathrm{e}^{-x}\right) c_{3} \\
\left(-2 \mathrm{e}^{-x}-\mathrm{e}^{2 x}+3 \mathrm{e}^{x}\right) c_{1}+\left(-\mathrm{e}^{x}+\mathrm{e}^{2 x}\right) c_{2}+\left(-\mathrm{e}^{x}+2 \mathrm{e}^{-x}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-c_{1}+c_{3}\right) \mathrm{e}^{-x}+\left(-c_{1}+c_{2}\right) \mathrm{e}^{2 x}+3 \mathrm{e}^{x}\left(-\frac{c_{3}}{3}+c_{1}-\frac{c_{2}}{3}\right) \\
\left(-c_{1}+c_{3}\right) \mathrm{e}^{-x}+\left(-2 c_{1}+2 c_{2}\right) \mathrm{e}^{2 x}+3 \mathrm{e}^{x}\left(-\frac{c_{3}}{3}+c_{1}-\frac{c_{2}}{3}\right) \\
\left(-2 c_{1}+2 c_{3}\right) \mathrm{e}^{-x}+\left(-c_{1}+c_{2}\right) \mathrm{e}^{2 x}+3 \mathrm{e}^{x}\left(-\frac{c_{3}}{3}+c_{1}-\frac{c_{2}}{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2-\lambda & 1 & -2 \\
0 & 3-\lambda & -2 \\
3 & 1 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-2 \lambda^{2}-\lambda+2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
3 & 1 & -2 & 0 \\
0 & 4 & -2 & 0 \\
3 & 1 & -2 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3 & 1 & -2 & 0 \\
0 & 4 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3 & 1 & -2 \\
0 & 4 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}, v_{2}=\frac{t}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
1 & 1 & -2 & 0 \\
0 & 2 & -2 & 0 \\
3 & 1 & -4 & 0
\end{array}\right]} \\
R_{3}=R_{3}-3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 2 & -2 & 0 \\
0 & -2 & 2 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{llc|c}
1 & 1 & -2 & 0 \\
0 & 2 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & 2 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
0 & 1 & -2 & 0 \\
0 & 1 & -2 & 0 \\
3 & 1 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 3 gives

$$
\left[\begin{array}{lll|l}
3 & 1 & -5 & 0 \\
0 & 1 & -2 & 0 \\
0 & 1 & -2 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
3 & 1 & -5 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3 & 1 & -5 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1	1	No	$\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}1 \\ 2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{x} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{x}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{-x} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right] e^{-x}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(x) & =\vec{v}_{3} e^{2 x} \\
& =\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] e^{2 x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{x} \\
\mathrm{e}^{x} \\
\mathrm{e}^{x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{-x}}{2} \\
\frac{\mathrm{e}^{-x}}{2} \\
\mathrm{e}^{-x}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{2 x} \\
2 \mathrm{e}^{2 x} \\
\mathrm{e}^{2 x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{x}+\frac{c_{2} e^{-x}}{2}+c_{3} \mathrm{e}^{2 x} \\
c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{-x}}{2}+2 c_{3} \mathrm{e}^{2 x} \\
c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{2 x}
\end{array}\right]
$$

19.9.3 Maple step by step solution

Let's solve
$\left[y_{1}^{\prime}(x)=2 y_{1}(x)+y_{2}(x)-2 y_{3}(x), y_{2}^{\prime}(x)=3 y_{2}(x)-2 y_{3}(x), y_{3}^{\prime}(x)=3 y_{1}(x)+y_{2}(x)-3 y_{3}(x)\right]$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow}(x)=\left[\begin{array}{lll}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{马}^{\prime}(x)=\left[\begin{array}{lll}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right] \cdot \vec{\longrightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & -2 \\
0 & 3 & -2 \\
3 & 1 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow}(x)=A \cdot y \rightarrow(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y^{\rightarrow}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{ }}^{\rightarrow}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{3}^{\rightarrow}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
y^{\rightarrow}=c_{1} y^{\rightarrow}{ }_{1}+c_{2} y^{\rightarrow}+c_{3} y{ }_{3}
$$

- Substitute solutions into the general solution

$$
\underset{\longrightarrow}{\rightarrow}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
1 \\
2 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-x}}{2}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3} \\
\frac{c_{1} \mathrm{e}^{-x}}{2}+c_{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} c_{3} \\
c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=\frac{c_{1} \mathrm{e}^{-x}}{2}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}, y_{2}(x)=\frac{c_{1} \mathrm{e}^{-x}}{2}+c_{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} c_{3}, y_{3}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}\right\}
$$

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 65

$$
\begin{aligned}
& y_{1}(x)=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{2 x}}{2}+c_{3} \mathrm{e}^{-x} \\
& y_{2}(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{-x} \\
& y_{3}(x)=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{2 x}}{2}+2 c_{3} \mathrm{e}^{-x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 159
DSolve $\left[\left\{y 11^{\prime}[x]==2 * y 1[x]+y 2[x]-2 * y 3[x], y 2{ }^{\prime}[x]==3 * y 2[x]-2 * y 3[x], y 3 '[x]==3 * y 1[x]+y 2[x]-3 * y 3[x]\right\}\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow e^{-x}\left(\left(e^{x}-1\right)\left(c_{2} e^{2 x}-c_{3} e^{x}-c_{3}\right)-c_{1}\left(-3 e^{2 x}+e^{3 x}+1\right)\right) \\
& \mathrm{y} 2(x) \rightarrow e^{-x}\left(-\left(c_{1}\left(2 e^{x}+1\right)\left(e^{x}-1\right)^{2}\right)+2 c_{2} e^{3 x}-\left(c_{2}+c_{3}\right) e^{2 x}+c_{3}\right) \\
& \mathrm{y} 3(x) \rightarrow e^{-x}\left(-\left(c_{1}\left(-3 e^{2 x}+e^{3 x}+2\right)\right)+c_{2} e^{3 x}-\left(c_{2}+c_{3}\right) e^{2 x}+2 c_{3}\right)
\end{aligned}
$$

19.10 problem 8

19.10.1 Solution using Matrix exponential method 2611
19.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2612
19.10.3 Maple step by step solution . 2620

Internal problem ID [12848]
Internal file name [OUTPUT/11500_Monday_November_06_2023_01_31_05_PM_5352351/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
y_{1}^{\prime}(x) & =5 y_{1}(x)-5 y_{2}(x)-5 y_{3}(x) \\
y_{2}^{\prime}(x) & =-y_{1}(x)+4 y_{2}(x)+2 y_{3}(x) \\
y_{3}^{\prime}(x) & =3 y_{1}(x)-5 y_{2}(x)-3 y_{3}(x)
\end{aligned}
$$

19.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{ccc}
\mathrm{e}^{2 x} \cos (x)+3 \mathrm{e}^{2 x} \sin (x) & -5 \mathrm{e}^{2 x} \sin (x) & -5 \mathrm{e}^{2 x} \sin (x) \\
-\mathrm{e}^{2 x} \cos (x)-\mathrm{e}^{2 x} \sin (x)+\mathrm{e}^{2 x} & \mathrm{e}^{2 x} \cos (x)+2 \mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x} \cos (x)+2 \mathrm{e}^{2 x} \sin (x)-\mathrm{e}^{2 x} \\
\mathrm{e}^{2 x} \cos (x)+3 \mathrm{e}^{2 x} \sin (x)-\mathrm{e}^{2 x} & -5 \mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x}-5 \mathrm{e}^{2 x} \sin (x)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 x}(\cos (x)+3 \sin (x)) & -5 \mathrm{e}^{2 x} \sin (x) & -5 \mathrm{e}^{2 x} \sin (x) \\
-\mathrm{e}^{2 x}(-1+\cos (x)+\sin (x)) & \mathrm{e}^{2 x}(\cos (x)+2 \sin (x)) & \mathrm{e}^{2 x}(-1+\cos (x)+2 \sin (x)) \\
\mathrm{e}^{2 x}(-1+\cos (x)+3 \sin (x)) & -5 \mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x}(1-5 \sin (x))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 x}(\cos (x)+3 \sin (x)) & -5 \mathrm{e}^{2 x} \sin (x) & -5 \mathrm{e}^{2 x} \sin (x) \\
-\mathrm{e}^{2 x}(-1+\cos (x)+\sin (x)) & \mathrm{e}^{2 x}(\cos (x)+2 \sin (x)) & \mathrm{e}^{2 x}(-1+\cos (x)+2 \sin (x)) \\
\mathrm{e}^{2 x}(-1+\cos (x)+3 \sin (x)) & -5 \mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x}(1-5 \sin (x))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 x}(\cos (x)+3 \sin (x)) c_{1}-5 \mathrm{e}^{2 x} \sin (x) c_{2}-5 \mathrm{e}^{2 x} \sin (x) c_{3} \\
-\mathrm{e}^{2 x}(-1+\cos (x)+\sin (x)) c_{1}+\mathrm{e}^{2 x}(\cos (x)+2 \sin (x)) c_{2}+\mathrm{e}^{2 x}(-1+\cos (x)+2 \sin (x)) c_{3} \\
\mathrm{e}^{2 x}(-1+\cos (x)+3 \sin (x)) c_{1}-5 \mathrm{e}^{2 x} \sin (x) c_{2}+\mathrm{e}^{2 x}(1-5 \sin (x)) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(3 c_{1}-5 c_{2}-5 c_{3}\right) \sin (x)+c_{1} \cos (x)\right) \mathrm{e}^{2 x} \\
-\mathrm{e}^{2 x}\left(\left(c_{1}-c_{2}-c_{3}\right) \cos (x)+\left(c_{1}-2 c_{2}-2 c_{3}\right) \sin (x)-c_{1}+c_{3}\right) \\
\mathrm{e}^{2 x}\left(\left(3 c_{1}-5 c_{2}-5 c_{3}\right) \sin (x)+c_{1} \cos (x)-c_{1}+c_{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5-\lambda & -5 & -5 \\
-1 & 4-\lambda & 2 \\
3 & -5 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-6 \lambda^{2}+13 \lambda-10=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+i \\
& \lambda_{2}=2-i \\
& \lambda_{3}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
$2+i$	1	complex eigenvalue
$2-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\begin{array}{ccc}
3 & -5 & -5 \\
-1 & 2 & 2 \\
3 & -5 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
3 & -5 & -5 & 0 \\
-1 & 2 & 2 & 0 \\
3 & -5 & -5 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
3 & -5 & -5 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 0 \\
3 & -5 & -5 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3 & -5 & -5 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3 & -5 & -5 \\
0 & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]-(2-i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
3+i & -5 & -5 & 0 \\
-1 & 2+i & 2 & 0 \\
3 & -5 & -5+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{3}{10}-\frac{i}{10}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3+i & -5 & -5 & 0 \\
0 & \frac{1}{2}+\frac{3 i}{2} & \frac{1}{2}+\frac{i}{2} & 0 \\
3 & -5 & -5+i & 0
\end{array}\right] \\
R_{3}=R_{3}+\left(-\frac{9}{10}+\frac{3 i}{10}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3+i & -5 & -5 & 0 \\
0 & \frac{1}{2}+\frac{3 i}{2} & \frac{1}{2}+\frac{i}{2} & 0 \\
0 & -\frac{1}{2}-\frac{3 i}{2} & -\frac{1}{2}-\frac{i}{2} & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
3+i & -5 & -5 & 0 \\
0 & \frac{1}{2}+\frac{3 i}{2} & \frac{1}{2}+\frac{i}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3+i & -5 & -5 \\
0 & \frac{1}{2}+\frac{3 i}{2} & \frac{1}{2}+\frac{i}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-\frac{2}{5} t+\frac{1}{5} i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-\frac{2 t}{5}+\frac{\mathrm{I} t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-\frac{2}{5} t+\frac{1}{5} i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-\frac{2 t}{5}+\frac{\mathrm{I} t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
\frac{-\frac{2}{5} t+\frac{1}{5} i t}{t} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-\frac{2 t}{5}+\frac{\mathrm{I} t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{2}{5}+\frac{i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
t \\
-\frac{2 t}{5}+\frac{\mathrm{I} t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2+i \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=2+i$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]-(2+i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
3-i & -5 & -5 & 0 \\
-1 & 2-i & 2 & 0 \\
3 & -5 & -5-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{3}{10}+\frac{i}{10}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3-i & -5 & -5 & 0 \\
0 & \frac{1}{2}-\frac{3 i}{2} & \frac{1}{2}-\frac{i}{2} & 0 \\
3 & -5 & -5-i & 0
\end{array}\right] \\
R_{3}=R_{3}+\left(-\frac{9}{10}-\frac{3 i}{10}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3-i & -5 & -5 & 0 \\
0 & \frac{1}{2}-\frac{3 i}{2} & \frac{1}{2}-\frac{i}{2} & 0 \\
0 & -\frac{1}{2}+\frac{3 i}{2} & -\frac{1}{2}+\frac{i}{2} & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
& {\left[\begin{array}{ccc}
& -5 & -5 \\
0-i & \frac{1}{2}-\frac{3 i}{2} & \frac{1}{2}-\frac{i}{2}
\end{array}\right.} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3-i & -5 & -5 \\
0 & \frac{1}{2}-\frac{3 i}{2} & \frac{1}{2}-\frac{i}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-\frac{2}{5} t-\frac{1}{5} i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-\frac{2 t}{5}-\frac{\mathrm{I} t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-\frac{2}{5} t-\frac{1}{5} i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-\frac{2 t}{5}-\frac{\mathrm{I} t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
\frac{-\frac{2}{5} t-\frac{1}{5} i t}{t} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-\frac{2 t}{5}-\frac{\mathrm{I} t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{2}{5}-\frac{i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
t \\
-\frac{2 t}{5}-\frac{\mathrm{I} t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2-i \\
5
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$2-i$	1	1	No	$\left[\begin{array}{c}1 \\ -\frac{2}{5}-\frac{i}{5} \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}1 \\ -\frac{2}{5}+\frac{i}{5} \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{2 x} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] e^{2 x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{(2+i) x} \\
\left(-\frac{2}{5}-\frac{i}{5}\right) \mathrm{e}^{(2+i) x} \\
\mathrm{e}^{(2+i) x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{(2-i) x} \\
\left(-\frac{2}{5}+\frac{i}{5}\right) \mathrm{e}^{(2-i) x} \\
\mathrm{e}^{(2-i) x}
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{2 x} \\
\mathrm{e}^{2 x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{(2+i) x}+c_{2} \mathrm{e}^{(2-i) x} \\
\left(-\frac{2}{5}-\frac{i}{5}\right) c_{1} \mathrm{e}^{(2+i) x}+\left(-\frac{2}{5}+\frac{i}{5}\right) c_{2} \mathrm{e}^{(2-i) x}-c_{3} \mathrm{e}^{2 x} \\
c_{1} \mathrm{e}^{(2+i) x}+c_{2} \mathrm{e}^{(2-i) x}+c_{3} \mathrm{e}^{2 x}
\end{array}\right]
$$

19.10.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=5 y_{1}(x)-5 y_{2}(x)-5 y_{3}(x), y_{2}^{\prime}(x)=-y_{1}(x)+4 y_{2}(x)+2 y_{3}(x), y_{3}^{\prime}(x)=3 y_{1}(x)-5 y_{2}(x)-\right.
$$

- Define vector

$$
y_{\underline{\longrightarrow}}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\prime}(x)=\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right] \cdot y \underset{ }{\rightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow^{\prime}}(x)=A \cdot y \rightarrow(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right],\left[2-\mathrm{I},\left[\begin{array}{c}
1 \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[2+\mathrm{I},\left[\begin{array}{c}
1 \\
-\frac{2}{5}-\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{-}^{\rightarrow}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-\mathrm{I},\left[\begin{array}{c}
1 \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(2-\mathrm{I}) x} \cdot\left[\begin{array}{c}
1 \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{2 x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
1 \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\cos (x)-\mathrm{I} \sin (x) \\
\left(-\frac{2}{5}+\frac{\mathrm{I}}{5}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
y_{\xrightarrow{\rightarrow}}=c_{1} y^{\rightarrow}+c_{2} y{ }_{-}(x)+c_{3} y^{\rightarrow}{ }_{3}(x)
$$

- Substitute solutions into the general solution

$$
\underset{\rightarrow}{\rightarrow}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\cos (x) \\
-\frac{2 \cos (x)}{5}+\frac{\sin (x)}{5} \\
\cos (x)
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
-\sin (x) \\
\frac{2 \sin (x)}{5}+\frac{\cos (x)}{5} \\
-\sin (x)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{2 x}\left(c_{2} \cos (x)-c_{3} \sin (x)\right) \\
-\left(\frac{\left(2 c_{2}-c_{3}\right) \cos (x)}{5}+\frac{\left(-c_{2}-2 c_{3}\right) \sin (x)}{5}+c_{1}\right) \mathrm{e}^{2 x} \\
\mathrm{e}^{2 x}\left(c_{1}+c_{2} \cos (x)-c_{3} \sin (x)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=\mathrm{e}^{2 x}\left(c_{2} \cos (x)-c_{3} \sin (x)\right), y_{2}(x)=-\left(\frac{\left(2 c_{2}-c_{3}\right) \cos (x)}{5}+\frac{\left(-c_{2}-2 c_{3}\right) \sin (x)}{5}+c_{1}\right) \mathrm{e}^{2 x}, y_{3}(x)=\mathrm{e}^{2 x}\right.
$$

\checkmark Solution by Maple

Time used: 0.109 (sec). Leaf size: 71

```
dsolve([diff (y__1(x),x)=5*\mp@subsup{y}{__}{\prime}1(x)-5*\mp@subsup{y}{__}{\prime}2(x)-5*\mp@subsup{y}{___}{}3(x),\operatorname{diff}(\mp@subsup{y}{__}{\prime}2(x),x)=-1*\mp@subsup{y}{__}{\prime}1(x)+4*\mp@subsup{y}{_-}{\prime}2(x)+2
```

$$
\begin{aligned}
& y_{1}(x)=\mathrm{e}^{2 x}\left(\sin (x) c_{2}+\cos (x) c_{3}\right) \\
& y_{2}(x)=-\frac{\left(2 \sin (x) c_{2}-\sin (x) c_{3}+\cos (x) c_{2}+2 \cos (x) c_{3}-5 c_{1}\right) \mathrm{e}^{2 x}}{5} \\
& y_{3}(x)=\mathrm{e}^{2 x}\left(\sin (x) c_{2}+\cos (x) c_{3}-c_{1}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 109
DSolve $\left[\left\{y 11^{\prime}[x]==5 * y 1[x]-5 * y 2[x]-5 * y 3[x], y 2{ }^{\prime}[x]==-1 * y 1[x]+4 * y 2[x]+2 * y 3[x], y 3 '[x]==3 * y 1[x]-5 * y\right.\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow e^{2 x}\left(c_{1} \cos (x)+\left(3 c_{1}-5\left(c_{2}+c_{3}\right)\right) \sin (x)\right) \\
& \mathrm{y} 2(x) \rightarrow e^{2 x}\left(-c_{1}(\sin (x)+\cos (x)-1)+c_{3}(2 \sin (x)+\cos (x)-1)+c_{2}(2 \sin (x)+\cos (x))\right) \\
& \mathrm{y} 3(x) \rightarrow e^{2 x}\left(c_{1} \cos (x)+\left(3 c_{1}-5\left(c_{2}+c_{3}\right)\right) \sin (x)-c_{1}+c_{3}\right)
\end{aligned}
$$

19.11 problem 9

19.11.1 Solution using Matrix exponential method 2624
19.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2625
19.11.3 Maple step by step solution . 2633

Internal problem ID [12849]
Internal file name [OUTPUT/11501_Monday_November_06_2023_01_31_05_PM_39861667/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=4 y_{1}(x)+6 y_{2}(x)+6 y_{3}(x) \\
& y_{2}^{\prime}(x)=y_{1}(x)+3 y_{2}(x)+2 y_{3}(x) \\
& y_{3}^{\prime}(x)=-y_{1}(x)-4 y_{2}(x)-3 y_{3}(x)
\end{aligned}
$$

