A Solution Manual For

Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
 DIFFERENTIAL EQUATIONS
 Third Edition
 Shepley L. Ross

Nasser M. Abbasi

May 15, 2024

Contents

1 Chapter 1, Differential equations and their solutions. Exercises page 13

2 Chapter 1, section 1.3. Exercises page 22 158

3 Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37

4 Chapter 2, section 2.2 (Separable equations). Exercises page 47
5 Chapter 2, section 2.3 (Linear equations). Exercises page 56
6 Chapter 2, Miscellaneous Review. Exercises page 60
7 Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67

8 Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113

9 Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

10 Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135

11 Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151

12 Chapter 4, Section 4.4. Variation of parameters. Exercises page 16 2854
13 Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

14 Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

15 Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251

4027

16 Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277

4369
17 Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299

4523
18 Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309

4552
19 Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345

4587
20 Chapter 7, Systems of linear differential equations. Section 7.7. Exercises page 375

4681
1 Chapter 1, Differential equations and their solutions. Exercises page 13
1.1 problem 1(a) 4
1.2 problem 1(b) 19
1.3 problem 1(c) 27
1.4 problem 1(d) 37
1.5 problem 2(a) 50
1.6 problem 2(b) 65
1.7 problem 3(a) 79
1.8 problem 3(b) 92
1.9 problem 4(a) 105
1.10 problem 4(b) 113
1.11 problem 5(a) 118
1.12 problem 5(b) 123
1.13 problem 6(a) 130
1.14 problem 6(b) 143
1.15 problem 7(a) 155

1.1 problem 1(a)

1.1.1 Solving as linear ode . 4
1.1.2 Solving as homogeneousTypeD2 ode 6
1.1.3 Solving as first order ode lie symmetry lookup ode 8
1.1.4 Solving as exact ode . 12
1.1.5 Maple step by step solution . 16

Internal problem ID [11570]
Internal file name [OUTPUT/10552_Thursday_May_18_2023_05_39_29_AM_75656588/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=1+x
$$

1.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =1+x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=1+x
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(1+x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)(1+x) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}(1+x)\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int \mathrm{e}^{x}(1+x) \mathrm{d} x \\
& \mathrm{e}^{x} y=x \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x} x \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=x+c_{1} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot

Verification of solutions

$$
y=x+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

1.1.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)+u(x) x=1+x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(1+x)(-u+1)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1+x}{x}$ and $g(u)=-u+1$. Integrating both sides gives

$$
\frac{1}{-u+1} d u=\frac{1+x}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{-u+1} d u & =\int \frac{1+x}{x} d x \\
-\ln (u-1) & =x+\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{u-1}=\mathrm{e}^{x+\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{u-1}=c_{3} \mathrm{e}^{x+\ln (x)}
$$

Which simplifies to

$$
u(x)=\frac{\left(c_{3} \mathrm{e}^{x} x \mathrm{e}^{c_{2}}+1\right) \mathrm{e}^{-x} \mathrm{e}^{-c_{2}}}{c_{3} x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{\left(c_{3} \mathrm{e}^{x} x \mathrm{e}^{c_{2}}+1\right) \mathrm{e}^{-x} \mathrm{e}^{-c_{2}}}{c_{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{3} \mathrm{e}^{x} x \mathrm{e}^{c_{2}}+1\right) \mathrm{e}^{-x} \mathrm{e}^{-c_{2}}}{c_{3}} \tag{1}
\end{equation*}
$$

Figure 2: Slope field plot

Verification of solutions

$$
y=\frac{\left(c_{3} \mathrm{e}^{x} x \mathrm{e}^{c_{2}}+1\right) \mathrm{e}^{-x} \mathrm{e}^{-c_{2}}}{c_{3}}
$$

Verified OK.

1.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+1+x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+1+x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{x}(1+x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}(1+R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R} R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=x \mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{x}=x \mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+1+x$		$\frac{d S}{d R}=\mathrm{e}^{R}(1+R)$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow \rightarrow$ SRT
		\rightarrow
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+1]{ }$
	$S=\mathrm{e}^{x} y$	
		$\rightarrow \rightarrow \rightarrow$ 他
		$\xrightarrow{\rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow}$
$\overrightarrow{\text { g 刀 }} \boldsymbol{\prime}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 3: Slope field plot

Verification of solutions

$$
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

1.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-y+1+x) \mathrm{d} x \\
(y-1-x) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y-1-x \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-1-x) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(y-1-x) \\
& =-\mathrm{e}^{x}(-y+1+x)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{x}(-y+1+x)\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}(-y+1+x) \mathrm{d} x \\
\phi & =-(-y+x) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-(-y+x) \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-(-y+x) \mathrm{e}^{x}
$$

The solution becomes

$$
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 4: Slope field plot

Verification of solutions

$$
y=\left(x \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

Verified OK.

1.1.5 Maple step by step solution

Let's solve

$$
y^{\prime}+y=1+x
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Isolate the derivative

$$
y^{\prime}=-y+1+x
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=1+x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x)(1+x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)(1+x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)(1+x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)(1+x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int \mathrm{e}^{x}(1+x) d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{x \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=x+c_{1} \mathrm{e}^{-x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve(diff $(y(x), x)+y(x)=1+x, y(x)$, singsol=all)

$$
y(x)=x+c_{1} \mathrm{e}^{-x}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 15
DSolve[y' $[x]+y[x]==1+x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x+c_{1} e^{-x}
$$

1.2 problem 1(b)

1.2.1 Solving as second order linear constant coeff ode 19
1.2.2 Solving using Kovacic algorithm 21
1.2.3 Maple step by step solution . 25

Internal problem ID [11571]
Internal file name [OUTPUT/10553_Thursday_May_18_2023_05_39_31_AM_64152595/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-7 y^{\prime}+12 y=0
$$

1.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-7, C=12$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-7 \lambda \mathrm{e}^{\lambda x}+12 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-7 \lambda+12=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-7, C=12$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{7}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-7^{2}-(4)(1)(12)} \\
& =\frac{7}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{7}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{7}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+\mathrm{e}^{3 x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+\mathrm{e}^{3 x} c_{2} \tag{1}
\end{equation*}
$$

Figure 5: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+\mathrm{e}^{3 x} c_{2}
$$

Verified OK.

1.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-7 y^{\prime}+12 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-7 \tag{3}\\
& C=12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 4: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{7}{1} d x} \\
& =z_{1} e^{\frac{7 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{7 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-7}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{7 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x}\right)+c_{2}\left(\mathrm{e}^{3 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{4 x} \tag{1}
\end{equation*}
$$

Figure 6: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{4 x}
$$

Verified OK.

1.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-7 y^{\prime}+12 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-7 r+12=0$
- Factor the characteristic polynomial
$(r-3)(r-4)=0$
- Roots of the characteristic polynomial
$r=(3,4)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{3 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{4 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve($\operatorname{diff}(y(x), x \$ 2)-7 * \operatorname{diff}(y(x), x)+12 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 20
DSolve[y'' $[x]-7 * y$ ' $[x]+12 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{3 x}\left(c_{2} e^{x}+c_{1}\right)
$$

1.3 problem 1(c)

1.3.1 Solving as second order linear constant coeff ode 27
1.3.2 Solving using Kovacic algorithm 30
1.3.3 Maple step by step solution . 35

Internal problem ID [11572]
Internal file name [OUTPUT/10554_Thursday_May_18_2023_05_39_32_AM_68847962/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 x^{2}
$$

1.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-3, C=2, f(x)=4 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{3} x^{2}+2 A_{2} x-6 x A_{3}+2 A_{1}-3 A_{2}+2 A_{3}=4 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=7, A_{2}=6, A_{3}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 x^{2}+6 x+7
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}\right)+\left(2 x^{2}+6 x+7\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+2 x^{2}+6 x+7 \tag{1}
\end{equation*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+2 x^{2}+6 x+7
$$

Verified OK.

1.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 6: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{3} x^{2}+2 A_{2} x-6 x A_{3}+2 A_{1}-3 A_{2}+2 A_{3}=4 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=7, A_{2}=6, A_{3}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 x^{2}+6 x+7
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}\right)+\left(2 x^{2}+6 x+7\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+2 x^{2}+6 x+7 \tag{1}
\end{equation*}
$$

Figure 8: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+2 x^{2}+6 x+7
$$

Verified OK.

1.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 x^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-3 r+2=0$
- Factor the characteristic polynomial
$(r-1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(1,2)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 x^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{2 x} \\
\mathrm{e}^{x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{x}\left(\int x^{2} \mathrm{e}^{-x} d x\right)+4 \mathrm{e}^{2 x}\left(\int x^{2} \mathrm{e}^{-2 x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=2 x^{2}+6 x+7
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+2 x^{2}+6 x+7
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff (y (x),x$2)-3*diff (y (x),x)+2*y(x)=4*x^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{x}+2 x^{2}+6 x+7
$$

Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 29
DSolve[y'' $[x]-3 * y$ ' $[x]+2 * y[x]==4 * x^{\wedge} 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 2 x^{2}+6 x+c_{1} e^{x}+c_{2} e^{2 x}+7
$$

1.4 problem 1(d)

1.4.1 Solving as linear second order ode solved by an integrating factor

ode .
1.4.2 Solving as second order change of variable on y method 1 ode . 39
1.4.3 Solving as second order integrable as is ode 40
$\begin{array}{ll}\text { 1.4.4 } & \begin{array}{l}\text { Solving as type second_order_integrable_as_is (not using ABC }\end{array} \\ & \text { version) . } 42\end{array}$
1.4.5 Solving using Kovacic algorithm 43
1.4.6 Solving as exact linear second order ode ode 46

Internal problem ID [11573]
Internal file name [OUTPUT/10555_Thursday_May_18_2023_05_39_32_AM_64086885/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_change_of__variable_on_y__method_1", "linear_second_order_ode_solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(x^{2}+1\right) y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

1.4.1 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=\frac{4 x}{x^{2}+1}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{4 x}{x^{2}+1} d x} \\
& =x^{2}+1
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\left(x^{2}+1\right) y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\left(x^{2}+1\right) y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\left(x^{2}+1\right) y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Or

$$
y=\frac{c_{1} x}{x^{2}+1}+\frac{c_{2}}{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x}{x^{2}+1}+\frac{c_{2}}{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x}{x^{2}+1}+\frac{c_{2}}{x^{2}+1}
$$

Verified OK.

1.4.2 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4 x}{x^{2}+1} \\
& q(x)=\frac{2}{x^{2}+1}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}+1}-\frac{\left(\frac{4 x}{x^{2}+1}\right)^{\prime}}{2}-\frac{\left(\frac{4 x}{x^{2}+1}\right)^{2}}{4} \\
& =\frac{2}{x^{2}+1}-\frac{\left(\frac{4}{x^{2}+1}-\frac{8 x^{2}}{\left(x^{2}+1\right)^{2}}\right)}{2}-\frac{\left(\frac{16 x^{2}}{\left(x^{2}+1\right)^{2}}\right)}{4} \\
& =\frac{2}{x^{2}+1}-\left(\frac{2}{x^{2}+1}-\frac{4 x^{2}}{\left(x^{2}+1\right)^{2}}\right)-\frac{4 x^{2}}{\left(x^{2}+1\right)^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{\frac{4 x}{x^{2}+1}}{2}} \\
& =\frac{1}{x^{2}+1} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{x^{2}+1} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{x^{2}+1}
$$

Hence (7) becomes

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+c_{2}}{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Verified OK.

1.4.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(\left(x^{2}+1\right) y^{\prime \prime}+4 y^{\prime} x+2 y\right) d x=0 \\
2 y x+\left(x^{2}+1\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2 x}{x^{2}+1} \\
& q(x)=\frac{c_{1}}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{c_{1}}{x^{2}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2 x}{x^{2}+1} d x} \\
& =x^{2}+1
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+1\right) y\right) & =\left(x^{2}+1\right)\left(\frac{c_{1}}{x^{2}+1}\right) \\
\mathrm{d}\left(\left(x^{2}+1\right) y\right) & =c_{1} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{2}+1\right) y=\int c_{1} \mathrm{~d} x \\
& \left(x^{2}+1\right) y=c_{1} x+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}+1$ results in

$$
y=\frac{c_{1} x}{x^{2}+1}+\frac{c_{2}}{x^{2}+1}
$$

which simplifies to

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+c_{2}}{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Verified OK.

1.4.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
\left(x^{2}+1\right) y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(\left(x^{2}+1\right) y^{\prime \prime}+4 y^{\prime} x+2 y\right) d x=0 \\
2 y x+\left(x^{2}+1\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2 x}{x^{2}+1} \\
& q(x)=\frac{c_{1}}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{c_{1}}{x^{2}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2 x}{x^{2}+1} d x} \\
& =x^{2}+1
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+1\right) y\right) & =\left(x^{2}+1\right)\left(\frac{c_{1}}{x^{2}+1}\right) \\
\mathrm{d}\left(\left(x^{2}+1\right) y\right) & =c_{1} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{2}+1\right) y=\int c_{1} \mathrm{~d} x \\
& \left(x^{2}+1\right) y=c_{1} x+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}+1$ results in

$$
y=\frac{c_{1} x}{x^{2}+1}+\frac{c_{2}}{x^{2}+1}
$$

which simplifies to

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+c_{2}}{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Verified OK.

1.4.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(x^{2}+1\right) y^{\prime \prime}+4 y^{\prime} x+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}+1 \\
& B=4 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 8: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4 x}{x^{2}+1} d x} \\
& =z_{1} e^{-\ln \left(x^{2}+1\right)} \\
& =z_{1}\left(\frac{1}{x^{2}+1}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}+1}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 x}{x^{2}+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln \left(x^{2}+1\right)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}+1}\right)+c_{2}\left(\frac{1}{x^{2}+1}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}+1}+\frac{c_{2} x}{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}+1}+\frac{c_{2} x}{x^{2}+1}
$$

Verified OK.

1.4.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =x^{2}+1 \\
q(x) & =4 x \\
r(x) & =2 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =4
\end{aligned}
$$

Therefore (1) becomes

$$
2-(4)+(2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
2 y x+\left(x^{2}+1\right) y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
2 y x+\left(x^{2}+1\right) y^{\prime}=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2 x}{x^{2}+1} \\
& q(x)=\frac{c_{1}}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{c_{1}}{x^{2}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2 x}{x^{2}+1} d x} \\
& =x^{2}+1
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+1\right) y\right) & =\left(x^{2}+1\right)\left(\frac{c_{1}}{x^{2}+1}\right) \\
\mathrm{d}\left(\left(x^{2}+1\right) y\right) & =c_{1} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{2}+1\right) y=\int c_{1} \mathrm{~d} x \\
& \left(x^{2}+1\right) y=c_{1} x+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}+1$ results in

$$
y=\frac{c_{1} x}{x^{2}+1}+\frac{c_{2}}{x^{2}+1}
$$

which simplifies to

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+c_{2}}{x^{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve((1+x^2)*diff (y (x),x$2)+4*x*diff (y (x), x)+2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x+c_{2}}{x^{2}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 20
DSolve[(1+ $\left.\mathrm{x}^{\wedge} 2\right) * \mathrm{y}^{\prime} \mathrm{'}^{[\mathrm{x}]}+4 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{2} x+c_{1}}{x^{2}+1}
$$

1.5 problem 2(a)

1.5.1 Solving as homogeneousTypeD2 ode 50
1.5.2 Solving as first order ode lie symmetry lookup ode 52
1.5.3 Solving as bernoulli ode . 56
1.5.4 Solving as exact ode . 59
1.5.5 Maple step by step solution . 63

Internal problem ID [11574]
Internal file name [OUTPUT/10556_Thursday_May_18_2023_05_39_34_AM_10656506/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, _Bernoulli]
```

$$
2 x y y^{\prime}+y^{2}=-x^{2}
$$

1.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)+u(x)^{2} x^{2}=-x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u^{2}+1}{2 u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=\frac{3 u^{2}+1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{3 u^{2}+1}{u}} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{\frac{3 u^{2}+1}{u}} d u & =\int-\frac{1}{2 x} d x \\
\frac{\ln \left(3 u^{2}+1\right)}{6} & =-\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(3 u^{2}+1\right)^{\frac{1}{6}}=\mathrm{e}^{-\frac{\ln (x)}{2}+c_{2}}
$$

Which simplifies to

$$
\left(3 u^{2}+1\right)^{\frac{1}{6}}=\frac{c_{3}}{\sqrt{x}}
$$

Which simplifies to

$$
\left(3 u(x)^{2}+1\right)^{\frac{1}{6}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
$$

The solution is

$$
\left(3 u(x)^{2}+1\right)^{\frac{1}{6}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{3 y^{2}}{x^{2}}+1\right)^{\frac{1}{6}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}} \\
\left(\frac{3 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{6}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{3 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{6}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot
Verification of solutions

$$
\left(\frac{3 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{6}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
$$

Verified OK.

1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x^{2}+y^{2}}{2 y x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 9: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x y^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x^{2}+y^{2}}{2 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y^{2}}{2} \\
S_{y} & =x y
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{x^{2}}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{R^{2}}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R^{3}}{6}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2} x}{2}=-\frac{x^{3}}{6}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2} x}{2}=-\frac{x^{3}}{6}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x^{2}+y^{2}}{2 y x}$		$\frac{d S}{d R}=-\frac{R^{2}}{2}$
		S(R)
	$R=x$	1.1.
+ 4 -	$x y^{2}$	
	$S=\frac{x y^{2}}{2}$	
drivirwt		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2} x}{2}=-\frac{x^{3}}{6}+c_{1} \tag{1}
\end{equation*}
$$

Figure 10: Slope field plot
Verification of solutions

$$
\frac{y^{2} x}{2}=-\frac{x^{3}}{6}+c_{1}
$$

Verified OK.

1.5.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x^{2}+y^{2}}{2 y x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{2 x} y-\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{2 x} \\
f_{1}(x) & =-\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{y^{2}}{2 x}-\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{2 x}-\frac{x}{2} \\
w^{\prime} & =-\frac{w}{x}-x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-x
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x w) & =(x)(-x) \\
\mathrm{d}(x w) & =\left(-x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x w=\int-x^{2} \mathrm{~d} x \\
& x w=-\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=-\frac{x^{2}}{3}+\frac{c_{1}}{x}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-\frac{x^{2}}{3}+\frac{c_{1}}{x}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{3} \sqrt{-x\left(x^{3}-3 c_{1}\right)}}{3 x} \\
& y(x)=-\frac{\sqrt{3} \sqrt{-x\left(x^{3}-3 c_{1}\right)}}{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{3} \sqrt{-x\left(x^{3}-3 c_{1}\right)}}{3 x} \tag{1}\\
& y=-\frac{\sqrt{3} \sqrt{-x\left(x^{3}-3 c_{1}\right)}}{3 x} \tag{2}
\end{align*}
$$

Figure 11: Slope field plot
Verification of solutions

$$
y=\frac{\sqrt{3} \sqrt{-x\left(x^{3}-3 c_{1}\right)}}{3 x}
$$

Verified OK.

$$
y=-\frac{\sqrt{3} \sqrt{-x\left(x^{3}-3 c_{1}\right)}}{3 x}
$$

Verified OK.

1.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y) \mathrm{d} y & =\left(-x^{2}-y^{2}\right) \mathrm{d} x \\
\left(x^{2}+y^{2}\right) \mathrm{d} x+(2 x y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+y^{2} \\
N(x, y) & =2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x^{2}+y^{2} \mathrm{~d} x \\
\phi & =\frac{1}{3} x^{3}+x y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x y=2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{1}{3} x^{3}+x y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{1}{3} x^{3}+x y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{3}}{3}+y^{2} x=c_{1} \tag{1}
\end{equation*}
$$

Figure 12: Slope field plot

Verification of solutions

$$
\frac{x^{3}}{3}+y^{2} x=c_{1}
$$

Verified OK.

1.5.5 Maple step by step solution

Let's solve
$2 x y y^{\prime}+y^{2}=-x^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives

$$
2 y=2 y
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(x^{2}+y^{2}\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{x^{3}}{3}+x y^{2}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$2 x y=2 x y+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=0$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{1}{3} x^{3}+x y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{1}{3} x^{3}+x y^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{\sqrt{3} \sqrt{x\left(-x^{3}+3 c_{1}\right)}}{3 x}, y=\frac{\sqrt{3} \sqrt{x\left(-x^{3}+3 c_{1}\right)}}{3 x}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 47

```
dsolve(2*x*y(x)*diff(y(x),x)+x^2+y(x)^2=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{3} \sqrt{-x\left(x^{3}-3 c_{1}\right)}}{3 x} \\
& y(x)=\frac{\sqrt{3} \sqrt{-x\left(x^{3}-3 c_{1}\right)}}{3 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.377 (sec). Leaf size: 60
DSolve $\left[2 * x * y[x] * y\right.$ ' $[x]+x^{\wedge} 2+y[x] \sim 2==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-x^{3}+3 c_{1}}}{\sqrt{3} \sqrt{x}} \\
& y(x) \rightarrow \frac{\sqrt{-x^{3}+3 c_{1}}}{\sqrt{3} \sqrt{x}}
\end{aligned}
$$

1.6 problem 2(b)

1.6.1 Solving as first order ode lie symmetry lookup ode 65
1.6.2 Solving as bernoulli ode . 69
1.6.3 Solving as exact ode . 73

Internal problem ID [11575]
Internal file name [OUTPUT/10557_Thursday_May_18_2023_05_39_35_AM_47002682/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 2(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_oorder__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
y^{\prime} x+y-y^{3} x^{3}=0
$$

1.6.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y\left(y^{2} x^{3}-1\right)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 12: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{3} x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{3} x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{2 x^{2} y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(y^{2} x^{3}-1\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x^{3} y^{2}} \\
S_{y} & =\frac{1}{y^{3} x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{2 x^{2} y^{2}}=x+c_{1}
$$

Which simplifies to

$$
-\frac{1}{2 x^{2} y^{2}}=x+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{2 x^{2} y^{2}}=x+c_{1} \tag{1}
\end{equation*}
$$

Figure 13: Slope field plot
Verification of solutions

$$
-\frac{1}{2 x^{2} y^{2}}=x+c_{1}
$$

Verified OK.