19.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{4 x} & \frac{6 \mathrm{e}^{4 x}}{5}-\frac{6 \mathrm{e}^{-x}}{5} & \frac{6 \mathrm{e}^{4 x}}{5}-\frac{6 \mathrm{e}^{-x}}{5} \\
\frac{\mathrm{e}^{4 x}}{3}-\frac{\mathrm{e}^{x}}{3} & -\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5}+\mathrm{e}^{x} & \frac{2 \mathrm{e}^{4 x}}{5}-\frac{2 \mathrm{e}^{-x}}{5} \\
-\frac{\mathrm{e}^{4 x}}{3}+\frac{\mathrm{e}^{x}}{3} & -\frac{2 \mathrm{e}^{4 x}}{5}-\mathrm{e}^{x}+\frac{7 \mathrm{e}^{-x}}{5} & \frac{7 \mathrm{e}^{-x}}{5}-\frac{2 \mathrm{e}^{4 x}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(x)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{4 x} & \frac{6 \mathrm{e}^{4 x}}{5}-\frac{6 \mathrm{e}^{-x}}{5} & \frac{6 \mathrm{e}^{4 x}}{5}-\frac{6 \mathrm{e}^{-x}}{5} \\
\frac{\mathrm{e}^{4 x}}{3}-\frac{\mathrm{e}^{x}}{3} & -\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5}+\mathrm{e}^{x} & \frac{2 \mathrm{e}^{4 x}}{5}-\frac{2 \mathrm{e}^{-x}}{5} \\
-\frac{\mathrm{e}^{4 x}}{3}+\frac{\mathrm{e}^{x}}{3} & -\frac{2 \mathrm{e}^{4 x}}{5}-\mathrm{e}^{x}+\frac{7 \mathrm{e}^{-x}}{5} & \frac{7 \mathrm{e}^{-x}}{5}-\frac{2 \mathrm{e}^{4 x}}{5}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& {\left[\mathrm{e}^{4 x} c_{1}+\left(\frac{6 \mathrm{e}^{4 x}}{5}-\frac{6 \mathrm{e}^{-x}}{5}\right) c_{2}+\left(\frac{6 \mathrm{e}^{4 x}}{5}-\frac{6 \mathrm{e}^{-x}}{5}\right) c_{3}\right.} \\
& =\left(\frac{\mathrm{e}^{4 x}}{3}-\frac{\mathrm{e}^{x}}{3}\right) c_{1}+\left(-\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{4 x}}{5}+\mathrm{e}^{x}\right) c_{2}+\left(\frac{2 \mathrm{e}^{4 x}}{5}-\frac{2 \mathrm{e}^{-x}}{5}\right) c_{3} \\
& {\left[\left(-\frac{\mathrm{e}^{4 x}}{3}+\frac{\mathrm{e}^{x}}{3}\right) c_{1}+\left(-\frac{2 \mathrm{e}^{4 x}}{5}-\mathrm{e}^{x}+\frac{7 \mathrm{e}^{-x}}{5}\right) c_{2}+\left(\frac{7 \mathrm{e}^{-x}}{5}-\frac{2 \mathrm{e}^{4 x}}{5}\right) c_{3}\right]} \\
& =\left[\begin{array}{c}
\frac{\left(5 c_{1}+6 c_{2}+6 c_{3}\right) \mathrm{e}^{4 x}}{5}-\frac{6 \mathrm{e}^{-x}\left(c_{2}+c_{3}\right)}{5} \\
\frac{\left(5 c_{1}+6 c_{2}+6 c_{3}\right) \mathrm{e}^{4 x}}{15}+\frac{2\left(-c_{2}-c_{3}\right) \mathrm{e}^{-x}}{5}-\frac{\mathrm{e}^{x}\left(c_{1}-3 c_{2}\right)}{3} \\
\frac{\left(-5 c_{1}-6 c_{2}-6 c_{3}\right) \mathrm{e}^{4 x}}{15}+\frac{7 \mathrm{e}^{-x}\left(c_{2}+c_{3}\right)}{5}+\frac{\mathrm{e}^{x}\left(c_{1}-3 c_{2}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
4-\lambda & 6 & 6 \\
1 & 3-\lambda & 2 \\
-1 & -4 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-4 \lambda^{2}-\lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =4 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
5 & 6 & 6 & 0 \\
1 & 4 & 2 & 0 \\
-1 & -4 & -2 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}-\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
5 & 6 & 6 & 0 \\
0 & \frac{14}{5} & \frac{4}{5} & 0 \\
-1 & -4 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
5 & 6 & 6 & 0 \\
0 & \frac{14}{5} & \frac{4}{5} & 0 \\
0 & -\frac{14}{5} & -\frac{4}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{lll|l}
5 & 6 & 6 & 0 \\
0 & \frac{14}{5} & \frac{4}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
5 & 6 & 6 \\
0 & \frac{14}{5} & \frac{4}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{6 t}{7}, v_{2}=-\frac{2 t}{7}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{6 t}{7} \\
-\frac{2 t}{7} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{6 t}{7} \\
-\frac{2 t}{7} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{6 t}{7} \\
-\frac{2 t}{7} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{6}{7} \\
-\frac{2}{7} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{6 t}{7} \\
-\frac{2 t}{7} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{6}{7} \\
-\frac{2}{7} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{6 t}{7} \\
-\frac{2 t}{7} \\
t
\end{array}\right]=\left[\begin{array}{c}
-6 \\
-2 \\
7
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right]-(1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
3 & 6 & 6 & 0 \\
1 & 2 & 2 & 0 \\
-1 & -4 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
3 & 6 & 6 & 0 \\
0 & 0 & 0 & 0 \\
-1 & -4 & -4 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
3 & 6 & 6 & 0 \\
0 & 0 & 0 & 0 \\
0 & -2 & -2 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
3 & 6 & 6 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3 & 6 & 6 \\
0 & -2 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=4$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right]-(4)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 6 & 6 & 0 \\
1 & -1 & 2 & 0 \\
-1 & -4 & -7 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & -1 & 2 & 0 \\
0 & 6 & 6 & 0 \\
-1 & -4 & -7 & 0
\end{array}\right]} \\
& R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 2 & 0 \\
0 & 6 & 6 & 0 \\
0 & -5 & -5 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{5 R_{2}}{6} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 2 & 0 \\
0 & 6 & 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 6 & 6 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-3 t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-3 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-3 t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-3 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
4	1	1	No	$\left[\begin{array}{c}-3 \\ -1 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}-\frac{6}{7} \\ -\frac{2}{7} \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{4 x} \\
& =\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right] e^{4 x}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{-x} \\
& =\left[\begin{array}{c}
-\frac{6}{7} \\
-\frac{2}{7} \\
1
\end{array}\right] e^{-x}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(x) & =\vec{v}_{3} e^{x} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] e^{x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-3 \mathrm{e}^{4 x} \\
-\mathrm{e}^{4 x} \\
\mathrm{e}^{4 x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{6 \mathrm{e}^{-x}}{7} \\
-\frac{2 \mathrm{e}^{-x}}{7} \\
\mathrm{e}^{-x}
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{x} \\
\mathrm{e}^{x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
-3 c_{1} \mathrm{e}^{4 x}-\frac{6 c_{2} e^{-x}}{7} \\
-c_{1} \mathrm{e}^{4 x}-\frac{2 c_{2} \mathrm{e}^{-x}}{7}-c_{3} \mathrm{e}^{x} \\
c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}
\end{array}\right]
$$

19.11.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=4 y_{1}(x)+6 y_{2}(x)+6 y_{3}(x), y_{2}^{\prime}(x)=y_{1}(x)+3 y_{2}(x)+2 y_{3}(x), y_{3}^{\prime}(x)=-y_{1}(x)-4 y_{2}(x)-3\right.
$$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right] \cdot y^{\rightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow}(x)=A \cdot y \xrightarrow{\rightarrow}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-1,\left[\begin{array}{c}
-\frac{6}{7} \\
-\frac{2}{7} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-\frac{6}{7} \\
-\frac{2}{7} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{-}^{\rightarrow}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{6}{7} \\
-\frac{2}{7} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y \longrightarrow_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[4,\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{3}=\mathrm{e}^{4 x} \cdot\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$y_{-}^{\rightarrow}=c_{1} y_{-}^{\rightarrow}+c_{2} y_{-}^{\rightarrow}+c_{3} y \xrightarrow{\rightarrow} 3$
- Substitute solutions into the general solution

$$
y^{\rightarrow}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{6}{7} \\
-\frac{2}{7} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+\mathrm{e}^{4 x} c_{3} \cdot\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
-\frac{6 c_{1} \mathrm{e}^{-x}}{7}-3 \mathrm{e}^{4 x} c_{3} \\
-\frac{2 c_{1} \mathrm{e}^{-x}}{7}-c_{2} \mathrm{e}^{x}-\mathrm{e}^{4 x} c_{3} \\
c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{4 x} c_{3}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{y_{1}(x)=-\frac{6 c_{1} \mathrm{e}^{-x}}{7}-3 \mathrm{e}^{4 x} c_{3}, y_{2}(x)=-\frac{2 c_{1} \mathrm{e}^{-x}}{7}-c_{2} \mathrm{e}^{x}-\mathrm{e}^{4 x} c_{3}, y_{3}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{4 x} c_{3}\right\}
$$

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 63

$$
\begin{aligned}
& y_{1}(x)=c_{2} \mathrm{e}^{4 x}+c_{3} \mathrm{e}^{-x} \\
& y_{2}(x)=\frac{c_{2} \mathrm{e}^{4 x}}{3}+\frac{c_{3} \mathrm{e}^{-x}}{3}+c_{1} \mathrm{e}^{x} \\
& y_{3}(x)=-\frac{7 c_{3} \mathrm{e}^{-x}}{6}-\frac{c_{2} \mathrm{e}^{4 x}}{3}-c_{1} \mathrm{e}^{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 145
DSolve $\left[\left\{y 11^{\prime}[x]==4 * y 1[x]+6 * y 2[x]+6 * y 3[x], y 2{ }^{\prime}[x]==1 * y 1[x]+3 * y 2[x]+2 * y 3[x], y 3{ }^{\prime}[x]==-1 * y 1[x]-4 * y\right.\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow \frac{1}{5} e^{-x}\left(\left(5 c_{1}+6\left(c_{2}+c_{3}\right)\right) e^{5 x}-6\left(c_{2}+c_{3}\right)\right) \\
& \mathrm{y} 2(x) \rightarrow \frac{1}{15} e^{-x}\left(-5\left(c_{1}-3 c_{2}\right) e^{2 x}+\left(5 c_{1}+6\left(c_{2}+c_{3}\right)\right) e^{5 x}-6\left(c_{2}+c_{3}\right)\right) \\
& \mathrm{y} 3(x) \rightarrow \frac{1}{3}\left(c_{1}-3 c_{2}\right) e^{x}+\frac{7}{5}\left(c_{2}+c_{3}\right) e^{-x}-\frac{1}{15}\left(5 c_{1}+6\left(c_{2}+c_{3}\right)\right) e^{4 x}
\end{aligned}
$$

19.12 problem 10

19.12.1 Solution using Matrix exponential method 2637
19.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2638
19.12.3 Maple step by step solution . 2646

Internal problem ID [12850]
Internal file name [OUTPUT/11502_Monday_November_06_2023_01_31_06_PM_61324329/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=y_{1}(x)+2 y_{2}(x)-3 y_{3}(x) \\
& y_{2}^{\prime}(x)=-3 y_{1}(x)+4 y_{2}(x)-2 y_{3}(x) \\
& y_{3}^{\prime}(x)=2 y_{1}(x)+y_{3}(x)
\end{aligned}
$$

19.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cccc}
\frac{11 \mathrm{e}^{2 x} \cos (3 x)}{9}-\frac{\mathrm{e}^{2 x} \sin (3 x)}{3}-\frac{2 \mathrm{e}^{2 x}}{9} & -\frac{2 \mathrm{e}^{2 x} \cos (3 x)}{9}+\frac{2 \mathrm{e}^{2 x} \sin (3 x)}{3}+\frac{2 \mathrm{e}^{2 x}}{9} & -\frac{2 \mathrm{e}^{2 x} \cos (3 x)}{9}-\mathrm{e}^{2 x} \sin (3 x)+\frac{2 \mathrm{e}^{2}}{9} \\
\frac{7 \mathrm{e}^{2 x} \cos (3 x)}{9}-\mathrm{e}^{2 x} \sin (3 x)-\frac{7 \mathrm{e}^{2 x}}{9} & \frac{2 \mathrm{e}^{2 x} \cos (3 x)}{9}+\frac{2 \mathrm{e}^{2 x} \sin (3 x)}{3}+\frac{7 \mathrm{e}^{2 x}}{9} & -\frac{7 \mathrm{e}^{2 x} \cos (3 x)}{9}-\frac{2 \mathrm{e}^{2 x} \sin (3 x)}{3}+\frac{7 \mathrm{e}^{2 x}}{9} \\
\frac{4 \mathrm{e}^{2 x} \cos (3 x)}{9}+\frac{2 \mathrm{e}^{2 x} \sin (3 x)}{3}-\frac{4 \mathrm{e}^{2 x}}{9} & -\frac{4 \mathrm{e}^{2 x} \cos (3 x)}{9}+\frac{4 \mathrm{e}^{2 x}}{9} & \frac{5 \mathrm{e}^{2 x} \cos (3 x)}{9}-\frac{\mathrm{e}^{2 x} \sin (3 x)}{3}+\frac{4 \mathrm{e}^{2 x}}{9} \\
& =\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}(-2+11 \cos (3 x)-3 \sin (3 x))}{9} & -\frac{2 \mathrm{e}^{2 x}(-1+\cos (3 x)-3 \sin (3 x))}{9} & -\frac{\mathrm{e}^{2 x}(-2+2 \cos (3 x)+9 \sin (3 x))}{9} \\
\frac{\mathrm{e}^{2 x}(-7+7 \cos (3 x)-9 \sin (3 x))}{9} & \frac{\mathrm{e}^{2 x}(7+2 \cos (3 x)+6 \sin (3 x))}{9} & -\frac{\mathrm{e}^{2 x}(-7+7 \cos (3 x)+6 \sin (3 x))}{9} \\
\frac{2 \mathrm{e}^{2 x}(-2+2 \cos (3 x)+3 \sin (3 x))}{9} & -\frac{4 \mathrm{e}^{2 x}(\cos (3 x)-1)}{9} & \frac{\mathrm{e}^{2 x}(4+5 \cos (3 x)-3 \sin (3 x))}{9}
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}(-2+11 \cos (3 x)-3 \sin (3 x))}{9} & -\frac{2 \mathrm{e}^{2 x}(-1+\cos (3 x)-3 \sin (3 x))}{9} & -\frac{\mathrm{e}^{2 x}(-2+2 \cos (3 x)+9 \sin (3 x))}{9} \\
\frac{\mathrm{e}^{2 x}(-7+7 \cos (3 x)-9 \sin (3 x))}{9} & \frac{\mathrm{e}^{2 x}(7+2 \cos (3 x)+6 \sin (3 x))}{9} & -\frac{\mathrm{e}^{2 x}(-7+7 \cos (3 x)+6 \sin (3 x))}{9} \\
\frac{2 \mathrm{e}^{2 x}(-2+2 \cos (3 x)+3 \sin (3 x))}{9} & -\frac{4 \mathrm{e}^{2 x}(\cos (3 x)-1)}{9} & \frac{\mathrm{e}^{2 x}(4+5 \cos (3 x)-3 \sin (3 x))}{9}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{2 x}(-2+11 \cos (3 x)-3 \sin (3 x)) c_{1}}{9}-\frac{2 \mathrm{e}^{2 x}(-1+\cos (3 x)-3 \sin (3 x)) c_{2}}{9}-\frac{\mathrm{e}^{2 x}(-2+2 \cos (3 x)+9 \sin (3 x)) c_{3}}{9} \\
\frac{\mathrm{e}^{2 x}(-7+7 \cos (3 x)-9 \sin (3 x)) c_{1}}{9}+\frac{\mathrm{e}^{2 x}(7+2 \cos (3 x)+6 \sin (3 x)) c_{2}}{9}-\frac{\mathrm{e}^{2 x}(-7+7 \cos (3 x)+6 \sin (3 x)) c_{3}}{9} \\
\frac{2 \mathrm{e}^{2 x}(-2+2 \cos (3 x)+3 \sin (3 x)) c_{1}}{9}-\frac{4 \mathrm{e}^{2 x}(\cos (3 x)-1) c_{2}}{9}+\frac{\mathrm{e}^{2 x}(4+5 \cos (3 x)-3 \sin (3 x)) c_{3}}{9}
\end{array}\right] \\
& {\left[\begin{array}{l}
\frac{11 \mathrm{e}^{2 x}\left(\left(c_{1}-\frac{2 c_{2}}{11}-\frac{2 c_{3}}{11}\right) \cos (3 x)+\frac{3\left(-c_{1}+2 c_{2}-3 c_{3}\right) \sin (3 x)}{11}-\frac{2 c_{1}}{11}+\frac{2 c_{2}}{11}+\frac{2 c_{3}}{11}\right)}{9} \\
\frac{7 \mathrm{e}^{2 x}\left(\left(c_{1}+\frac{2 c_{2}}{7}-c_{3}\right) \cos (3 x)+\frac{3\left(-3 c_{1}+2 c_{2}-2 c_{3}\right) \sin (3 x)}{7}-c_{1}+c_{2}+c_{3}\right)}{9} \\
\frac{4 \mathrm{e}^{2 x}\left(\left(c_{1}-c_{2}+\frac{5 c_{3}}{4}\right) \cos (3 x)+\left(\frac{\left.\left.3 c_{1}-\frac{3 c_{3}}{2}\right) \sin (3 x)-c_{1}+c_{2}+c_{3}\right)}{9}\right.\right.}{4}
\end{array}\right] }
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 2 & -3 \\
-3 & 4-\lambda & -2 \\
2 & 0 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-6 \lambda^{2}+21 \lambda-26=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+3 i \\
& \lambda_{2}=2-3 i \\
& \lambda_{3}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
$2-3 i$	1	complex eigenvalue
$2+3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 2 & -3 & 0 \\
-3 & 2 & -2 & 0 \\
2 & 0 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 2 & -3 & 0 \\
0 & -4 & 7 & 0 \\
2 & 0 & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 2 & -3 & 0 \\
0 & -4 & 7 & 0 \\
0 & 4 & -7 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 2 & -3 & 0 \\
0 & -4 & 7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 2 & -3 \\
0 & -4 & 7 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}, v_{2}=\frac{7 t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{7 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
\frac{7 t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{7 t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
\frac{7}{4} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{7 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{7}{4} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{7 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
7 \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right]-(2-3 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1+3 i & 2 & -3 & 0 \\
-3 & 2+3 i & -2 & 0 \\
2 & 0 & -1+3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{3}{10}-\frac{9 i}{10}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1+3 i & 2 & -3 & 0 \\
0 & \frac{7}{5}+\frac{6 i}{5} & -\frac{11}{10}+\frac{27 i}{10} & 0 \\
2 & 0 & -1+3 i & 0
\end{array}\right] \\
R_{3}=R_{3}+\left(\frac{1}{5}+\frac{3 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1+3 i & 2 & -3 & 0 \\
0 & \frac{7}{5}+\frac{6 i}{5} & -\frac{11}{10}+\frac{27 i}{10} & 0 \\
0 & \frac{2}{5}+\frac{6 i}{5} & -\frac{8}{5}+\frac{6 i}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}+\left(-\frac{10}{17}-\frac{6 i}{17}\right) R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-1+3 i & 2 & -3 & 0 \\
0 & \frac{7}{5}+\frac{6 i}{5} & -\frac{11}{10}+\frac{27 i}{10} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1+3 i & 2 & -3 \\
0 & \frac{7}{5}+\frac{6 i}{5} & -\frac{11}{10}+\frac{27 i}{10} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{3 i}{2}\right) t, v_{2}=-\frac{1}{2} t-\frac{3}{2} i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{3 \mathrm{I}}{2}\right) t \\
-\frac{t}{2}-\frac{3 \mathrm{I} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{3 i}{2}\right) t \\
-\frac{1}{2} t-\frac{3}{2} i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{3 \mathrm{I}}{2}\right) t \\
-\frac{t}{2}-\frac{3 \mathrm{I} t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{3 i}{2} \\
\frac{-\frac{1}{2} t-\frac{3}{2} i t}{t} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{3 \mathrm{I}}{2}\right) t \\
-\frac{t}{2}-\frac{3 \mathrm{I} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{3 i}{2} \\
-\frac{1}{2}-\frac{3 i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{3 \mathrm{I}}{2}\right) t \\
-\frac{t}{2}-\frac{3 \mathrm{I} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
1-3 i \\
-1-3 i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=2+3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right]-(2+3 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-1-3 i & 2 & -3 & 0 \\
-3 & 2-3 i & -2 & 0 \\
2 & 0 & -1-3 i & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\left(-\frac{3}{10}+\frac{9 i}{10}\right) R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1-3 i & 2 & -3 & 0 \\
0 & \frac{7}{5}-\frac{6 i}{5} & -\frac{11}{10}-\frac{27 i}{10} & 0 \\
2 & 0 & -1-3 i & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{3}=R_{3}+\left(\frac{1}{5}-\frac{3 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1-3 i & 2 & -3 & 0 \\
0 & \frac{7}{5}-\frac{6 i}{5} & -\frac{11}{10}-\frac{27 i}{10} & 0 \\
0 & \frac{2}{5}-\frac{6 i}{5} & -\frac{8}{5}-\frac{6 i}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}+\left(-\frac{10}{17}+\frac{6 i}{17}\right) R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-1-3 i & 2 & -3 & 0 \\
0 & \frac{7}{5}-\frac{6 i}{5} & -\frac{11}{10}-\frac{27 i}{10} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1-3 i & 2 & -3 \\
0 & \frac{7}{5}-\frac{6 i}{5} & -\frac{11}{10}-\frac{27 i}{10} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{3 i}{2}\right) t, v_{2}=-\frac{1}{2} t+\frac{3}{2} i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 \mathrm{I}}{2}\right) t \\
-\frac{t}{2}+\frac{3 \mathrm{I} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 i}{2}\right) t \\
-\frac{1}{2} t+\frac{3}{2} i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 \mathrm{I}}{2}\right) t \\
-\frac{t}{2}+\frac{3 \mathrm{I} t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{3 i}{2} \\
\frac{-\frac{1}{2} t+\frac{3}{2} i t}{t} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 \mathrm{I}}{2}\right) t \\
-\frac{t}{2}+\frac{3 \mathrm{I} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{3 i}{2} \\
-\frac{1}{2}+\frac{3 i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 \mathrm{I}}{2}\right) t \\
-\frac{t}{2}+\frac{3 \mathrm{I} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
1+3 i \\
-1+3 i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$2+3 i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}+\frac{3 i}{2} \\ -\frac{1}{2}+\frac{3 i}{2} \\ 1\end{array}\right]$
$2-3 i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}-\frac{3 i}{2} \\ -\frac{1}{2}-\frac{3 i}{2} \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ \frac{7}{4} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{2 x} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
\frac{7}{4} \\
1
\end{array}\right] e^{2 x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 i}{2}\right) \mathrm{e}^{(2+3 i) x} \\
\left(-\frac{1}{2}+\frac{3 i}{2}\right) \mathrm{e}^{(2+3 i) x} \\
\mathrm{e}^{(2+3 i) x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{3 i}{2}\right) \mathrm{e}^{(2-3 i) x} \\
\left(-\frac{1}{2}-\frac{3 i}{2}\right) \mathrm{e}^{(2-3 i) x} \\
\mathrm{e}^{(2-3 i) x}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{\mathrm{e}^{2 x}}{2} \\
\frac{7 \mathrm{e}^{2 x}}{4} \\
\mathrm{e}^{2 x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 i}{2}\right) c_{1} \mathrm{e}^{(2+3 i) x}+\left(\frac{1}{2}-\frac{3 i}{2}\right) c_{2} \mathrm{e}^{(2-3 i) x}+\frac{c_{3} \mathrm{e}^{2 x}}{2} \\
\left(-\frac{1}{2}+\frac{3 i}{2}\right) c_{1} \mathrm{e}^{(2+3 i) x}+\left(-\frac{1}{2}-\frac{3 i}{2}\right) c_{2} \mathrm{e}^{(2-3 i) x}+\frac{7 c_{3} \mathrm{e}^{2 x}}{4} \\
c_{1} \mathrm{e}^{(2+3 i) x}+c_{2} \mathrm{e}^{(2-3 i) x}+c_{3} \mathrm{e}^{2 x}
\end{array}\right]
$$