1.6.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(y^{2} x^{3}-1\right)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+x^{2} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =x^{2} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{1}{x y^{2}}+x^{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{x}+x^{2} \\
w^{\prime} & =\frac{2 w}{x}-2 x^{2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-2 x^{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=-2 x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-2 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(-2 x^{2}\right) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =-2 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{2}}=\int-2 \mathrm{~d} x \\
& \frac{w}{x^{2}}=-2 x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=c_{1} x^{2}-2 x^{3}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=c_{1} x^{2}-2 x^{3}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{c_{1}-2 x} x} \\
& y(x)=-\frac{1}{\sqrt{c_{1}-2 x} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\sqrt{c_{1}-2 x} x} \tag{1}\\
& y=-\frac{1}{\sqrt{c_{1}-2 x} x} \tag{2}
\end{align*}
$$

Figure 14: Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{c_{1}-2 x} x}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{c_{1}-2 x} x}
$$

Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(x^{3} y^{3}-y\right) \mathrm{d} x \\
\left(-x^{3} y^{3}+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{3} y^{3}+y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{3} y^{3}+y\right) \\
& =-3 y^{2} x^{3}+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}\left(\left(-3 y^{2} x^{3}+1\right)-(1)\right) \\
& =-3 x^{2} y^{2}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{-x^{3} y^{3}+y}\left((1)-\left(-3 y^{2} x^{3}+1\right)\right) \\
& =-\frac{3 y x^{3}}{y^{2} x^{3}-1}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(1)-\left(-3 y^{2} x^{3}+1\right)}{x\left(-x^{3} y^{3}+y\right)-y(x)} \\
& =-\frac{3}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{3}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{3}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (t)} \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{3} y^{3}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3} y^{3}}\left(-x^{3} y^{3}+y\right) \\
& =\frac{-y^{2} x^{3}+1}{y^{2} x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3} y^{3}}(x) \\
& =\frac{1}{y^{3} x^{2}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y^{2} x^{3}+1}{y^{2} x^{3}}\right)+\left(\frac{1}{y^{3} x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y^{2} x^{3}+1}{y^{2} x^{3}} \mathrm{~d} x \\
\phi & =\frac{-x y^{2}-\frac{1}{2 x^{2}}}{y^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{2\left(-x y^{2}-\frac{1}{2 x^{2}}\right)}{y^{3}}-\frac{2 x}{y}+f^{\prime}(y) \tag{4}\\
& =\frac{1}{y^{3} x^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{3} x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{3} x^{2}}=\frac{1}{y^{3} x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-x y^{2}-\frac{1}{2 x^{2}}}{y^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-x y^{2}-\frac{1}{2 x^{2}}}{y^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{-y^{2} x-\frac{1}{2 x^{2}}}{y^{2}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot

Verification of solutions

$$
\frac{-y^{2} x-\frac{1}{2 x^{2}}}{y^{2}}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(x*diff(y(x),x)+y(x)=x^3*y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{-2 x+c_{1}} x} \\
& y(x)=-\frac{1}{\sqrt{-2 x+c_{1}} x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.6 (sec). Leaf size: 44
DSolve $\left[x * y\right.$ ' $[x]+y[x]==x^{\wedge} 3 * y[x] \sim 3, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\sqrt{x^{2}\left(-2 x+c_{1}\right)}} \\
& y(x) \rightarrow \frac{1}{\sqrt{x^{2}\left(-2 x+c_{1}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.7 problem 3(a)

1.7.1 Solving as linear ode . 79
1.7.2 Solving as first order ode lie symmetry lookup ode 81
1.7.3 Solving as exact ode . 85
1.7.4 Maple step by step solution . 89

Internal problem ID [11576]
Internal file name [OUTPUT/10558_Thursday_May_18_2023_05_39_37_AM_88378866/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 3(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+3 y=3 x^{2} \mathrm{e}^{-3 x}
$$

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =3 \\
q(x) & =3 x^{2} \mathrm{e}^{-3 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y=3 x^{2} \mathrm{e}^{-3 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(3 x^{2} \mathrm{e}^{-3 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{3 x} y\right) & =\left(\mathrm{e}^{3 x}\right)\left(3 x^{2} \mathrm{e}^{-3 x}\right) \\
\mathrm{d}\left(\mathrm{e}^{3 x} y\right) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 x} y=\int 3 x^{2} \mathrm{~d} x \\
& \mathrm{e}^{3 x} y=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 x}$ results in

$$
y=\mathrm{e}^{-3 x} x^{3}+c_{1} \mathrm{e}^{-3 x}
$$

which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

1.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-3 y+3 x^{2} \mathrm{e}^{-3 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 14: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-3 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{3 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-3 y+3 x^{2} \mathrm{e}^{-3 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 \mathrm{e}^{3 x} y \\
S_{y} & =\mathrm{e}^{3 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{3 x} y=x^{3}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{3 x} y=x^{3}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-3 y+3 x^{2} \mathrm{e}^{-3 x}$		$\frac{d S}{d R}=3 R^{2}$
totytityt		
	$R=x$	$4+4+4+4 \rightarrow+4+4+4+4$
	$S=\mathrm{e}^{3 x} y$	
¢ ¢ ¢-4 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

1.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-3 y+3 x^{2} \mathrm{e}^{-3 x}\right) \mathrm{d} x \\
\left(3 y-3 x^{2} \mathrm{e}^{-3 x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y-3 x^{2} \mathrm{e}^{-3 x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y-3 x^{2} \mathrm{e}^{-3 x}\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((3)-(0)) \\
& =3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 3 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{3 x}\left(3 y-3 x^{2} \mathrm{e}^{-3 x}\right) \\
& =3 \mathrm{e}^{3 x} y-3 x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{3 x}(1) \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(3 \mathrm{e}^{3 x} y-3 x^{2}\right)+\left(\mathrm{e}^{3 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 \mathrm{e}^{3 x} y-3 x^{2} \mathrm{~d} x \\
\phi & =\mathrm{e}^{3 x} y-x^{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 x}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{3 x} y-x^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{3 x} y-x^{3}
$$

The solution becomes

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

1.7.4 Maple step by step solution

Let's solve
$y^{\prime}+3 y=3 x^{2} \mathrm{e}^{-3 x}$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative
$y^{\prime}=-3 y+3 x^{2} \mathrm{e}^{-3 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}+3 y=3 x^{2} \mathrm{e}^{-3 x}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+3 y\right)=3 \mu(x) x^{2} \mathrm{e}^{-3 x}
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+3 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=3 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{3 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 3 \mu(x) x^{2} \mathrm{e}^{-3 x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 3 \mu(x) x^{2} \mathrm{e}^{-3 x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(x) x^{2} \mathrm{e}^{-3 x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{3 x}$
$y=\frac{\int 3 x^{2} \mathrm{e}^{-3 x} \mathrm{e}^{3 x} d x+c_{1}}{\mathrm{e}^{3 x}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{3}+c_{1}}{\mathrm{e}^{3 x}}$
- Simplify
$y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve($\operatorname{diff}(y(x), x)+3 * y(x)=3 * x^{\wedge} 2 * \exp (-3 * x), y(x)$, singsol=all)

$$
y(x)=\left(x^{3}+c_{1}\right) \mathrm{e}^{-3 x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 17
DSolve $\left[y^{\prime}[x]+3 * y[x]==3 * x^{\wedge} 2 * \operatorname{Exp}[-3 * x], y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x}\left(x^{3}+c_{1}\right)
$$

1.8 problem 3(b)

1.8.1 Solving as separable ode . 92
1.8.2 Solving as linear ode . 94
1.8.3 Solving as first order ode lie symmetry lookup ode 95
1.8.4 Solving as exact ode . 99
1.8.5 Maple step by step solution . 103

Internal problem ID [11577]
Internal file name [OUTPUT/10559_Thursday_May_18_2023_05_56_26_PM_75656588/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 3(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+4 y x=8 x
$$

1.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x(-4 y+8)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=-4 y+8$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-4 y+8} d y & =x d x \\
\int \frac{1}{-4 y+8} d y & =\int x d x
\end{aligned}
$$

$$
-\frac{\ln (y-2)}{4}=\frac{x^{2}}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\frac{1}{(y-2)^{\frac{1}{4}}}=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(y-2)^{\frac{1}{4}}}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 c_{2}^{4} \mathrm{e}^{2 x^{2}+4 c_{1}}+1\right) \mathrm{e}^{-2 x^{2}-4 c_{1}}}{c_{2}^{4}} \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot
Verification of solutions

$$
y=\frac{\left(2 c_{2}^{4} \mathrm{e}^{2 x^{2}+4 c_{1}}+1\right) \mathrm{e}^{-2 x^{2}-4 c_{1}}}{c_{2}^{4}}
$$

Verified OK.

1.8.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=4 x \\
& q(x)=8 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+4 y x=8 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 x d x} \\
& =\mathrm{e}^{2 x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(8 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 x^{2}} y\right) & =\left(\mathrm{e}^{2 x^{2}}\right)(8 x) \\
\mathrm{d}\left(\mathrm{e}^{2 x^{2}} y\right) & =\left(8 x \mathrm{e}^{2 x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 x^{2}} y=\int 8 x \mathrm{e}^{2 x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{2 x^{2}} y=2 \mathrm{e}^{2 x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 x^{2}}$ results in

$$
y=2 \mathrm{e}^{-2 x^{2}} \mathrm{e}^{2 x^{2}}+c_{1} \mathrm{e}^{-2 x^{2}}
$$

which simplifies to

$$
y=2+c_{1} \mathrm{e}^{-2 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2+c_{1} \mathrm{e}^{-2 x^{2}} \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
y=2+c_{1} \mathrm{e}^{-2 x^{2}}
$$

Verified OK.

1.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-4 x y+8 x \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 17: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-2 x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-4 x y+8 x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =4 x \mathrm{e}^{2 x^{2}} y \\
S_{y} & =\mathrm{e}^{2 x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=8 x \mathrm{e}^{2 x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=8 R \mathrm{e}^{2 R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \mathrm{e}^{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{2 x^{2}} y=2 \mathrm{e}^{2 x^{2}}+c_{1}
$$

Which simplifies to

$$
(y-2) \mathrm{e}^{2 x^{2}}-c_{1}=0
$$

Which gives

$$
y=\left(2 \mathrm{e}^{2 x^{2}}+c_{1}\right) \mathrm{e}^{-2 x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-4 x y+8 x$		$\frac{d S}{d R}=8 R \mathrm{e}^{2 R^{2}}$
		+ $\square_{1}^{1}+1$
	$R=x$	
	$S=\mathrm{e}^{2 x^{2}} y$	
		L $\mathrm{H}_{1} 1111$
W Lattatat		
W1-4tatatat		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 \mathrm{e}^{2 x^{2}}+c_{1}\right) \mathrm{e}^{-2 x^{2}} \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot
Verification of solutions

$$
y=\left(2 \mathrm{e}^{2 x^{2}}+c_{1}\right) \mathrm{e}^{-2 x^{2}}
$$

Verified OK.

1.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-4 y+8}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{-4 y+8}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{-4 y+8}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-4 y+8}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-4 y+8}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-4 y+8}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{4(y-2)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{4 y-8}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y-2)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln (y-2)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln (y-2)}{4}
$$

The solution becomes

$$
y=\mathrm{e}^{-2 x^{2}-4 c_{1}}+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x^{2}-4 c_{1}}+2 \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-2 x^{2}-4 c_{1}}+2
$$

Verified OK.

1.8.5 Maple step by step solution

Let's solve

$$
y^{\prime}+4 y x=8 x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y-2}=-4 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y-2} d x=\int-4 x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y-2)=-2 x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-2 x^{2}+c_{1}}+2
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})+4 * \mathrm{x} * \mathrm{y}(\mathrm{x})=8 * \mathrm{x}, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=2+\mathrm{e}^{-2 x^{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 22
DSolve $[y$ ' $[x]+4 * x * y[x]==8 * x, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow 2+c_{1} e^{-2 x^{2}} \\
& y(x) \rightarrow 2
\end{aligned}
$$

1.9 problem 4(a)

1.9.1 Solving as second order linear constant coeff ode 105
1.9.2 Solving using Kovacic algorithm 107
1.9.3 Maple step by step solution . 111

Internal problem ID [11578]
Internal file name [OUTPUT/10560_Thursday_May_18_2023_05_56_27_PM_64152595/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 4(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0
$$

1.9.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=-8$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-8 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda-8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=-8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-8)} \\
& =1 \pm 3
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+3 \\
& \lambda_{2}=1-3
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

1.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 20: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-3 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{6 x}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6} \tag{1}
\end{equation*}
$$

Figure 24: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}
$$

Verified OK.

1.9.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-2 r-8=0$
- Factor the characteristic polynomial

$$
(r+2)(r-4)=0
$$

- Roots of the characteristic polynomial
$r=(-2,4)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{4 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)-8 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{4 x}+\mathrm{e}^{-2 x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 22
DSolve[y''[x]-2*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} e^{6 x}+c_{1}\right)
$$

1.10 problem 4(b)

1.10.1 Maple step by step solution . 114

Internal problem ID [11579]
Internal file name [OUTPUT/10561_Thursday_May_18_2023_05_56_28_PM_68847962/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 4(b).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=0
$$

The characteristic equation is

$$
\lambda^{3}-2 \lambda^{2}-4 \lambda+8=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-2 \\
\lambda_{2} & =2 \\
\lambda_{3} & =2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{2 x} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{3}
$$

Verified OK.

1.10.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=2 y_{3}(x)+4 y_{2}(x)-8 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=2 y_{3}(x)+4 y_{2}(x)-8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 4 & 2
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 4 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right],\left[2,\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right]\right]$
- Consider eigenpair
$\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad First solution from eigenvalue 2

$$
\vec{y}_{2}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=2$ is the eigenvalue, an $\vec{y}_{3}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 2

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 4 & 2
\end{array}\right]-2 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{1}{8} \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 2

$$
\vec{y}_{3}(x)=\mathrm{e}^{2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left((2 x-1) c_{3}+2 c_{2}\right) \mathrm{e}^{2 x}}{8}+\frac{c_{1} \mathrm{e}^{-2 x}}{4}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(diff $(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+8 * y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{2 x}+\mathrm{e}^{-2 x} c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 27
DSolve[y'' ' $[x]-2 * y$ '' $[x]-4 * y$ ' $[x]+8 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-2 x}\left(e^{4 x}\left(c_{3} x+c_{2}\right)+c_{1}\right)
$$

1.11 problem 5(a)

1.11.1 Maple step by step solution . 119

Internal problem ID [11580]
Internal file name [OUTPUT/10562_Thursday_May_18_2023_05_56_29_PM_64086885/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 5(a).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-4 y^{\prime}+12 y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}-4 \lambda+12=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

Verified OK.

1.11.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime}-3 y^{\prime \prime}-4 y^{\prime}+12 y=0$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=3 y_{3}(x)+4 y_{2}(x)-12 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 y_{3}(x)+4 y_{2}(x)-12 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & 4 & 3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & 4 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(4 c_{3} \mathrm{e}^{5 x}+9 c_{2} \mathrm{e}^{4 x}+9 c_{1}\right) \mathrm{e}^{-2 x}}{36}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+12 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{4 x}+c_{3}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 29
DSolve[y'''[x]-3*y''[x]-4*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-2 x}\left(e^{4 x}\left(c_{3} e^{x}+c_{2}\right)+c_{1}\right)
$$

1.12 problem 5(b)

1.12.1 Maple step by step solution

125
Internal problem ID [11581]
Internal file name [OUTPUT/10563_Thursday_May_18_2023_05_56_30_PM_47063498/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 5(b).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant__coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _fully, _exact, _linear]]

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-10 y^{\prime} x-8 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-10 y^{\prime} x-8 y=0
$$

gives

$$
-10 x \lambda x^{\lambda-1}+2 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-8 x^{\lambda}=0
$$

Which simplifies to

$$
-10 \lambda x^{\lambda}+2 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-8 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
-10 \lambda+2 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-8=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-\lambda^{2}-10 \lambda-8=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=-1
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
-1	1	real root
-2	1	real root
4	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}+c_{3} x^{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\frac{1}{x} \\
y_{2} & =\frac{1}{x^{2}} \\
y_{3} & =x^{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}+c_{3} x^{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}+c_{3} x^{4}
$$

Verified OK.

1.12.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+2 y^{\prime \prime} x^{2}-10 y^{\prime} x-8 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=\frac{8 y}{x^{3}}-\frac{2\left(y^{\prime \prime} x-5 y^{\prime}\right)}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}+\frac{2 y^{\prime \prime}}{x}-\frac{10 y^{\prime}}{x^{2}}-\frac{8 y}{x^{3}}=0$
- Multiply by denominators of the ODE

$$
x^{3} y^{\prime \prime \prime}+2 y^{\prime \prime} x^{2}-10 y^{\prime} x-8 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{d^{3}}{\frac{d t^{3}}{} y(t)} x^{3}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)+2\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-10 \frac{d}{d t} y(t)-8 y(t)=0
$$

- Simplify

$$
\frac{d^{3}}{d t^{3}} y(t)-\frac{d^{2}}{d t^{2}} y(t)-10 \frac{d}{d t} y(t)-8 y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=y_{3}(t)+10 y_{2}(t)+8 y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=y_{3}(t)+10 y_{2}(t)+8 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- \quad System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 10 & 1
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 10 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{4} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y(t)=\frac{\left(c_{3} e^{6 t}+16 c_{2} e^{t}+4 c_{1}\right) \mathrm{e}^{-2 t}}{16}$
- Change variables back using $t=\ln (x)$
$y=\frac{c_{3} x^{6}+16 c_{2} x+4 c_{1}}{16 x^{2}}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

```
dsolve(x^3*diff (y(x),x$3)+2*x^2*diff(y(x),x$2)-10*x*\operatorname{diff ( }\textrm{y}(\textrm{x}),\textrm{x})-8*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{6}+c_{2} x+c_{3}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]+2 * x^{\wedge} 2 * y$ ' $'[x]-10 * x * y$ ' $[x]-8 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True

$$
y(x) \rightarrow \frac{c_{3} x^{6}+c_{2} x+c_{1}}{x^{2}}
$$

1.13 problem 6(a)

$$
\text { 1.13.1 Solving as linear ode . } 130
$$

1.13.2 Solving as first order ode lie symmetry lookup ode 132
1.13.3 Solving as exact ode 136
1.13.4 Maple step by step solution 140

Internal problem ID [11582]
Internal file name [OUTPUT/10564_Thursday_May_18_2023_05_56_31_PM_784968/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 6(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}
$$

1.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =\left(6 \mathrm{e}^{3 x}+4 x\right) \mathrm{e}^{-2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=\left(6 \mathrm{e}^{3 x}+4 x\right) \mathrm{e}^{-2 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\left(6 \mathrm{e}^{3 x}+4 x\right) \mathrm{e}^{-2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{2 x}\right) & =\left(\mathrm{e}^{2 x}\right)\left(\left(6 \mathrm{e}^{3 x}+4 x\right) \mathrm{e}^{-2 x}\right) \\
\mathrm{d}\left(y \mathrm{e}^{2 x}\right) & =\left(6 \mathrm{e}^{3 x}+4 x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{2 x}=\int 6 \mathrm{e}^{3 x}+4 x \mathrm{~d} x \\
& y \mathrm{e}^{2 x}=2 x^{2}+2 \mathrm{e}^{3 x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 x}$ results in

$$
y=\mathrm{e}^{-2 x}\left(2 x^{2}+2 \mathrm{e}^{3 x}\right)+c_{1} \mathrm{e}^{-2 x}
$$

which simplifies to

$$
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot
Verification of solutions

$$
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x}
$$

Verified OK.

1.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-2 y+6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 25: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-2 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 x}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 y+6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 y \mathrm{e}^{2 x} \\
S_{y} & =\mathrm{e}^{2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=6 \mathrm{e}^{3 x}+4 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=6 \mathrm{e}^{3 R}+4 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R^{2}+2 \mathrm{e}^{3 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{2 x}=2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{2 x}=2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}
$$

Which gives

$$
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-2 y+6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}$		$\frac{d S}{d R}=6 \mathrm{e}^{3 R}+4 R$
		- Sex mata
		+1.tatatatat
	$R=x$	
	$S=y \mathrm{e}^{2 x}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 26: Slope field plot

Verification of solutions

$$
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x}
$$

Verified OK.

1.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 y+6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}\right) \mathrm{d} x \\
\left(2 y-6 \mathrm{e}^{x}-4 x \mathrm{e}^{-2 x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y-6 \mathrm{e}^{x}-4 x \mathrm{e}^{-2 x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y-6 \mathrm{e}^{x}-4 x \mathrm{e}^{-2 x}\right) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((2)-(0)) \\
& =2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 2 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{2 x}\left(2 y-6 \mathrm{e}^{x}-4 x \mathrm{e}^{-2 x}\right) \\
& =-6 \mathrm{e}^{3 x}+2 y \mathrm{e}^{2 x}-4 x
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{2 x}(1) \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-6 \mathrm{e}^{3 x}+2 y \mathrm{e}^{2 x}-4 x\right)+\left(\mathrm{e}^{2 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-6 \mathrm{e}^{3 x}+2 y \mathrm{e}^{2 x}-4 x \mathrm{~d} x \\
\phi & =y \mathrm{e}^{2 x}-2 x^{2}-2 \mathrm{e}^{3 x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 x}=\mathrm{e}^{2 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y \mathrm{e}^{2 x}-2 x^{2}-2 \mathrm{e}^{3 x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y \mathrm{e}^{2 x}-2 x^{2}-2 \mathrm{e}^{3 x}
$$

The solution becomes

$$
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot

Verification of solutions

$$
y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x}
$$

Verified OK.

1.13.4 Maple step by step solution

Let's solve
$y^{\prime}+2 y=6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}+2 y=6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+2 y\right)=\mu(x)\left(6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+2 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=2 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{2 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}\right) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)\left(6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}\right) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)\left(6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}\right) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{2 x}$
$y=\frac{\int \mathrm{e}^{2 x}\left(6 \mathrm{e}^{x}+4 x \mathrm{e}^{-2 x}\right) d x+c_{1}}{\mathrm{e}^{2 x}}$
- Evaluate the integrals on the rhs
$y=\frac{2\left(\mathrm{e}^{x}\right)^{3}+2 x^{2}+c_{1}}{\mathrm{e}^{2 x}}$
- Simplify
$y=\left(2 \mathrm{e}^{3 x}+2 x^{2}+c_{1}\right) \mathrm{e}^{-2 x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve($\operatorname{diff}(y(x), x)+2 * y(x)=6 * \exp (x)+4 * x * \exp (-2 * x), y(x)$, singsol=all)

$$
y(x)=\left(2 x^{2}+2 \mathrm{e}^{3 x}+c_{1}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.129 (sec). Leaf size: 26
DSolve $\left[y^{\prime}[\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==6 * \operatorname{Exp}[\mathrm{x}]+4 * \mathrm{x} * \operatorname{Exp}[-2 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x}\left(2 x^{2}+2 e^{3 x}+c_{1}\right)
$$

1.14 problem 6(b)

1.14.1 Solving as second order linear constant coeff ode
1.14.2 Solving as linear second order ode solved by an integrating factor
ode . 146
1.14.3 Solving using Kovacic algorithm 148
1.14.4 Maple step by step solution . 153

Internal problem ID [11583]
Internal file name [OUTPUT/10565_Thursday_May_18_2023_05_56_32_PM_79597876/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 6(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y^{\prime}+4 y=-8 \sin (2 x)
$$

1.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=4, f(x)=-8 \sin (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-4)^{2}-(4)(1)(4)} \\
& =2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-8 \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \sin (2 x)-8 A_{2} \cos (2 x)=-8 \sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\cos (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x\right)+(-\cos (2 x))
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)-\cos (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)-\cos (2 x) \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)-\cos (2 x)
$$

Verified OK.

1.14.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-4 d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =-8 \mathrm{e}^{-2 x} \sin (2 x) \\
\left(\mathrm{e}^{-2 x} y\right)^{\prime \prime} & =-8 \mathrm{e}^{-2 x} \sin (2 x)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-2 x} y\right)^{\prime}=2 \mathrm{e}^{-2 x}(\cos (2 x)+\sin (2 x))+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-2 x} y\right)=c_{1} x-\mathrm{e}^{-2 x} \cos (2 x)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x-\mathrm{e}^{-2 x} \cos (2 x)+c_{2}}{\mathrm{e}^{-2 x}}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1} x+c_{2} \mathrm{e}^{2 x}-2 \cos (x)^{2}+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1} x+c_{2} \mathrm{e}^{2 x}-2 \cos (x)^{2}+1 \tag{1}
\end{equation*}
$$

Figure 29: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1} x+c_{2} \mathrm{e}^{2 x}-2 \cos (x)^{2}+1
$$

Verified OK.

1.14.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 28: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-8 \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \sin (2 x)-8 A_{2} \cos (2 x)=-8 \sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\cos (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x\right)+(-\cos (2 x))
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)-\cos (2 x)
$$

Summary
The solution(s) found are the following

Figure 30: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)-\cos (2 x)
$$

Verified OK.

1.14.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y^{\prime}+4 y=-8 \sin (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-4 r+4=0$
- Factor the characteristic polynomial
$(r-2)^{2}=0$
- Root of the characteristic polynomial

$$
r=2
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{2 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=\mathrm{e}^{2 x} x
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-8 \sin (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{2 x} x \\
2 \mathrm{e}^{2 x} & 2 \mathrm{e}^{2 x} x+\mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=8 \mathrm{e}^{2 x}\left(\int \sin (2 x) x \mathrm{e}^{-2 x} d x-x\left(\int \mathrm{e}^{-2 x} \sin (2 x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=-\cos (2 x)
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{2} \mathrm{e}^{2 x} x+c_{1} \mathrm{e}^{2 x}-\cos (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+4*y(x)=-8*\operatorname{sin}(2*x),y(x), singsol=all)
```

$$
y(x)=\left(c_{1} x+c_{2}\right) \mathrm{e}^{2 x}-\cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 25
DSolve[y''[x]-4*y'[x]+4*y[x]==-8*Sin[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\cos (2 x)+e^{2 x}\left(c_{2} x+c_{1}\right)
$$

1.15 problem 7(a)

1.15.1 Maple step by step solution

156
Internal problem ID [11584]
Internal file name [OUTPUT/10566_Thursday_May_18_2023_05_56_33_PM_7548041/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, Differential equations and their solutions. Exercises page 13
Problem number: 7(a).
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime 2}-4 y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =2 \sqrt{y} \tag{1}\\
y^{\prime} & =-2 \sqrt{y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{2 \sqrt{y}} d y & =\int d x \\
\sqrt{y} & =x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y}=x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{y}=x+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{2 \sqrt{y}} d y & =\int d x \\
-\sqrt{y} & =x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\sqrt{y}=x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\sqrt{y}=x+c_{2}
$$

Verified OK.

1.15.1 Maple step by step solution

Let's solve

$$
y^{\prime 2}-4 y=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}}=2
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sqrt{y}} d x=\int 2 d x+c_{1}
$$

- Evaluate integral

$$
2 \sqrt{y}=2 x+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{4} c_{1}^{2}+c_{1} x+x^{2}
$$

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    <- differential order: 1; missing x successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 15

```
dsolve(diff(y(x),x)^2-4*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\left(x-c_{1}\right)^{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.079 (sec). Leaf size: 38
DSolve[($\left.y^{\prime}[x]\right)^{\wedge} 2-4 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(-2 x+c_{1}\right)^{2} \\
& y(x) \rightarrow \frac{1}{4}\left(2 x+c_{1}\right)^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2 Chapter 1, section 1.3. Exercises page 22
2.1 problem 1 159
2.2 problem 2(a) 169
2.3 problem 2(b) 183
2.4 problem 3(a) 197
2.5 problem 4(a) 207
2.6 problem 4(b) 217
2.7 problem 4(c) 227
2.8 problem 5 238
2.9 problem 6(a) 247
2.10 problem 6(b) 259
2.11 problem 8 273

2.1 problem 1

2.1.1 Existence and uniqueness analysis 159
2.1.2 Solving as second order linear constant coeff ode 160
2.1.3 Solving using Kovacic algorithm 162
2.1.4 Maple step by step solution . 166

Internal problem ID [11585]
Internal file name [OUTPUT/10567_Thursday_May_18_2023_05_56_33_PM_90907946/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

With initial conditions

$$
\left[y(0)=6, y^{\prime}(0)=2\right]
$$

2.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-6 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

2.1.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-3 c_{2} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=2 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \mathrm{e}^{2 x}+2 \mathrm{e}^{-3 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{2 x}+2 \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=4 \mathrm{e}^{2 x}+2 \mathrm{e}^{-3 x}
$$

Verified OK.

2.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 31: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1}+\frac{c_{2}}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+\frac{2 c_{2} \mathrm{e}^{2 x}}{5}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=-3 c_{1}+\frac{2 c_{2}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=20
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \mathrm{e}^{2 x}+2 \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{2 x}+2 \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=4 \mathrm{e}^{2 x}+2 \mathrm{e}^{-3 x}
$$

Verified OK.

2.1.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=6,\left.y^{\prime}\right|_{\{x=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Characteristic polynomial of ODE

$$
r^{2}+r-6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}$
\square
Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}$
- Use initial condition $y(0)=6$
$6=c_{1}+c_{2}$
- Compute derivative of the solution
$y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+2 c_{2} \mathrm{e}^{2 x}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=2$
$2=-3 c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=4\right\}$
- Substitute constant values into general solution and simplify

$$
y=\left(4 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-3 x}
$$

- \quad Solution to the IVP

$$
y=\left(4 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=0, y(0)=6, D(y)(0)=2], y(x)$, singsol=all)

$$
y(x)=\left(4 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+y\right.\right.$ ' $\left.[x]-6 * y[x]==0,\left\{y[0]==6, y^{\prime}[0]==2\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x}\left(4 e^{5 x}+2\right)
$$

2.2 problem 2(a)

2.2.1 Existence and uniqueness analysis 169
2.2.2 Solving as linear ode . 170
2.2.3 Solving as first order ode lie symmetry lookup ode 172
2.2.4 Solving as exact ode . 176
2.2.5 Maple step by step solution . 180

Internal problem ID [11586]
Internal file name [OUTPUT/10568_Thursday_May_18_2023_05_56_34_PM_55001789/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=2 x \mathrm{e}^{-x}
$$

With initial conditions

$$
[y(0)=2]
$$

2.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =2 x \mathrm{e}^{-x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=2 x \mathrm{e}^{-x}
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2 x \mathrm{e}^{-x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

2.2.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x \mathrm{e}^{-x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(2 x \mathrm{e}^{-x}\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =(2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int 2 x \mathrm{~d} x \\
& \mathrm{e}^{x} y=x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=x^{2} \mathrm{e}^{-x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(x^{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{-x}\left(x^{2}+2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(x^{2}+2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(x^{2}+2\right)
$$

Verified OK.

2.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+2 x \mathrm{e}^{-x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 33: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+2 x \mathrm{e}^{-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=x^{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{x}=x^{2}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-x}\left(x^{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+2 x \mathrm{e}^{-x}$		$\frac{d S}{d R}=2 R$
	$R=x$	
	$S=\mathrm{e}^{x} y$	
		发
		!

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{2} \mathrm{e}^{-x}+2 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \mathrm{e}^{-x}+2 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2} \mathrm{e}^{-x}+2 \mathrm{e}^{-x}
$$

Verified OK.

2.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+2 x \mathrm{e}^{-x}\right) \mathrm{d} x \\
\left(y-2 x \mathrm{e}^{-x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y-2 x \mathrm{e}^{-x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-2 x \mathrm{e}^{-x}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y-2 x \mathrm{e}^{-x}\right) \\
& =\mathrm{e}^{x} y-2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{x} y-2 x\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} y-2 x \mathrm{~d} x \\
\phi & =\mathrm{e}^{x} y-x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} y-x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} y-x^{2}
$$

The solution becomes

$$
y=\mathrm{e}^{-x}\left(x^{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{2} \mathrm{e}^{-x}+2 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \mathrm{e}^{-x}+2 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2} \mathrm{e}^{-x}+2 \mathrm{e}^{-x}
$$

Verified OK.

2.2.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=2 x \mathrm{e}^{-x}, y(0)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+2 x \mathrm{e}^{-x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=2 x \mathrm{e}^{-x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=2 \mu(x) x \mathrm{e}^{-x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor $\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) x \mathrm{e}^{-x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 2 \mu(x) x \mathrm{e}^{-x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(x) x \mathrm{e}^{-x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int 2 \mathrm{e}^{-x} x \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{2}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=\mathrm{e}^{-x}\left(x^{2}+c_{1}\right)$
- Use initial condition $y(0)=2$
$2=c_{1}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify
$y=\mathrm{e}^{-x}\left(x^{2}+2\right)$
- \quad Solution to the IVP
$y=\mathrm{e}^{-x}\left(x^{2}+2\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([diff(y(x),x)+y(x)=2*x*exp(-x),y(0) = 2],y(x), singsol=all)
```

$$
y(x)=\left(x^{2}+2\right) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 16
DSolve $\left[\left\{y^{\prime}[x]+y[x]==2 * x * \operatorname{Exp}[-x],\{y[0]==2\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(x^{2}+2\right)
$$

2.3 problem 2(b)

2.3.1 Existence and uniqueness analysis 183
2.3.2 Solving as linear ode . 184
2.3.3 Solving as first order ode lie symmetry lookup ode 186
2.3.4 Solving as exact ode . 190
2.3.5 Maple step by step solution . 194

Internal problem ID [11587]
Internal file name [OUTPUT/10569_Thursday_May_18_2023_05_56_36_PM_46001342/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 2(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=2 x \mathrm{e}^{-x}
$$

With initial conditions

$$
[y(-1)=\mathrm{e}+3]
$$

2.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =2 x \mathrm{e}^{-x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=2 x \mathrm{e}^{-x}
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The domain of $q(x)=2 x \mathrm{e}^{-x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is also inside this domain. Hence solution exists and is unique.

2.3.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x \mathrm{e}^{-x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(2 x \mathrm{e}^{-x}\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =(2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int 2 x \mathrm{~d} x \\
& \mathrm{e}^{x} y=x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=x^{2} \mathrm{e}^{-x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(x^{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\mathrm{e}+3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\mathrm{e}+3=\mathrm{e}\left(1+c_{1}\right) \\
c_{1}=3 \mathrm{e}^{-1}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1}
$$

Verified OK.

2.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+2 x \mathrm{e}^{-x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 36: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+2 x \mathrm{e}^{-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=x^{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{x}=x^{2}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-x}\left(x^{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+2 x \mathrm{e}^{-x}$		$\frac{d S}{d R}=2 R$
10, ${ }^{1}$		发
W , + + - - -		吅:
	$R=x$	
	$S=\mathrm{e}^{x} y$	
1- ${ }_{1}$		
		!

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\mathrm{e}+3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\mathrm{e}+3=\mathrm{e} c_{1}+\mathrm{e} \\
c_{1}=3 \mathrm{e}^{-1}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1}
$$

Verified OK.

2.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+2 x \mathrm{e}^{-x}\right) \mathrm{d} x \\
\left(y-2 x \mathrm{e}^{-x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y-2 x \mathrm{e}^{-x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-2 x \mathrm{e}^{-x}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y-2 x \mathrm{e}^{-x}\right) \\
& =\mathrm{e}^{x} y-2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{x} y-2 x\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} y-2 x \mathrm{~d} x \\
\phi & =\mathrm{e}^{x} y-x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} y-x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} y-x^{2}
$$

The solution becomes

$$
y=\mathrm{e}^{-x}\left(x^{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=\mathrm{e}+3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\mathrm{e}+3=\mathrm{e} c_{1}+\mathrm{e} \\
c_{1}=3 \mathrm{e}^{-1}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-x-1}
$$

Verified OK.

2.3.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=2 x \mathrm{e}^{-x}, y(-1)=\mathrm{e}+3\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-y+2 x \mathrm{e}^{-x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=2 x \mathrm{e}^{-x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=2 \mu(x) x \mathrm{e}^{-x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor $\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) x \mathrm{e}^{-x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 2 \mu(x) x \mathrm{e}^{-x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(x) x \mathrm{e}^{-x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int 2 \mathrm{e}^{-x} x \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{2}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=\mathrm{e}^{-x}\left(x^{2}+c_{1}\right)$
- Use initial condition $y(-1)=\mathrm{e}+3$
$\mathrm{e}+3=\mathrm{e}\left(1+c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=\frac{3}{\mathrm{e}}$
- Substitute $c_{1}=\frac{3}{\mathrm{e}}$ into general solution and simplify
$y=\left(x^{2}+3 \mathrm{e}^{-1}\right) \mathrm{e}^{-x}$
- \quad Solution to the IVP
$y=\left(x^{2}+3 \mathrm{e}^{-1}\right) \mathrm{e}^{-x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([diff (y (x),x)+y(x)=2*x*exp(-x),y(-1) = exp(1)+3],y(x), singsol=all)
```

$$
y(x)=\left(x^{2}+3 \mathrm{e}^{-1}\right) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}[x]+y[x]==2 * x * \operatorname{Exp}[-x],\{y[-1]==\operatorname{Exp}[1]+3\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x-1}\left(e x^{2}+3\right)
$$

2.4 problem 3(a)

2.4.1 Existence and uniqueness analysis 197
2.4.2 Solving as second order linear constant coeff ode 198
2.4.3 Solving using Kovacic algorithm 200
2.4.4 Maple step by step solution . 204

Internal problem ID [11588]
Internal file name [OUTPUT/10570_Thursday_May_18_2023_05_56_36_PM_46263500/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 3(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}-12 y=0
$$

With initial conditions

$$
\left[y(0)=5, y^{\prime}(0)=6\right]
$$

2.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-12 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-12 y=0
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-12$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

2.4.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-12$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-12 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-12=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-12$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-12)} \\
& =\frac{1}{2} \pm \frac{7}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{7}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{7}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=4 c_{1} \mathrm{e}^{4 x}-3 c_{2} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=4 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \mathrm{e}^{4 x}+2 \mathrm{e}^{-3 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{4 x}+2 \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{4 x}+2 \mathrm{e}^{-3 x}
$$

Verified OK.

2.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-12 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{49}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=49 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{49 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 39: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{49}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{7 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{7 x}}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{7 x}}{7}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{4 x}}{7} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+\frac{c_{2}}{7} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+\frac{4 c_{2} \mathrm{e}^{4 x}}{7}
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=-3 c_{1}+\frac{4 c_{2}}{7} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=21
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \mathrm{e}^{4 x}+2 \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{4 x}+2 \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{4 x}+2 \mathrm{e}^{-3 x}
$$

Verified OK.

2.4.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-12 y=0, y(0)=5,\left.y^{\prime}\right|_{\{x=0\}}=6\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Characteristic polynomial of ODE

$$
r^{2}-r-12=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-4)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,4)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{4 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{4 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{4 x}$

- Use initial condition $y(0)=5$

$$
5=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+4 c_{2} \mathrm{e}^{4 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=6$
$6=-3 c_{1}+4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify

$$
y=\left(3 \mathrm{e}^{7 x}+2\right) \mathrm{e}^{-3 x}
$$

- \quad Solution to the IVP

$$
y=\left(3 \mathrm{e}^{7 x}+2\right) \mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-12 * y(x)=0, y(0)=5, D(y)(0)=6], y(x)$, singsol=all)

$$
y(x)=\left(3 \mathrm{e}^{7 x}+2\right) \mathrm{e}^{-3 x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]-y\right.\right.$ ' $\left.[x]-12 * y[x]==0,\left\{y[0]==5, y^{\prime}[0]==6\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x}\left(3 e^{7 x}+2\right)
$$

2.5 problem 4(a)

2.5.1 Solving as second order linear constant coeff ode 207
2.5.2 Solving as second order ode can be made integrable ode 209
2.5.3 Solving using Kovacic algorithm 211
2.5.4 Maple step by step solution . 214

Internal problem ID [11589]
Internal file name [OUTPUT/10571_Thursday_May_18_2023_05_56_37_PM_91740308/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 4(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}\left(\frac{\pi}{2}\right)=1\right]
$$

2.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

substituting $y^{\prime}=1$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
1=-c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.5.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{3}+x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\left(\tan \left(x+c_{2}\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(x+c_{2}\right)^{2}+1}}-\frac{\tan \left(x+c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(x+c_{2}\right)^{2}+1}}\left(\tan \left(x+c_{2}\right)^{2}+1\right)}
$$

substituting $y^{\prime}=1$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
1=\frac{\sin \left(c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\sin \left(c_{2}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{3}+x \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\left(\tan \left(c_{3}+x\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(c_{3}+x\right)^{2}+1}}+\frac{\tan \left(c_{3}+x\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(c_{3}+x\right)^{2}+1}}\left(\tan \left(c_{3}+x\right)^{2}+1\right)}
$$

substituting $y^{\prime}=1$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
1=-\frac{\sin \left(c_{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\sin \left(c_{3}\right)^{2} c_{1}}} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 41: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

substituting $y^{\prime}=1$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
1=-c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.5.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=0, y(0)=0,\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\cos (x)$
- \quad nd solution of the ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \cos (x)+c_{2} \sin (x)$
$\square \quad$ Check validity of solution $y=c_{1} \cos (x)+c_{2} \sin (x)$
- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- Compute derivative of the solution
$y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)$
- Use the initial condition $\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=1$
$1=-c_{1}$
- Solve for c_{1} and c_{2}
- The solution does not satisfy the initial conditions

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

X Solution by Maple
dsolve([diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{y}(\mathrm{x})=0, \mathrm{y}(0)=0, \mathrm{D}(\mathrm{y})(1 / 2 * \operatorname{Pi})=1], y(\mathrm{x})$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{y'' $\left.[x]+y[x]==0,\left\{y[0]==0, y^{\prime}[P i / 2]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]
\{\}

2.6 problem 4(b)

2.6.1 Solving as second order linear constant coeff ode 217
2.6.2 Solving as second order ode can be made integrable ode 219
2.6.3 Solving using Kovacic algorithm 221
2.6.4 Maple step by step solution . 2224

Internal problem ID [11590]
Internal file name [OUTPUT/10572_Thursday_May_18_2023_05_56_37_PM_6449168/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 4(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_ccoeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}\left(\frac{\pi}{2}\right)=-1\right]
$$

2.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

substituting $y^{\prime}=-1$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
-1=-c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.6.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
$\underline{\text { Solving equation (1) }}$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{3}+x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\left(\tan \left(x+c_{2}\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(x+c_{2}\right)^{2}+1}}-\frac{\tan \left(x+c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(x+c_{2}\right)^{2}+1}}\left(\tan \left(x+c_{2}\right)^{2}+1\right)}
$$

substituting $y^{\prime}=-1$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
-1=\frac{\sin \left(c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\sin \left(c_{2}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{3}+x \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\left(\tan \left(c_{3}+x\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(c_{3}+x\right)^{2}+1}}+\frac{\tan \left(c_{3}+x\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(c_{3}+x\right)^{2}+1}}\left(\tan \left(c_{3}+x\right)^{2}+1\right)}
$$

substituting $y^{\prime}=-1$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
-1=-\frac{\sin \left(c_{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\sin \left(c_{3}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 43: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

substituting $y^{\prime}=-1$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
-1=-c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

2.6.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=0, y(0)=0,\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\cos (x)$
- \quad nd solution of the ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \cos (x)+c_{2} \sin (x)$
$\square \quad$ Check validity of solution $y=c_{1} \cos (x)+c_{2} \sin (x)$
- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- Compute derivative of the solution
$y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)$
- Use the initial condition $\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=-1$
$-1=-c_{1}$
- Solve for c_{1} and c_{2}
- The solution does not satisfy the initial conditions

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

X Solution by Maple
dsolve([diff $(y(x), x \$ 2)+y(x)=0, y(0)=0, D(y)(1 / 2 * P i)=-1], y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{y''[x]+y[x]==0,\{y[0]==0,y'[Pi/2]==-1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]
\{\}

2.7 problem 4(c)

2.7.1 Solving as second order linear constant coeff ode 227

2.7.2 Solving as second order ode can be made integrable ode . . . 230
2.7.3 Solving using Kovacic algorithm 232

Internal problem ID [11591]
Internal file name [OUTPUT/10573_Thursday_May_18_2023_05_56_38_PM_91594257/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 4(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be_made_integrable"
Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(\pi)=1\right]
$$

2.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

substituting $y^{\prime}=1$ and $x=\pi$ in the above gives

$$
\begin{equation*}
1=-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sin (x) \tag{1}
\end{equation*}
$$

Figure 41: Solution plot

Verification of solutions

$$
y=-\sin (x)
$$

Verified OK.

2.7.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{3}+x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the First solution

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\left(\tan \left(x+c_{2}\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(x+c_{2}\right)^{2}+1}}-\frac{\tan \left(x+c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(x+c_{2}\right)^{2}+1}}\left(\tan \left(x+c_{2}\right)^{2}+1\right)}
$$

substituting $y^{\prime}=1$ and $x=\pi$ in the above gives

$$
\begin{equation*}
1=\frac{\cos \left(c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(c_{2}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
\arctan \left(\frac{y}{\sqrt{1-y^{2}}}\right)=x
$$

Looking at the Second solution

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{3}+x \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\left(\tan \left(c_{3}+x\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(c_{3}+x\right)^{2}+1}}+\frac{\tan \left(c_{3}+x\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(c_{3}+x\right)^{2}+1}}\left(\tan \left(c_{3}+x\right)^{2}+1\right)}
$$

substituting $y^{\prime}=1$ and $x=\pi$ in the above gives

$$
\begin{equation*}
1=-\frac{\cos \left(c_{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(c_{3}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of Summary
The solution(s) found are the following
integrations.

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{1-y^{2}}}\right)=x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\arctan \left(\frac{y}{\sqrt{1-y^{2}}}\right)=x
$$

Verified OK.

2.7.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 45: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

substituting $y^{\prime}=1$ and $x=\pi$ in the above gives

$$
\begin{equation*}
1=-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sin (x) \tag{1}
\end{equation*}
$$

Figure 42: Solution plot

Verification of solutions

$$
y=-\sin (x)
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve([diff (y (x),x$2)+y(x)=0,y(0) = 0, D(y)(Pi) = 1],y(x), singsol=all)
```

$$
y(x)=-\sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 9
DSolve $\left[\left\{\mathrm{y}^{\prime} '[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==0, \mathrm{y}\right.\right.$ ' $\left.[\mathrm{Pi}]==1\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]
$y(x) \rightarrow-\sin (x)$

2.8 problem 5

2.8.1 Maple step by step solution . 241

Internal problem ID [11592]
Internal file name [OUTPUT/10574_Thursday_May_18_2023_05_56_39_PM_4049348/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 5.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_ODE__non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 y^{\prime} x-6 y=0
$$

With initial conditions

$$
\left[y(2)=0, y^{\prime}(2)=2, y^{\prime \prime}(2)=6\right]
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 y^{\prime} x-6 y=0
$$

gives

$$
6 x \lambda x^{\lambda-1}-3 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-6 x^{\lambda}=0
$$

Which simplifies to

$$
6 \lambda x^{\lambda}-3 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-6 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
6 \lambda-3 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-6=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
1	1	real root
2	1	real root
3	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2} \\
& y_{3}=x^{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=8 c_{3}+4 c_{2}+2 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{3} x^{2}+2 c_{2} x+c_{1}
$$

substituting $y^{\prime}=2$ and $x=2$ in the above gives

$$
\begin{equation*}
2=12 c_{3}+4 c_{2}+c_{1} \tag{2A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=6 c_{3} x+2 c_{2}
$$

substituting $y^{\prime \prime}=6$ and $x=2$ in the above gives

$$
\begin{equation*}
6=12 c_{3}+2 c_{2} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-3 \\
& c_{3}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x^{3}-3 x^{2}+2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}-3 x^{2}+2 x \tag{1}
\end{equation*}
$$

Figure 43: Solution plot

Verification of solutions

$$
y=x^{3}-3 x^{2}+2 x
$$

Verified OK.