19.12.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=y_{1}(x)+2 y_{2}(x)-3 y_{3}(x), y_{2}^{\prime}(x)=-3 y_{1}(x)+4 y_{2}(x)-2 y_{3}(x), y_{3}^{\prime}(x)=2 y_{1}(x)+y_{3}(x)\right]
$$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow}(x)=\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right] \cdot y^{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y_{\underline{\prime}}(x)=\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right] \cdot \underline{\sim}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -3 \\
-3 & 4 & -2 \\
2 & 0 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow}(x)=A \cdot y \xrightarrow{\rightarrow}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{2} \\
\frac{7}{4} \\
1
\end{array}\right]\right],\left[2-3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{3 \mathrm{I}}{2} \\
-\frac{1}{2}-\frac{3 \mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[2+3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\frac{3 \mathrm{I}}{2} \\
-\frac{1}{2}+\frac{3 \mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{2} \\ \frac{7}{4} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
y^{\rightarrow}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
\frac{7}{4} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{3 \mathrm{I}}{2} \\
-\frac{1}{2}-\frac{3 \mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(2-3 \mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{3 \mathrm{I}}{2} \\
-\frac{1}{2}-\frac{3 \mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{2 x} \cdot(\cos (3 x)-\mathrm{I} \sin (3 x)) \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{3 \mathrm{I}}{2} \\
-\frac{1}{2}-\frac{3 \mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{3 \mathrm{I}}{2}\right)(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\left(-\frac{1}{2}-\frac{3 \mathrm{I}}{2}\right)(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\cos (3 x)-\mathrm{I} \sin (3 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[y{ }_{2}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{\cos (3 x)}{2}-\frac{3 \sin (3 x)}{2} \\
-\frac{\cos (3 x)}{2}-\frac{3 \sin (3 x)}{2} \\
\cos (3 x)
\end{array}\right], y{ }_{3}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
-\frac{\sin (3 x)}{2}-\frac{3 \cos (3 x)}{2} \\
\frac{\sin (3 x)}{2}-\frac{3 \cos (3 x)}{2} \\
-\sin (3 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
y^{\rightarrow}=c_{1} y{ }_{-}+c_{2} y{ }_{2}(x)+c_{3} y^{\rightarrow}{ }_{3}(x)
$$

- Substitute solutions into the general solution

$$
y^{\rightarrow}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
\frac{7}{4} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{\cos (3 x)}{2}-\frac{3 \sin (3 x)}{2} \\
-\frac{\cos (3 x)}{2}-\frac{3 \sin (3 x)}{2} \\
\cos (3 x)
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
-\frac{\sin (3 x)}{2}-\frac{3 \cos (3 x)}{2} \\
\frac{\sin (3 x)}{2}-\frac{3 \cos (3 x)}{2} \\
-\sin (3 x)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{2 x}\left(\left(c_{2}-3 c_{3}\right) \cos (3 x)+\left(-3 c_{2}-c_{3}\right) \sin (3 x)+c_{1}\right)}{2} \\
\frac{7 \mathrm{e}^{2 x}\left(\frac{2\left(-c_{2}-3 c_{3}\right) \cos (3 x)}{7}+\frac{2\left(-3 c_{2}+c_{3}\right) \sin (3 x)}{7}+c_{1}\right)}{4} \\
\mathrm{e}^{2 x}\left(c_{1}+c_{2} \cos (3 x)-c_{3} \sin (3 x)\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{y_{1}(x)=\frac{\mathrm{e}^{2 x}\left(\left(c_{2}-3 c_{3}\right) \cos (3 x)+\left(-3 c_{2}-c_{3}\right) \sin (3 x)+c_{1}\right)}{2}, y_{2}(x)=\frac{7 \mathrm{e}^{2 x}\left(\frac{2\left(-c_{2}-3 c_{3}\right) \cos (3 x)}{7}+\frac{2\left(-3 c_{2}+c_{3}\right) \sin (3 x)}{7}+c_{1}\right)}{4}, y_{3}(x)=\right.
$$

Solution by Maple

Time used: 0.047 (sec). Leaf size: 102

```
dsolve([diff(y__1 (x),x)=1*y__1(x)+2*y__2(x)-3*y__ 3(x), diff (y__ 2(x),x)=-3*y__ 1 (x)+4*y__ 2(x)-2
```

$$
\begin{aligned}
& y_{1}(x)=\frac{\mathrm{e}^{2 x}\left(3 \cos (3 x) c_{2}+\cos (3 x) c_{3}+\sin (3 x) c_{2}-3 \sin (3 x) c_{3}+c_{1}\right)}{2} \\
& y_{2}(x)=\frac{\mathrm{e}^{2 x}\left(6 \cos (3 x) c_{2}-2 \cos (3 x) c_{3}-2 \sin (3 x) c_{2}-6 \sin (3 x) c_{3}+7 c_{1}\right)}{4} \\
& y_{3}(x)=\mathrm{e}^{2 x}\left(c_{1}+\sin (3 x) c_{2}+\cos (3 x) c_{3}\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 176
DSolve $\left[\left\{y 11^{\prime}[x]==1 * y 1[x]+2 * y 2[x]-3 * y 3[x], y 2{ }^{\prime}[x]==-3 * y 1[x]+4 * y 2[x]-2 * y 3[x], y 3 '[x]==2 * y 1[x]+0 * y\right.\right.$
$\mathrm{y} 1(x) \rightarrow \frac{1}{9} e^{2 x}\left(\left(11 c_{1}-2\left(c_{2}+c_{3}\right)\right) \cos (3 x)-3\left(c_{1}-2 c_{2}+3 c_{3}\right) \sin (3 x)+2\left(-c_{1}+c_{2}+c_{3}\right)\right)$
$\mathrm{y} 2(x) \rightarrow \frac{1}{9} e^{2 x}\left(\left(7 c_{1}+2 c_{2}-7 c_{3}\right) \cos (3 x)+\left(-9 c_{1}+6 c_{2}-6 c_{3}\right) \sin (3 x)+7\left(-c_{1}+c_{2}+c_{3}\right)\right)$
$\mathrm{y} 3(x) \rightarrow \frac{1}{9} e^{2 x}\left(\left(4 c_{1}-4 c_{2}+5 c_{3}\right) \cos (3 x)+\left(6 c_{1}-3 c_{3}\right) \sin (3 x)+4\left(-c_{1}+c_{2}+c_{3}\right)\right)$

19.13 problem 11

19.13.1 Solution using Matrix exponential method 2650
19.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2651
19.13.3 Maple step by step solution . 2658

Internal problem ID [12851]
Internal file name [OUTPUT/11503_Monday_November_06_2023_01_31_06_PM_56194562/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=-2 y_{1}(x)-y_{2}(x)+y_{3}(x) \\
& y_{2}^{\prime}(x)=-y_{1}(x)-2 y_{2}(x)-y_{3}(x) \\
& y_{3}^{\prime}(x)=y_{1}(x)-y_{2}(x)-2 y_{3}(x)
\end{aligned}
$$

19.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3} & -\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3} & \frac{1}{3}-\frac{\mathrm{e}^{-3 x}}{3} \\
-\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3} & \frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3} & -\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3} \\
\frac{1}{3}-\frac{\mathrm{e}^{-3 x}}{3} & -\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3} & \frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3} & -\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3} & \frac{1}{3}-\frac{\mathrm{e}^{-3 x}}{3} \\
-\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3} & \frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3} & -\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3} \\
\frac{1}{3}-\frac{\mathrm{e}^{-3 x}}{3} & -\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3} & \frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3}\right) c_{1}+\left(-\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3}\right) c_{2}+\left(\frac{1}{3}-\frac{\mathrm{e}^{-3 x}}{3}\right) c_{3} \\
\left(-\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3}\right) c_{1}+\left(\frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3}\right) c_{2}+\left(-\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3}\right) c_{3} \\
\left(\frac{1}{3}-\frac{\mathrm{e}^{-3 x}}{3}\right) c_{1}+\left(-\frac{1}{3}+\frac{\mathrm{e}^{-3 x}}{3}\right) c_{2}+\left(\frac{2 \mathrm{e}^{-3 x}}{3}+\frac{1}{3}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(2 c_{1}+c_{2}-c_{3}\right) \mathrm{e}^{-3 x}}{3}+\frac{c_{1}}{3}-\frac{c_{2}}{3}+\frac{c_{3}}{3} \\
\frac{\left(c_{1}+2 c_{2}+c_{3}\right) \mathrm{e}^{-3 x}}{3}-\frac{c_{1}}{3}+\frac{c_{2}}{3}-\frac{c_{3}}{3} \\
\frac{\left(-c_{1}+c_{2}+2 c_{3}\right) \mathrm{e}^{-3 x}}{3}+\frac{c_{1}}{3}-\frac{c_{2}}{3}+\frac{c_{3}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2-\lambda & -1 & 1 \\
-1 & -2-\lambda & -1 \\
1 & -1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+6 \lambda^{2}+9 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]-(-3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & -1 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t-s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
t-s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
t-s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 & -1 & 1 & 0 \\
-1 & -2 & -1 & 0 \\
1 & -1 & -2 & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & 1 & 0 \\
0 & -\frac{3}{2} & -\frac{3}{2} & 0 \\
1 & -1 & -2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & 1 & 0 \\
0 & -\frac{3}{2} & -\frac{3}{2} & 0 \\
0 & -\frac{3}{2} & -\frac{3}{2} & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & 1 & 0 \\
0 & -\frac{3}{2} & -\frac{3}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & -1 & 1 \\
0 & -\frac{3}{2} & -\frac{3}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	1	1	No	$\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
-3	2	2	No	$\left[\begin{array}{cc}-1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

eigenvalue -3 is real and repated eigenvalue of multiplicity 2 .There are two possible cases that can happen. This is illustrated in this diagram

Figure 429: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{-3 x} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] e^{-3 x} \\
\vec{x}_{3}(x) & =\vec{v}_{3} e^{-3 x} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] e^{-3 x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)
$$

Which is written as

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-3 x} \\
0 \\
\mathrm{e}^{-3 x}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-3 x} \\
\mathrm{e}^{-3 x} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{2}+c_{3}\right) \mathrm{e}^{-3 x}+c_{1} \\
-c_{1}+c_{3} \mathrm{e}^{-3 x} \\
c_{1}+c_{2} \mathrm{e}^{-3 x}
\end{array}\right]
$$

19.13.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=-2 y_{1}(x)-y_{2}(x)+y_{3}(x), y_{2}^{\prime}(x)=-y_{1}(x)-2 y_{2}(x)-y_{3}(x), y_{3}^{\prime}(x)=y_{1}(x)-y_{2}(x)-2 y_{3}\right.
$$

- Define vector

$$
y^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y_{-}^{\rightarrow^{\prime}}(x)=\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right] \cdot y \underset{\sim}{\rightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow^{\prime}}(x)=A \cdot y \rightarrow \quad(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right],\left[-3,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-3,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue -3

$$
{\underset{-1}{ }}^{\rightarrow}(x)=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-3$ is the eigenvalue, an $y{ }_{-2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- Substitute $y \xrightarrow{\rightarrow}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
－Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

－Condition \vec{p} must meet for $y_{-}{ }_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

－Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -3

$$
\left(\left[\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]-(-3) \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

－\quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]$
－Second solution from eigenvalue－ 3

$$
y_{2}(x)=\mathrm{e}^{-3 x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

－Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

－Solution to homogeneous system from eigenpair

$$
{\underset{-}{3}}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

－General solution to the system of ODEs

$$
y_{\breve{ }}^{\overrightarrow{ }}=c_{1} y_{乙_{1}}(x)+c_{2} y_{乙}(x)+c_{3} y_{乙_{3}}
$$

－Substitute solutions into the general solution

$$
y^{\rightarrow}=c_{1} \mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-3 x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{3} \\
-c_{3} \\
c_{3}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
\left((-x-1) c_{2}-c_{1}\right) \mathrm{e}^{-3 x}+c_{3} \\
-c_{3} \\
\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+c_{3}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{y_{1}(x)=\left((-x-1) c_{2}-c_{1}\right) \mathrm{e}^{-3 x}+c_{3}, y_{2}(x)=-c_{3}, y_{3}(x)=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+c_{3}\right\}
$$

Solution by Maple
Time used: 0.047 (sec). Leaf size: 51

$$
\begin{aligned}
& \begin{array}{l}
y_{1}(x)=c_{2}+c_{3} \mathrm{e}^{-3 x} \\
y_{2}(x)=-c_{2}-c_{3} \mathrm{e}^{-3 x}+c_{1} \mathrm{e}^{-3 x} \\
y_{3}(x)=-2 c_{3} \mathrm{e}^{-3 x}+c_{2}+c_{1} \mathrm{e}^{-3 x}
\end{array}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 130
DSolve [\{y1' $[x]==-2 * y 1[x]-1 * y 2[x]+1 * y 3[x], y 2{ }^{\prime}[x]==-1 * y 1[x]-2 * y 2[x]-1 * y 3[x], y 3 '[x]==1 * y 1[x]-1 *$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow \frac{1}{3} e^{-3 x}\left(c_{1}\left(e^{3 x}+2\right)-\left(c_{2}-c_{3}\right)\left(e^{3 x}-1\right)\right) \\
& \mathrm{y} 2(x) \rightarrow \frac{1}{3} e^{-3 x}\left(-\left(c_{1}\left(e^{3 x}-1\right)\right)+c_{2}\left(e^{3 x}+2\right)-c_{3}\left(e^{3 x}-1\right)\right) \\
& \mathrm{y} 3(x) \rightarrow \frac{1}{3} e^{-3 x}\left(c_{1}\left(e^{3 x}-1\right)-c_{2}\left(e^{3 x}-1\right)+c_{3}\left(e^{3 x}+2\right)\right)
\end{aligned}
$$

19.14 problem 12

19.14.1 Solution using Matrix exponential method 2662
19.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2663
19.14.3 Maple step by step solution . 2670

Internal problem ID [12852]
Internal file name [OUTPUT/11504_Monday_November_06_2023_01_31_07_PM_37422183/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
y_{1}^{\prime}(x) & =y_{1}(x)+y_{2}(x)+2 y_{3}(x) \\
y_{2}^{\prime}(x) & =y_{1}(x)+y_{2}(x)+2 y_{3}(x) \\
y_{3}^{\prime}(x) & =2 y_{1}(x)+2 y_{2}(x)+4 y_{3}(x)
\end{aligned}
$$

19.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{5}{6}+\frac{\mathrm{e}^{6 x}}{6} & \frac{\mathrm{e}^{6 x}}{6}-\frac{1}{6} & \frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3} \\
\frac{\mathrm{e}^{6 x}}{6}-\frac{1}{6} & \frac{5}{6}+\frac{\mathrm{e}^{6 x}}{6} & \frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3} \\
\frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3} & \frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3} & \frac{1}{3}+\frac{2 \mathrm{e}^{6 x}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{5}{6}+\frac{\mathrm{e}^{6 x}}{6} & \frac{\mathrm{e}^{6 x}}{6}-\frac{1}{6} & \frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3} \\
\frac{\mathrm{e}^{6 x}}{6}-\frac{1}{6} & \frac{5}{6}+\frac{\mathrm{e}^{6 x}}{6} & \frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3} \\
\frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3} & \frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3} & \frac{1}{3}+\frac{2 \mathrm{e}^{6 x}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{5}{6}+\frac{\mathrm{e}^{6 x}}{6}\right) c_{1}+\left(\frac{\mathrm{e}^{6 x}}{6}-\frac{1}{6}\right) c_{2}+\left(\frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3}\right) c_{3} \\
\left(\frac{\mathrm{e}^{6 x}}{6}-\frac{1}{6}\right) c_{1}+\left(\frac{5}{6}+\frac{\mathrm{e}^{6 x}}{6}\right) c_{2}+\left(\frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3}\right) c_{3} \\
\left(\frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{6 x}}{3}-\frac{1}{3}\right) c_{2}+\left(\frac{1}{3}+\frac{2 \mathrm{e}^{6 x}}{3}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(c_{1}+c_{2}+2 c_{3}\right) \mathrm{e}^{6 x}}{6}+\frac{5 c_{1}}{6}-\frac{c_{2}}{6}-\frac{c_{3}}{3} \\
\frac{\left(c_{1}+c_{2}+2 c_{3}\right) \mathrm{e}^{6 x}}{6}-\frac{c_{1}}{6}+\frac{5 c_{2}}{6}-\frac{c_{3}}{3} \\
\frac{\left(c_{1}+c_{2}+2 c_{3}\right) \mathrm{e}^{6 x}}{3}-\frac{c_{1}}{3}-\frac{c_{2}}{3}+\frac{c_{3}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 1 & 2 \\
1 & 1-\lambda & 2 \\
2 & 2 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-6 \lambda^{2}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=6
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
6	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
1 & 1 & 2 & 0 \\
2 & 2 & 4 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
2 & 2 & 4 & 0
\end{array}\right] \\
R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t-2 s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t-2 s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-t-2 s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t-2 s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t-2 s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right]-(6)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-5 & 1 & 2 & 0 \\
1 & -5 & 2 & 0 \\
2 & 2 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 1 & 2 & 0 \\
0 & -\frac{24}{5} & \frac{12}{5} & 0 \\
2 & 2 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{2 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 1 & 2 & 0 \\
0 & -\frac{24}{5} & \frac{12}{5} & 0 \\
0 & \frac{12}{5} & -\frac{6}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 1 & 2 & 0 \\
0 & -\frac{24}{5} & \frac{12}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-5 & 1 & 2 \\
0 & -\frac{24}{5} & \frac{12}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}, v_{2}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	2	No	$\left[\begin{array}{cc}-2 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
6	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 430: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] e^{0} \\
\vec{x}_{2}(x) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(x) & =\vec{v}_{3} e^{6 x} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right] e^{6 x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)
$$

Which is written as

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{\mathrm{e}^{6 x}}{2} \\
\frac{\mathrm{e}^{6 x}}{2} \\
\mathrm{e}^{6 x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}-c_{2}+\frac{c_{3} e^{6 x}}{2} \\
c_{2}+\frac{c_{3} e^{6 x}}{2} \\
c_{1}+c_{3} \mathrm{e}^{6 x}
\end{array}\right]
$$

19.14.3 Maple step by step solution

Let's solve
$\left[y_{1}^{\prime}(x)=y_{1}(x)+y_{2}(x)+2 y_{3}(x), y_{2}^{\prime}(x)=y_{1}(x)+y_{2}(x)+2 y_{3}(x), y_{3}^{\prime}(x)=2 y_{1}(x)+2 y_{2}(x)+4 y_{3}(x\right.$

- Define vector

$$
\underline{\longrightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right] \cdot y^{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y^{\rightarrow \prime}(x)=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right] \cdot y^{\rightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow^{\prime}}(x)=A \cdot y \rightarrow \quad(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[6,\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y^{\rightarrow}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{-}^{\rightarrow}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[6,\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
y_{3}=\mathrm{e}^{6 x} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
y^{\rightarrow}=c_{1} y^{\rightarrow}+c_{2} y^{\rightarrow} 2+c_{3} y \rightarrow{ }_{3}
$$