2.8.1 Maple step by step solution

Let's solve

$$
\left[x^{3} y^{\prime \prime \prime}-3 y^{\prime \prime} x^{2}+6 y^{\prime} x-6 y=0, y(2)=0,\left.y^{\prime}\right|_{\{x=2\}}=2,\left.y^{\prime \prime}\right|_{\{x=2\}}=6\right]
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=\frac{6 y}{x^{3}}+\frac{3\left(y^{\prime \prime} x-2 y^{\prime}\right)}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}-\frac{3 y^{\prime \prime}}{x}+\frac{6 y^{\prime}}{x^{2}}-\frac{6 y}{x^{3}}=0
$$

- Multiply by denominators of the ODE

$$
x^{3} y^{\prime \prime \prime}-3 y^{\prime \prime} x^{2}+6 y^{\prime} x-6 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2 nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
- Calculate the 3rd derivative of y with respect to x , using the chain rule $y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}$
Substitute the change of variables back into the ODE
$x^{3}\left(\frac{d^{3} t^{3} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)-3\left(\frac{\left(\frac{d^{2}}{d t^{2}} y(t)\right.}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+6 \frac{d}{d t} y(t)-6 y(t)=0$
- \quad Simplify
$\frac{d^{3}}{d t^{3}} y(t)-6 \frac{d^{2}}{d t^{2}} y(t)+11 \frac{d}{d t} y(t)-6 y(t)=0$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(t)$
$y_{1}(t)=y(t)$
- Define new variable $y_{2}(t)$
$y_{2}(t)=\frac{d}{d t} y(t)$
- Define new variable $y_{3}(t)$
$y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)$
- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE
$\frac{d}{d t} y_{3}(t)=6 y_{3}(t)-11 y_{2}(t)+6 y_{1}(t)$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=6 y_{3}(t)-11 y_{2}(t)+6 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y(t)=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{2 t}}{4}+\frac{c_{3} \mathrm{e}^{3 t}}{9}$
- Change variables back using $t=\ln (x)$

$$
y=c_{1} x+\frac{1}{4} c_{2} x^{2}+\frac{1}{9} c_{3} x^{3}
$$

- Use the initial condition $y(2)=0$

$$
0=2 c_{1}+c_{2}+\frac{8 c_{3}}{9}
$$

- Calculate the 1st derivative of the solution

$$
y^{\prime}=c_{1}+\frac{1}{2} c_{2} x+\frac{1}{3} c_{3} x^{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=2$

$$
2=c_{1}+c_{2}+\frac{4 c_{3}}{3}
$$

- Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=\frac{c_{2}}{2}+\frac{2 c_{3} x}{3}
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=2\}}=6$

$$
6=\frac{c_{2}}{2}+\frac{4 c_{3}}{3}
$$

- \quad Solve for the unknown coefficients

$$
\left\{c_{1}=2, c_{2}=-12, c_{3}=9, x=x\right\}
$$

- \quad Solution to the IVP

$$
y=x^{3}-3 x^{2}+2 x
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

$$
y(x)=x^{3}-3 x^{2}+2 x
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 15

$$
y(x) \rightarrow x\left(x^{2}-3 x+2\right)
$$

2.9 problem 6(a)

2.9.1 Existence and uniqueness analysis 247
2.9.2 Solving as separable ode . 248
2.9.3 Solving as first order ode lie symmetry lookup ode 249
2.9.4 Solving as exact ode . 254
2.9.5 Maple step by step solution . 257

Internal problem ID [11593]
Internal file name [OUTPUT/10575_Thursday_May_18_2023_05_56_39_PM_18318295/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 6(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x^{2} \sin (y)=0
$$

With initial conditions

$$
[y(1)=-2]
$$

2.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =x^{2} \sin (y)
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2} \sin (y)\right) \\
& =x^{2} \cos (y)
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

2.9.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x^{2} \sin (y)
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=\sin (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sin (y)} d y & =x^{2} d x \\
\int \frac{1}{\sin (y)} d y & =\int x^{2} d x \\
\ln (\csc (y)-\cot (y)) & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\csc (y)-\cot (y)=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}
$$

Which simplifies to

$$
\csc (y)-\cot (y)=c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=-i \ln \left(\frac{-\mathrm{e}^{c_{1}+\frac{1}{3}} c_{2}+i}{\mathrm{e}^{c_{1}+\frac{1}{3}} c_{2}+i}\right) \\
c_{1}=-\frac{1}{3}+\ln \left(-\frac{i\left(\mathrm{e}^{-2 i}-1\right)}{c_{2}\left(\mathrm{e}^{-2 i}+1\right)}\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \ln \left(\frac{-c_{2} \mathrm{e}^{\frac{x^{3}}{3}-\frac{1}{3}+\ln \left(-\frac{i\left(\mathrm{e}^{-2 i}-1\right)}{c_{2}\left(\mathrm{e}^{-2 i}+1\right)}\right)}+i}{c_{2} \mathrm{e}^{\frac{x^{3}}{3}-\frac{1}{3}+\ln \left(-\frac{i\left(\mathrm{e}^{-2 i}-1\right)}{c_{2}\left(\mathrm{e}^{-2 i}+1\right)}\right)}+i}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \ln \left(\frac{-c_{2} \mathrm{e}^{\frac{x^{3}}{3}-\frac{1}{3}+\ln \left(-\frac{i\left(\mathrm{e}^{-2 i}-1\right)}{c_{2}\left(\mathrm{e}^{-2 i}+1\right)}\right)}+i}{c_{2} \mathrm{e}^{\frac{x^{3}}{3}-\frac{1}{3}+\ln \left(-\frac{i\left(\mathrm{e}^{-2 i}-1\right)}{c_{2}\left(\mathrm{e}^{-2 i}+1\right)}\right)}+i}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \ln \left(\frac{\left.-c_{2} \mathrm{e}^{\frac{x^{3}}{3}-\frac{1}{3}+\ln \left(-\frac{i\left(\mathrm{e}^{-2 i}-1\right.}{c_{2}\left(\mathrm{e}^{-2 i}+1\right)}\right.}\right)+i}{c_{2} \mathrm{e}^{\frac{x^{3}}{3}-\frac{1}{3}+\ln \left(-\frac{i\left(\mathrm{e}^{-2 i}-1\right)}{c_{2}\left(\mathrm{e}^{-2 i}+1\right)}\right)}+i}\right)
$$

Verified OK.

2.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x^{2} \sin (y) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 47: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	x	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2} \sin (y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\csc (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\csc (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (\csc (R)+\cot (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{3}}{3}=-\ln (\csc (y)+\cot (y))+c_{1}
$$

Which simplifies to

$$
\frac{x^{3}}{3}=-\ln (\csc (y)+\cot (y))+c_{1}
$$

Which gives

$$
y=\arctan \left(\frac{2 \mathrm{e}^{-\frac{x^{3}}{3}+c_{1}}}{\mathrm{e}^{-\frac{2 x^{3}}{3}+2 c_{1}}+1}, \frac{\mathrm{e}^{-\frac{2 x^{3}}{3}+2 c_{1}}-1}{\mathrm{e}^{-\frac{2 x^{3}}{3}+2 c_{1}}+1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x^{2} \sin (y)$		$\frac{d S}{d R}=\csc (R)$
$1.15 \sim 4.1$		
	$R=y$	
	$S=\frac{x^{3}}{}$	
乐 1	$S=\frac{x^{3}}{3}$	
¢ ¢ ¢ ¢ ¢ - - + - - ¢ ¢ ¢ ¢ ¢ ¢		
¢ ¢ ¢		

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -2=-i \ln \left(\frac{-\mathrm{e}^{-\frac{1}{3}+c_{1}}-i}{-\mathrm{e}^{-\frac{1}{3}+c_{1}}+i}\right) \\
& c_{1}=\frac{1}{3}+\ln \left(\frac{i\left(\mathrm{e}^{-2 i}+1\right)}{\mathrm{e}^{-2 i}-1}\right)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \ln \left(\frac{-\mathrm{e}^{-\frac{x^{3}}{3}+\frac{1}{3}+\ln \left(\frac{i\left(\mathrm{e}^{-2 i}+1\right)}{\mathrm{e}^{-2 i}-1}\right)}-i}{-\mathrm{e}^{-\frac{x^{3}}{3}+\frac{1}{3}+\ln \left(\frac{i\left(\mathrm{e}^{-2 i}+1\right)}{\mathrm{e}^{-2 i}-1}\right)}+i}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \ln \left(\frac{-\mathrm{e}^{-\frac{x^{3}}{3}+\frac{1}{3}+\ln \left(\frac{i\left(\mathrm{e}^{-2 i}+1\right)}{\mathrm{e}^{-2 i}-1}\right)}-i}{-\mathrm{e}^{-\frac{x^{3}}{3}+\frac{1}{3}+\ln \left(\frac{i\left(\mathrm{e}^{-2 i}+1\right)}{\mathrm{e}^{-2 i}-1}\right)}+i}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \ln \left(\frac{-\mathrm{e}^{-\frac{x^{3}}{3}+\frac{1}{3}+\ln \left(\frac{i\left(\mathrm{e}^{-2 i}+1\right)}{\mathrm{e}^{-2 i}-1}\right)}-i}{-\mathrm{e}^{-\frac{x^{3}}{3}+\frac{1}{3}+\ln \left(\frac{i\left(\mathrm{e}^{-2 i}+1\right)}{\mathrm{e}^{-2 i}-1}\right)}+i}\right)
$$

Verified OK.

2.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sin (y)}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(\frac{1}{\sin (y)}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2} \\
N(x, y) & =\frac{1}{\sin (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sin (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sin (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sin (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{1}{\sin (y)} \\
& =\csc (y)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\csc (y)) \mathrm{d} y \\
f(y) & =-\ln (\csc (y)+\cot (y))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-\ln (\csc (y)+\cot (y))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-\ln (\csc (y)+\cot (y))
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{1}{3}-\ln (\cos (2)+1)+\ln (\sin (2))-i \pi=c_{1}
$$

$$
c_{1}=-\frac{1}{3}-\ln (\cos (2)+1)+\ln (\sin (2))-i \pi
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{3}}{3}-\ln (\csc (y)+\cot (y))=-\frac{1}{3}-\ln (\cos (2)+1)+\ln (\sin (2))-i \pi
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{3}}{3}-\ln (\csc (y)+\cot (y))=-\frac{1}{3}-\ln (\cos (2)+1)+\ln (\sin (2))-i \pi \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{x^{3}}{3}-\ln (\csc (y)+\cot (y))=-\frac{1}{3}-\ln (\cos (2)+1)+\ln (\sin (2))-i \pi
$$

Verified OK.

2.9.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-x^{2} \sin (y)=0, y(1)=-2\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{\sin (y)}=x^{2}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sin (y)} d x=\int x^{2} d x+c_{1}
$$

- Evaluate integral

$$
\ln (\csc (y)-\cot (y))=\frac{x^{3}}{3}+c_{1}
$$

- \quad Solve for y

$$
\left.y=\arctan \left(\frac{2 \mathrm{e}^{\frac{x^{3}}{3}}+c_{1}}{\left(\mathrm{e}^{\frac{x^{3}}{3}}+c_{1}\right.}\right)^{2}+1,-\frac{\left(\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{\mathrm{e}^{3}+c_{1}}\right)^{2}+1}\right)
$$

- Use initial condition $y(1)=-2$

$$
-2=\arctan \left(\frac{2 \mathrm{e}^{c_{1}+\frac{1}{3}}}{\left(\mathrm{e}^{c_{1}+\frac{1}{3}}\right)^{2}+1},-\frac{\left(\mathrm{e}^{c_{1}+\frac{1}{3}}\right)^{2}-1}{\left(\mathrm{e}^{c_{1}+\frac{1}{3}}\right)^{2}+1}\right)
$$

- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 1.844 (sec). Leaf size: 97

```
dsolve([diff (y (x),x)=x^2*\operatorname{sin}(y(x)),y(1) = -2],y(x), singsol=all)
```

$y(x)$
$=\arctan \left(\frac{2 \sin (2) \mathrm{e}^{\frac{(-1+x)\left(x^{2}+x+1\right)}{3}}}{(-1+\cos (2)) \mathrm{e}^{\frac{2(-1+x)\left(x^{2}+x+1\right)}{3}}-1-\cos (2)}, \frac{(1-\cos (2)) \mathrm{e}^{\frac{2(-1+x)\left(x^{2}+x+1\right)}{3}}-1-\cos (2)}{(-1+\cos (2)) \mathrm{e}^{\frac{2(-1+x)\left(x^{2}+x+1\right)}{3}}-1-\cos (2)}\right)$
\checkmark Solution by Mathematica
Time used: 0.68 (sec). Leaf size: 23
DSolve[\{y' $\left.[x]==x^{\wedge} 2 * \operatorname{Sin}[y[x]],\{y[1]==-2\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow-\arccos \left(\tanh \left(\operatorname{arctanh}(\cos (2))-\frac{x^{3}}{3}+\frac{1}{3}\right)\right)
$$

2.10 problem 6(b)

2.10.1 Existence and uniqueness analysis 259
2.10.2 Solving as separable ode 260
2.10.3 Solving as first order ode lie symmetry lookup ode 261
2.10.4 Solving as exact ode 265
2.10.5 Solving as riccati ode 269
2.10.6 Maple step by step solution 271
Internal problem ID [11594]
Internal file name [OUTPUT/10576_Thursday_May_18_2023_05_59_06_PM_8400801/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.
Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 6(b). 2004.

ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y^{2}}{x-2}=0
$$

With initial conditions

$$
[y(1)=0]
$$

2.10.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y^{2}}{x-2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y^{2}}{x-2}\right) \\
& =\frac{2 y}{x-2}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

2.10.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y^{2}}{x-2}
\end{aligned}
$$

Where $f(x)=\frac{1}{x-2}$ and $g(y)=y^{2}$. Since unique solution exists and $g(y)$ evaluated at $y_{0}=0$ is zero, then the solution is

$$
\begin{aligned}
y & =y_{0} \\
& =0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=0
$$

Verified OK.

2.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y^{2}}{x-2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 50: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x-2 \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\bar{\xi}} d x \\
& =\int \frac{1}{x-2} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x-2)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}}{x-2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x-2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x-2)=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\ln (x-2)=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=-\frac{1}{\ln (x-2)-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}}{x-2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
$\rightarrow \rightarrow \rightarrow a y y d t t^{\text {¢ ¢ ¢ ¢ ¢ }}$		$\rightarrow \rightarrow \rightarrow \infty \uparrow \mid \uparrow \uparrow$
$\xrightarrow{\rightarrow \rightarrow \rightarrow}$	$R=y$	
	$S=\ln (x-2)$	
$\rightarrow 0 \times 20 x^{2}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
¢ $4+\begin{gathered}\text { ¢ }\end{gathered}$		

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{1}{i \pi-c_{1}}
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=-\frac{1}{\ln (x-2)-c_{1}}=y=0$ Summary
and this result satisfies the given initial condition. The solution(s) found are the following

$$
y=0
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

2.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(\frac{1}{x-2}\right) \mathrm{d} x \\
\left(-\frac{1}{x-2}\right) \mathrm{d} x+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x-2} \\
& N(x, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x-2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x-2} \mathrm{~d} x \\
\phi & =-\ln (x-2)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x-2)-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x-2)-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{1}{\ln (x-2)+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{1}{i \pi+c_{1}}
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=-\frac{1}{\ln (x-2)+c_{1}}=y=0$ Summary
and this result satisfies the given initial condition. The solution(s) found are the following

$$
y=0
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

2.10.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}}{x-2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y^{2}}{x-2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=\frac{1}{x-2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x-2}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{(x-2)^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x-2}+\frac{u^{\prime}(x)}{(x-2)^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} \ln (x-2)+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}}{x-2}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{c_{2} \ln (x-2)+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{\ln (x-2)+c_{3}}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{1}{i \pi+c_{3}}
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=-\frac{1}{\ln (x-2)+c_{3}}=y=0$ Summary
and this result satisfies the given initial condition. The solution(s) found are the following

$$
y=0
$$

Verification of solutions

$$
y=0
$$

Verified OK.

2.10.6 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{y^{2}}{x-2}=0, y(1)=0\right]$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=\frac{1}{x-2}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int \frac{1}{x-2} d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=\ln (x-2)+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{\ln (x-2)+c_{1}}
$$

- Use initial condition $y(1)=0$

$$
0=-\frac{1}{\mathrm{I} \pi+c_{1}}
$$

- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=y(x)^2/(x-2),y(1) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve[\{y' $[x]==y[x] \sim 2 /(x-2),\{y[1]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 0
$$

2.11 problem 8

2.11.1 Existence and uniqueness analysis 273
2.11.2 Solving as quadrature ode . 274
2.11.3 Maple step by step solution . 275

Internal problem ID [11595]
Internal file name [OUTPUT/10577_Thursday_May_18_2023_05_59_06_PM_93747806/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{\frac{1}{3}}=0
$$

With initial conditions

$$
[y(0)=0]
$$

2.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{\frac{1}{3}}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{\frac{1}{3}}\right) \\
& =\frac{1}{3 y^{\frac{2}{3}}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{0<y\}
$$

But the point $y_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

2.11.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int d x \\
\frac{3 y^{\frac{2}{3}}}{2} & =x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{3 y^{\frac{2}{3}}}{2}=x
$$

Solving for y from the above gives

$$
y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9}
$$

Verified OK.

2.11.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{\frac{1}{3}}=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{\frac{1}{3}}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{3 y^{\frac{2}{3}}}{2}=x+c_{1}$
- \quad Solve for y

$$
y=\frac{\left(6 x+6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

- Use initial condition $y(0)=0$

$$
0=\frac{2 \sqrt{6} c_{1}^{\frac{3}{2}}}{9}
$$

- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9}$
- \quad Solution to the IVP
$y=\frac{2 x^{\frac{3}{2}} \sqrt{6}}{9}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=y(x)^(1/3),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 21

```
DSolve[{y'[x]==y[x]~(1/3),{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{2}{3} \sqrt{\frac{2}{3}} x^{3 / 2}
$$

3 Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
3.1 problem 1 278
3.2 problem 2 [294]
3.3 problem 3 301
3.4 problem 4 309
3.5 problem 5 312
3.6 problem 7 319
3.7 problem 8 326
3.8 problem 9 333
3.9 problem 10 345
3.10 problem 11 348
3.11 problem 12 [357
3.12 problem 13 362
3.13 problem 14 369
3.14 problem 15 374
3.15 problem 16 389
3.16 problem 21 403
3.17 problem 22 416
3.18 problem 24 434

3.1 problem 1

3.1.1 Solving as homogeneousTypeD2 ode 278
3.1.2 Solving as differentialType ode 280
3.1.3 Solving as first order ode lie symmetry calculated ode 282
3.1.4 Solving as exact ode . 287
3.1.5 Maple step by step solution . 291

Internal problem ID [11596]
Internal file name [OUTPUT/10578_Thursday_May_18_2023_05_59_07_PM_71828352/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
2 y+(2 x+y) y^{\prime}=-3 x
$$

3.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x+(2 x+u(x) x)\left(u^{\prime}(x) x+u(x)\right)=-3 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+4 u+3}{x(u+2)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+4 u+3}{u+2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+4 u+3}{u+2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+4 u+3}{u+2}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+4 u+3\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+4 u+3}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+4 u+3}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}+4 u(x)+3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2}+4 u(x)+3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}+\frac{4 y}{x}+3} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y^{2}+4 y x+3 x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Which simplifies to

$$
\sqrt{\frac{(3 x+y)(y+x)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{(3 x+y)(y+x)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 49: Slope field plot
Verification of solutions

$$
\sqrt{\frac{(3 x+y)(y+x)}{x^{2}}}=\frac{c_{3} e^{c_{2}}}{x}
$$

Verified OK.

3.1.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-3 x-2 y}{2 x+y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(-2 x) d y+(-3 x-2 y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-2 x) d y+(-3 x-2 y) d x=d\left(-\frac{3}{2} x^{2}-2 x y\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(-\frac{3}{2} x^{2}-2 x y\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-2 x+\sqrt{x^{2}+2 c_{1}}+c_{1} \\
& y=-2 x-\sqrt{x^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-2 x+\sqrt{x^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-2 x-\sqrt{x^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 50: Slope field plot
Verification of solutions

$$
y=-2 x+\sqrt{x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-2 x-\sqrt{x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

3.1.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{3 x+2 y}{2 x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(3 x+2 y)\left(b_{3}-a_{2}\right)}{2 x+y}-\frac{(3 x+2 y)^{2} a_{3}}{(2 x+y)^{2}} \\
& -\left(-\frac{3}{2 x+y}+\frac{6 x+4 y}{(2 x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2}{2 x+y}+\frac{3 x+2 y}{(2 x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{6 x^{2} a_{2}-9 x^{2} a_{3}+5 x^{2} b_{2}-6 x^{2} b_{3}+6 x y a_{2}-12 x y a_{3}+4 x y b_{2}-6 x y b_{3}+2 y^{2} a_{2}-5 y^{2} a_{3}+y^{2} b_{2}-2 y^{2} b_{3}+x b_{1}}{(2 x+y)^{2}}$
$=0$

Setting the numerator to zero gives

$$
\begin{array}{r}
6 x^{2} a_{2}-9 x^{2} a_{3}+5 x^{2} b_{2}-6 x^{2} b_{3}+6 x y a_{2}-12 x y a_{3}+4 x y b_{2} \tag{6E}\\
\quad-6 x y b_{3}+2 y^{2} a_{2}-5 y^{2} a_{3}+y^{2} b_{2}-2 y^{2} b_{3}+x b_{1}-y a_{1}=0
\end{array}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 6 a_{2} v_{1}^{2}+6 a_{2} v_{1} v_{2}+2 a_{2} v_{2}^{2}-9 a_{3} v_{1}^{2}-12 a_{3} v_{1} v_{2}-5 a_{3} v_{2}^{2}+5 b_{2} v_{1}^{2} \tag{7E}\\
& \quad+4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-6 b_{3} v_{1}^{2}-6 b_{3} v_{1} v_{2}-2 b_{3} v_{2}^{2}-a_{1} v_{2}+b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(6 a_{2}-9 a_{3}+5 b_{2}-6 b_{3}\right) v_{1}^{2}+\left(6 a_{2}-12 a_{3}+4 b_{2}-6 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+b_{1} v_{1}+\left(2 a_{2}-5 a_{3}+b_{2}-2 b_{3}\right) v_{2}^{2}-a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-a_{1} & =0 \\
2 a_{2}-5 a_{3}+b_{2}-2 b_{3} & =0 \\
6 a_{2}-12 a_{3}+4 b_{2}-6 b_{3} & =0 \\
6 a_{2}-9 a_{3}+5 b_{2}-6 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=4 a_{3}+b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=0 \\
& b_{2}=-3 a_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{3 x+2 y}{2 x+y}\right)(x) \\
& =\frac{3 x^{2}+4 x y+y^{2}}{2 x+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x^{2}+4 x y+y^{2}}{2 x+y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(3 x^{2}+4 x y+y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x+2 y}{2 x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 x+2 y}{(y+x)(3 x+y)} \\
S_{y} & =\frac{2 x+y}{(y+x)(3 x+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y+x)}{2}+\frac{\ln (3 x+y)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y+x)}{2}+\frac{\ln (3 x+y)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x+2 y}{2 x+y}$		$\left.\begin{array}{c}d S \\ d R\end{array}\right]$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y+x)}{2}+\frac{\ln (3 x+y)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 51: Slope field plot

Verification of solutions

$$
\frac{\ln (y+x)}{2}+\frac{\ln (3 x+y)}{2}=c_{1}
$$

Verified OK.

3.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x+y) \mathrm{d} y & =(-3 x-2 y) \mathrm{d} x \\
(3 x+2 y) \mathrm{d} x+(2 x+y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x+2 y \\
N(x, y) & =2 x+y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(3 x+2 y) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x+y) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x+2 y \mathrm{~d} x \\
\phi & =\frac{x(3 x+4 y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x+y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x+y=2 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(3 x+4 y)}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(3 x+4 y)}{2}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x(3 x+4 y)}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 52: Slope field plot

Verification of solutions

$$
\frac{x(3 x+4 y)}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

3.1.5 Maple step by step solution

Let's solve

$$
2 y+(2 x+y) y^{\prime}=-3 x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$2=2$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(3 x+2 y) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{3 x^{2}}{2}+2 x y+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$2 x+y=2 x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=y$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\frac{y^{2}}{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{3}{2} x^{2}+2 x y+\frac{1}{2} y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{3}{2} x^{2}+2 x y+\frac{1}{2} y^{2}=c_{1}$
- \quad Solve for y

$$
\left\{y=-2 x-\sqrt{x^{2}+2 c_{1}}, y=-2 x+\sqrt{x^{2}+2 c_{1}}\right\}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 49

```
dsolve((3*x+2*y(x))+(2*x+y(x))*diff (y (x), x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-2 c_{1} x-\sqrt{c_{1}^{2} x^{2}+1}}{c_{1}} \\
& y(x)=\frac{-2 c_{1} x+\sqrt{c_{1}^{2} x^{2}+1}}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.781 (sec). Leaf size: 79
DSolve $[(3 * x+2 * y[x])+(2 * x+y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-2 x-\sqrt{x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-2 x+\sqrt{x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-\sqrt{x^{2}}-2 x \\
& y(x) \rightarrow \sqrt{x^{2}}-2 x
\end{aligned}
$$

3.2 problem 2

3.2.1 Solving as exact ode . 294
3.2.2 Maple step by step solution 298

Internal problem ID [11597]
Internal file name [OUTPUT/10579_Thursday_May_18_2023_10_42_42_PM_75656588/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, _rational, [_1st_order, ` _with_symmetry_[F(x)*G(y)
    ,0]`], [_Abel, `2nd type`, `class B`]]
```

$$
y^{2}+(2 y x-4) y^{\prime}=-3
$$

3.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y-4) \mathrm{d} y & =\left(-y^{2}-3\right) \mathrm{d} x \\
\left(y^{2}+3\right) \mathrm{d} x+(2 x y-4) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2}+3 \\
N(x, y) & =2 x y-4
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}+3\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y-4) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2}+3 \mathrm{~d} x \\
\phi & =\left(y^{2}+3\right) x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x y-4$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x y-4=2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-4
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-4) \mathrm{d} y \\
f(y) & =-4 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\left(y^{2}+3\right) x-4 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\left(y^{2}+3\right) x-4 y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(y^{2}+3\right) x-4 y=c_{1} \tag{1}
\end{equation*}
$$

Figure 53: Slope field plot

Verification of solutions

$$
\left(y^{2}+3\right) x-4 y=c_{1}
$$

Verified OK.

3.2.2 Maple step by step solution

Let's solve

$$
y^{2}+(2 y x-4) y^{\prime}=-3
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives

$$
2 y=2 y
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(y^{2}+3\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\left(y^{2}+3\right) x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$2 x y-4=2 x y+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-4$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-4 y$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\left(y^{2}+3\right) x-4 y
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\left(y^{2}+3\right) x-4 y=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{2+\sqrt{c_{1} x-3 x^{2}+4}}{x}, y=-\frac{-2+\sqrt{c_{1} x-3 x^{2}+4}}{x}\right\}
$$

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        <- Kovacics algorithm successful
    <- Abel AIR successful: ODE belongs to the 2F1 3-parameter class
<- inverse linear successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 62

```
dsolve((y(x)^2+3)+(2*x*y(x)-4)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
\frac{-i c_{1}\left(y(x)^{2} x+3 x-4 y(x)\right) \sqrt{3}+12 c_{1}+i}{(-y(x) \sqrt{3} x+4 \sqrt{3}-3 i x)(\sqrt{3}+i y(x))}=0
$$

\checkmark Solution by Mathematica
Time used: 0.615 (sec). Leaf size: 79
DSolve[(y[x] $2+3)+(2 * x * y[x]-4) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2-\sqrt{-3 x^{2}+c_{1} x+4}}{x} \\
& y(x) \rightarrow \frac{2+\sqrt{-3 x^{2}+c_{1} x+4}}{x} \\
& y(x) \rightarrow-i \sqrt{3} \\
& y(x) \rightarrow i \sqrt{3}
\end{aligned}
$$

3.3 problem 3

3.3.1 Solving as differentialType ode
301
3.3.2 Solving as exact ode . 303
3.3.3 Maple step by step solution . 306

Internal problem ID [11598]
Internal file name [OUTPUT/10580_Thursday_May_18_2023_10_42_44_PM_48988675/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]

$$
2 y x+\left(x^{2}+4 y\right) y^{\prime}=-1
$$

3.3.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-2 y x-1}{x^{2}+4 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(4 y) d y=\left(-x^{2}\right) d y+(-2 x y-1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-x^{2}\right) d y+(-2 x y-1) d x=d\left(-x^{2} y-x\right)
$$

Hence (2) becomes

$$
(4 y) d y=d\left(-x^{2} y-x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+8 c_{1}-8 x}}{4}+c_{1} \\
& y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+8 c_{1}-8 x}}{4}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+8 c_{1}-8 x}}{4}+c_{1} \tag{1}\\
& y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+8 c_{1}-8 x}}{4}+c_{1} \tag{2}
\end{align*}
$$

Figure 54: Slope field plot

Verification of solutions

$$
y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+8 c_{1}-8 x}}{4}+c_{1}
$$

Verified OK.

$$
y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+8 c_{1}-8 x}}{4}+c_{1}
$$

Verified OK.

3.3.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+4 y\right) \mathrm{d} y & =(-2 x y-1) \mathrm{d} x \\
(2 x y+1) \mathrm{d} x+\left(x^{2}+4 y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y+1 \\
N(x, y) & =x^{2}+4 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x y+1) \\
& =2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+4 y\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y+1 \mathrm{~d} x \\
\phi & =x^{2} y+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}+4 y$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}+4 y=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=4 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(4 y) \mathrm{d} y \\
f(y) & =2 y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2} y+2 y^{2}+x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2} y+2 y^{2}+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} y+2 y^{2}+x=c_{1} \tag{1}
\end{equation*}
$$

Figure 55: Slope field plot
Verification of solutions

$$
x^{2} y+2 y^{2}+x=c_{1}
$$

Verified OK.

3.3.3 Maple step by step solution

Let's solve

$$
2 y x+\left(x^{2}+4 y\right) y^{\prime}=-1
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
2 x=2 x
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(2 x y+1) d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=x^{2} y+x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
x^{2}+4 y=x^{2}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=4 y
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=2 y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x^{2} y+2 y^{2}+x
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{2} y+2 y^{2}+x=c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+8 c_{1}-8 x}}{4}, y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+8 c_{1}-8 x}}{4}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 47

```
dsolve((2*x*y(x)+1)+(x^2+4*y(x))*diff (y(x), x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}-8 c_{1}-8 x}}{4} \\
& y(x)=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}-8 c_{1}-8 x}}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.223 (sec). Leaf size: 61
DSolve $\left[(2 * x * y[x]+1)+\left(x^{\wedge} 2+4 * y[x]\right) * y\right.$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(-x^{2}-\sqrt{x^{4}-8 x+16 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{4}\left(-x^{2}+\sqrt{x^{4}-8 x+16 c_{1}}\right)
\end{aligned}
$$

3.4 problem 4

Internal problem ID [11599]
Internal file name [OUTPUT/10581_Thursday_May_18_2023_10_42_45_PM_55985488/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "unknown"
Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class A`]]
```

Unable to solve or complete the solution.

$$
3 x^{2} y-\left(x^{3}+y\right) y^{\prime}=-2
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve($\left(3 * x^{\wedge} 2 * y(x)+2\right)-\left(x^{\wedge} 3+y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[(3*x^2+2)-($\left.x^{\wedge} 3+y[x]\right) * y '[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

Not solved

3.5 problem 5

> 3.5.1 Solving as exact ode
3.5.2 Maple step by step solution . 316

Internal problem ID [11600]
Internal file name [OUTPUT/10582_Thursday_May_18_2023_10_42_46_PM_41313843/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _rational, [_Abel, `2nd type`, `class B`]]

$$
6 y x+2 y^{2}+\left(3 x^{2}+4 y x-6\right) y^{\prime}=5
$$

3.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 x^{2}+4 x y-6\right) \mathrm{d} y & =\left(-6 x y-2 y^{2}+5\right) \mathrm{d} x \\
\left(6 x y+2 y^{2}-5\right) \mathrm{d} x+\left(3 x^{2}+4 x y-6\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=6 x y+2 y^{2}-5 \\
& N(x, y)=3 x^{2}+4 x y-6
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(6 x y+2 y^{2}-5\right) \\
& =6 x+4 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 x^{2}+4 x y-6\right) \\
& =6 x+4 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 6 x y+2 y^{2}-5 \mathrm{~d} x \\
\phi & =3 x^{2} y+2 x y^{2}-5 x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =3 x^{2}+4 x y+f^{\prime}(y) \tag{4}\\
& =x(3 x+4 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 x^{2}+4 x y-6$. Therefore equation (4) becomes

$$
\begin{equation*}
3 x^{2}+4 x y-6=x(3 x+4 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-6
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-6) \mathrm{d} y \\
f(y) & =-6 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=3 x^{2} y+2 x y^{2}-5 x-6 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=3 x^{2} y+2 x y^{2}-5 x-6 y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
3 x^{2} y+2 y^{2} x-5 x-6 y=c_{1} \tag{1}
\end{equation*}
$$

Figure 56: Slope field plot

Verification of solutions

$$
3 x^{2} y+2 y^{2} x-5 x-6 y=c_{1}
$$

Verified OK.

3.5.2 Maple step by step solution

Let's solve

$$
6 y x+2 y^{2}+\left(3 x^{2}+4 y x-6\right) y^{\prime}=5
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$6 x+4 y=6 x+4 y$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(6 x y+2 y^{2}-5\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=3 x^{2} y+2 x y^{2}-5 x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$3 x^{2}+4 x y-6=3 x^{2}+4 x y+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-6$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-6 y$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=3 x^{2} y+2 x y^{2}-5 x-6 y
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
3 x^{2} y+2 x y^{2}-5 x-6 y=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{-3 x^{2}+6+\sqrt{9 x^{4}+8 c_{1} x+4 x^{2}+36}}{4 x}, y=-\frac{3 x^{2}+\sqrt{9 x^{4}+8 c_{1} x+4 x^{2}+36}-6}{4 x}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 69

```
dsolve((6*x*y(x)+2*y(x)^2-5)+(3*x^2+4*x*y(x)-6)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-3 x^{2}+6+\sqrt{9 x^{4}-8 c_{1} x+4 x^{2}+36}}{4 x} \\
& y(x)=\frac{-3 x^{2}+6-\sqrt{9 x^{4}-8 c_{1} x+4 x^{2}+36}}{4 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.709 (sec). Leaf size: 79
DSolve $\left[(6 * x * y[x]+2 * y[x] \sim 2-5)+\left(3 * x^{\wedge} 2+4 * x * y[x]-6\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow

$$
\begin{aligned}
& y(x) \rightarrow-\frac{3 x^{2}+\sqrt{9 x^{4}+4 x^{2}+16 c_{1} x+36}-6}{4 x} \\
& y(x) \rightarrow \frac{-3 x^{2}+\sqrt{9 x^{4}+4 x^{2}+16 c_{1} x+36}+6}{4 x}
\end{aligned}
$$

3.6 problem 7

3.6.1 Solving as exact ode . 319
3.6.2 Maple step by step solution . 323

Internal problem ID [11601]
Internal file name [OUTPUT/10583_Thursday_May_18_2023_10_42_47_PM_64831531/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, [_Abel, `2nd type`, `class A`]]
```

$$
y \sec (x)^{2}+(\tan (x)+2 y) y^{\prime}=-\sec (x) \tan (x)
$$

3.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\tan (x)+2 y) \mathrm{d} y & =\left(-y \sec (x)^{2}-\sec (x) \tan (x)\right) \mathrm{d} x \\
\left(y \sec (x)^{2}+\sec (x) \tan (x)\right) \mathrm{d} x+(\tan (x)+2 y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \sec (x)^{2}+\sec (x) \tan (x) \\
N(x, y) & =\tan (x)+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y \sec (x)^{2}+\sec (x) \tan (x)\right) \\
& =\sec (x)^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(\tan (x)+2 y) \\
& =\sec (x)^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \sec (x)^{2}+\sec (x) \tan (x) \mathrm{d} x \\
\phi & =y \tan (x)+\sec (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\tan (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\tan (x)+2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
\tan (x)+2 y=\tan (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y \tan (x)+\sec (x)+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y \tan (x)+\sec (x)+y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\tan (x) y+\sec (x)+y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 57: Slope field plot

Verification of solutions

$$
\tan (x) y+\sec (x)+y^{2}=c_{1}
$$

Verified OK.

3.6.2 Maple step by step solution

Let's solve
$y \sec (x)^{2}+(\tan (x)+2 y) y^{\prime}=-\sec (x) \tan (x)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$\sec (x)^{2}=\tan (x)^{2}+1$
- Simplify
$\sec (x)^{2}=\sec (x)^{2}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(y \sec (x)^{2}+\sec (x) \tan (x)\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=y \tan (x)+\sec (x)+f_{1}(y)
$$

- Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\tan (x)+2 y=\tan (x)+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=2 y
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=y^{2}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=y \tan (x)+\sec (x)+y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
y \tan (x)+\sec (x)+y^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{\sin (x)-\sqrt{4 c_{1} \cos (x)^{2}+\sin (x)^{2}-4 \cos (x)}}{2 \cos (x)}, y=-\frac{\sin (x)+\sqrt{4 c_{1} \cos (x)^{2}+\sin (x)^{2}-4 \cos (x)}}{2 \cos (x)}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 61

```
dsolve((y(x)*\operatorname{sec}(x)~2+\operatorname{sec}(x)*\operatorname{tan}(x))+(tan(x)+2*y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\tan (x)}{2}+\frac{\sec (x) \sqrt{-4 \cos (x)^{2} c_{1}+\sin (x)^{2}-4 \cos (x)}}{2} \\
& y(x)=-\frac{\tan (x)}{2}-\frac{\sec (x) \sqrt{-4 \cos (x)^{2} c_{1}+\sin (x)^{2}-4 \cos (x)}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.831 (sec). Leaf size: 101
DSolve $\left[(y[x] * \operatorname{Sec}[x] \sim 2+\operatorname{Sec}[x] * \operatorname{Tan}[x])+(\operatorname{Tan}[x]+2 * y[x]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolution

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(-2 \tan (x)-\sqrt{2} \sqrt{\sec ^{2}(x)} \sqrt{-8 \cos (x)+\left(-1+4 c_{1}\right) \cos (2 x)+1+4 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{4}\left(-2 \tan (x)+\sqrt{\sec ^{2}(x)} \sqrt{-16 \cos (x)+\left(-2+8 c_{1}\right) \cos (2 x)+2+8 c_{1}}\right)
\end{aligned}
$$

3.7 problem 8

3.7.1 Solving as exact ode

Internal problem ID [11602]
Internal file name [OUTPUT/10584_Thursday_May_18_2023_10_42_49_PM_42100361/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor" Maple gives the following as the ode type

```
[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
```

$$
\frac{x}{y^{2}}+\left(\frac{x^{2}}{y^{3}}+y\right) y^{\prime}=-x
$$

3.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x^{2}}{y^{3}}+y\right) \mathrm{d} y & =\left(-\frac{x}{y^{2}}-x\right) \mathrm{d} x \\
\left(\frac{x}{y^{2}}+x\right) \mathrm{d} x+\left(\frac{x^{2}}{y^{3}}+y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{x}{y^{2}}+x \\
& N(x, y)=\frac{x^{2}}{y^{3}}+y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x}{y^{2}}+x\right) \\
& =-\frac{2 x}{y^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x^{2}}{y^{3}}+y\right) \\
& =\frac{2 x}{y^{3}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{\frac{x^{2}}{y^{3}}+y}\left(\left(-\frac{2 x}{y^{3}}\right)-\left(\frac{2 x}{y^{3}}\right)\right) \\
& =-\frac{4 x}{y^{4}+x^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{\frac{x}{y^{2}}+x}\left(\left(\frac{2 x}{y^{3}}\right)-\left(-\frac{2 x}{y^{3}}\right)\right) \\
& =\frac{4}{y\left(y^{2}+1\right)}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \frac{4}{y\left(y^{2}+1\right)} \mathrm{d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{4 \ln (y)-2 \ln \left(y^{2}+1\right)} \\
& =\frac{y^{4}}{\left(y^{2}+1\right)^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{y^{4}}{\left(y^{2}+1\right)^{2}}\left(\frac{x}{y^{2}}+x\right) \\
& =\frac{x y^{2}}{y^{2}+1}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{y^{4}}{\left(y^{2}+1\right)^{2}}\left(\frac{x^{2}}{y^{3}}+y\right) \\
& =\frac{\left(y^{4}+x^{2}\right) y}{\left(y^{2}+1\right)^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x y^{2}}{y^{2}+1}\right)+\left(\frac{\left(y^{4}+x^{2}\right) y}{\left(y^{2}+1\right)^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x y^{2}}{y^{2}+1} \mathrm{~d} x \\
\phi & =\frac{x^{2} y^{2}}{2 y^{2}+2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{2 x^{2} y}{2 y^{2}+2}-\frac{4 x^{2} y^{3}}{\left(2 y^{2}+2\right)^{2}}+f^{\prime}(y) \tag{4}\\
& =\frac{x^{2} y}{\left(y^{2}+1\right)^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\left(y^{4}+x^{2}\right) y}{\left(y^{2}+1\right)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\left(y^{4}+x^{2}\right) y}{\left(y^{2}+1\right)^{2}}=\frac{x^{2} y}{\left(y^{2}+1\right)^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y^{5}}{\left(y^{2}+1\right)^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y^{5}}{\left(y^{2}+1\right)^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}-\ln \left(y^{2}+1\right)-\frac{1}{2\left(y^{2}+1\right)}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{2} y^{2}}{2 y^{2}+2}+\frac{y^{2}}{2}-\ln \left(y^{2}+1\right)-\frac{1}{2\left(y^{2}+1\right)}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{2} y^{2}}{2 y^{2}+2}+\frac{y^{2}}{2}-\ln \left(y^{2}+1\right)-\frac{1}{2\left(y^{2}+1\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2} y^{2}}{2 y^{2}+2}+\frac{y^{2}}{2}-\ln \left(1+y^{2}\right)-\frac{1}{2\left(1+y^{2}\right)}=c_{1} \tag{1}
\end{equation*}
$$

Figure 58: Slope field plot

Verification of solutions

$$
\frac{x^{2} y^{2}}{2 y^{2}+2}+\frac{y^{2}}{2}-\ln \left(1+y^{2}\right)-\frac{1}{2\left(1+y^{2}\right)}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 52