- Substitute solutions into the general solution

$$
y^{\rightarrow}=c_{3} \mathrm{e}^{6 x} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-c_{2}-2 c_{1} \\
c_{2} \\
c_{1}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}-c_{2}+\frac{c_{3} e^{6 x}}{2} \\
c_{2}+\frac{c_{3} \mathrm{e}^{6 x}}{2} \\
c_{1}+c_{3} \mathrm{e}^{6 x}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{y_{1}(x)=-2 c_{1}-c_{2}+\frac{c_{3} \mathrm{e}^{6 x}}{2}, y_{2}(x)=c_{2}+\frac{c_{3} e^{6 x}}{2}, y_{3}(x)=c_{1}+c_{3} \mathrm{e}^{6 x}\right\}
$$

Solution by Maple
Time used: 0.032 (sec). Leaf size: 42

```
dsolve([diff(y__1(x),x)=1*y__1(x)+1*\mp@subsup{y}{__}{\prime2}2(x)+2*\mp@subsup{y}{__}{\prime}3(x),\operatorname{diff}(\mp@subsup{y}{__}{\prime}2(x),x)=1*y__1 (x)+1*y__2(x)+2*
```

$$
\begin{aligned}
& y_{1}(x)=c_{2}+c_{3} \mathrm{e}^{6 x} \\
& y_{2}(x)=c_{2}+c_{3} \mathrm{e}^{6 x}+c_{1} \\
& y_{3}(x)=2 c_{3} \mathrm{e}^{6 x}-c_{2}-\frac{c_{1}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 114
DSolve $\left[\left\{y 11^{\prime}[x]==1 * y 1[x]+1 * y 2[x]+2 * y 3[x], y 2{ }^{\prime}[x]==1 * y 1[x]+1 * y 2[x]+2 * y 3[x], y 3 '[x]==2 * y 1[x]+2 * y 2\right.\right.$

$$
\begin{aligned}
\mathrm{y} 1(x) & \rightarrow \frac{1}{6}\left(c_{1}\left(e^{6 x}+5\right)+\left(c_{2}+2 c_{3}\right)\left(e^{6 x}-1\right)\right) \\
\mathrm{y} 2(x) & \rightarrow \frac{1}{6}\left(c_{1}\left(e^{6 x}-1\right)+c_{2}\left(e^{6 x}+5\right)+2 c_{3}\left(e^{6 x}-1\right)\right) \\
\mathrm{y} 3(x) & \rightarrow \frac{1}{3}\left(c_{1}\left(e^{6 x}-1\right)+c_{2}\left(e^{6 x}-1\right)+c_{3}\left(2 e^{6 x}+1\right)\right)
\end{aligned}
$$

19.15 problem 13

19.15.1 Solution using Matrix exponential method 2673
19.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2674
19.15.3 Maple step by step solution . 2685

Internal problem ID [12853]
Internal file name [OUTPUT/11505_Monday_November_06_2023_01_31_07_PM_88694947/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
y_{1}^{\prime}(x) & =2 y_{1}(x)+y_{2}(x) \\
y_{2}^{\prime}(x) & =-y_{1}(x)+2 y_{2}(x) \\
y_{3}^{\prime}(x) & =3 y_{3}(x)-4 y_{4}(x) \\
y_{4}^{\prime}(x) & =4 y_{3}(x)+3 y_{4}(x)
\end{aligned}
$$

19.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x) \\
y_{4}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{2 x} \cos (x) & \mathrm{e}^{2 x} \sin (x) & 0 & 0 \\
-\mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x} \cos (x) & 0 & 0 \\
0 & 0 & \mathrm{e}^{3 x} \cos (4 x) & -\mathrm{e}^{3 x} \sin (4 x) \\
0 & 0 & \mathrm{e}^{3 x} \sin (4 x) & \mathrm{e}^{3 x} \cos (4 x)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 x} \cos (x) & \mathrm{e}^{2 x} \sin (x) & 0 \\
-\mathrm{e}^{2 x} \sin (x) & \mathrm{e}^{2 x} \cos (x) & 0 \\
0 & 0 & \mathrm{e}^{3 x} \cos (4 x) \\
0 & -\mathrm{e}^{3 x} \sin (4 x) \\
0 & 0 & \mathrm{e}^{3 x} \sin (4 x) \\
\mathrm{e}^{3 x} \cos (4 x)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 x} \cos (x) c_{1}+\mathrm{e}^{2 x} \sin (x) c_{2} \\
-\mathrm{e}^{2 x} \sin (x) c_{1}+\mathrm{e}^{2 x} \cos (x) c_{2} \\
\mathrm{e}^{3 x} \cos (4 x) c_{3}-\mathrm{e}^{3 x} \sin (4 x) c_{4} \\
\mathrm{e}^{3 x} \sin (4 x) c_{3}+\mathrm{e}^{3 x} \cos (4 x) c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 x}\left(\cos (x) c_{1}+\sin (x) c_{2}\right) \\
-\mathrm{e}^{2 x}\left(\sin (x) c_{1}-\cos (x) c_{2}\right) \\
\mathrm{e}^{3 x}\left(\cos (4 x) c_{3}-\sin (4 x) c_{4}\right) \\
\mathrm{e}^{3 x}\left(\sin (4 x) c_{3}+\cos (4 x) c_{4}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.
19.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x) \\
y_{4}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2-\lambda & 1 & 0 & 0 \\
-1 & 2-\lambda & 0 & 0 \\
0 & 0 & 3-\lambda & -4 \\
0 & 0 & 4 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-10 \lambda^{3}+54 \lambda^{2}-130 \lambda+125=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+i \\
& \lambda_{2}=2-i \\
& \lambda_{3}=3+4 i \\
& \lambda_{4}=3-4 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$3+4 i$	1	complex eigenvalue
$3-4 i$	1	complex eigenvalue
$2+i$	1	complex eigenvalue
$2-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
{\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]-(2-i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] } & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
i & 1 & 0 & 0 & 0 \\
-1 & i & 0 & 0 & 0 \\
0 & 0 & 1+i & -4 & 0 \\
0 & 0 & 4 & 1+i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
i & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1+i & -4 & 0 \\
0 & 0 & 4 & 1+i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{cccc|c}
i & 1 & 0 & 0 & 0 \\
0 & 0 & 1+i & -4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 1+i & 0
\end{array}\right]
$$

$$
R_{4}=R_{4}+(-2+2 i) R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
i & 1 & 0 & 0 & 0 \\
0 & 0 & 1+i & -4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 9-7 i & 0
\end{array}\right]
$$

Since the current pivot $A(3,4)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
i & 1 & 0 & 0 & 0 \\
0 & 0 & 1+i & -4 & 0 \\
0 & 0 & 0 & 9-7 i & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
i & 1 & 0 & 0 \\
0 & 0 & 1+i & -4 \\
0 & 0 & 0 & 9-7 i \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
i t \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
i \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
i \\
1 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]\right. & -(2+i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-i & 1 & 0 & 0 & 0 \\
-1 & -i & 0 & 0 & 0 \\
0 & 0 & 1-i & -4 & 0 \\
0 & 0 & 4 & 1-i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-i & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1-i & -4 & 0 \\
0 & 0 & 4 & 1-i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-i & 1 & 0 & 0 & 0 \\
0 & 0 & 1-i & -4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 1-i & 0
\end{array}\right]} \\
& R_{4}=R_{4}+(-2-2 i) R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-i & 1 & 0 & 0 & 0 \\
0 & 0 & 1-i & -4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 9+7 i & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(3,4)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
-i & 1 & 0 & 0 & 0 \\
0 & 0 & 1-i & -4 & 0 \\
0 & 0 & 0 & 9+7 i & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-i & 1 & 0 & 0 \\
0 & 0 & 1-i & -4 \\
0 & 0 & 0 & 9+7 i \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-i \\
1 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=3-4 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
\left.\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]-(3-4 i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{gathered}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
-1+4 i & 1 & 0 & 0 & 0 \\
-1 & -1+4 i & 0 & 0 & 0 \\
0 & 0 & 4 i & -4 & 0 \\
0 & 0 & 4 & 4 i & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+\left(-\frac{1}{17}-\frac{4 i}{17}\right) R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1+4 i & 1 & 0 & 0 & 0 \\
0 & -\frac{18}{17}+\frac{64 i}{17} & 0 & 0 & 0 \\
0 & 0 & 4 i & -4 & 0 \\
0 & 0 & 4 & 4 i & 0
\end{array}\right] \\
R_{4}=i R_{3}+R_{4} \Longrightarrow\left[\begin{array}{cccc|c}
-1+4 i & 1 & 0 & 0 & 0 \\
0 & -\frac{18}{17}+\frac{64 i}{17} & 0 & 0 & 0 \\
0 & 0 & 4 i & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-1+4 i & 1 & 0 & 0 \\
0 & -\frac{18}{17}+\frac{64 i}{17} & 0 & 0 \\
0 & 0 & 4 i & -4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{3}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
0 \\
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=3+4 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]-(3+4 i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
-1-4 i & 1 & 0 & 0 \\
-1 & -1-4 i & 0 & 0 \\
0 & 0 & -4 i & -4 \\
0 & 0 & 4 & -4 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-1-4 i & 1 & 0 & 0 & 0 \\
-1 & -1-4 i & 0 & 0 & 0 \\
0 & 0 & -4 i & -4 & 0 \\
0 & 0 & 4 & -4 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{17}+\frac{4 i}{17}\right) R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1-4 i & 1 & 0 & 0 & 0 \\
0 & -\frac{18}{17}-\frac{64 i}{17} & 0 & 0 & 0 \\
0 & 0 & -4 i & -4 & 0 \\
0 & 0 & 4 & -4 i & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{4}=-i R_{3}+R_{4} \Longrightarrow\left[\begin{array}{cccc|c}
-1-4 i & 1 & 0 & 0 & 0 \\
0 & -\frac{18}{17}-\frac{64 i}{17} & 0 & 0 & 0 \\
0 & 0 & -4 i & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-1-4 i & 1 & 0 & 0 \\
0 & -\frac{18}{17}-\frac{64 i}{17} & 0 & 0 \\
0 & 0 & -4 i & -4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{3}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
0 \\
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
0 \\
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
0 \\
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
0 \\
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$2+i$	1	1	No	$\left[\begin{array}{c}-i \\ 1 \\ 0 \\ 0\end{array}\right]$
$2-i$	1	1	No	$\left[\begin{array}{l}i \\ 1 \\ 0 \\ 0\end{array}\right]$
$3+4 i$	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ i \\ 1\end{array}\right]$
$3-4 i$	1	1	No	$\left[\begin{array}{c}0 \\ 0 \\ -i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)+c_{4} \vec{x}_{4}(x)
$$

Which is written as

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \mathrm{e}^{(2+i) x} \\
\mathrm{e}^{(2+i) x} \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
i \mathrm{e}^{(2-i) x} \\
\mathrm{e}^{(2-i) x} \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
i \mathrm{e}^{(3+4 i) x} \\
\mathrm{e}^{(3+4 i) x}
\end{array}\right]+c_{4}\left[\begin{array}{c}
0 \\
0 \\
-i \mathrm{e}^{(3-4 i) x} \\
\mathrm{e}^{(3-4 i) x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{1} \mathrm{e}^{(2+i) x}-c_{2} \mathrm{e}^{(2-i) x}\right) \\
c_{1} \mathrm{e}^{(2+i) x}+c_{2} \mathrm{e}^{(2-i) x} \\
-i\left(c_{4} \mathrm{e}^{(3-4 i) x}-c_{3} \mathrm{e}^{(3+4 i) x}\right) \\
c_{3} \mathrm{e}^{(3+4 i) x}+c_{4} \mathrm{e}^{(3-4 i) x}
\end{array}\right]
$$

19.15.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=2 y_{1}(x)+y_{2}(x), y_{2}^{\prime}(x)=-y_{1}(x)+2 y_{2}(x), y_{3}^{\prime}(x)=3 y_{3}(x)-4 y_{4}(x), y_{4}^{\prime}(x)=4 y_{3}(x)+3 y_{4}\right.
$$

- Define vector

$$
\xrightarrow{\longrightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow \prime}(x)=\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right] \cdot \underline{\sim}^{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y \rightarrow^{\prime}(x)=\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right] \cdot y \rightarrow(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow}{ }^{\prime}(x)=A \cdot y^{\rightarrow}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2-\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]\right],\left[2+\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]\right],\left[3-4 \mathrm{I},\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{I} \\
1
\end{array}\right]\right],\left[3+4 \mathrm{I},\left[\begin{array}{c}
0 \\
0 \\
\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-\mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(2-\mathrm{I}) x} \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{2 x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x) \\
0 \\
0
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[y \longrightarrow_{1}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
0 \\
0
\end{array}\right], y{ }_{2}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\cos (x) \\
-\sin (x) \\
0 \\
0
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[3-4 \mathrm{I},\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(3-4 \mathrm{I}) x} \cdot\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{3 x} \cdot(\cos (4 x)-\mathrm{I} \sin (4 x)) \cdot\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{I}(\cos (4 x)-\mathrm{I} \sin (4 x)) \\
\cos (4 x)-\mathrm{I} \sin (4 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
y_{\square}^{\rightarrow}=c_{1} y^{\rightarrow} 1(x)+c_{2} y_{\longrightarrow_{2}}(x)+c_{3} y_{\longrightarrow_{-}}^{\rightarrow}(x)+c_{4} y_{乙_{-}}^{\rightarrow}(x)
$$

- Substitute solutions into the general solution

$$
y \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
0 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\cos (x) \\
-\sin (x) \\
0 \\
0
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
0 \\
0 \\
-\sin (4 x) \\
\cos (4 x)
\end{array}\right]+c_{4} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
0 \\
0 \\
-\cos (4 x) \\
-\sin (4 x)
\end{array}\right.
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{2 x}\left(\sin (x) c_{1}+c_{2} \cos (x)\right) \\
\mathrm{e}^{2 x}\left(c_{1} \cos (x)-c_{2} \sin (x)\right) \\
-\mathrm{e}^{3 x}\left(c_{4} \cos (4 x)+c_{3} \sin (4 x)\right) \\
\mathrm{e}^{3 x}\left(c_{3} \cos (4 x)-c_{4} \sin (4 x)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs $\left\{y_{1}(x)=\mathrm{e}^{2 x}\left(\sin (x) c_{1}+c_{2} \cos (x)\right), y_{2}(x)=\mathrm{e}^{2 x}\left(c_{1} \cos (x)-c_{2} \sin (x)\right), y_{3}(x)=-\mathrm{e}^{3 x}\left(c_{4} \cos (4 x)+\right.\right.$
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 82
dsolve ([diff $\left(y_{-} 1(x), x\right)=2 * y_{\neq-} 1(x)+1 * y_{\neq-} 2(x)+0 * y_{\neq-} 3(x)+0 * y_{\neq-} 4(x), \operatorname{diff}\left(y_{\neq-} 2(x), x\right)=-1 * y_{-} 1(x)+2$

$$
\begin{aligned}
& y_{1}(x)=\mathrm{e}^{2 x}\left(\sin (x) c_{3}+c_{4} \cos (x)\right) \\
& y_{2}(x)=-\mathrm{e}^{2 x}\left(\sin (x) c_{4}-\cos (x) c_{3}\right) \\
& y_{3}(x)=\mathrm{e}^{3 x}\left(\cos (4 x) c_{2}+\sin (4 x) c_{1}\right) \\
& y_{4}(x)=-\mathrm{e}^{3 x}\left(\cos (4 x) c_{1}-\sin (4 x) c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 92
DSolve $\left[\left\{y 1^{\prime}[x]==2 * y 1[x]+1 * y 2[x]+0 * y 3[x]+0 * y 4[x], y 2{ }^{\prime}[x]==-1 * y 1[x]+2 * y 2[x]+0 * y 3[x]+0 * y 4[x], y 3{ }^{\prime}\right.\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow e^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \\
& \mathrm{y} 2(x) \rightarrow e^{2 x}\left(c_{2} \cos (x)-c_{1} \sin (x)\right) \\
& \mathrm{y} 3(x) \rightarrow e^{3 x}\left(c_{3} \cos (4 x)-c_{4} \sin (4 x)\right) \\
& \mathrm{y} 4(x) \rightarrow e^{3 x}\left(c_{4} \cos (4 x)+c_{3} \sin (4 x)\right)
\end{aligned}
$$

19.16 problem 14

19.16.1 Solution using Matrix exponential method 2690
19.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2691
19.16.3 Maple step by step solution . 2705

Internal problem ID [12854]
Internal file name [OUTPUT/11506_Monday_November_06_2023_01_31_08_PM_2243585/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=y_{2}(x) \\
& y_{2}^{\prime}(x)=-3 y_{1}(x)+2 y_{3}(x) \\
& y_{3}^{\prime}(x)=y_{4}(x) \\
& y_{4}^{\prime}(x)=2 y_{1}(x)-5 y_{3}(x)
\end{aligned}
$$

19.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x) \\
y_{4}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\text { Expression too large to display } \\
& =\text { Expression too large to display }
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\text { Expression too large to display }\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\text { Expression too large to display } \\
& =\text { Expression too large to display }
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x) \\
y_{4}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-\lambda & 1 & 0 & 0 \\
-3 & -\lambda & 2 & 0 \\
0 & 0 & -\lambda & 1 \\
2 & 0 & -5 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}+8 \lambda^{2}+11=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{4+\sqrt{5}} \\
& \lambda_{2}=-i \sqrt{4+\sqrt{5}} \\
& \lambda_{3}=i \sqrt{4-\sqrt{5}} \\
& \lambda_{4}=-i \sqrt{4-\sqrt{5}}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-i \sqrt{4-\sqrt{5}}$	1	complex eigenvalue
$i \sqrt{4+\sqrt{5}}$	1	complex eigenvalue
$i \sqrt{4-\sqrt{5}}$	1	complex eigenvalue
$-i \sqrt{4+\sqrt{5}}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i \sqrt{4-\sqrt{5}}$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right]-(-i \sqrt{4-\sqrt{5}})\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{aligned}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
-3 & i \sqrt{4-\sqrt{5}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4-\sqrt{5}} & 1 & 0 \\
2 & 0 & -5 & i \sqrt{4-\sqrt{5}} & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{3 i R_{1}}{\sqrt{4-\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|l}
i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4-\sqrt{5}} & 1 & 0 \\
2 & 0 & -5 & i \sqrt{4-\sqrt{5}} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{2 i R_{1}}{\sqrt{4-\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|l}
\\
i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4-\sqrt{5}} & 1 & 0 \\
0 & \frac{2 i}{\sqrt{4-\sqrt{5}}} & -5 & i \sqrt{4-\sqrt{5}} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{4}=R_{4}+\frac{2 R_{2}}{\sqrt{5}-1} \Longrightarrow\left[\begin{array}{cccc|c}
i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4-\sqrt{5}} & 1 & 0 \\
0 & 0 & \frac{-5 \sqrt{5}+9}{\sqrt{5}-1} & i \sqrt{4-\sqrt{5}} & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{i(-5 \sqrt{5}+9) R_{3}}{(\sqrt{5}-1) \sqrt{4-\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4-\sqrt{5}} & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 \\
0 & 0 & i \sqrt{4-\sqrt{5}} & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 i t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)}, v_{2}=\frac{2 t}{\sqrt{5}-1}, v_{3}=\frac{i t}{\sqrt{4-\sqrt{5}}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 \mathrm{I} t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{1 t}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 i t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{i t}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 \mathrm{I} t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{\mathrm{It}}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2 i}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2}{\sqrt{5}-1} \\
\frac{i}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 \mathrm{I} t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{\mathrm{I} t}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 i}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2}{\sqrt{5}-1} \\
\frac{i}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 \mathrm{I} t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{1}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 i}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2}{\sqrt{5}-1} \\
\frac{i}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-i \sqrt{4+\sqrt{5}}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right]-(-i \sqrt{4+\sqrt{5}})\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array} \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
-3 & i \sqrt{4+\sqrt{5}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4+\sqrt{5}} & 1 & 0 \\
2 & 0 & -5 & i \sqrt{4+\sqrt{5}} & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{3 i R_{1}}{\sqrt{4+\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & \frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4+\sqrt{5}} & 1 & 0 \\
2 & 0 & -5 & i \sqrt{4+\sqrt{5}} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{2 i R_{1}}{\sqrt{4+\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & \frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4+\sqrt{5}} & 1 & 0 \\
0 & \frac{2 i}{\sqrt{4+\sqrt{5}}} & -5 & i \sqrt{4+\sqrt{5}} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{2 R_{2}}{\sqrt{5}+1} \Longrightarrow\left[\begin{array}{cccc|c}
i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & \frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4+\sqrt{5}} & 1 & 0 \\
0 & 0 & \frac{-5 \sqrt{5}-9}{\sqrt{5}+1} & i \sqrt{4+\sqrt{5}} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{i(-5 \sqrt{5}-9) R_{3}}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & \frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & i \sqrt{4+\sqrt{5}} & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 \\
0 & \frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 \\
0 & 0 & i \sqrt{4+\sqrt{5}} & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 i t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}}, v_{2}=-\frac{2 t}{\sqrt{5}+1}, v_{3}=\frac{i t}{\sqrt{4+\sqrt{5}}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{-2 \mathrm{I} t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{\mathrm{I} t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 i t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{i t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{-2 \mathrm{I} t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{\mathrm{I} t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2 i}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2}{\sqrt{5}+1} \\
\frac{i}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{-2 \mathrm{I} t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{\mathrm{I} t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 i}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2}{\sqrt{5}+1} \\
\frac{i}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{-2 \mathrm{I} t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{\mathrm{I} t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 i}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2}{\sqrt{5}+1} \\
\frac{i}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=i \sqrt{4-\sqrt{5}}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
& \left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right]-(i \sqrt{4-\sqrt{5}})\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cccc}
-i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 \\
-3 & -i \sqrt{4-\sqrt{5}} & 2 & 0 \\
0 & 0 & -i \sqrt{4-\sqrt{5}} & 1 \\
2 & 0 & -5 & -i \sqrt{4-\sqrt{5}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
-3 & -i \sqrt{4-\sqrt{5}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4-\sqrt{5}} & 1 & 0 \\
2 & 0 & -5 & -i \sqrt{4-\sqrt{5}} & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{3 i R_{1}}{\sqrt{4-\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
-i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & \frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4-\sqrt{5}} & 1 & 0 \\
2 & 0 & -5 & -i \sqrt{4-\sqrt{5}} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=R_{4}-\frac{2 i R_{1}}{\sqrt{4-\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
-i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & \frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4-\sqrt{5}} & 1 & 0 \\
0 & -\frac{2 i}{\sqrt{4-\sqrt{5}}} & -5 & -i \sqrt{4-\sqrt{5}} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{2 R_{2}}{\sqrt{5}-1} \Longrightarrow\left[\begin{array}{cccc|c}
-i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & \frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4-\sqrt{5}} & 1 & 0 \\
0 & 0 & \frac{-5 \sqrt{5}+9}{\sqrt{5}-1} & -i \sqrt{4-\sqrt{5}} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{i(-5 \sqrt{5}+9) R_{3}}{(\sqrt{5}-1) \sqrt{4-\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
-i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & \frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4-\sqrt{5}} & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-i \sqrt{4-\sqrt{5}} & 1 & 0 & 0 \\
0 & \frac{i(\sqrt{5}-1)}{\sqrt{4-\sqrt{5}}} & 2 & 0 \\
0 & 0 & -i \sqrt{4-\sqrt{5}} & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 i t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)}, v_{2}=\frac{2 t}{\sqrt{5}-1}, v_{3}=-\frac{i t}{\sqrt{4-\sqrt{5}}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{-2 \mathrm{I} t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{-\mathrm{I} t}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 i t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
-\frac{i t}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{-2 \mathrm{I} t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{-1 t}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2 i}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2}{\sqrt{5}-1} \\
-\frac{i}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{-2 \mathrm{I} t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{-1 t}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 i}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2}{\sqrt{5}-1} \\
-\frac{i}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{-2 \mathrm{I} t}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2 t}{\sqrt{5}-1} \\
\frac{-\mathrm{I} t}{\sqrt{4-\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 i}{\sqrt{4-\sqrt{5}}(\sqrt{5}-1)} \\
\frac{2}{\sqrt{5}-1} \\
-\frac{i}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=i \sqrt{4+\sqrt{5}}$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right]-(i \sqrt{4+\sqrt{5}})\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cccc}
-i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 \\
-3 & -i \sqrt{4+\sqrt{5}} & 2 & 0 \\
0 & 0 & -i \sqrt{4+\sqrt{5}} & 1 \\
2 & 0 & -5 & -i \sqrt{4+\sqrt{5}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|l}
-i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
-3 & -i \sqrt{4+\sqrt{5}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4+\sqrt{5}} & 1 & 0 \\
2 & 0 & -5 & -i \sqrt{4+\sqrt{5}} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 i R_{1}}{\sqrt{4+\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
-i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4+\sqrt{5}} & 1 & 0 \\
2 & 0 & -5 & -i \sqrt{4+\sqrt{5}} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{2 i R_{1}}{\sqrt{4+\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
-i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4+\sqrt{5}} & 1 & 0 \\
0 & -\frac{2 i}{\sqrt{4+\sqrt{5}}} & -5 & -i \sqrt{4+\sqrt{5}} & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{4}=R_{4}-\frac{2 R_{2}}{\sqrt{5}+1} \Longrightarrow\left[\begin{array}{cccc|c}
-i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4+\sqrt{5}} & 1 & 0 \\
0 & 0 & \frac{-5 \sqrt{5}-9}{\sqrt{5}+1} & -i \sqrt{4+\sqrt{5}} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{i(-5 \sqrt{5}-9) R_{3}}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \Longrightarrow\left[\begin{array}{cccc|c}
-i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 & 0 \\
0 & 0 & -i \sqrt{4+\sqrt{5}} & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-i \sqrt{4+\sqrt{5}} & 1 & 0 & 0 \\
0 & -\frac{i(\sqrt{5}+1)}{\sqrt{4+\sqrt{5}}} & 2 & 0 \\
0 & 0 & -i \sqrt{4+\sqrt{5}} & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 i t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}}, v_{2}=-\frac{2 t}{\sqrt{5}+1}, v_{3}=-\frac{i t}{\sqrt{4+\sqrt{5}}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 \mathrm{I} t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{-I t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 i t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
-\frac{i t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 \mathrm{I} t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{-\mathrm{I} t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2 i}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2}{\sqrt{5}+1} \\
-\frac{i}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 \mathrm{I} t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{-\mathrm{I} t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 i}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2}{\sqrt{5}+1} \\
-\frac{i}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 \mathrm{I} t}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2 t}{\sqrt{5}+1} \\
\frac{-\mathrm{I} t}{\sqrt{4+\sqrt{5}}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 i}{(\sqrt{5}+1) \sqrt{4+\sqrt{5}}} \\
-\frac{2}{\sqrt{5}+1} \\
-\frac{i}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$i \sqrt{4+\sqrt{5}}$	1	1	No	$\left[\begin{array}{c}-\frac{22 i}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\ \frac{22}{(4+\sqrt{5})(1-3 \sqrt{5})} \\ -\frac{i}{\sqrt{4+\sqrt{5}}} \\ 1\end{array}\right]$
$-i \sqrt{4+\sqrt{5}}$	1	1	No	$\left[\begin{array}{c}\frac{22 i}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\ \frac{22}{(4+\sqrt{5})(1-3 \sqrt{5})} \\ \frac{i}{\sqrt{4+\sqrt{5}}} \\ 1\end{array}\right]$
$i \sqrt{4-\sqrt{5}}$	1	1	No	$\left[\begin{array}{c}-\frac{22 i}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\ \frac{22}{(4-\sqrt{5})(1+3 \sqrt{5})} \\ -\frac{i}{\sqrt{4-\sqrt{5}}} \\ 1\end{array}\right]$
$-i \sqrt{4-\sqrt{5}}$	1	1	No	$\left[\begin{array}{c}\frac{22 i}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\ \frac{22}{(4-\sqrt{5})(1+3 \sqrt{5})} \\ \frac{i}{\sqrt{4-\sqrt{5}}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)+c_{4} \vec{x}_{4}(x)
$$

Which is written as

Which becomes

19.16.3 Maple step by step solution

Let's solve
$\left[y_{1}^{\prime}(x)=y_{2}(x), y_{2}^{\prime}(x)=-3 y_{1}(x)+2 y_{3}(x), y_{3}^{\prime}(x)=y_{4}(x), y_{4}^{\prime}(x)=2 y_{1}(x)-5 y_{3}(x)\right]$

- Define vector

$$
y \xrightarrow{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\rightarrow}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right] \cdot \underline{\longrightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right] \cdot y \rightarrow(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow^{\prime}}(x)=A \cdot y \rightarrow(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[\begin{array}{c}
\frac{22 \mathrm{I}}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\
\frac{22}{(4-\sqrt{5})(1+3 \sqrt{5})} \\
\frac{1}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]\right],\left[-\mathrm{I} \sqrt{4+\sqrt{5}},\left[\begin{array}{c}
\frac{22 \mathrm{I}}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\
\frac{22}{(4+\sqrt{5})(1-3 \sqrt{5})} \\
\frac{1}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]\right],[\mathrm{I} \sqrt{4-\sqrt{5}},[\right.
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} \sqrt{4-\sqrt{5}} x} \cdot\left[\begin{array}{c}
\frac{22 \mathrm{I}}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\
\frac{22}{(4-\sqrt{5})(1+3 \sqrt{5})} \\
\frac{1}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (\sqrt{4-\sqrt{5}} x)-I \sin (\sqrt{4-\sqrt{5}} x)) \cdot\left[\begin{array}{c}
\frac{221}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\
\frac{22}{(4-\sqrt{5})(1+3 \sqrt{5})} \\
\frac{1}{\sqrt{4-\sqrt{5}}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\frac{22 \mathrm{I}(\cos (\sqrt{4-\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4-\sqrt{5}} x))}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\
\frac{22(\cos (\sqrt{4-\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4-\sqrt{5}} x))}{(4-\sqrt{5})(1+3 \sqrt{5})} \\
\frac{\mathrm{I}(\cos (\sqrt{4-\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4-\sqrt{5}} x))}{\sqrt{4-\sqrt{5}}} \\
\cos (\sqrt{4-\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4-\sqrt{5}} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\begin{array}{c}
y_{-1}^{\rightarrow}(x)=\left[\begin{array}{c}
\frac{22 \sin (\sqrt{4-\sqrt{5}} x)}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\
\frac{22 \cos (\sqrt{4-\sqrt{5}} x)}{(4-\sqrt{5})(1+3 \sqrt{5})} \\
\frac{\sin (\sqrt{4-\sqrt{5}} x)}{\sqrt{4-\sqrt{5}}} \\
\cos (\sqrt{4-\sqrt{5}} x)
\end{array}\right], y{ }_{-2}^{\rightarrow}(x)=\left[\begin{array}{c}
\frac{22 \cos (\sqrt{4-\sqrt{5}} x)}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\
-\frac{22 \sin (\sqrt{4-\sqrt{5}} x)}{(4-\sqrt{5})(1+3 \sqrt{5})} \\
\frac{\cos (\sqrt{4-\sqrt{5}} x)}{\sqrt{4-\sqrt{5}}} \\
-\sin (\sqrt{4-\sqrt{5}} x)
\end{array}\right]
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I} \sqrt{4+\sqrt{5}},\left[\begin{array}{c}
\frac{22 \mathrm{I}}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\
\frac{22}{(4+\sqrt{5})(1-3 \sqrt{5})} \\
\frac{\mathrm{I}}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} \sqrt{4+\sqrt{5}} x} \cdot\left[\begin{array}{c}
\frac{22 \mathrm{I}}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\
\frac{22}{(4+\sqrt{5})(1-3 \sqrt{5})} \\
\frac{\mathrm{I}}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (\sqrt{4+\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4+\sqrt{5}} x)) \cdot\left[\begin{array}{c}
\frac{22 \mathrm{I}}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\
\frac{22}{(4+\sqrt{5})(1-3 \sqrt{5})} \\
\frac{1}{\sqrt{4+\sqrt{5}}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\frac{22 \mathrm{I}(\cos (\sqrt{4+\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4+\sqrt{5}} x))}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\
\frac{22(\cos (\sqrt{4+\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4+\sqrt{5}} x))}{(4+\sqrt{5})(1-3 \sqrt{5})} \\
\frac{\mathrm{I}(\cos (\sqrt{4+\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4+\sqrt{5}} x))}{\sqrt{4+\sqrt{5}}} \\
\cos (\sqrt{4+\sqrt{5}} x)-\mathrm{I} \sin (\sqrt{4+\sqrt{5}} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[y{\underset{-}{3}(x)=\left[\begin{array}{c}
\frac{22 \sin (\sqrt{4+\sqrt{5}} x)}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\
\frac{22 \cos (\sqrt{4+\sqrt{5}} x)}{(4+\sqrt{5})(1-3 \sqrt{5})} \\
\frac{\sin (\sqrt{4+\sqrt{5}} x)}{\sqrt{4+\sqrt{5}}} \\
\cos (\sqrt{4+\sqrt{5}} x)
\end{array}\right], y{ }_{4}^{\rightarrow}(x)=\left[\begin{array}{c}
\frac{22 \cos (\sqrt{4+\sqrt{5}} x)}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})} \\
-\frac{22 \sin (\sqrt{4+\sqrt{5}} x)}{(4+\sqrt{5})(1-3 \sqrt{5})} \\
\frac{\cos (\sqrt{4+\sqrt{5}} x)}{\sqrt{4+\sqrt{5}}} \\
-\sin (\sqrt{4+\sqrt{5}} x)
\end{array}\right]}^{\square}\right]
$$

- General solution to the system of ODEs

$$
y^{\rightarrow}=c_{1} y^{\rightarrow} 1(x)+c_{2} y^{\rightarrow} 2(x)+c_{3} y_{\longrightarrow_{3}}(x)+c_{4} y^{\rightarrow}{ }_{4}(x)
$$

- Substitute solutions into the general solution

$$
y \rightarrow=\left[\begin{array}{r}
\frac{22 c_{4} \cos (\sqrt{4+\sqrt{5}} x)}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})}+\frac{22 c_{3} \sin (\sqrt{4+\sqrt{5}} x)}{(4+\sqrt{5})^{\frac{3}{2}}(1-3 \sqrt{5})}+\frac{22 c_{2} \cos (\sqrt{4-\sqrt{5}} x)}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})}+\frac{22 c_{1} \sin (\sqrt{4-\sqrt{5}} x)}{(4-\sqrt{5})^{\frac{3}{2}}(1+3 \sqrt{5})} \\
-\frac{22 c_{4} \sin (\sqrt{4+\sqrt{5}} x)}{(4+\sqrt{5})(1-3 \sqrt{5})}+\frac{22 c_{3} \cos (\sqrt{4+\sqrt{5}} x)}{(4+\sqrt{5})(1-3 \sqrt{5})}-\frac{22 c_{2} \sin (\sqrt{4-\sqrt{5}} x)}{(4-\sqrt{5})(1+3 \sqrt{5})}+\frac{22 c_{1} \cos (\sqrt{4-\sqrt{5}} x)}{(4-\sqrt{5})(1+3 \sqrt{5})} \\
\frac{c_{4} \cos (\sqrt{4+\sqrt{5}} x)}{\sqrt{4+\sqrt{5}}}+\frac{c_{3} \sin (\sqrt{4+\sqrt{5}} x)}{\sqrt{4+\sqrt{5}}}+\frac{c_{2} \cos (\sqrt{4-\sqrt{5}} x)}{\sqrt{4-\sqrt{5}}}+\frac{c_{1} \sin (\sqrt{4-\sqrt{5}} x)}{\sqrt{4-\sqrt{5}}} \\
-c_{4} \sin (\sqrt{4+\sqrt{5}} x)+c_{3} \cos (\sqrt{4+\sqrt{5}} x)-c_{2} \sin (\sqrt{4-\sqrt{5}} x)+c_{1} \cos (\sqrt{4-\sqrt{5}}
\end{array}\right.
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=\left[\begin{array}{c}
-\frac{11\left((\sqrt{5}-1) \sqrt{4-\sqrt{5}}\left(c_{3} \sin (\sqrt{4+\sqrt{5}} x)+c_{4} \cos (\sqrt{4+\sqrt{5}} x)\right)-(\sqrt{5}+1) \sqrt{4+\sqrt{5}}\left(\cos (\sqrt{4-\sqrt{5}} x) c_{2}+\sin (\downarrow\right.\right.}{2(4+\sqrt{5})^{\frac{3}{2}}(4-\sqrt{5})^{\frac{3}{2}}} \\
\frac{(\sqrt{5}+1) \cos (\sqrt{4-\sqrt{5}} x) c_{1}}{2}-\frac{(\sqrt{5}+1) \sin (\sqrt{4-\sqrt{5}} x) c_{2}}{2}-\frac{(\sqrt{5}-1)\left(-c_{4} \sin (\sqrt{4+\sqrt{5}} x)+c_{3} \cos (\sqrt{4}\right.}{2} \\
\frac{\sqrt{4-\sqrt{5}}\left(c_{3} \sin (\sqrt{4+\sqrt{5}} x)+c_{4} \cos (\sqrt{4+\sqrt{5}} x)\right)+\sqrt{4+\sqrt{5}}\left(\cos (\sqrt{4-\sqrt{5}} x) c_{2}+\sin (\sqrt{4-\sqrt{5}} x) c_{3}\right.}{\sqrt{4+\sqrt{5} \sqrt{4-\sqrt{5}}}} \\
-c_{4} \sin (\sqrt{4+\sqrt{5}} x)+c_{3} \cos (\sqrt{4+\sqrt{5}} x)-c_{2} \sin (\sqrt{4-\sqrt{5}} x)+c_{1} \cos (\sqrt{4}
\end{array}\right.
$$

- Solution to the system of ODEs

$$
\left\{y_{1}(x)=-\frac{11\left((\sqrt{5}-1) \sqrt{4-\sqrt{5}}\left(c_{3} \sin (\sqrt{4+\sqrt{5}} x)+c_{4} \cos (\sqrt{4+\sqrt{5}} x)\right)-(\sqrt{5}+1) \sqrt{4+\sqrt{5}}\left(\cos (\sqrt{4-\sqrt{5}} x) c_{2}+\sin (\sqrt{4-\sqrt{5}} x\right.\right.}{2(4+\sqrt{5})^{\frac{3}{2}}(4-\sqrt{5})^{\frac{3}{2}}}\right.
$$

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 548

$$
\begin{aligned}
y_{1}(x)= & -\frac{c_{1}(4+\sqrt{5})^{\frac{3}{2}} \cos (\sqrt{4+\sqrt{5}} x)}{11}-\frac{c_{2}(4-\sqrt{5})^{\frac{3}{2}} \cos (\sqrt{4-\sqrt{5}} x)}{11} \\
& -\frac{c_{3}(4+\sqrt{5})^{\frac{3}{2}} \sin (\sqrt{4+\sqrt{5}} x)}{11}-\frac{c_{4}(4-\sqrt{5})^{\frac{3}{2}} \sin (\sqrt{4-\sqrt{5}} x)}{11} \\
& +\frac{8 c_{1} \sqrt{4+\sqrt{5}} \cos (\sqrt{4+\sqrt{5}} x)}{11}+\frac{8 c_{2} \sqrt{4-\sqrt{5}} \cos (\sqrt{4-\sqrt{5}} x)}{11} \\
& +\frac{8 c_{3} \sqrt{4+\sqrt{5}} \sin (\sqrt{4+\sqrt{5}} x)}{11}+\frac{8 c_{4} \sqrt{4-\sqrt{5}} \sin (\sqrt{4-\sqrt{5}} x)}{11}
\end{aligned}
$$

$$
y_{2}(x)=-c_{1} \sin (\sqrt{4+\sqrt{5}} x)-c_{2} \sin (\sqrt{4-\sqrt{5}} x)
$$

$$
+c_{3} \cos (\sqrt{4+\sqrt{5}} x)+c_{4} \cos (\sqrt{4-\sqrt{5}} x)
$$

$$
y_{3}(x)=\frac{13 c_{1} \sqrt{4+\sqrt{5}} \cos (\sqrt{4+\sqrt{5}} x)}{22}+\frac{13 c_{2} \sqrt{4-\sqrt{5}} \cos (\sqrt{4-\sqrt{5}} x)}{22}
$$

$$
+\frac{13 c_{3} \sqrt{4+\sqrt{5}} \sin (\sqrt{4+\sqrt{5}} x)}{22}+\frac{13 c_{4} \sqrt{4-\sqrt{5}} \sin (\sqrt{4-\sqrt{5}} x)}{22}
$$

$$
-\frac{3 c_{1}(4+\sqrt{5})^{\frac{3}{2}} \cos (\sqrt{4+\sqrt{5}} x)}{22}-\frac{3 c_{2}(4-\sqrt{5})^{\frac{3}{2}} \cos (\sqrt{4-\sqrt{5}} x)}{22}
$$

$$
-\frac{3 c_{3}(4+\sqrt{5})^{\frac{3}{2}} \sin (\sqrt{4+\sqrt{5}} x)}{22}-\frac{3 c_{4}(4-\sqrt{5})^{\frac{3}{2}} \sin (\sqrt{4-\sqrt{5}} x)}{22}
$$

$$
y_{4}(x)=\frac{c_{1} \sin (\sqrt{4+\sqrt{5}} x) \sqrt{5}}{2}-\frac{c_{2} \sin (\sqrt{4-\sqrt{5}} x) \sqrt{5}}{2}
$$

$$
-\frac{c_{3} \cos (\sqrt{4+\sqrt{5}} x) \sqrt{5}}{2}+\frac{c_{4} \cos (\sqrt{4-\sqrt{5}} x) \sqrt{5}}{2}+\frac{c_{1} \sin (\sqrt{4+\sqrt{5}} x)}{2}
$$

$$
+\frac{c_{2} \sin (\sqrt{4-\sqrt{5}} x)}{2}-\frac{c_{3} \cos (\sqrt{4+\sqrt{5}} x)}{2}-\frac{c_{4} \cos (\sqrt{4-\sqrt{5}} x)}{2}
$$