```
dsolve((x/y(x)^2+x)+(x^2/y(x)^3+y(x))*diff (y(x),x)=0,y(x), singsol=all)
```

$$
\frac{\left(-2 y(x)^{2}-2\right) \ln \left(y(x)^{2}+1\right)+y(x)^{4}+\left(x^{2}+2 c_{1}+1\right) y(x)^{2}+2 c_{1}-1}{2 y(x)^{2}+2}=0
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.4 (sec). Leaf size: 55
DSolve $\left[(x / y[x] \sim 2+x)+\left(x^{\wedge} 2 / y[x] \leadsto 3+y[x]\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

Solve $\left[\frac{x^{2} y(x)^{2}}{2\left(y(x)^{2}+1\right)}+\frac{y(x)^{2}}{2}-\frac{1}{2\left(y(x)^{2}+1\right)}-\log \left(y(x)^{2}+1\right)=c_{1}, y(x)\right]$

3.8 problem 9

3.8.1 Solving as separable ode . 333
3.8.2 Solving as first order ode lie symmetry lookup ode 335
3.8.3 Solving as exact ode . 339
3.8.4 Maple step by step solution . 343

Internal problem ID [11603]
Internal file name [OUTPUT/10585_Thursday_May_18_2023_10_42_51_PM_54314826/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 9 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\frac{(2 s-1) s^{\prime}}{t}+\frac{s-s^{2}}{t^{2}}=0
$$

3.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
s^{\prime} & =F(t, s) \\
& =f(t) g(s) \\
& =\frac{s(s-1)}{t(2 s-1)}
\end{aligned}
$$

Where $f(t)=\frac{1}{t}$ and $g(s)=\frac{s(s-1)}{2 s-1}$. Integrating both sides gives

$$
\frac{1}{\frac{s(s-1)}{2 s-1}} d s=\frac{1}{t} d t
$$

$$
\begin{aligned}
\int \frac{1}{\frac{s(s-1)}{2 s-1}} d s & =\int \frac{1}{t} d t \\
\ln (s(s-1)) & =\ln (t)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
s(s-1)=\mathrm{e}^{\ln (t)+c_{1}}
$$

Which simplifies to

$$
s(s-1)=c_{2} t
$$

Which simplifies to

$$
s(s-1)=c_{2} \mathrm{e}^{c_{1}} t
$$

The solution is

$$
s(s-1)=c_{2} \mathrm{e}^{c_{1}} t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
s(s-1)=c_{2} \mathrm{e}^{c_{1}} t \tag{1}
\end{equation*}
$$

Figure 59: Slope field plot

Verification of solutions

$$
s(s-1)=c_{2} \mathrm{e}^{c_{1}} t
$$

Verified OK.

3.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
s^{\prime} & =\frac{s(s-1)}{t(2 s-1)} \\
s^{\prime} & =\omega(t, s)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{s}-\xi_{t}\right)-\omega^{2} \xi_{s}-\omega_{t} \xi-\omega_{s} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 59: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, s)=t \\
& \eta(t, s)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, s) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d s}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial s}\right) S(t, s)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=s
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{t} d t
\end{aligned}
$$

Which results in

$$
S=\ln (t)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, s) S_{s}}{R_{t}+\omega(t, s) R_{s}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{s}, S_{t}, S_{s}$ are all partial derivatives and $\omega(t, s)$ is the right hand side of the original ode given by

$$
\omega(t, s)=\frac{s(s-1)}{t(2 s-1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{s} & =1 \\
S_{t} & =\frac{1}{t} \\
S_{s} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2 s-1}{s(s-1)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, s in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2 R-1}{R(R-1)}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R(R-1))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, s coordinates．This results in

$$
\ln (t)=\ln (s(s-1))+c_{1}
$$

Which simplifies to

$$
\ln (t)=\ln (s(s-1))+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, s coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d s}{d t}=\frac{s(s-1)}{t(2 s-1)}$		$\frac{d S}{d R}=\frac{2 R-1}{R(R-1)}$
－		
\cdots		S（R）
$\rightarrow \rightarrow \rightarrow-\infty$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$（ ${ }_{\text {d }}$	$R=s$	
	$S=\ln (t)$	－4
		ヘvaray
		－4ヶ4分分アパーシ

Summary

The solution（s）found are the following

$$
\begin{equation*}
\ln (t)=\ln (s(s-1))+c_{1} \tag{1}
\end{equation*}
$$

Figure 60: Slope field plot
Verification of solutions

$$
\ln (t)=\ln (s(s-1))+c_{1}
$$

Verified OK.

3.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, s) \mathrm{d} t+N(t, s) \mathrm{d} s=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2 s-1}{s(s-1)}\right) \mathrm{d} s & =\left(\frac{1}{t}\right) \mathrm{d} t \\
\left(-\frac{1}{t}\right) \mathrm{d} t+\left(\frac{2 s-1}{s(s-1)}\right) \mathrm{d} s & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, s)=-\frac{1}{t} \\
& N(t, s)=\frac{2 s-1}{s(s-1)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial s}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial s} & =\frac{\partial}{\partial s}\left(-\frac{1}{t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{2 s-1}{s(s-1)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial s}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, s)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial s}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{t} \mathrm{~d} t \\
\phi & =-\ln (t)+f(s) \tag{3}
\end{align*}
$$

Where $f(s)$ is used for the constant of integration since ϕ is a function of both t and s. Taking derivative of equation (3) w.r.t s gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial s}=0+f^{\prime}(s) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial s}=\frac{2 s-1}{s(s-1)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 s-1}{s(s-1)}=0+f^{\prime}(s) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(s)$ gives

$$
f^{\prime}(s)=\frac{2 s-1}{s(s-1)}
$$

Integrating the above w.r.t s gives

$$
\begin{aligned}
\int f^{\prime}(s) \mathrm{d} s & =\int\left(\frac{2 s-1}{s(s-1)}\right) \mathrm{d} s \\
f(s) & =\ln (s(s-1))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(s)$ into equation (3) gives ϕ

$$
\phi=-\ln (t)+\ln (s(s-1))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (t)+\ln (s(s-1))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (t)+\ln (s(s-1))=c_{1} \tag{1}
\end{equation*}
$$

Figure 61: Slope field plot

Verification of solutions

$$
-\ln (t)+\ln (s(s-1))=c_{1}
$$

Verified OK.

3.8.4 Maple step by step solution

Let's solve

$$
\frac{(2 s-1) s^{\prime}}{t}+\frac{s-s^{2}}{t^{2}}=0
$$

- Highest derivative means the order of the ODE is 1

$$
s^{\prime}
$$

- Integrate both sides with respect to t

$$
\int\left(\frac{(2 s-1) s^{\prime}}{t}+\frac{s-s^{2}}{t^{2}}\right) d t=\int 0 d t+c_{1}
$$

- Evaluate integral
$\frac{s^{2}-s}{t}=c_{1}$
- \quad Solve for s

$$
\left\{s=\frac{1}{2}-\frac{\sqrt{4 c_{1} t+1}}{2}, s=\frac{1}{2}+\frac{\sqrt{4 c_{1} t+1}}{2}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

```
dsolve((2*s(t)-1)/t*diff(s(t),t)+(s(t)-s(t)~2)/t^2=0,s(t), singsol=all)
```

$$
\begin{aligned}
& s(t)=\frac{1}{2}-\frac{\sqrt{4 c_{1} t+1}}{2} \\
& s(t)=\frac{1}{2}+\frac{\sqrt{4 c_{1} t+1}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.682 (sec). Leaf size: 59
DSolve[(2*s[t]-1)/t*s'[t]+(s[t]-s[t]~2)/t^2==0,s[t],t,IncludeSingularSolutions \rightarrow True]

$$
\left.\begin{array}{l}
s(t) \rightarrow \frac{1}{2}\left(1-\sqrt{1-4 e^{c_{1}} t}\right) \\
s(t) \rightarrow \frac{1}{2}\left(1+\sqrt{1-4 e^{c_{1}} t}\right) \\
s(t)
\end{array}\right) 0018(t) \rightarrow 1
$$

3.9 problem 10

Internal problem ID [11604]
Internal file name [OUTPUT/10586_Thursday_May_18_2023_10_42_52_PM_67193455/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_rational]
Unable to solve or complete the solution.

$$
\frac{2 y^{\frac{3}{2}}+1}{x^{\frac{1}{3}}}+(3 \sqrt{x} \sqrt{y}-1) y^{\prime}=0
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)-(1/3)*y(x)/x, y(x)`
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)-(5/6)*y(x)/x, y(x)-
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, {4iff(y(x), x)-3*y(x)*x/(2*x^2+x^(1/2)), y(x)
        Methods for first order ODEs:
        --- Trying classification methods ---
```

X Solution by Maple
dsolve $\left((2 * y(x) \wedge(3 / 2)+1) / x^{\wedge}(1 / 3)+\left(3 * x^{\wedge}(1 / 2) * y(x)^{\wedge}(1 / 2)-1\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(2 * y[x]^{\wedge}(3 / 2)+1\right) / x^{\wedge}(1 / 3)+\left(3 * x^{\wedge}(1 / 2) * y[x]^{\wedge}(1 / 2)-1\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolu

Timed out

3.10 problem 11

3.10.1 Existence and uniqueness analysis 348
3.10.2 Solving as differentialType ode 349
3.10.3 Solving as exact ode . 351
3.10.4 Maple step by step solution . 354

Internal problem ID [11605]
Internal file name [OUTPUT/10587_Thursday_May_18_2023_10_42_53_PM_49590489/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_exact, _rational, [_1st_order, - _with_symmetry_[F(x),G(x)]`, [_Abel, `2nd type`, `class A`]]

$$
2 y x+\left(x^{2}+4 y\right) y^{\prime}=3
$$

With initial conditions

$$
[y(1)=2]
$$

3.10.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{2 x y-3}{x^{2}+4 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\left\{y<-\frac{1}{4} \vee-\frac{1}{4}<y\right\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x y-3}{x^{2}+4 y}\right) \\
& =-\frac{2 x}{x^{2}+4 y}+\frac{8 x y-12}{\left(x^{2}+4 y\right)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\left\{y<-\frac{1}{4} \vee-\frac{1}{4}<y\right\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

3.10.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-2 y x+3}{x^{2}+4 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(4 y) d y=\left(-x^{2}\right) d y+(-2 x y+3) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-x^{2}\right) d y+(-2 x y+3) d x=d\left(-x^{2} y+3 x\right)
$$

Hence (2) becomes

$$
(4 y) d y=d\left(-x^{2} y+3 x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+8 c_{1}+24 x}}{4}+c_{1} \\
& y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+8 c_{1}+24 x}}{4}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\frac{1}{4}-\frac{\sqrt{25+8 c_{1}}}{4}+c_{1} \\
c_{1}=\frac{5}{2}+\frac{\sqrt{11}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+20+4 \sqrt{11}+24 x}}{4}+\frac{5}{2}+\frac{\sqrt{11}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\frac{1}{4}+\frac{\sqrt{25+8 c_{1}}}{4}+c_{1} \\
c_{1}=\frac{5}{2}-\frac{\sqrt{11}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+20-4 \sqrt{11}+24 x}}{4}+\frac{5}{2}-\frac{\sqrt{11}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+20-4 \sqrt{11}+24 x}}{4}+\frac{5}{2}-\frac{\sqrt{11}}{2} \tag{1}\\
& y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+20+4 \sqrt{11}+24 x}}{4}+\frac{5}{2}+\frac{\sqrt{11}}{2} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+20-4 \sqrt{11}+24 x}}{4}+\frac{5}{2}-\frac{\sqrt{11}}{2}
$$

Verified OK.

$$
y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+20+4 \sqrt{11}+24 x}}{4}+\frac{5}{2}+\frac{\sqrt{11}}{2}
$$

Verified OK.

3.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+4 y\right) \mathrm{d} y & =(-2 x y+3) \mathrm{d} x \\
(2 x y-3) \mathrm{d} x+\left(x^{2}+4 y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=2 x y-3 \\
& N(x, y)=x^{2}+4 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x y-3) \\
& =2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+4 y\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y-3 \mathrm{~d} x \\
\phi & =x^{2} y-3 x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}+4 y$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}+4 y=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=4 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(4 y) \mathrm{d} y \\
f(y) & =2 y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2} y+2 y^{2}-3 x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2} y+2 y^{2}-3 x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 7=c_{1} \\
& c_{1}=7
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x^{2} y+2 y^{2}-3 x=7
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} y+2 y^{2}-3 x=7 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x^{2} y+2 y^{2}-3 x=7
$$

Verified OK.

3.10.4 Maple step by step solution

Let's solve

$$
\left[2 y x+\left(x^{2}+4 y\right) y^{\prime}=3, y(1)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
2 x=2 x
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(2 x y-3) d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=x^{2} y-3 x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
x^{2}+4 y=x^{2}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=4 y
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=2 y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=x^{2} y+2 y^{2}-3 x$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{2} y+2 y^{2}-3 x=c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{x^{2}}{4}-\frac{\sqrt{x^{4}+8 c_{1}+24 x}}{4}, y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+8 c_{1}+24 x}}{4}\right\}
$$

- Use initial condition $y(1)=2$

$$
2=-\frac{1}{4}-\frac{\sqrt{25+8 c_{1}}}{4}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(1)=2$
$2=-\frac{1}{4}+\frac{\sqrt{25+8 c_{1}}}{4}$
- \quad Solve for c_{1}

$$
c_{1}=7
$$

- \quad Substitute $c_{1}=7$ into general solution and simplify

$$
y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+24 x+56}}{4}
$$

- \quad Solution to the IVP

$$
y=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+24 x+56}}{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 22

```
dsolve([(2*x*y(x)-3)+(x^2+4*y(x))*diff (y(x),x)=0,y(1) = 2],y(x), singsol=all)
```

$$
y(x)=-\frac{x^{2}}{4}+\frac{\sqrt{x^{4}+24 x+56}}{4}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.218 (sec). Leaf size: 27
DSolve $\left[\left\{(2 * x * y[x]-3)+\left(x^{\wedge} 2+4 * y[x]\right) * y y^{\prime}[x]==0,\{y[1]==2\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow \frac{1}{4}\left(\sqrt{x^{4}+24 x+56}-x^{2}\right)
$$

3.11 problem 12

$$
\text { 3.11.1 Solving as exact ode . } 357
$$

Internal problem ID [11606]
Internal file name [OUTPUT/10588_Thursday_May_18_2023_10_42_54_PM_44971533/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _rational]

$$
3 x^{2} y^{2}-y^{3}+\left(2 y x^{3}-3 y^{2} x+1\right) y^{\prime}=-2 x
$$

With initial conditions

$$
[y(-2)=1]
$$

3.11.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 y x^{3}-3 x y^{2}+1\right) \mathrm{d} y & =\left(-3 x^{2} y^{2}+y^{3}-2 x\right) \mathrm{d} x \\
\left(3 x^{2} y^{2}-y^{3}+2 x\right) \mathrm{d} x+\left(2 y x^{3}-3 x y^{2}+1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x^{2} y^{2}-y^{3}+2 x \\
N(x, y) & =2 y x^{3}-3 x y^{2}+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2} y^{2}-y^{3}+2 x\right) \\
& =6 x^{2} y-3 y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 y x^{3}-3 x y^{2}+1\right) \\
& =6 x^{2} y-3 y^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2} y^{2}-y^{3}+2 x \mathrm{~d} x \\
\phi & =x\left(x^{2} y^{2}-y^{3}+x\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x\left(2 x^{2} y-3 y^{2}\right)+f^{\prime}(y) \tag{4}\\
& =x y\left(2 x^{2}-3 y\right)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y x^{3}-3 x y^{2}+1$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y x^{3}-3 x y^{2}+1=x y\left(2 x^{2}-3 y\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x\left(x^{2} y^{2}-y^{3}+x\right)+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x\left(x^{2} y^{2}-y^{3}+x\right)+y
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x\left(x^{2} y^{2}-y^{3}+x\right)+y=-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2} x^{3}-y^{3} x+x^{2}+y=-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{2} x^{3}-y^{3} x+x^{2}+y=-1
$$

Verified OK.
Maple trace

```
'Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 28.797 (sec). Leaf size: 210

```
dsolve([(3*x^2*y(x)^2-y(x)^3+2*x)+(2*x^3*y(x)-3*x*y(x)^2+1)*\operatorname{diff}(y(x),x)=0,y(-2)=1],y(x),
```

$y(x)$

$$
=\frac{-\frac{2^{\frac{2}{3}}(1+i \sqrt{3})\left(\left(2 x^{7}+3 \sqrt{3} \sqrt{\frac{4 x^{10}+4 x^{8}+44 x^{5}+72 x^{3}+27 x-4}{x}}+36 x^{2}+27\right) x^{2}\right)^{\frac{2}{3}}}{2}+x\left(2 x ^ { 2 } \left(\left(2 x^{7}+3 \sqrt{3} \sqrt{\frac{4 x^{10}+4 x^{8}+44 x^{5}+72 x^{3}+2}{x}}\right.\right.\right.}{6\left(\left(2 x^{7}+3 \sqrt{3} \sqrt{\frac{4 x^{10}+4 x^{8}+44 x^{5}+72 x^{3}+27 x-4}{x}}+36 x^{2}+27\right) x\right.}
$$

\checkmark Solution by Mathematica
Time used: 60.368 (sec). Leaf size: 250
DSolve $\left[\left\{\left(3 * x^{\wedge} 2 * y[x] \sim 2-y[x] \wedge 3+2 * x\right)+\left(2 * x^{\wedge} 3 * y[x]-3 * x * y[x] \sim 2+1\right) * y{ }^{\prime}[x]==0,\{y[-2]==1\}\right\}, y[x], x\right.$, Incl
$y(x)$
$\rightarrow \frac{2 \sqrt[3]{2}(1-i \sqrt{3}) x^{6}+4 \sqrt[3]{-2 x^{9}-36 x^{4}-27 x^{2}+3 \sqrt{3} \sqrt{x^{3}\left(4 x^{10}+4 x^{8}+44 x^{5}+72 x^{3}+27 x-4\right)} x^{3}+(1}}{12 x \sqrt[3]{-2 x^{9}-36 x^{4}-27 x^{2}+3 \sqrt{3} \sqrt{x}}}$

3.12 problem 13

3.12.1 Existence and uniqueness analysis 362
3.12.2 Solving as exact ode . 363
3.12.3 Maple step by step solution . 366

Internal problem ID [11607]
Internal file name [OUTPUT/10589_Thursday_May_18_2023_10_42_56_PM_94570214/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, [_Abel, `2nd type`, `class B`]]

$$
2 \sin (x) \cos (x) y+\sin (x) y^{2}+\left(\sin (x)^{2}-2 y \cos (x)\right) y^{\prime}=0
$$

With initial conditions

$$
[y(0)=3]
$$

3.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{\sin (x) y(2 \cos (x)+y)}{\sin (x)^{2}-2 \cos (x) y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=3$ is

$$
\begin{aligned}
& \left\{-\infty \leq x \leq-\arctan \left(\frac{\sqrt{6 \sqrt{10}-18}}{-3+\sqrt{10}}\right)+2 \pi _Z 90\right. \\
& -\arctan \left(\frac{\sqrt{6 \sqrt{10}-18}}{-3+\sqrt{10}}\right)+2 \pi _Z 90 \leq x \leq \arctan \left(\frac{\sqrt{6 \sqrt{10}-18}}{-3+\sqrt{10}}\right) \\
& +2 \pi _Z 90, \arctan (-i \sqrt{6 \sqrt{10}+18},-3-\sqrt{10}) \\
& \left.+2 \pi _Z 90<x<\arctan (i \sqrt{6 \sqrt{10}+18},-3-\sqrt{10})+2 \pi _Z 90\right\}
\end{aligned}
$$

But the point $x_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

3.12.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\sin (x)^{2}-2 \cos (x) y\right) \mathrm{d} y & =\left(-2 \cos (x) \sin (x) y-\sin (x) y^{2}\right) \mathrm{d} x \\
\left(2 \cos (x) \sin (x) y+\sin (x) y^{2}\right) \mathrm{d} x+\left(\sin (x)^{2}-2 \cos (x) y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 \cos (x) \sin (x) y+\sin (x) y^{2} \\
N(x, y) & =\sin (x)^{2}-2 \cos (x) y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 \cos (x) \sin (x) y+\sin (x) y^{2}\right) \\
& =2 \sin (x)(\cos (x)+y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\sin (x)^{2}-2 \cos (x) y\right) \\
& =2 \sin (x)(\cos (x)+y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 \cos (x) \sin (x) y+\sin (x) y^{2} \mathrm{~d} x \\
\phi & =y\left(\sin (x)^{2}-\cos (x) y\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\sin (x)^{2}-2 \cos (x) y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sin (x)^{2}-2 \cos (x) y$. Therefore equation (4) becomes

$$
\begin{equation*}
\sin (x)^{2}-2 \cos (x) y=\sin (x)^{2}-2 \cos (x) y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y\left(\sin (x)^{2}-\cos (x) y\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y\left(\sin (x)^{2}-\cos (x) y\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
-9=c_{1}
$$

$$
c_{1}=-9
$$

Substituting c_{1} found above in the general solution gives

$$
y\left(\sin (x)^{2}-\cos (x) y\right)=-9
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y\left(\sin (x)^{2}-y \cos (x)\right)=-9 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y\left(\sin (x)^{2}-y \cos (x)\right)=-9
$$

Verified OK.

3.12.3 Maple step by step solution

Let's solve
$\left[2 \sin (x) \cos (x) y+\sin (x) y^{2}+\left(\sin (x)^{2}-2 y \cos (x)\right) y^{\prime}=0, y(0)=3\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$2 \cos (x) \sin (x)+2 \sin (x) y=2 \cos (x) \sin (x)+2 \sin (x) y$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x $F(x, y)=\int\left(2 \cos (x) \sin (x) y+\sin (x) y^{2}\right) d x+f_{1}(y)$
- Evaluate integral

$$
F(x, y)=-\cos (x) y^{2}+\sin (x)^{2} y+f_{1}(y)
$$

- Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$\sin (x)^{2}-2 \cos (x) y=-2 \cos (x) y+\sin (x)^{2}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=0$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=-\cos (x) y^{2}+\sin (x)^{2} y$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$-\cos (x) y^{2}+\sin (x)^{2} y=c_{1}$
- \quad Solve for y
$\left\{y=\frac{\sin (x)^{2}-\sqrt{\sin (x)^{4}-4 c_{1} \cos (x)}}{2 \cos (x)}, y=\frac{\sin (x)^{2}+\sqrt{\sin (x)^{4}-4 c_{1} \cos (x)}}{2 \cos (x)}\right\}$
- Use initial condition $y(0)=3$
$3=-\frac{\sqrt{-4 c_{1}}}{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(0)=3$
$3=\frac{\sqrt{-4 c_{1}}}{2}$
- \quad Solve for c_{1}
$c_{1}=-9$
- \quad Substitute $c_{1}=-9$ into general solution and simplify
$y=\frac{\sec (x)\left(\sin (x)^{2}+\sqrt{\sin (x)^{4}+36 \cos (x)}\right)}{2}$
- Solution to the IVP
$y=\frac{\sec (x)\left(\sin (x)^{2}+\sqrt{\sin (x)^{4}+36 \cos (x)}\right)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 11.656 (sec). Leaf size: 24