Solution by Mathematica
Time used: 0.099 (sec). Leaf size: 730

```
DSolve[{y1'[x]==0*y1[x]+1*y2[x]+0*y3[x]+0*y4[x],y2'[x]==-3*y1[x]+0*y2[x]+2*y3[x]+0*y4[x],y3'
```

$$
\begin{aligned}
\mathrm{y} 1(x) \rightarrow & \frac{1}{2} c_{3} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
& +\frac{1}{4} c_{1} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{\# 1^{2} e^{\# 1 x}+5 e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
& +\frac{1}{2} c_{4} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{e^{\# 1 x}}{\# 1^{3}+4 \# 1} \&\right] \\
& +\frac{1}{4} c_{2} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{\# 1^{2} e^{\# 1 x}+5 e^{\# 1 x}}{\# 1^{3}+4 \# 1} \&\right] \\
\mathrm{y} 2(x) \rightarrow & \frac{1}{2} c_{4} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
& +\frac{1}{2} c_{3} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{\# 1 e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
& +\frac{1}{4} c_{2} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{\# 1^{2} e^{\# 1 x}+5 e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
& -\frac{1}{4} c_{1} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{3 \# 1^{2} e^{\# 1 x}+11 e^{\# 1 x}}{\# 1^{3}+4 \# 1} \&\right] \\
\mathrm{y} 3(x) \rightarrow & \frac{1}{2} c_{1} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
& +\frac{1}{4} c_{3} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{\# 1^{2} e^{\# 1 x}+3 e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
& +\frac{1}{2} c_{2} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{e^{\# 1 x}}{\# 1^{3}+4 \# 1} \&\right] \\
+ & \frac{1}{4} c_{4} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{\# 1^{2} e^{\# 1 x}+3 e^{\# 1 x}}{\# 1^{3}+4 \# 1} \&\right] \\
\mathrm{y} 4(x) \rightarrow & \frac{1}{2} c_{2} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
+ & \frac{1}{2} c_{1} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{\# 1 e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
+ & \frac{1}{4} c_{4} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{\# 1^{2} e^{\# 1 x}+3 e^{\# 1 x}}{\# 1^{2}+4} \&\right] \\
- & \frac{1}{4} c_{3} \operatorname{RootSum}\left[\# 1^{4}+8 \# 1^{2}+11 \&, \frac{5 \# 1^{2} e^{\# 1 x}+11 e^{\# 1 x}}{\# 1^{3}+4 \# 1} \&\right]
\end{aligned}
$$

19.17 problem 15

19.17.1 Solution using Matrix exponential method 2713
19.17.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2714
19.17.3 Maple step by step solution . 2725

Internal problem ID [12855]
Internal file name [OUTPUT/11507_Monday_November_06_2023_01_31_10_PM_44261061/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& y_{1}^{\prime}(x)=3 y_{1}(x)+2 y_{2}(x) \\
& y_{2}^{\prime}(x)=-2 y_{1}(x)+3 y_{2}(x) \\
& y_{3}^{\prime}(x)=y_{3}(x) \\
& y_{4}^{\prime}(x)=2 y_{4}(x)
\end{aligned}
$$

19.17.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x) \\
y_{4}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{3 x} \cos (2 x) & \sin (2 x) \mathrm{e}^{3 x} & 0 & 0 \\
-\sin (2 x) \mathrm{e}^{3 x} & \mathrm{e}^{3 x} \cos (2 x) & 0 & 0 \\
0 & 0 & \mathrm{e}^{x} & 0 \\
0 & 0 & 0 & \mathrm{e}^{2 x}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{3 x} \cos (2 x) & \sin (2 x) \mathrm{e}^{3 x} & 0 \\
-\sin (2 x) \mathrm{e}^{3 x} & \mathrm{e}^{3 x} \cos (2 x) & 0 \\
0 & 0 & 0 \\
\mathrm{e}^{x} & 0 \\
0 & 0 & 0 \\
\mathrm{e}^{2 x}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 x} \cos (2 x) c_{1}+\sin (2 x) \mathrm{e}^{3 x} c_{2} \\
-\sin (2 x) \mathrm{e}^{3 x} c_{1}+\mathrm{e}^{3 x} \cos (2 x) c_{2} \\
\mathrm{e}^{x} c_{3} \\
\mathrm{e}^{2 x} c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 x}\left(\cos (2 x) c_{1}+\sin (2 x) c_{2}\right) \\
-\mathrm{e}^{3 x}\left(\sin (2 x) c_{1}-\cos (2 x) c_{2}\right) \\
\mathrm{e}^{x} c_{3} \\
\mathrm{e}^{2 x} c_{4}
\end{array}\right.
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.
19.17.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x) \\
y_{4}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
3-\lambda & 2 & 0 & 0 \\
-2 & 3-\lambda & 0 & 0 \\
0 & 0 & 1-\lambda & 0 \\
0 & 0 & 0 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-9 \lambda^{3}+33 \lambda^{2}-51 \lambda+26=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=3+2 i \\
& \lambda_{3}=3-2 i \\
& \lambda_{4}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
2	1	real eigenvalue
$3-2 i$	1	complex eigenvalue
$3+2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]-(1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
2 & 2 & 0 & 0 \\
-2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
2 & 2 & 0 & 0 & 0 \\
-2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{llll|l}
2 & 2 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(3,4)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{llll|l}
2 & 2 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{llll}
2 & 2 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{4}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]-(2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
1 & 2 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
1 & 2 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=3-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]-(3-2 i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
2 i & 2 & 0 & 0 \\
-2 & 2 i & 0 & 0 \\
0 & 0 & -2+2 i & 0 \\
0 & 0 & 0 & -1+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
2 i & 2 & 0 & 0 & 0 \\
-2 & 2 i & 0 & 0 & 0 \\
0 & 0 & -2+2 i & 0 & 0 \\
0 & 0 & 0 & -1+2 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
2 i & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2+2 i & 0 & 0 \\
0 & 0 & 0 & -1+2 i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{cccc|c}
2 i & 2 & 0 & 0 & 0 \\
0 & 0 & -2+2 i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1+2 i & 0
\end{array}\right]
$$

Since the current pivot $A(3,4)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
2 i & 2 & 0 & 0 & 0 \\
0 & 0 & -2+2 i & 0 & 0 \\
0 & 0 & 0 & -1+2 i & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
2 i & 2 & 0 & 0 \\
0 & 0 & -2+2 i & 0 \\
0 & 0 & 0 & -1+2 i \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
i t \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{c}
i \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
i \\
1 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=3+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]-(3+2 i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-2 i & 2 & 0 & 0 & 0 \\
-2 & -2 i & 0 & 0 & 0 \\
0 & 0 & -2-2 i & 0 & 0 \\
0 & 0 & 0 & -1-2 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-2 i & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2-2 i & 0 & 0 \\
0 & 0 & 0 & -1-2 i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{cccc|c}
-2 i & 2 & 0 & 0 & 0 \\
0 & 0 & -2-2 i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1-2 i & 0
\end{array}\right]
$$

Since the current pivot $A(3,4)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
-2 i & 2 & 0 & 0 & 0 \\
0 & 0 & -2-2 i & 0 & 0 \\
0 & 0 & 0 & -1-2 i & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-2 i & 2 & 0 & 0 \\
0 & 0 & -2-2 i & 0 \\
0 & 0 & 0 & -1-2 i \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-i \\
1 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$3+2 i$	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
$3-2 i$	1	1	No	$\left[\begin{array}{l}-i \\ 1 \\ 0 \\ 0\end{array}\right]$
1				
2	1			

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{x} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] e^{x}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{2 x} \\
& =\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] e^{2 x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)+c_{4} \vec{x}_{4}(x)
$$

Which is written as

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{x} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{(3+2 i) x} \\
\mathrm{e}^{(3+2 i) x} \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
i \mathrm{e}^{(3-2 i) x} \\
\mathrm{e}^{(3-2 i) x} \\
0 \\
0
\end{array}\right]+c_{4}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{e}^{2 x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{3} \mathrm{e}^{(3-2 i) x}-c_{2} \mathrm{e}^{(3+2 i) x}\right) \\
c_{2} \mathrm{e}^{(3+2 i) x}+c_{3} \mathrm{e}^{(3-2 i) x} \\
c_{1} \mathrm{e}^{x} \\
c_{4} \mathrm{e}^{2 x}
\end{array}\right]
$$

19.17.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=3 y_{1}(x)+2 y_{2}(x), y_{2}^{\prime}(x)=-2 y_{1}(x)+3 y_{2}(x), y_{3}^{\prime}(x)=y_{3}(x), y_{4}^{\prime}(x)=2 y_{4}(x)\right]
$$

- Define vector

$$
\underline{\longrightarrow}^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\underline{\longrightarrow}^{\prime}(x)=\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve
- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
-2 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
y_{乙}{ }^{\prime}(x)=A \cdot y_{乙}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right],\left[3-2 \mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]\right],\left[3+2 \mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
y_{-}^{\rightarrow}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
y_{2}^{\rightarrow}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[3-2 \mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{(3-2 \mathrm{I}) x} \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{3 x} \cdot(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0 \\
0
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\mathrm{I}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x) \\
0 \\
0
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[y{ }_{3}(x)=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\sin (2 x) \\
\cos (2 x) \\
0 \\
0
\end{array}\right], y{ }_{4}(x)=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\cos (2 x) \\
-\sin (2 x) \\
0 \\
0
\end{array}\right]\right]
$$

- General solution to the system of ODEs
$y_{-}^{\overrightarrow{ }}=c_{1} y^{\rightarrow}{ }_{1}+c_{2} y \xrightarrow{\rightarrow}{ }_{2}+c_{3} y^{\rightarrow}{ }_{3}(x)+c_{4} y{ }_{-}{ }_{4}(x)$
- Substitute solutions into the general solution

$$
y^{\rightarrow}=\mathrm{e}^{x} c_{1} \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\sin (2 x) \\
\cos (2 x) \\
0 \\
0
\end{array}\right]+c_{4} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\cos (2 x) \\
-\sin (2 x) \\
0 \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 x}\left(c_{3} \sin (2 x)+c_{4} \cos (2 x)\right) \\
\mathrm{e}^{3 x}\left(c_{3} \cos (2 x)-c_{4} \sin (2 x)\right) \\
\mathrm{e}^{x} c_{1} \\
c_{2} \mathrm{e}^{2 x}
\end{array}\right]
$$

- \quad Solution to the system of ODEs
$\left\{y_{1}(x)=\mathrm{e}^{3 x}\left(c_{3} \sin (2 x)+c_{4} \cos (2 x)\right), y_{2}(x)=\mathrm{e}^{3 x}\left(c_{3} \cos (2 x)-c_{4} \sin (2 x)\right), y_{3}(x)=\mathrm{e}^{x} c_{1}, y_{4}(x)=\right.$
\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 62
dsolve ([diff $\left(y_{\neq-} 1(x), x\right)=3 * y_{\neq-} 1(x)+2 * y_{\neq-} 2(x)+0 * y_{\neq-} 3(x)+0 * y_{\neq} 4(x), \operatorname{diff}\left(y_{\neq-} 2(x), x\right)=-2 * y_{\neq-} 1(x)+3$

$$
\begin{aligned}
& y_{1}(x)=\mathrm{e}^{3 x}\left(\sin (2 x) c_{1}+\cos (2 x) c_{2}\right) \\
& y_{2}(x)=-\mathrm{e}^{3 x}\left(\sin (2 x) c_{2}-\cos (2 x) c_{1}\right) \\
& y_{3}(x)=c_{4} \mathrm{e}^{x} \\
& y_{4}(x)=c_{3} \mathrm{e}^{2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 255
DSolve $\left[\left\{y 11^{\prime}[x]==3 * y 1[x]+2 * y 2[x]+0 * y 3[x]+0 * y 4[x], y 2{ }^{\prime}[x]==-2 * y 1[x]+3 * y 2[x]+0 * y 3[x]+0 * y 4[x], y 3{ }^{\prime}\right.\right.$

$$
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \\
& \mathrm{y} 2(x) \rightarrow e^{3 x}\left(c_{2} \cos (2 x)-c_{1} \sin (2 x)\right) \\
& \mathrm{y} 3(x) \rightarrow c_{3} e^{x} \\
& \mathrm{y} 4(x) \rightarrow c_{4} e^{2 x} \\
& \mathrm{y} 1(x) \rightarrow e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \\
& \mathrm{y} 2(x) \rightarrow e^{3 x}\left(c_{2} \cos (2 x)-c_{1} \sin (2 x)\right) \\
& \mathrm{y} 3(x) \rightarrow c_{3} e^{x} \\
& \mathrm{y} 4(x) \rightarrow 0 \\
& \mathrm{y} 1(x) \rightarrow e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \\
& \mathrm{y} 2(x) \rightarrow e^{3 x}\left(c_{2} \cos (2 x)-c_{1} \sin (2 x)\right) \\
& \mathrm{y} 3(x) \rightarrow 0 \\
& \mathrm{y} 4(x) \rightarrow c_{4} e^{2 x} \\
& \mathrm{y} 1(x) \rightarrow e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \\
& \mathrm{y} 2(x) \rightarrow e^{3 x}\left(c_{2} \cos (2 x)-c_{1} \sin (2 x)\right) \\
& \mathrm{y} 3(x) \rightarrow 0 \\
& \mathrm{y} 4(x) \rightarrow 0
\end{aligned}
$$

19.18 problem 16

19.18.1 Solution using Matrix exponential method 2730
19.18.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2731
19.18.3 Maple step by step solution . 2741

Internal problem ID [12856]
Internal file name [OUTPUT/11508_Monday_November_06_2023_01_31_11_PM_97635255/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 8. Linear Systems of First-Order Differential Equations. Exercises 8.3 page 379
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
y_{1}^{\prime}(x) & =y_{2}(x)+y_{4}(x) \\
y_{2}^{\prime}(x) & =y_{1}(x)-y_{3}(x) \\
y_{3}^{\prime}(x) & =y_{4}(x) \\
y_{4}^{\prime}(x) & =y_{3}(x)
\end{aligned}
$$

19.18.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x) \\
y_{4}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & 0 & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2} & 0 \\
0 & 0 & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \\
0 & 0 & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(x) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & 0 & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2} & 0 \\
0 & 0 & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \\
0 & 0 & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{2}+\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{4} \\
\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{2}+\left(\frac{\mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{x}}{2}\right) c_{3} \\
\left(\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{3}+\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{4} \\
\left(-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{3}+\left(\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}\right) c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-c_{2}-c_{4}\right) \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}\left(c_{1}+c_{2}+c_{4}\right)}{2} \\
\frac{\left(-c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}\left(c_{1}+c_{2}-c_{3}\right)}{2} \\
\frac{\left(c_{3}-c_{4}\right) \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}\left(c_{3}+c_{4}\right)}{2} \\
\frac{\left(-c_{3}+c_{4}\right) \mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}\left(c_{3}+c_{4}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(x)$ above.

19.18.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(x)=A \vec{x}(x)
$$

Or

$$
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x) \\
y_{3}^{\prime}(x) \\
y_{4}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-\lambda & 1 & 0 & 1 \\
1 & -\lambda & -1 & 0 \\
0 & 0 & -\lambda & 1 \\
0 & 0 & 1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-2 \lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]-(-1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 1 & -1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{4}=R_{4}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Let $v_{4}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t-s, v_{3}=-s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t-s \\
t \\
-s \\
s
\end{array}\right]=\left[\begin{array}{c}
-t-s \\
t \\
-s \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t-s \\
t \\
-s \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
-s \\
s
\end{array}\right] \\
= & t\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t-s \\
t \\
-s \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]-(1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\begin{array}{cccc}
-1 & 1 & 0 & 1 \\
1 & -1 & -1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
-1 & 1 & 0 & 1 & 0 \\
1 & -1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right] \\
R_{4}=R_{4}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-1 & 1 & 0 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Let $v_{4}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t+s, v_{3}=s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t+s \\
t \\
s \\
s
\end{array}\right]=\left[\begin{array}{c}
t+s \\
t \\
s \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

$$
\begin{aligned}
& {\left[\begin{array}{c}
t+s \\
t \\
s \\
s
\end{array}\right] }=\left[\begin{array}{l}
t \\
t \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
s \\
0 \\
s \\
s
\end{array}\right] \\
&=t\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
t+s \\
t \\
s \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
-1	2	2	No	$\left[\begin{array}{cc}-1 & -1 \\ 0 & 1 \\ -1 & 0 \\ 1 & 0\end{array}\right]$
1	2	2	No	$\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

The two possible cases for repeated eigenvalue of multiplicity 2

Figure 431: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{-x} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right] e^{-x} \\
\vec{x}_{2}(x) & =\vec{v}_{2} e^{-x} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right] e^{-x}
\end{aligned}
$$

eigenvalue 1 is real and repated eigenvalue of multiplicity 2 .There are two possible cases that can happen. This is illustrated in this diagram

Figure 432: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{3}(x) & =\vec{v}_{3} e^{x} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] e^{x} \\
\vec{x}_{4}(x) & =\vec{v}_{4} e^{x} \\
& =\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] e^{x}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)+c_{3} \vec{x}_{3}(x)+c_{4} \vec{x}_{4}(x)
$$

Which is written as

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-x} \\
0 \\
-\mathrm{e}^{-x} \\
\mathrm{e}^{-x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-x} \\
\mathrm{e}^{-x} \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{x} \\
\mathrm{e}^{x} \\
0 \\
0
\end{array}\right]+c_{4}\left[\begin{array}{c}
\mathrm{e}^{x} \\
0 \\
\mathrm{e}^{x} \\
\mathrm{e}^{x}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{1}-c_{2}\right) \mathrm{e}^{-x}+\mathrm{e}^{x}\left(c_{3}+c_{4}\right) \\
c_{2} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x} \\
-c_{1} \mathrm{e}^{-x}+c_{4} \mathrm{e}^{x} \\
c_{1} \mathrm{e}^{-x}+c_{4} \mathrm{e}^{x}
\end{array}\right]
$$

19.18.3 Maple step by step solution

Let's solve

$$
\left[y_{1}^{\prime}(x)=y_{2}(x)+y_{4}(x), y_{2}^{\prime}(x)=y_{1}(x)-y_{3}(x), y_{3}^{\prime}(x)=y_{4}(x), y_{4}^{\prime}(x)=y_{3}(x)\right]
$$

- Define vector

$$
y_{-}^{\rightarrow}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- Convert system into a vector equation

$$
y^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \cdot \underline{\sim}(x)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
y^{\rightarrow^{\prime}}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \cdot y \xrightarrow{\rightarrow}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
y^{\rightarrow}(x)=A \cdot y \rightarrow(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1

$$
y_{1}^{\longrightarrow}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, an

$$
y_{-}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})
$$

- Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- Substitute ${\underset{\longrightarrow}{\longrightarrow}}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $y_{-}{ }_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]-(-1) \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\underset{2}{y_{2}}(x)=\mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1

$$
y_{3}^{\rightarrow}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, and

$$
y_{-}^{\rightarrow}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})
$$

- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1st solution obtai
- Substitute $y{ }_{-}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $y^{\rightarrow}{ }_{4}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]-1 \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 1

$$
\underset{y_{4}}{\rightarrow}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
y \xrightarrow{\rightarrow}=c_{1} y^{\rightarrow} 1(x)+c_{2} y{ }_{-}(x)+c_{3} y_{\longrightarrow_{-}}^{\rightarrow}(x)+c_{4} y_{乙_{4}}^{\rightarrow}(x)
$$

- Substitute solutions into the general solution

$$
y^{\rightarrow}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
0 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{x} c_{4} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right]+\right.
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]=\left[\begin{array}{c}
\left((-x-1) c_{2}-c_{1}\right) \mathrm{e}^{-x}+\mathrm{e}^{x}\left((x-1) c_{4}+c_{3}\right) \\
0 \\
\left(-c_{2} x-c_{1}\right) \mathrm{e}^{-x}+\mathrm{e}^{x}\left(c_{4} x+c_{3}\right) \\
\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{x}\left(c_{4} x+c_{3}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{y_{1}(x)=\left((-x-1) c_{2}-c_{1}\right) \mathrm{e}^{-x}+\mathrm{e}^{x}\left((x-1) c_{4}+c_{3}\right), y_{2}(x)=0, y_{3}(x)=\left(-c_{2} x-c_{1}\right) \mathrm{e}^{-x}+\mathrm{e}^{x}\left(c_{4} x\right.\right.
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 71

```
dsolve([diff(y__1 (x),x)=0*y__1(x)+1*y__2(x)+0*\mp@subsup{y}{__}{\prime}3(x)+1*\mp@subsup{y}{__}{\prime}4(x),\operatorname{diff}(\mp@subsup{y}{__}{\prime}2(x),x)=1*y__1(x)+0*
```

$$
\begin{aligned}
& y_{1}(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \\
& y_{2}(x)=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{-x}-c_{3} \mathrm{e}^{x}+c_{4} \mathrm{e}^{-x} \\
& y_{3}(x)=c_{3} \mathrm{e}^{x}+c_{4} \mathrm{e}^{-x} \\
& y_{4}(x)=c_{3} \mathrm{e}^{x}-c_{4} \mathrm{e}^{-x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 148
DSolve $\left[\left\{y 11^{\prime}[x]==0 * y 1[x]+1 * y 2[x]+0 * y 3[x]+1 * y 4[x], y 2{ }^{\prime}[x]==1 * y 1[x]+0 * y 2[x]-1 * y 3[x]+0 * y 4[x], y 3{ }^{\prime}[\right.\right.$

$$
\begin{aligned}
\mathrm{y} 1(x) & \rightarrow \frac{1}{2} e^{-x}\left(c_{1}\left(e^{2 x}+1\right)+\left(c_{2}+c_{4}\right)\left(e^{2 x}-1\right)\right) \\
\mathrm{y} 2(x) & \rightarrow \frac{1}{2} e^{-x}\left(c_{1}\left(e^{2 x}-1\right)+c_{2} e^{2 x}-c_{3} e^{2 x}+c_{2}+c_{3}\right) \\
\mathrm{y} 3(x) & \rightarrow \frac{1}{2} e^{-x}\left(c_{3}\left(e^{2 x}+1\right)+c_{4}\left(e^{2 x}-1\right)\right) \\
\mathrm{y} 4(x) & \rightarrow \frac{1}{2} e^{-x}\left(c_{3}\left(e^{2 x}-1\right)+c_{4}\left(e^{2 x}+1\right)\right)
\end{aligned}
$$

20 Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432

20.1 problem 1 2747
20.2 problem 2 2756
20.3 problem 3 2766
20.4 problem 4 2775
20.5 problem 5 [2784]
20.6 problem 6 2792
20.7 problem 7 2800
20.8 problem 8 2812

20.1 problem 1

20.1.1 Solution using Matrix exponential method 2747
20.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2748
20.1.3 Maple step by step solution . 2753

Internal problem ID [12857]
Internal file name [OUTPUT/11509_Monday_November_06_2023_01_31_11_PM_97262255/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+3 y(t) \\
y^{\prime}(t) & =-x(t)+2 y(t)
\end{aligned}
$$

20.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-2 & 3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2} & \frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} \\
-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2} & \frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} \\
-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2}\right) c_{2} \\
\left(-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(3 c_{1}-3 c_{2}\right) \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}\left(-3 c_{2}+c_{1}\right)}{2} \\
\frac{\left(c_{1}-c_{2}\right) \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}\left(-3 c_{2}+c_{1}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-2 & 3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-2 & 3 \\
-1 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 3 \\
-1 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-2 & 3 \\
-1 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-1 & 3 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-1 & 3 & 0 \\
-1 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-2 & 3 \\
-1 & 2
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-3 & 3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-3 & 3 & 0 \\
-1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{l}3 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
3 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{t}+3 c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 433: Phase plot

20.1.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-2 x(t)+3 y(t), y^{\prime}(t)=-x(t)+2 y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-2 & 3 \\ -1 & 2\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-2 & 3 \\ -1 & 2\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
-2 & 3 \\
-1 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-1,\left[\begin{array}{l}3 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}3 \\ 1\end{array}\right]$
- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
3 c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=3 c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}, y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 31
dsolve $([\operatorname{diff}(x(t), t)=-2 * x(t)+3 * y(t), \operatorname{diff}(y(t), t)=-x(t)+2 * y(t)]$, singsol=all)

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-t} \\
& y(t)=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{-t}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 72
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]+3 * y[t], y^{\prime}[t]==-x[t]+2 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{-t}\left(3 c_{2}\left(e^{2 t}-1\right)-c_{1}\left(e^{2 t}-3\right)\right) \\
& y(t) \rightarrow-\frac{1}{2} e^{-t}\left(c_{1}\left(e^{2 t}-1\right)+c_{2}\left(1-3 e^{2 t}\right)\right)
\end{aligned}
$$

20.2 problem 2

20.2.1 Solution using Matrix exponential method 2756
20.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2757
20.2.3 Maple step by step solution . 2762

Internal problem ID [12858]
Internal file name [OUTPUT/11510_Monday_November_06_2023_01_31_12_PM_48820822/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=-x(t)+2 y(t) \\
& y^{\prime}(t)=-2 x(t)+3 y(t)
\end{aligned}
$$

20.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t}(1-2 t) & 2 t \mathrm{e}^{t} \\
-2 t \mathrm{e}^{t} & \mathrm{e}^{t}(2 t+1)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(1-2 t) & 2 t \mathrm{e}^{t} \\
-2 t \mathrm{e}^{t} & \mathrm{e}^{t}(2 t+1)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(1-2 t) c_{1}+2 t \mathrm{e}^{t} c_{2} \\
-2 t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(2 t+1) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-2 t)+2 c_{2} t\right) \mathrm{e}^{t} \\
\left(c_{2}(2 t+1)-2 t c_{1}\right) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 2 \\
-2 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-2 & 2 & 0 \\
-2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 434: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
1 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right) \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{t}(2 t+1)}{2} \\
\mathrm{e}^{t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t}\left(t+\frac{1}{2}\right) \\
\mathrm{e}^{t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(c_{1}+c_{2} t+\frac{1}{2} c_{2}\right) \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 435: Phase plot

20.2.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-x(t)+2 y(t), y^{\prime}(t)=-2 x(t)+3 y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-1 & 2 \\ -2 & 3\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1
$\vec{x}_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, and $\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- \quad Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]-1 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{1}{2} \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 1
$\vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{c}-\frac{1}{2} \\ 0\end{array}\right]\right)$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{2} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(c_{1}+c_{2} t-\frac{1}{2} c_{2}\right) \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\mathrm{e}^{t}\left(c_{1}+c_{2} t-\frac{1}{2} c_{2}\right), y(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 29

```
dsolve([diff (x (t),t)=-x(t)+2*y(t), diff(y(t),t)=-2*x(t)+3*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& y(t)=\frac{\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 42
DSolve[\{x' $\left.[t]==-x[t]+2 * y[t], y^{\prime}[t]==-2 * x[t]+3 * y[t]\right\},\{x[t], y[t]\}, t$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow e^{t}\left(-2 c_{1} t+2 c_{2} t+c_{1}\right) \\
& y(t) \rightarrow e^{t}\left(-2 c_{1} t+2 c_{2} t+c_{2}\right)
\end{aligned}
$$

20.3 problem 3

20.3.1 Solution using Matrix exponential method 2766
20.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2767
20.3.3 Maple step by step solution . 2772

Internal problem ID [12859]
Internal file name [OUTPUT/11511_Monday_November_06_2023_01_31_12_PM_491032/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)-2 y(t) \\
y^{\prime}(t) & =2 x(t)-3 y(t)
\end{aligned}
$$

20.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
2 & -3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (\sqrt{3} t)+\frac{\mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} & -\frac{2 \mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} \\
\frac{2 \mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} & \mathrm{e}^{-2 t} \cos (\sqrt{3} t)-\frac{\mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3}}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}(\sin (\sqrt{3} t) \sqrt{3}+3 \cos (\sqrt{3} t))}{3} & -\frac{2 \mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} \\
\frac{2 \mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} & -\frac{\mathrm{e}^{-2 t}(\sin (\sqrt{3} t) \sqrt{3}-3 \cos (\sqrt{3} t))}{3}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}(\sin (\sqrt{3} t) \sqrt{3}+3 \cos (\sqrt{3} t))}{3} & -\frac{2 \mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} \\
\frac{2 \mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3}}{3} & -\frac{\mathrm{e}^{-2 t}(\sin (\sqrt{3} t) \sqrt{3}-3 \cos (\sqrt{3} t))}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}(\sin (\sqrt{3} t) \sqrt{3}+3 \cos (\sqrt{3} t)) c_{1}}{3}-\frac{2 \mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3} c_{2}}{3} \\
\frac{2 \mathrm{e}^{-2 t} \sin (\sqrt{3} t) \sqrt{3} c_{1}}{3}-\frac{\mathrm{e}^{-2 t}(\sin (\sqrt{3} t) \sqrt{3}-3 \cos (\sqrt{3} t)) c_{2}}{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(\sqrt{3}\left(c_{1}-2 c_{2}\right) \sin (\sqrt{3} t)+3 \cos (\sqrt{3} t) c_{1}\right) \mathrm{e}^{-2 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}\left(\sqrt{3}\left(c_{1}-\frac{c_{2}}{2}\right) \sin (\sqrt{3} t)+\frac{3 \cos (\sqrt{3} t) c_{2}}{2}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
2 & -3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & -2 \\
2 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & -2 \\
2 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4 \lambda+7=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{3}-2 \\
& \lambda_{2}=-2-i \sqrt{3}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-2-i \sqrt{3}$	1	complex eigenvalue
$i \sqrt{3}-2$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2-i \sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & -2 \\
2 & -3
\end{array}\right]-(-2-i \sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1+i \sqrt{3} & -2 & 0 \\
2 & i \sqrt{3}-1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{1+i \sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
1+i \sqrt{3} & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1+i \sqrt{3} & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{1+i \sqrt{3}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{1+i \sqrt{3}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i \sqrt{3}-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & -2 \\
2 & -3
\end{array}\right]-(i \sqrt{3}-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
1-i \sqrt{3} & -2 \\
2 & -i \sqrt{3}-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1-i \sqrt{3} & -2 & 0 \\
2 & -i \sqrt{3}-1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{1-i \sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
1-i \sqrt{3} & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1-i \sqrt{3} & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{i \sqrt{3}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{i \sqrt{3}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$i \sqrt{3}-2$	1	1	No	$\left[\begin{array}{c}-\frac{2}{i \sqrt{3}-1} \\ 1\end{array}\right]$
$-2-i \sqrt{3}$	1	1	No	$\left[\begin{array}{c}-\frac{2}{-i \sqrt{3}-1} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{(i \sqrt{3}-2) t}}{i \sqrt{3}-1} \\
\mathrm{e}^{(i \sqrt{3}-2) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{(-2-i \sqrt{3}) t}}{-i \sqrt{3} 31} \\
\mathrm{e}^{(-2-i \sqrt{3}) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{i c_{2}(\sqrt{3}+i) \mathrm{e}^{-(2+i \sqrt{3}) t}}{2}-\frac{i \mathrm{e}^{(i \sqrt{3}-2) t} c_{1}(i-\sqrt{3})}{2} \\
c_{1} \mathrm{e}^{(i \sqrt{3}-2) t}+c_{2} \mathrm{e}^{-(2+i \sqrt{3}) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 436: Phase plot

20.3.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-x(t)-2 y(t), y^{\prime}(t)=2 x(t)-3 y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-1 & -2 \\ 2 & -3\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- \quad System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-1 & -2 \\ 2 & -3\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & -2 \\
2 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
-\frac{2}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right],\left[\mathrm{I} \sqrt{3}-2,\left[\begin{array}{c}
-\frac{2}{\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
-\frac{2}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-2-\mathrm{I} \sqrt{3}) t} \cdot\left[\begin{array}{c}
-\frac{2}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-2 t} \cdot(\cos (\sqrt{3} t)-\mathrm{I} \sin (\sqrt{3} t)) \cdot\left[\begin{array}{c}
-\frac{2}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{2(\cos (\sqrt{3} t)-\mathrm{I} \sin (\sqrt{3} t))}{-\mathrm{I} \sqrt{3}-1} \\
\cos (\sqrt{3} t)-\mathrm{I} \sin (\sqrt{3} t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} t)}{2}-\frac{\sin (\sqrt{3} t) \sqrt{3}}{2} \\
\cos (\sqrt{3} t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} t) \sqrt{3}}{2}-\frac{\sin (\sqrt{3} t)}{2} \\
-\sin (\sqrt{3} t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} t)}{2}-\frac{\sin (\sqrt{3} t) \sqrt{3}}{2} \\
\cos (\sqrt{3} t)
\end{array}\right]+c_{2} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} t) \sqrt{3}}{2}-\frac{\sin (\sqrt{3} t)}{2} \\
-\sin (\sqrt{3} t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}\left(\left(c_{2} \sqrt{3}-c_{1}\right) \cos (\sqrt{3} t)+\sin (\sqrt{3} t)\left(\sqrt{3} c_{1}+c_{2}\right)\right)}{2} \\
\mathrm{e}^{-2 t}\left(\cos (\sqrt{3} t) c_{1}-\sin (\sqrt{3} t) c_{2}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=-\frac{\mathrm{e}^{-2 t}\left(\left(c_{2} \sqrt{3}-c_{1}\right) \cos (\sqrt{3} t)+\sin (\sqrt{3} t)\left(\sqrt{3} c_{1}+c_{2}\right)\right)}{2}, y(t)=\mathrm{e}^{-2 t}\left(\cos (\sqrt{3} t) c_{1}-\sin (\sqrt{3} t) c_{2}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 76

```
dsolve([diff (x (t),t)=-x(t)-2*y(t), diff (y(t),t)=2*x(t)-3*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-2 t}\left(\sin (\sqrt{3} t) c_{1}+\cos (\sqrt{3} t) c_{2}\right) \\
& y(t)=\frac{\mathrm{e}^{-2 t}\left(\sqrt{3} \sin (\sqrt{3} t) c_{2}-\sqrt{3} \cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{1}+\cos (\sqrt{3} t) c_{2}\right)}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 96
DSolve $\left[\left\{x^{\prime}[t]==-x[t]-2 * y[t], y^{\prime}[t]==2 * x[t]-3 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{3} e^{-2 t}\left(3 c_{1} \cos (\sqrt{3} t)+\sqrt{3}\left(c_{1}-2 c_{2}\right) \sin (\sqrt{3} t)\right) \\
& y(t) \rightarrow \frac{1}{3} e^{-2 t}\left(3 c_{2} \cos (\sqrt{3} t)+\sqrt{3}\left(2 c_{1}-c_{2}\right) \sin (\sqrt{3} t)\right)
\end{aligned}
$$

20.4 problem 4

20.4.1 Solution using Matrix exponential method 2775
20.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2776
20.4.3 Maple step by step solution . 2781

Internal problem ID [12860]
Internal file name [OUTPUT/11512_Monday_November_06_2023_01_31_12_PM_39576688/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)-2 y(t) \\
y^{\prime}(t) & =5 x(t)+y(t)
\end{aligned}
$$

20.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
5 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (3 t)-\frac{\sin (3 t)}{3} & -\frac{2 \sin (3 t)}{3} \\
\frac{5 \sin (3 t)}{3} & \cos (3 t)+\frac{\sin (3 t)}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (3 t)-\frac{\sin (3 t)}{3} & -\frac{2 \sin (3 t)}{3} \\
\frac{5 \sin (3 t)}{3} & \cos (3 t)+\frac{\sin (3 t)}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\cos (3 t)-\frac{\sin (3 t)}{3}\right) c_{1}-\frac{2 \sin (3 t) c_{2}}{3} \\
\frac{5 \sin (3 t) c_{1}}{3}+\left(\cos (3 t)+\frac{\sin (3 t)}{3}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{1}-2 c_{2}\right) \sin (3 t)}{3}+c_{1} \cos (3 t) \\
\frac{\left(5 c_{1}+c_{2}\right) \sin (3 t)}{3}+c_{2} \cos (3 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
5 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & -2 \\
5 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & -2 \\
5 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+9=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$3 i$	1	complex eigenvalue
$-3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & -2 \\
5 & 1
\end{array}\right]-(-3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1+3 i & -2 \\
5 & 1+3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+3 i & -2 & 0 \\
5 & 1+3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{1}{2}+\frac{3 i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+3 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+3 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{5}-\frac{3 i}{5}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 i}{5}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 i}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-3 i \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & -2 \\
5 & 1
\end{array}\right]-(3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1-3 i & -2 \\
5 & 1-3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-1-3 i & -2 & 0 \\
5 & 1-3 i & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\left(\frac{1}{2}-\frac{3 i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-3 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-3 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{5}+\frac{3 i}{5}\right) t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 I}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 i}{5}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 I}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 i}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+3 i \\
5
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$3 i$	1	1	No	$\left[\begin{array}{c}-\frac{1}{5}+\frac{3 i}{5} \\ 1\end{array}\right]$
-3i	1	1	No	$\left[\begin{array}{c}-\frac{1}{5}-\frac{3 i}{5} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 i}{5}\right) \mathrm{e}^{3 i t} \\
\mathrm{e}^{3 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 i}{5}\right) \mathrm{e}^{-3 i t} \\
\mathrm{e}^{-3 i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 i}{5}\right) c_{1} \mathrm{e}^{3 i t}+\left(-\frac{1}{5}-\frac{3 i}{5}\right) c_{2} \mathrm{e}^{-3 i t} \\
c_{1} \mathrm{e}^{3 i t}+c_{2} \mathrm{e}^{-3 i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 437: Phase plot

20.4.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-x(t)-2 y(t), y^{\prime}(t)=5 x(t)+y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-1 & -2 \\ 5 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & -2 \\
5 & 1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & -2 \\
5 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-3 \mathrm{II} t} \cdot\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (3 t)-\mathrm{I} \sin (3 t)) \cdot\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right)(\cos (3 t)-\mathrm{I} \sin (3 t)) \\
\cos (3 t)-\mathrm{I} \sin (3 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\left[\begin{array}{c}
-\frac{\cos (3 t)}{5}-\frac{3 \sin (3 t)}{5} \\
\cos (3 t)
\end{array}\right], \vec{x}_{2}(t)=\left[\begin{array}{c}
\frac{\sin (3 t)}{5}-\frac{3 \cos (3 t)}{5} \\
-\sin (3 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
c_{2}\left(\frac{\sin (3 t)}{5}-\frac{3 \cos (3 t)}{5}\right)+c_{1}\left(-\frac{\cos (3 t)}{5}-\frac{3 \sin (3 t)}{5}\right) \\
c_{1} \cos (3 t)-c_{2} \sin (3 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-c_{1}-3 c_{2}\right) \cos (3 t)}{5}-\frac{3\left(c_{1}-\frac{c_{2}}{3}\right) \sin (3 t)}{5} \\
c_{1} \cos (3 t)-c_{2} \sin (3 t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-c_{1}-3 c_{2}\right) \cos (3 t)}{5}-\frac{3\left(c_{1}-\frac{c_{2}}{3}\right) \sin (3 t)}{5}, y(t)=c_{1} \cos (3 t)-c_{2} \sin (3 t)\right\}
$$