```
dsolve([(2*y(x)*\operatorname{sin}(\textrm{x})*\operatorname{cos}(\textrm{x})+\textrm{y}(\textrm{x}\mp@subsup{)}{}{\wedge}2*\operatorname{sin}(\textrm{x}))+(\operatorname{sin}(\textrm{x}\mp@subsup{)}{}{\wedge}2-2*y(x)*\operatorname{cos}(x))*\operatorname{diff}(y(x),x)=0,y(0)=
```

$$
y(x)=\frac{\sec (x)\left(\sin (x)^{2}+\sqrt{\sin (x)^{4}+36 \cos (x)}\right)}{2}
$$

Solution by Mathematica
Time used: 2.029 (sec). Leaf size: 34
DSolve $\left[\left\{(2 * y[x] * \operatorname{Sin}[x] * \operatorname{Cos}[x]+y[x] \wedge 2 * \operatorname{Sin}[x])+(\operatorname{Sin}[x] \sim 2-2 * y[x] * \operatorname{Cos}[x]) * y{ }^{\prime}[x]==0,\{y[0]==3\}\right\}, y[\right.$

$$
y(x) \rightarrow \frac{1}{4} \sec (x)\left(-\cos (2 x)+2 \sqrt{\sin ^{4}(x)+36 \cos (x)}+1\right)
$$

3.13 problem 14

3.13.1 Existence and uniqueness analysis 369
3.13.2 Solving as exact ode . 370

Internal problem ID [11608]
Internal file name [OUTPUT/10590_Thursday_May_18_2023_10_42_58_PM_46650619/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, [_Abel, `2nd type`, `class B`]]
```

$$
y \mathrm{e}^{x}+y^{2}+\left(\mathrm{e}^{x}+2 y x\right) y^{\prime}=-2 \mathrm{e}^{x}
$$

With initial conditions

$$
[y(0)=6]
$$

3.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{\mathrm{e}^{x} y+y^{2}+2 \mathrm{e}^{x}}{\mathrm{e}^{x}+2 x y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=6$ is

$$
\left\{x<- \text { LambertW }\left(_Z 92, \frac{1}{12}\right) \vee-\text { LambertW }\left(-Z 92, \frac{1}{12}\right)<x\right\}
$$

But the point $x_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

3.13.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{x}+2 x y\right) \mathrm{d} y & =\left(-\mathrm{e}^{x} y-2 \mathrm{e}^{x}-y^{2}\right) \mathrm{d} x \\
\left(\mathrm{e}^{x} y+y^{2}+2 \mathrm{e}^{x}\right) \mathrm{d} x+\left(\mathrm{e}^{x}+2 x y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\mathrm{e}^{x} y+y^{2}+2 \mathrm{e}^{x} \\
& N(x, y)=\mathrm{e}^{x}+2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{x} y+y^{2}+2 \mathrm{e}^{x}\right) \\
& =\mathrm{e}^{x}+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{x}+2 x y\right) \\
& =\mathrm{e}^{x}+2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} y+y^{2}+2 \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =\mathrm{e}^{x}(y+2)+x y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+2 x y$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}+2 x y=\mathrm{e}^{x}+2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x}(y+2)+x y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x}(y+2)+x y^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=6$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 8=c_{1} \\
& c_{1}=8
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\mathrm{e}^{x}(y+2)+x y^{2}=8
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{x}(y+2)+y^{2} x=8 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\mathrm{e}^{x}(y+2)+y^{2} x=8
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.344 (sec). Leaf size: 29
dsolve $\left(\left[\left(y(x) * \exp (x)+2 * \exp (x)+y(x)^{\wedge} 2\right)+(\exp (x)+2 * x * y(x)) * \operatorname{diff}(y(x), x)=0, y(0)=6\right], y(x)\right.$, sings

$$
y(x)=\frac{-\mathrm{e}^{x}+\sqrt{\mathrm{e}^{2 x}-8 \mathrm{e}^{x} x+32 x}}{2 x}
$$

\checkmark Solution by Mathematica
Time used: 32.264 (sec). Leaf size: 37
DSolve $[\{(y[x] * \operatorname{Exp}[x]+2 * \operatorname{Exp}[x]+y[x] \sim 2)+(\operatorname{Exp}[x]+2 * x * y[x]) * y '[x]==0,\{y[0]==6\}\}, y[x], x$, IncludeSi

$$
y(x) \rightarrow \frac{\sqrt{-8 e^{x} x+32 x+e^{2 x}}-e^{x}}{2 x}
$$

3.14 problem 15

3.14.1 Existence and uniqueness analysis 374
3.14.2 Solving as first order ode lie symmetry calculated ode 375
3.14.3 Solving as exact ode . 382
3.14.4 Maple step by step solution . 386

Internal problem ID [11609]
Internal file name [OUTPUT/10591_Saturday_May_27_2023_03_00_55_AM_75656588/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie__symmetry_calculated"

Maple gives the following as the ode type

```
[_exact, _rational, [_1st_order, ` _with_symmetry_[F(x)*G(y)
    ,0]`]]
```

$$
\frac{3-y}{x^{2}}+\frac{\left(y^{2}-2 x\right) y^{\prime}}{y^{2} x}=0
$$

With initial conditions

$$
[y(-1)=2]
$$

3.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y^{2}(y-3)}{x\left(y^{2}-2 x\right)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{-\infty \leq x<0,0<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y^{2}(y-3)}{x\left(y^{2}-2 x\right)}\right) \\
& =\frac{2 y(y-3)}{x\left(y^{2}-2 x\right)}+\frac{y^{2}}{x\left(y^{2}-2 x\right)}-\frac{2 y^{3}(y-3)}{x\left(y^{2}-2 x\right)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{-\infty \leq x<0,0<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

3.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y^{2}(y-3)}{x\left(y^{2}-2 x\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2}+\frac{y^{2}(y-3)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{x\left(y^{2}-2 x\right)} \\
& \quad-\frac{y^{4}(y-3)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{x^{2}\left(y^{2}-2 x\right)^{2}} \tag{5E}\\
& \quad-\left(-\frac{y^{2}(y-3)}{x^{2}\left(y^{2}-2 x\right)}+\frac{2 y^{2}(y-3)}{x\left(y^{2}-2 x\right)^{2}}\right)\left(x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(\frac{2 y(y-3)}{x\left(y^{2}-2 x\right)}+\frac{y^{2}}{x\left(y^{2}-2 x\right)}-\frac{2 y^{3}(y-3)}{x\left(y^{2}-2 x\right)^{2}}\right)\left(x^{2} b_{4}\right. \\
& \left.+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& x^{3} y^{4} b_{4}-x^{2} y^{5} a_{4}+x^{2} y^{5} b_{5}-x y^{6} a_{5}+x y^{6} b_{6}-y^{7} a_{6}-2 x^{4} y^{2} b_{4}+3 x^{2} y^{4} a_{4}-2 x^{2} y^{4} a_{5}-3 x^{2} y^{4} b_{5}+2 x^{2} y^{4} b_{6}+ \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{aligned}
& x^{3} y^{4} b_{4}-x^{2} y^{5} a_{4}+x^{2} y^{5} b_{5}-x y^{6} a_{5}+x y^{6} b_{6}-y^{7} a_{6}-2 x^{4} y^{2} b_{4}+3 x^{2} y^{4} a_{4} \\
& -2 x^{2} y^{4} a_{5}-3 x^{2} y^{4} b_{5}+2 x^{2} y^{4} b_{6}+6 x y^{5} a_{5}-4 x y^{5} a_{6}-6 x y^{5} b_{6}+9 y^{6} a_{6} \\
& +8 x^{5} b_{4}-12 x^{4} y b_{4}+4 x^{4} y b_{5}+2 x^{3} y^{2} b_{2}-6 x^{3} y^{2} b_{5}-2 x^{2} y^{3} a_{2}+6 x^{2} y^{3} a_{5} \\
& +4 x^{2} y^{3} b_{3}-4 x y^{4} a_{3}-9 x y^{4} a_{5}+12 x y^{4} a_{6}-x y^{4} b_{1}-3 x y^{4} b_{3}+y^{5} a_{1} \\
& +3 y^{5} a_{3}-18 y^{5} a_{6}+4 x^{4} b_{2}-12 x^{3} y b_{2}+6 x^{2} y^{2} a_{2}+6 x^{2} y^{2} b_{1}-6 x^{2} y^{2} b_{3} \\
& -4 x y^{3} a_{1}+12 x y^{3} a_{3}-3 y^{4} a_{1}-9 y^{4} a_{3}-12 x^{2} y b_{1}+12 x y^{2} a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{4} v_{1}^{2} v_{2}^{5}-a_{5} v_{1} v_{2}^{6}-a_{6} v_{2}^{7}+b_{4} v_{1}^{3} v_{2}^{4}+b_{5} v_{1}^{2} v_{2}^{5}+b_{6} v_{1} v_{2}^{6}+3 a_{4} v_{1}^{2} v_{2}^{4}-2 a_{5} v_{1}^{2} v_{2}^{4} \\
& +6 a_{5} v_{1} v_{2}^{5}-4 a_{6} v_{1} v_{2}^{5}+9 a_{6} v_{2}^{6}-2 b_{4} v_{1}^{4} v_{2}^{2}-3 b_{5} v_{1}^{2} v_{2}^{4}+2 b_{6} v_{1}^{2} v_{2}^{4}-6 b_{6} v_{1} v_{2}^{5} \\
& +a_{1} v_{2}^{5}-2 a_{2} v_{1}^{2} v_{2}^{3}-4 a_{3} v_{1} v_{2}^{4}+3 a_{3} v_{2}^{5}+6 a_{5} v_{1}^{2} v_{2}^{3}-9 a_{5} v_{1} v_{2}^{4}+12 a_{6} v_{1} v_{2}^{4} \tag{7E}\\
& -18 a_{6} v_{2}^{5}-b_{1} v_{1} v_{2}^{4}+2 b_{2} v_{1}^{3} v_{2}^{2}+4 b_{3} v_{1}^{2} v_{2}^{3}-3 b_{3} v_{1} v_{2}^{4}+8 b_{4} v_{1}^{5}-12 b_{4} v_{1}^{4} v_{2} \\
& +4 b_{5} v_{1}^{4} v_{2}-6 b_{5} v_{1}^{3} v_{2}^{2}-4 a_{1} v_{1} v_{2}^{3}-3 a_{1} v_{2}^{4}+6 a_{2} v_{1}^{2} v_{2}^{2}+12 a_{3} v_{1} v_{2}^{3}-9 a_{3} v_{2}^{4} \\
& +6 b_{1} v_{1}^{2} v_{2}^{2}+4 b_{2} v_{1}^{4}-12 b_{2} v_{1}^{3} v_{2}-6 b_{3} v_{1}^{2} v_{2}^{2}+12 a_{1} v_{1} v_{2}^{2}-12 b_{1} v_{1}^{2} v_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 8 b_{4} v_{1}^{5}-2 b_{4} v_{1}^{4} v_{2}^{2}+\left(-12 b_{4}+4 b_{5}\right) v_{1}^{4} v_{2}+4 b_{2} v_{1}^{4}+b_{4} v_{1}^{3} v_{2}^{4}+\left(2 b_{2}-6 b_{5}\right) v_{1}^{3} v_{2}^{2} \\
& \quad-12 b_{2} v_{1}^{3} v_{2}+\left(-a_{4}+b_{5}\right) v_{1}^{2} v_{2}^{5}+\left(3 a_{4}-2 a_{5}-3 b_{5}+2 b_{6}\right) v_{1}^{2} v_{2}^{4} \\
& \quad+\left(-2 a_{2}+6 a_{5}+4 b_{3}\right) v_{1}^{2} v_{2}^{3}+\left(6 a_{2}+6 b_{1}-6 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad-12 b_{1} v_{1}^{2} v_{2}+\left(-a_{5}+b_{6}\right) v_{1} v_{2}^{6}+\left(6 a_{5}-4 a_{6}-6 b_{6}\right) v_{1} v_{2}^{5} \\
& \quad+\left(-4 a_{3}-9 a_{5}+12 a_{6}-b_{1}-3 b_{3}\right) v_{1} v_{2}^{4}+\left(-4 a_{1}+12 a_{3}\right) v_{1} v_{2}^{3}+12 a_{1} v_{1} v_{2}^{2} \\
& \quad-a_{6} v_{2}^{7}+9 a_{6} v_{2}^{6}+\left(a_{1}+3 a_{3}-18 a_{6}\right) v_{2}^{5}+\left(-3 a_{1}-9 a_{3}\right) v_{2}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{4} & =0 \\
12 a_{1} & =0 \\
-a_{6} & =0 \\
9 a_{6} & =0 \\
-12 b_{1} & =0 \\
-12 b_{2} & =0 \\
4 b_{2} & =0 \\
-2 b_{4} & =0 \\
8 b_{4} & =0 \\
-4 a_{1}+12 a_{3} & =0 \\
-3 a_{1}-9 a_{3} & =0 \\
-a_{4}+b_{5} & =0 \\
-a_{5}+b_{6} & =0 \\
2 b_{2}-6 b_{5} & =0 \\
-12 b_{4}+4 b_{5} & =0 \\
a_{1}+3 a_{3}-18 a_{6} & =0 \\
-2 a_{2}+6 a_{5}+4 b_{3} & =0 \\
6 a_{2}+6 b_{1}-6 b_{3} & =0 \\
6 a_{5}-4 a_{6}-6 b_{6} & =0 \\
3 a_{4}-2 a_{5}-3 b_{5}+2 b_{6} & =0 \\
-4 a_{3}-9 a_{5}+12 a_{6}-b_{1}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-3 b_{6} \\
& a_{3}=0 \\
& a_{4}=0 \\
& a_{5}=b_{6} \\
& a_{6}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=-3 b_{6} \\
& b_{4}=0 \\
& b_{5}=0 \\
& b_{6}=b_{6}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x y-3 x \\
& \eta=y^{2}-3 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y^{2}-3 y-\left(\frac{y^{2}(y-3)}{x\left(y^{2}-2 x\right)}\right)(x y-3 x) \\
& =\frac{2 x^{2} y^{2}-3 x y^{3}-6 x^{2} y+9 x y^{2}}{-x y^{2}+2 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2} y^{2}-3 x y^{3}-6 x^{2} y+9 x y^{2}}{-x y^{2}+2 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y-3)}{3}-\frac{\ln (y)}{3}+\frac{\ln (-2 x+3 y)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}(y-3)}{x\left(y^{2}-2 x\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{6 x-9 y} \\
S_{y} & =\frac{-y^{2}+2 x}{(y-3) y(2 x-3 y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{3 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y-3)}{3}-\frac{\ln (y)}{3}+\frac{\ln (-2 x+3 y)}{3}=\frac{\ln (x)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y-3)}{3}-\frac{\ln (y)}{3}+\frac{\ln (-2 x+3 y)}{3}=\frac{\ln (x)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}(y-3)}{x\left(y^{2}-2 x\right)}$		$\frac{d S}{d R}=\frac{1}{3 R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty+\infty]{ }$
		\rightarrow
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		$\rightarrow \rightarrow \rightarrow \rightarrow$ 洨,,$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$R=x$	
	$S=\underline{\ln (y-3)}-\underline{\ln (y)}$	$\xrightarrow{\text { col }}$
	$S=\frac{3}{3}-\frac{1}{3}$	
		+,$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{i \pi}{3}+\frac{2 \ln (2)}{3}=\frac{i \pi}{3}+c_{1} \\
c_{1}=\frac{2 \ln (2)}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln (y-3)}{3}-\frac{\ln (y)}{3}+\frac{\ln (-2 x+3 y)}{3}=\frac{\ln (x)}{3}+\frac{2 \ln (2)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y-3)}{3}-\frac{\ln (y)}{3}+\frac{\ln (-2 x+3 y)}{3}=\frac{\ln (x)}{3}+\frac{2 \ln (2)}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y-3)}{3}-\frac{\ln (y)}{3}+\frac{\ln (-2 x+3 y)}{3}=\frac{\ln (x)}{3}+\frac{2 \ln (2)}{3}
$$

Verified OK.

3.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y^{2}-2 x}{y^{2} x}\right) \mathrm{d} y & =\left(-\frac{3-y}{x^{2}}\right) \mathrm{d} x \\
\left(\frac{3-y}{x^{2}}\right) \mathrm{d} x+\left(\frac{y^{2}-2 x}{y^{2} x}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{3-y}{x^{2}} \\
& N(x, y)=\frac{y^{2}-2 x}{y^{2} x}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{3-y}{x^{2}}\right) \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y^{2}-2 x}{y^{2} x}\right) \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{3-y}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{y-3}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y^{2}-2 x}{y^{2} x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y^{2}-2 x}{y^{2} x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{2}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{2}{y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{2}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y-3}{x}+\frac{2}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y-3}{x}+\frac{2}{y}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{y-3}{x}+\frac{2}{y}=2
$$

The above simplifies to

$$
-2 x y+y^{2}+2 x-3 y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2}+(-2 x-3) y+2 x=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{2}+(-2 x-3) y+2 x=0
$$

Verified OK.

3.14.4 Maple step by step solution

Let's solve

$$
\left[\frac{3-y}{x^{2}}+\frac{\left(y^{2}-2 x\right) y^{\prime}}{y^{2} x}=0, y(-1)=2\right]
$$

- Highest derivative means the order of the ODE is 1

```
y
```

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$-\frac{1}{x^{2}}=-\frac{2}{x y^{2}}-\frac{y^{2}-2 x}{y^{2} x^{2}}$
- Simplify

$$
-\frac{1}{x^{2}}=-\frac{1}{x^{2}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x
$F(x, y)=\int \frac{3-y}{x^{2}} d x+f_{1}(y)$
- \quad Evaluate integral
$F(x, y)=-\frac{3-y}{x}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- \quad Compute derivative
$\frac{y^{2}-2 x}{y^{2} x}=\frac{1}{x}+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-\frac{1}{x}+\frac{y^{2}-2 x}{y^{2} x}$
- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=\frac{y+\frac{2 x}{y}}{x}-\frac{y}{x}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=-\frac{3-y}{x}+\frac{y+\frac{2 x}{y}}{x}-\frac{y}{x}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$-\frac{3-y}{x}+\frac{y+\frac{2 x}{y}}{x}-\frac{y}{x}=c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{c_{1} x}{2}+\frac{3}{2}-\frac{\sqrt{c_{1}^{2} x^{2}+6 c_{1} x-8 x+9}}{2}, y=\frac{c_{1} x}{2}+\frac{3}{2}+\frac{\sqrt{c_{1}^{2} x^{2}+6 c_{1} x-8 x+9}}{2}\right\}
$$

- Use initial condition $y(-1)=2$
$2=-\frac{c_{1}}{2}+\frac{3}{2}-\frac{\sqrt{c_{1}^{2}-6 c_{1}+17}}{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(-1)=2$
$2=-\frac{c_{1}}{2}+\frac{3}{2}+\frac{\sqrt{c_{1}^{2}-6 c_{1}+17}}{2}$
- \quad Solve for c_{1}

$$
c_{1}=2
$$

- Substitute $c_{1}=2$ into general solution and simplify

$$
y=x+\frac{3}{2}+\frac{\sqrt{4 x^{2}+4 x+9}}{2}
$$

- Solution to the IVP

$$
y=x+\frac{3}{2}+\frac{\sqrt{4 x^{2}}+4 x+9}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 21
dsolve $\left(\left[(3-y(x)) / x^{\wedge} 2+((y(x) \wedge 2-2 * x) /(x * y(x) \wedge 2)) * \operatorname{diff}(y(x), x)=0, y(-1)=2\right], y(x)\right.$, singsol=all)

$$
y(x)=x+\frac{3}{2}+\frac{\sqrt{4 x^{2}+4 x+9}}{2}
$$

\checkmark Solution by Mathematica
Time used: 1.961 (sec). Leaf size: 28
DSolve $\left[\left\{(3-y[x]) / x^{\wedge} 2+((y[x] \sim 2-2 * x) /(x * y[x] \sim 2)) * y '[x]==0,\{y[-1]==2\}\right\}, y[x], x\right.$, IncludeSingular

$$
y(x) \rightarrow \frac{1}{2}\left(\sqrt{4 x^{2}+4 x+9}+2 x+3\right)
$$

3.15 problem 16

3.15.1 Existence and uniqueness analysis 389
3.15.2 Solving as first order ode lie symmetry calculated ode 390
3.15.3 Solving as exact ode . 396
3.15.4 Maple step by step solution . 400

Internal problem ID [11610]
Internal file name [OUTPUT/10592_Saturday_May_27_2023_03_00_57_AM_57356254/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie__symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _exact, _rational]

$$
\frac{1+8 x y^{\frac{2}{3}}}{x^{\frac{2}{3}} y^{\frac{1}{3}}}+\frac{\left(2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}\right) y^{\prime}}{y^{\frac{4}{3}}}=0
$$

With initial conditions

$$
[y(1)=8]
$$

3.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{8 x y^{\frac{5}{3}}+y}{x\left(2 x y^{\frac{2}{3}}-1\right)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=8$ is

$$
\left\{\frac{1}{8} \leq x \leq \infty,-\infty \leq x<0,0<x \leq \frac{1}{8}\right\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\left\{0 \leq y \leq \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4} \leq y \leq \infty\right\}
$$

And the point $y_{0}=8$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{8 x y^{\frac{5}{3}}+y}{x\left(2 x y^{\frac{2}{3}}-1\right)}\right) \\
& =-\frac{\frac{40 x y^{\frac{2}{3}}}{3}+1}{x\left(2 x y^{\frac{2}{3}}-1\right)}+\frac{\frac{32 x y^{\frac{5}{3}}}{3}+\frac{4 y}{3}}{\left(2 x y^{\frac{2}{3}}-1\right)^{2} y^{\frac{1}{3}}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=8$ is

$$
\left\{\frac{1}{8} \leq x \leq \infty,-\infty \leq x<0,0<x \leq \frac{1}{8}\right\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\left\{\frac{\sqrt{2}}{4} \leq y \leq \infty, 0<y \leq \frac{\sqrt{2}}{4}\right\}
$$

And the point $y_{0}=8$ is inside this domain. Therefore solution exists and is unique.