\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 50

```
dsolve([diff(x(t),t)=-x(t)-2*y(t), diff (y(t),t)=5*x(t)+1*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \sin (3 t)+c_{2} \cos (3 t) \\
& y(t)=-\frac{3 c_{1} \cos (3 t)}{2}+\frac{3 c_{2} \sin (3 t)}{2}-\frac{c_{1} \sin (3 t)}{2}-\frac{c_{2} \cos (3 t)}{2}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 54
DSolve $\left[\left\{x^{\prime}[t]==-x[t]-2 * y[t], y^{\prime}[t]==5 * x[t]+1 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& x(t) \rightarrow c_{1} \cos (3 t)-\frac{1}{3}\left(c_{1}+2 c_{2}\right) \sin (3 t) \\
& y(t) \rightarrow c_{2} \cos (3 t)+\frac{1}{3}\left(5 c_{1}+c_{2}\right) \sin (3 t)
\end{aligned}
$$

20.5 problem 5

20.5.1 Solution using Matrix exponential method 2784
20.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2785
20.5.3 Maple step by step solution . 2789

Internal problem ID [12861]
Internal file name [OUTPUT/11513_Monday_November_06_2023_01_31_13_PM_44578035/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)+2 y(t) \\
y^{\prime}(t) & =-2 x(t)-y(t)
\end{aligned}
$$

20.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (2 t) & \mathrm{e}^{-t} \sin (2 t) \\
-\mathrm{e}^{-t} \sin (2 t) & \mathrm{e}^{-t} \cos (2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (2 t) & \mathrm{e}^{-t} \sin (2 t) \\
-\mathrm{e}^{-t} \sin (2 t) & \mathrm{e}^{-t} \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} \cos (2 t) c_{1}+\mathrm{e}^{-t} \sin (2 t) c_{2} \\
-\mathrm{e}^{-t} \sin (2 t) c_{1}+\mathrm{e}^{-t} \cos (2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}\left(\cos (2 t) c_{1}+\sin (2 t) c_{2}\right) \\
\mathrm{e}^{-t}\left(-\sin (2 t) c_{1}+\cos (2 t) c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 2 \\
-2 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1-2 i$	1	complex eigenvalue
$-1+2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right]-(-1-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 i & 2 \\
-2 & 2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 i & 2 & 0 \\
-2 & 2 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right]-(-1+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 i & 2 \\
-2 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 i & 2 & 0 \\
-2 & -2 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+2 i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$
$-1-2 i$	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \mathrm{e}^{(-1+2 i) t} \\
\mathrm{e}^{(-1+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
i \mathrm{e}^{(-1-2 i) t} \\
\mathrm{e}^{(-1-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{1} \mathrm{e}^{(-1+2 i) t}-c_{2} \mathrm{e}^{(-1-2 i) t}\right) \\
c_{1} \mathrm{e}^{(-1+2 i) t}+c_{2} \mathrm{e}^{(-1-2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 438: Phase plot

20.5.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-x(t)+2 y(t), y^{\prime}(t)=-2 x(t)-y(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1-2 \mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1
\end{array}\right]\right],\left[-1+2 \mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
$\left[-1-2 \mathrm{I},\left[\begin{array}{l}\mathrm{I} \\ 1\end{array}\right]\right]$
- Solution from eigenpair

$$
\mathrm{e}^{(-1-2 \mathrm{I}) t} \cdot\left[\begin{array}{l}
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{l}
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\mathrm{I}(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\sin (2 t) \\
\cos (2 t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\cos (2 t) \\
-\sin (2 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\sin (2 t) \\
\cos (2 t)
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\cos (2 t) \\
-\sin (2 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{l}
\mathrm{e}^{-t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
\mathrm{e}^{-t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\mathrm{e}^{-t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right), y(t)=\mathrm{e}^{-t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)\right\}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 45

$$
\begin{aligned}
& \text { dsolve }([\operatorname{diff}(\mathrm{x}(\mathrm{t}), \mathrm{t})=-\mathrm{x}(\mathrm{t})+2 * \mathrm{y}(\mathrm{t}), \operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})=-2 * \mathrm{x}(\mathrm{t})-1 * \mathrm{y}(\mathrm{t})], \text { singsol=all }) \\
& \qquad \begin{array}{l}
x(t)=\mathrm{e}^{-t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
y(t)=\mathrm{e}^{-t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)
\end{array}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 51
DSolve $\left[\left\{x^{\prime}[t]==-x[t]+2 * y[t], y^{\prime}[t]==-2 * x[t]-1 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
x(t) & \rightarrow e^{-t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right) \\
y(t) & \rightarrow e^{-t}\left(c_{2} \cos (2 t)-c_{1} \sin (2 t)\right)
\end{aligned}
$$

20.6 problem 6

20.6.1 Solution using Matrix exponential method 2792
20.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2793
20.6.3 Maple step by step solution . 2797

Internal problem ID [12862]
Internal file name [OUTPUT/11514_Monday_November_06_2023_01_31_13_PM_87283299/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)-2 y(t) \\
y^{\prime}(t) & =2 x(t)+y(t)
\end{aligned}
$$

20.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
\mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
\mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} \cos (2 t) c_{1}-\mathrm{e}^{t} \sin (2 t) c_{2} \\
\mathrm{e}^{t} \sin (2 t) c_{1}+\mathrm{e}^{t} \cos (2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(\cos (2 t) c_{1}-\sin (2 t) c_{2}\right) \\
\mathrm{e}^{t}\left(\sin (2 t) c_{1}+\cos (2 t) c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -2 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$1+2 i$	1	complex eigenvalue
$1-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]-(1-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 i & -2 \\
2 & 2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 i & -2 & 0 \\
2 & 2 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]-(1+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 i & -2 \\
2 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 i & -2 & 0 \\
2 & -2 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$1+2 i$	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$
$1-2 i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{(1+2 i) t} \\
\mathrm{e}^{(1+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{1} \mathrm{e}^{(1+2 i) t}-c_{2} \mathrm{e}^{(1-2 i) t}\right) \\
c_{1} \mathrm{e}^{(1+2 i) t}+c_{2} \mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 439: Phase plot

20.6.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=x(t)-2 y(t), y^{\prime}(t)=2 x(t)+y(t)\right]
$$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix
$A=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$
- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[1-2 \mathrm{I},\left[\begin{array}{c}-\mathrm{I} \\ 1\end{array}\right]\right],\left[1+2 \mathrm{I},\left[\begin{array}{l}\mathrm{I} \\ 1\end{array}\right]\right]\right]$
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
$\left[1-2 \mathrm{I},\left[\begin{array}{c}-\mathrm{I} \\ 1\end{array}\right]\right]$
- Solution from eigenpair
$\mathrm{e}^{(1-2 \mathrm{I}) t} \cdot\left[\begin{array}{c}-\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\mathrm{I}(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\sin (2 t) \\
\cos (2 t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\cos (2 t) \\
-\sin (2 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\sin (2 t) \\
\cos (2 t)
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\cos (2 t) \\
-\sin (2 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
\mathrm{e}^{t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\mathrm{e}^{t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right), y(t)=\mathrm{e}^{t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)\right\}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 42

```
dsolve([diff(x(t),t)=x(t)-2*y(t), diff (y (t),t)=2*x(t)+1*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
& y(t)=-\mathrm{e}^{t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 47
DSolve $\left[\left\{x^{\prime}[t]==x[t]-2 * y[t], y^{\prime}[t]==2 * x[t]+1 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$ I

$$
\begin{aligned}
& x(t) \rightarrow e^{t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right) \\
& y(t) \rightarrow e^{t}\left(c_{2} \cos (2 t)+c_{1} \sin (2 t)\right)
\end{aligned}
$$

20.7 problem 7

20.7.1 Solution using Matrix exponential method 2800
20.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2802
20.7.3 Maple step by step solution . 2808

Internal problem ID [12863]
Internal file name [OUTPUT/11515_Monday_November_06_2023_01_31_13_PM_3281850/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-5 x(t)-y(t)+2 \\
y^{\prime}(t) & =3 x(t)-y(t)-3
\end{aligned}
$$

20.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-5 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & -\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-4 t}}{2} \\
\frac{3 \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-4 t}}{2} & -\frac{\mathrm{e}^{-4 t}}{2}+\frac{3 \mathrm{e}^{-2 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & -\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-4 t}}{2} \\
\frac{3 \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-4 t}}{2} & -\frac{\mathrm{e}^{-4 t}}{2}+\frac{3 \mathrm{e}^{-2 t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{3 \mathrm{e}^{-4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-4 t}}{2}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-4 t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{-4 t}}{2}+\frac{3 \mathrm{e}^{-2 t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(3 c_{1}+c_{2}\right) \mathrm{e}^{-4 t}}{2}-\frac{\mathrm{e}^{-2 t}\left(c_{1}+c_{2}\right)}{2} \\
\frac{\left(-3 c_{1}-c_{2}\right) \mathrm{e}^{-4 t}}{2}+\frac{3 \mathrm{e}^{-2 t}\left(c_{1}+c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}}{2} & \frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{2 t}}{2} \\
-\frac{3\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{2 t}}{2} & -\frac{\left(\mathrm{e}^{2 t}-3\right) \mathrm{e}^{2 t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & -\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-4 t}}{2} \\
\frac{3 \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-4 t}}{2} & -\frac{\mathrm{e}^{-4 t}}{2}+\frac{3 \mathrm{e}^{-2 t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}}{2} & \frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{2 t}}{2} \\
-\frac{3\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{2 t}}{2} & -\frac{\left(\mathrm{e}^{2 t}-3\right) \mathrm{e}^{2 t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 \\
-3
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & -\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-4 t}}{2} \\
\frac{3 \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-4 t}}{2} & -\frac{\mathrm{e}^{-4 t}}{2}+\frac{3 \mathrm{e}^{-2 t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{3 \mathrm{e}^{4 t}}{8}+\frac{\mathrm{e}^{2 t}}{4} \\
-\frac{3 \mathrm{e}^{4 t}}{8}-\frac{3 \mathrm{e}^{2 t}}{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{5}{8} \\
-\frac{9}{8}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{5}{8}+\frac{\left(3 c_{1}+c_{2}\right) \mathrm{e}^{-4 t}}{2}+\frac{\left(-c_{1}-c_{2}\right) \mathrm{e}^{-2 t}}{2} \\
\frac{\left(-3 c_{1}-c_{2}\right) \mathrm{e}^{-4 t}}{2}+\frac{3 \mathrm{e}^{-2 t}\left(c_{1}+c_{2}\right)}{2}-\frac{9}{8}
\end{array}\right]
\end{aligned}
$$

20.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-5 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-5 & -1 \\
3 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-5-\lambda & -1 \\
3 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+6 \lambda+8=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-4 \\
& \lambda_{2}=-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
-4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-5 & -1 \\
3 & -1
\end{array}\right]-(-4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & -1 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+3 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-5 & -1 \\
3 & -1
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & -1 & 0 \\
3 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-4	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{c}-\frac{1}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -4 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-4 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-4 t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-2 t} \\
& =\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-4 t} \\
\mathrm{e}^{-4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}}{3} \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-4 t} & -\frac{\mathrm{e}^{-2 t}}{3} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\mathrm{e}^{-4 t} & -\frac{\mathrm{e}^{-2 t}}{3} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2} \\
\frac{3 \mathrm{e}^{2 t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 \\
-3
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-4 t} & -\frac{\mathrm{e}^{-2 t}}{3} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{4 t}}{2} \\
-\frac{3 \mathrm{e}^{2 t}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-4 t} & -\frac{\mathrm{e}^{-2 t}}{3} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{4 t}}{8} \\
-\frac{3 \mathrm{e}^{2 t}}{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{5}{8} \\
-\frac{9}{8}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-4 t} \\
c_{1} \mathrm{e}^{-4 t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} e^{-2 t}}{3} \\
c_{2} \mathrm{e}^{-2 t}
\end{array}\right]+\left[\begin{array}{c}
\frac{5}{8} \\
-\frac{9}{8}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-4 t}-\frac{c_{2} \mathrm{e}^{-2 t}}{3}+\frac{5}{8} \\
c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}-\frac{9}{8}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 440: Phase plot

20.7.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-5 x(t)-y(t)+2, y^{\prime}(t)=3 x(t)-y(t)-3\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-5 & -1 \\ 3 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}2 \\ -3\end{array}\right]$
- \quad System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-5 & -1 \\ 3 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}2 \\ -3\end{array}\right]$
- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-5 & -1 \\
3 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-4 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}-\frac{1}{3} \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution $\vec{x}_{p}($ $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst
$\phi(t)=\left[\begin{array}{cc}-\mathrm{e}^{-4 t} & -\frac{\mathrm{e}^{-2 t}}{3} \\ \mathrm{e}^{-4 t} & \mathrm{e}^{-2 t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th

$$
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-4 t} & -\frac{\mathrm{e}^{-2 t}}{3} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-1 & -\frac{1}{3} \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & -\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-4 t}}{2} \\
\frac{3 \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-4 t}}{2} & -\frac{\mathrm{e}^{-4 t}}{2}+\frac{3 \mathrm{e}^{-2 t}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution
$\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)$
- Integrate to solve for $\vec{v}(t)$
$\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{-4 t}}{8}+\frac{5}{8}-\frac{\mathrm{e}^{-2 t}}{4} \\
\frac{3 \mathrm{e}^{-2 t}}{4}-\frac{9}{8}+\frac{3 \mathrm{e}^{-4 t}}{8}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{-4 t}}{8}+\frac{5}{8}-\frac{\mathrm{e}^{-2 t}}{4} \\
\frac{3 \mathrm{e}^{-2 t}}{4}-\frac{9}{8}+\frac{3 \mathrm{e}^{-4 t}}{8}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-24 c_{1}-9\right) \mathrm{e}^{-4 t}}{24}+\frac{5}{8}+\frac{\left(-8 c_{2}-6\right) \mathrm{e}^{-2 t}}{24} \\
\frac{\left(3+8 c_{1}\right) \mathrm{e}^{-4 t}}{8}-\frac{9}{8}+\frac{\left(8 c_{2}+6\right) \mathrm{e}^{-2 t}}{8}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-24 c_{1}-9\right) \mathrm{e}^{-4 t}}{24}+\frac{5}{8}+\frac{\left(-8 c_{2}-6\right) \mathrm{e}^{-2 t}}{24}, y(t)=\frac{\left(3+8 c_{1}\right) \mathrm{e}^{-4 t}}{8}-\frac{9}{8}+\frac{\left(8 c_{2}+6\right) \mathrm{e}^{-2 t}}{8}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 39
dsolve([diff $(x(t), t)=-5 * x(t)-y(t)+2, \operatorname{diff}(y(t), t)=3 * x(t)-1 * y(t)-3]$, singsol=all)

$$
\begin{aligned}
& x(t)=\frac{5}{8}-\frac{\mathrm{e}^{-4 t} c_{1}}{2}+c_{2} \mathrm{e}^{-2 t} \\
& y(t)=\frac{\mathrm{e}^{-4 t} c_{1}}{2}-3 c_{2} \mathrm{e}^{-2 t}-\frac{9}{8}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 93
DSolve $\left[\left\{x^{\prime}[t]==-5 * x[t]-y[t]+2, y^{\prime}[t]==3 * x[t]-1 * y[t]-3\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{48} e^{-4 t}\left(30 e^{4 t}-\left(1+24 c_{1}+24 c_{2}\right) e^{2 t}+3+72 c_{1}+24 c_{2}\right) \\
& y(t) \rightarrow \frac{1}{16} e^{-4 t}\left(-18 e^{4 t}+\left(1+24 c_{1}+24 c_{2}\right) e^{2 t}-1-24 c_{1}-8 c_{2}\right)
\end{aligned}
$$

20.8 problem 8

20.8.1 Solution using Matrix exponential method 2812
20.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2814
20.8.3 Maple step by step solution . 2819

Internal problem ID [12864]
Internal file name [OUTPUT/11516_Monday_November_06_2023_01_31_14_PM_70028064/index.tex]
Book: Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section: Chapter 10. Applications of Systems of Equations. Exercises 10.2 page 432
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t)-2 y(t)-6 \\
y^{\prime}(t) & =4 x(t)-y(t)+2
\end{aligned}
$$

20.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-6 \\
2
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t)+\mathrm{e}^{t} \sin (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(\sin (2 t)+\cos (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(\sin (2 t)+\cos (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(\sin (2 t)+\cos (2 t)) c_{1}-\mathrm{e}^{t} \sin (2 t) c_{2} \\
2 \mathrm{e}^{t} \sin (2 t) c_{1}+\mathrm{e}^{t}(\cos (2 t)-\sin (2 t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(\left(c_{1}-c_{2}\right) \sin (2 t)+c_{1} \cos (2 t)\right) \\
\mathrm{e}^{t}\left(2 c_{1}-c_{2}\right) \sin (2 t)+\mathrm{e}^{t} \cos (2 t) c_{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(\cos (2 t)-\sin (2 t)) & \mathrm{e}^{-t} \sin (2 t) \\
-2 \mathrm{e}^{-t} \sin (2 t) & \mathrm{e}^{-t}(\sin (2 t)+\cos (2 t))
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{t}(\sin (2 t)+\cos (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
\end{array}\right] \int\left[\begin{array}{cc}
\mathrm{e}^{-t}(\cos (2 t)-\sin (2 t)) & \mathrm{e}^{-t} \sin (2 t) \\
-2 \mathrm{e}^{-t} \sin (2 t) & \mathrm{e}^{-t}(\sin (2 t)+\cos
\end{array}\right. \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(\sin (2 t)+\cos (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
\end{array}\right]\left[\begin{array}{c}
-2(2 \sin (2 t)+\cos (2 t)) \mathrm{e}^{-t} \\
-2(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \\
-6
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(c_{1}-c_{2}\right) \sin (2 t)+\mathrm{e}^{t} \cos (2 t) c_{1}-2 \\
2\left(c_{1}-\frac{c_{2}}{2}\right) \mathrm{e}^{t} \sin (2 t)+\mathrm{e}^{t} \cos (2 t) c_{2}-6
\end{array}\right]
\end{aligned}
$$

20.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-6 \\
2
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -2 \\
4 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$1+2 i$	1	complex eigenvalue
$1-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right]-(1-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2+2 i & -2 \\
4 & -2+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+2 i & -2 & 0 \\
4 & -2+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right]-(1+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-2 i & -2 \\
4 & -2-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-2 i & -2 & 0 \\
4 & -2-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $1+2 i$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(1+2 i) t} \\
\mathrm{e}^{(1+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(1+2 i) t} & \left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1+2 i) t} & \mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-i \mathrm{e}^{(-1-2 i) t} & \left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(-1-2 i) t} \\
i \mathrm{e}^{(-1+2 i) t} & \left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(-1+2 i) t}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(1+2 i) t} & \left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1+2 i) t} & \mathrm{e}^{(1-2 i) t}
\end{array}\right] \int\left[\begin{array}{cc}
-i \mathrm{e}^{(-1-2 i) t} & \left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(-1-2 i) t} \\
i \mathrm{e}^{(-1+2 i) t} & \left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(-1+2 i) t}
\end{array}\right]\left[\begin{array}{c}
-6 \\
2
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(1+2 i) t} & \left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1+2 i) t} & \mathrm{e}^{(1-2 i) t}
\end{array}\right] \int\left[\begin{array}{c}
(1+7 i) \mathrm{e}^{(-1-2 i) t} \\
(1-7 i) \mathrm{e}^{(-1+2 i) t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(1+2 i) t} & \left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1+2 i) t} & \mathrm{e}^{(1-2 i) t}
\end{array}\right]\left[\begin{array}{c}
(-3-i) \mathrm{e}^{(-1-2 i) t} \\
(-3+i) \mathrm{e}^{(-1+2 i) t}
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \\
-6
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{(1+2 i) t} \\
c_{1} \mathrm{e}^{(1+2 i) t}
\end{array}\right]+\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{(1-2 i) t} \\
c_{2} \mathrm{e}^{(1-2 i) t}
\end{array}\right]+\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{(1+2 i) t}+\left(\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{(1-2 i) t}-2 \\
c_{1} \mathrm{e}^{(1+2 i) t}+c_{2} \mathrm{e}^{(1-2 i) t}-6
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 441: Phase plot

20.8.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=3 x(t)-2 y(t)-6, y^{\prime}(t)=4 x(t)-y(t)+2\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-6 \\
2
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-6 \\
2
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
-6 \\
2
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1-2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[1+2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[1-2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(1-2 \mathrm{I}) t} \cdot\left[\begin{array}{c}\frac{1}{2}-\frac{\mathrm{I}}{2} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of \sin and cos

$$
\mathrm{e}^{t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression
$\mathrm{e}^{t} \cdot\left[\begin{array}{c}\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right)(\cos (2 t)-\mathrm{I} \sin (2 t)) \\ \cos (2 t)-\mathrm{I} \sin (2 t)\end{array}\right]$
- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2} \\
\cos (2 t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2} \\
-\sin (2 t)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\vec{x}_{p}(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}\mathrm{e}^{t}\left(\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2}\right) & \mathrm{e}^{t}\left(-\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2}\right) \\ \mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t)\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$
$\Phi(t)=\left[\begin{array}{cc}\mathrm{e}^{t}\left(\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2}\right) & \mathrm{e}^{t}\left(-\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2}\right) \\ \mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t)\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ 1 & 0\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix
$\Phi(t)=\left[\begin{array}{cc}\mathrm{e}^{t}(\sin (2 t)+\cos (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\ 2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
-4 \mathrm{e}^{t} \sin (2 t)+2 \mathrm{e}^{t} \cos (2 t)-2 \\
-2 \mathrm{e}^{t} \sin (2 t)+6 \mathrm{e}^{t} \cos (2 t)-6
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\left[\begin{array}{l}
-4 \mathrm{e}^{t} \sin (2 t)+2 \mathrm{e}^{t} \cos (2 t)-2 \\
-2 \mathrm{e}^{t} \sin (2 t)+6 \mathrm{e}^{t} \cos (2 t)-6
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{t}\left(c_{1}-c_{2}+4\right) \cos (2 t)}{2}-2-\frac{\mathrm{e}^{t}\left(c_{1}+c_{2}+8\right) \sin (2 t)}{2} \\
\mathrm{e}^{t}\left(c_{1}+6\right) \cos (2 t)-6-\mathrm{e}^{t}\left(c_{2}+2\right) \sin (2 t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs
$\left\{x(t)=\frac{\mathrm{e}^{t}\left(c_{1}-c_{2}+4\right) \cos (2 t)}{2}-2-\frac{\mathrm{e}^{t}\left(c_{1}+c_{2}+8\right) \sin (2 t)}{2}, y(t)=\mathrm{e}^{t}\left(c_{1}+6\right) \cos (2 t)-6-\mathrm{e}^{t}\left(c_{2}+2\right) \sin (2 t)\right.$,
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 57
dsolve ([diff $(x(t), t)=3 * x(t)-2 * y(t)-6, \operatorname{diff}(y(t), t)=4 * x(t)-1 * y(t)+2]$, singsol=all)

$$
\begin{aligned}
& x(t)=-2+\mathrm{e}^{t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right) \\
& y(t)=-6+\mathrm{e}^{t}\left(c_{1} \cos (2 t)-c_{2} \cos (2 t)+c_{1} \sin (2 t)+c_{2} \sin (2 t)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.358 (sec). Leaf size: 64
DSolve $\left[\left\{x^{\prime}[t]==3 * x[t]-2 * y[t]-6, y^{\prime}[t]==4 * x[t]-1 * y[t]+2\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolution

$$
\begin{aligned}
& x(t) \rightarrow c_{1} e^{t} \cos (2 t)+\left(c_{1}-c_{2}\right) e^{t} \sin (2 t)-2 \\
& y(t) \rightarrow c_{2} e^{t} \cos (2 t)+\left(2 c_{1}-c_{2}\right) e^{t} \sin (2 t)-6
\end{aligned}
$$

[^0]: - Methods for first order ODEs:
 --- Trying classification methods --trying homogeneous types:
 differential order: 1; looking for linear symmetries differential order: 1; found: 2 linear symmetries. Trying reduction of order 1st order, trying the canonical coordinates of the invariance group <- 1st order, canonical coordinates successful`