3.15.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{8 x y^{\frac{5}{3}}+y}{x\left(2 x y^{\frac{2}{3}}-1\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(8 x y^{\frac{5}{3}}+y\right)\left(b_{3}-a_{2}\right)}{x\left(2 x y^{\frac{2}{3}}-1\right)}-\frac{\left(8 x y^{\frac{5}{3}}+y\right)^{2} a_{3}}{x^{2}\left(2 x y^{\frac{2}{3}}-1\right)^{2}} \\
& -\left(-\frac{8 y^{\frac{5}{3}}}{x\left(2 x y^{\frac{2}{3}}-1\right)}+\frac{8 x y^{\frac{5}{3}}+y}{x^{2}\left(2 x y^{\frac{2}{3}}-1\right)}+\frac{2\left(8 x y^{\frac{5}{3}}+y\right) y^{\frac{2}{3}}}{x\left(2 x y^{\frac{2}{3}}-1\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{\frac{40 x y^{\frac{2}{3}}}{3}+1}{x\left(2 x y^{\frac{2}{3}}-1\right)}+\frac{\frac{32 x y^{\frac{5}{3}}}{3}+\frac{4 y}{3}}{\left(2 x y^{\frac{2}{3}}-1\right)^{2} y^{\frac{1}{3}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$-\frac{240 y^{\frac{11}{3}} x^{2} a_{3}+48 y^{\frac{8}{3}} x^{2} a_{1}-60 y^{\frac{5}{3}} x^{4} b_{2}+30 y^{2} x^{2} a_{2}+20 x^{2} y^{2} b_{3}+60 y^{3} x a_{3}-48 y^{\frac{5}{3}} x^{3} b_{1}+50 x^{3} y b_{2}+38 x^{2} y b_{1}}{3 x^{2}\left(2 x y^{\frac{2}{3}}-1\right)^{2} y^{\frac{1}{3}}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& -240 y^{\frac{11}{3}} x^{2} a_{3}-48 y^{\frac{8}{3}} x^{2} a_{1}+60 y^{\frac{5}{3}} x^{4} b_{2}+48 y^{\frac{5}{3}} x^{3} b_{1}+3 y^{\frac{4}{3}} a_{1}-50 x^{3} y b_{2} \tag{6E}\\
& \quad-30 y^{2} x^{2} a_{2}-20 x^{2} y^{2} b_{3}-60 y^{3} x a_{3}-38 x^{2} y b_{1}-12 y^{2} x a_{1}-3 y^{\frac{1}{3}} x b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, y^{\frac{1}{3}}, y^{\frac{4}{3}}, y^{\frac{5}{3}}, y^{\frac{8}{3}}, y^{\frac{11}{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, y^{\frac{1}{3}}=v_{3}, y^{\frac{4}{3}}=v_{4}, y^{\frac{5}{3}}=v_{5}, y^{\frac{8}{3}}=v_{6}, y^{\frac{11}{3}}=v_{7}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 60 v_{5} v_{1}^{4} b_{2}-30 v_{2}^{2} v_{1}^{2} a_{2}-60 v_{2}^{3} v_{1} a_{3}+48 v_{5} v_{1}^{3} b_{1}-50 v_{1}^{3} v_{2} b_{2}-20 v_{1}^{2} v_{2}^{2} b_{3} \tag{7E}\\
& \quad-48 v_{6} v_{1}^{2} a_{1}-12 v_{2}^{2} v_{1} a_{1}-240 v_{7} v_{1}^{2} a_{3}-38 v_{1}^{2} v_{2} b_{1}-3 v_{3} v_{1} b_{1}+3 v_{4} a_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 60 v_{5} v_{1}^{4} b_{2}-50 v_{1}^{3} v_{2} b_{2}+48 v_{5} v_{1}^{3} b_{1}+\left(-30 a_{2}-20 b_{3}\right) v_{1}^{2} v_{2}^{2}-38 v_{1}^{2} v_{2} b_{1} \tag{8E}\\
& \quad-48 v_{6} v_{1}^{2} a_{1}-240 v_{7} v_{1}^{2} a_{3}-60 v_{2}^{3} v_{1} a_{3}-12 v_{2}^{2} v_{1} a_{1}-3 v_{3} v_{1} b_{1}+3 v_{4} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-48 a_{1} & =0 \\
-12 a_{1} & =0 \\
3 a_{1} & =0 \\
-240 a_{3} & =0 \\
-60 a_{3} & =0 \\
-38 b_{1} & =0 \\
-3 b_{1} & =0 \\
48 b_{1} & =0 \\
-50 b_{2} & =0 \\
60 b_{2} & =0 \\
-30 a_{2}-20 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=-\frac{3 a_{2}}{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-\frac{3 y}{2}
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-\frac{3 y}{2}-\left(-\frac{8 x y^{\frac{5}{3}}+y}{x\left(2 x y^{\frac{2}{3}}-1\right)}\right)(x) \\
& =\frac{10 x y^{\frac{5}{3}}+5 y}{4 x y^{\frac{2}{3}}-2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{10 x y^{\frac{5}{3}}+5 y}{4 x y^{\frac{2}{3}}-2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{6 \ln \left(2 x y^{\frac{2}{3}}+1\right)}{5}-\frac{2 \ln (y)}{5}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{8 x y^{\frac{5}{3}}+y}{x\left(2 x y^{\frac{2}{3}}-1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{12 y^{\frac{2}{3}}}{10 x y^{\frac{2}{3}}+5} \\
S_{y} & =\frac{8 x}{y^{\frac{1}{3}}\left(10 x y^{\frac{2}{3}}+5\right)}-\frac{2}{5 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{2}{5 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{2}{5 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{2 \ln (R)}{5}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{6 \ln \left(2 x y^{\frac{2}{3}}+1\right)}{5}-\frac{2 \ln (y)}{5}=-\frac{2 \ln (x)}{5}+c_{1}
$$

Which simplifies to

$$
\frac{6 \ln \left(2 x y^{\frac{2}{3}}+1\right)}{5}-\frac{2 \ln (y)}{5}=-\frac{2 \ln (x)}{5}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{8 x y^{\frac{5}{3}}+y}{x\left(2 x y^{\frac{2^{2}}{2}-1}\right)}$		$\frac{d S}{d R}=-\frac{2}{5 R}$
	$R=x$	
	$S=\frac{6 \ln \left(2 x y^{\frac{2}{3}}+1\right)}{5}$	

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=8$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{12 \ln (3)}{5}-\frac{6 \ln (2)}{5}=c_{1}
$$

$$
c_{1}=\frac{12 \ln (3)}{5}-\frac{6 \ln (2)}{5}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{6 \ln \left(2 x y^{\frac{2}{3}}+1\right)}{5}-\frac{2 \ln (y)}{5}=-\frac{2 \ln (x)}{5}+\frac{12 \ln (3)}{5}-\frac{6 \ln (2)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{6 \ln \left(2 x y^{\frac{2}{3}}+1\right)}{5}-\frac{2 \ln (y)}{5}=-\frac{2 \ln (x)}{5}+\frac{12 \ln (3)}{5}-\frac{6 \ln (2)}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{6 \ln \left(2 x y^{\frac{2}{3}}+1\right)}{5}-\frac{2 \ln (y)}{5}=-\frac{2 \ln (x)}{5}+\frac{12 \ln (3)}{5}-\frac{6 \ln (2)}{5}
$$

Verified OK.

3.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}}{y^{\frac{4}{3}}}\right) \mathrm{d} y & =\left(-\frac{1+8 x y^{\frac{2}{3}}}{x^{\frac{2}{3}} y^{\frac{1}{3}}}\right) \mathrm{d} x \\
\left(\frac{1+8 x y^{\frac{2}{3}}}{x^{\frac{2}{3}} y^{\frac{1}{3}}}\right) \mathrm{d} x+\left(\frac{2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}}{y^{\frac{4}{3}}}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{1+8 x y^{\frac{2}{3}}}{x^{\frac{2}{3}} y^{\frac{1}{3}}} \\
& N(x, y)=\frac{2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}}{y^{\frac{4}{3}}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{1+8 x y^{\frac{2}{3}}}{x^{\frac{2}{3}} y^{\frac{1}{3}}}\right) \\
& =\frac{8 x y^{\frac{2}{3}}-1}{3 x^{\frac{2}{3}} y^{\frac{4}{3}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}}{y^{\frac{4}{3}}}\right) \\
& =\frac{8 x y^{\frac{2}{3}}-1}{3 x^{\frac{2}{3}} y^{\frac{4}{3}}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1+8 x y^{\frac{2}{3}}}{x^{\frac{2}{3}} y^{\frac{1}{3}}} \mathrm{~d} x \\
\phi & =\frac{6 x^{\frac{1}{3}}\left(x y^{\frac{2}{3}}+\frac{1}{2}\right)}{y^{\frac{1}{3}}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{2 x^{\frac{1}{3}}\left(x y^{\frac{2}{3}}+\frac{1}{2}\right)}{y^{\frac{4}{3}}}+\frac{4 x^{\frac{4}{3}}}{y^{\frac{2}{3}}}+f^{\prime}(y) \tag{4}\\
& =\frac{x^{\frac{1}{3}}\left(2 x y^{\frac{2}{3}}-1\right)}{y^{\frac{4}{3}}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}}{y^{\frac{4}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}}{y^{\frac{4}{3}}}=\frac{x^{\frac{1}{3}}\left(2 x y^{\frac{2}{3}}-1\right)}{y^{\frac{4}{3}}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{6 x^{\frac{1}{3}}\left(x y^{\frac{2}{3}}+\frac{1}{2}\right)}{y^{\frac{1}{3}}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{6 x^{\frac{1}{3}}\left(x y^{\frac{2}{3}}+\frac{1}{2}\right)}{y^{\frac{1}{3}}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=8$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{27}{2}=c_{1} \\
& c_{1}=\frac{27}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{6 x^{\frac{1}{3}}\left(x y^{\frac{2}{3}}+\frac{1}{2}\right)}{y^{\frac{1}{3}}}=\frac{27}{2}
$$

The above simplifies to

$$
12 x^{\frac{4}{3}} y^{\frac{2}{3}}-27 y^{\frac{1}{3}}+6 x^{\frac{1}{3}}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
12 x^{\frac{4}{3}} y^{\frac{2}{3}}-27 y^{\frac{1}{3}}+6 x^{\frac{1}{3}}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
12 x^{\frac{4}{3}} y^{\frac{2}{3}}-27 y^{\frac{1}{3}}+6 x^{\frac{1}{3}}=0
$$

Verified OK.

3.15.4 Maple step by step solution

Let's solve

$$
\left[\frac{1+8 x y^{\frac{2}{3}}}{x^{\frac{2}{3}} y^{\frac{1}{3}}}+\frac{\left(2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}\right) y^{\prime}}{y^{\frac{4}{3}}}=0, y(1)=8\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\frac{16 x^{\frac{1}{3}}}{3 y^{\frac{2}{3}}}-\frac{1+8 x y^{\frac{2}{3}}}{3 x^{\frac{2}{3}} y^{\frac{4}{3}}}=\frac{\frac{8 x^{\frac{1}{3}} y^{\frac{2}{3}}}{3}-\frac{1}{3 x^{\frac{2}{3}}}}{y^{\frac{4}{3}}}
$$

- Simplify

$$
\frac{8 x y^{\frac{2}{3}}-1}{3 x^{\frac{2}{3}} y^{\frac{4}{3}}}=\frac{8 x y^{\frac{2}{3}}-1}{3 x^{\frac{2}{3}} y^{\frac{4}{3}}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int \frac{1+8 x y^{\frac{2}{3}}}{x^{\frac{2}{3}} y^{\frac{1}{3}}} d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{3 x^{\frac{1}{3}}+6 x^{\frac{4}{3}} y^{\frac{2}{3}}}{y^{\frac{1}{3}}}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\frac{2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}}{y^{\frac{4}{3}}}=-\frac{3 x^{\frac{1}{3}}+6 x^{\frac{4}{3}} y^{\frac{2}{3}}}{3 y^{\frac{4}{3}}}+\frac{4 x^{\frac{4}{3}}}{y^{\frac{2}{3}}}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\frac{2 x^{\frac{4}{3}} y^{\frac{2}{3}}-x^{\frac{1}{3}}}{y^{\frac{4}{3}}}+\frac{3 x^{\frac{1}{3}}+6 x^{\frac{4}{3}} y^{\frac{2}{3}}}{3 y^{\frac{4}{3}}}-\frac{4 x^{\frac{4}{3}}}{y^{\frac{2}{3}}}
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\frac{3 x^{\frac{1}{3}}+6 x^{\frac{4}{3}} y^{\frac{2}{3}}}{y^{\frac{1}{3}}}$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{3 x^{\frac{1}{3}}+6 x^{\frac{4}{3}} y^{\frac{2}{3}}}{y^{\frac{1}{3}}}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{-\frac{x^{\frac{4}{3}}\left(-c_{1}+\sqrt{c_{1}^{2}-72 x^{\frac{5}{3}}}\right)}{2}+3 c_{1} x^{\frac{4}{3}}+\frac{c_{1}^{2}\left(-c_{1}+\sqrt{c_{1}^{2}-72 x^{\frac{5}{3}}}\right)}{12 x^{\frac{1}{3}}}}{36 x^{\frac{11}{3}}}, y=-\frac{\frac{3 x^{\frac{4}{3}}\left(c_{1}+\sqrt{c_{1}^{2}-7 x^{\frac{5}{3}}}\right)}{2}+3 c_{1} x^{\frac{4}{3}}-\frac{c_{1}^{2}\left(c_{1}+\sqrt{c_{1}^{2}-72 x^{\frac{5}{3}}}\right)}{12 x^{\frac{1}{3}}}}{36 x^{\frac{11}{3}}}\right\}
$$

- Use initial condition $y(1)=8$
$8=-\frac{c_{1}}{8}+\frac{\sqrt{c_{1}^{2}-72}}{24}-\frac{c_{1}^{2}\left(-c_{1}+\sqrt{c_{1}^{2}-72}\right)}{432}$
- \quad Solve for c_{1}
$c_{1}=\left(-\frac{27}{4}-\frac{21 \mathrm{I} \sqrt{3}}{4},-\frac{27}{4}+\frac{21 \mathrm{I} \sqrt{3}}{4}\right)$
- Substitute $c_{1}=\left(-\frac{27}{4}-\frac{21 \mathrm{I} \sqrt{3}}{4},-\frac{27}{4}+\frac{21 \mathrm{I} \sqrt{3}}{4}\right)$ into general solution and simplify
$y=\frac{\left(16 x^{\frac{5}{3}}-63 \mathrm{I} \sqrt{3}+33\right) \sqrt{-66+126 \mathrm{I} \sqrt{3}-128 x^{\frac{5}{3}}}+336 \mathrm{I} \sqrt{3} x^{\frac{5}{3}}-336 \mathrm{I} \sqrt{3}+432 x^{\frac{5}{3}}+1620}{512 x^{4}}$
- Use initial condition $y(1)=8$

$$
8=-\frac{c_{1}}{8}-\frac{\sqrt{c_{1}^{2}-72}}{24}+\frac{c_{1}^{2}\left(c_{1}+\sqrt{c_{1}^{2}-72}\right)}{432}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{27}{2}$
- \quad Substitute $c_{1}=\frac{27}{2}$ into general solution and simplify

$$
y=\frac{\left(-8 x^{\frac{5}{3}}+81\right) \sqrt{81-32 x^{\frac{5}{3}}}-216 x^{\frac{5}{3}}+729}{128 x^{4}}
$$

- \quad Solutions to the IVP

$$
\left\{y=\frac{\left(-8 x^{\frac{5}{3}}+81\right) \sqrt{81-32 x^{\frac{5}{3}}}-216 x^{\frac{5}{3}}+729}{128 x^{4}}, y=\frac{\left(16 x^{\frac{5}{3}}-63 \mathrm{I} \sqrt{3}+33\right) \sqrt{-66+126 \mathrm{I} \sqrt{3}-128 x^{\frac{5}{3}}}+336 \mathrm{I} \sqrt{3} x^{\frac{5}{3}}-336 \mathrm{I} \sqrt{3}+432 x^{\frac{5}{3}}}{512 x^{4}}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 55
dsolve $\left(\left[\left(1+8 * x * y(x)^{\wedge}(2 / 3)\right) /\left(x^{\wedge}(2 / 3) * y(x)^{\wedge}(1 / 3)\right)+\left(\left(2 * x^{\wedge}(4 / 3) * y(x)^{\wedge}(2 / 3)-x^{\wedge}(1 / 3)\right) /\left(y(x)^{\wedge}(4 / 3)\right)\right.\right.\right.$

$$
y(x)=\text { RootOf }\left(64 _Z^{\frac{7}{3}} x^{4}+96 _Z^{\frac{5}{3}} x^{3}-729 _Z^{\frac{4}{3}}+48 x^{2} _Z+8 x _Z^{\frac{1}{3}}\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[{(1+8*x*y[x]^(2/3))/(x^(2/3)*y[x]^(1/3))+((2*x^(4/3)*y[x]^(2/3)-x^(1/3))/(y[x]^ (4/3))
```

\{\}

3.16 problem 21

3.16.1 Solving as first order ode lie symmetry lookup ode 403
3.16.2 Solving as bernoulli ode . 407
3.16.3 Solving as exact ode . 410

Internal problem ID [11611]
Internal file name [OUTPUT/10593_Saturday_May_27_2023_03_01_00_AM_68786493/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Bernoulli]
```

$$
3 y^{2}+2 x y y^{\prime}=-4 x
$$

3.16.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{3 y^{2}+4 x}{2 x y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 66: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{3} y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{3} y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2} x^{3}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 y^{2}+4 x}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 x^{2} y^{2}}{2} \\
S_{y} & =y x^{3}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-2 x^{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-2 R^{3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R^{4}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2} x^{3}}{2}=-\frac{x^{4}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2} x^{3}}{2}=-\frac{x^{4}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 y^{2}+4 x}{2 x y}$		$\frac{d S}{d R}=-2 R^{3}$
		+ $+1+1+$
		$1{ }^{1} 1914$
	$R=x$	
10,	$s-y^{2} x^{3}$	
		${ }^{4}$
		t
		,

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2} x^{3}}{2}=-\frac{x^{4}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 63: Slope field plot
Verification of solutions

$$
\frac{y^{2} x^{3}}{2}=-\frac{x^{4}}{2}+c_{1}
$$

Verified OK.

3.16.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{3 y^{2}+4 x}{2 x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{3}{2 x} y-2 \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{3}{2 x} \\
f_{1}(x) & =-2 \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{3 y^{2}}{2 x}-2 \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{3 w(x)}{2 x}-2 \\
w^{\prime} & =-\frac{3 w}{x}-4 \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=-4
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{3 w(x)}{x}=-4
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{3}{x} d x} \\
=x^{3}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-4) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} w\right) & =\left(x^{3}\right)(-4) \\
\mathrm{d}\left(x^{3} w\right) & =\left(-4 x^{3}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{3} w=\int-4 x^{3} \mathrm{~d} x \\
& x^{3} w=-x^{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
w(x)=-x+\frac{c_{1}}{x^{3}}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-x+\frac{c_{1}}{x^{3}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(-x^{4}+c_{1}\right)}}{x^{2}} \\
& y(x)=-\frac{\sqrt{x\left(-x^{4}+c_{1}\right)}}{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{x\left(-x^{4}+c_{1}\right)}}{x^{2}} \tag{1}\\
& y=-\frac{\sqrt{x\left(-x^{4}+c_{1}\right)}}{x^{2}} \tag{2}
\end{align*}
$$

Figure 64: Slope field plot
Verification of solutions

$$
y=\frac{\sqrt{x\left(-x^{4}+c_{1}\right)}}{x^{2}}
$$

Verified OK.

$$
y=-\frac{\sqrt{x\left(-x^{4}+c_{1}\right)}}{x^{2}}
$$

Verified OK.

3.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y) \mathrm{d} y & =\left(-3 y^{2}-4 x\right) \mathrm{d} x \\
\left(3 y^{2}+4 x\right) \mathrm{d} x+(2 x y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y^{2}+4 x \\
N(x, y) & =2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y^{2}+4 x\right) \\
& =6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x y}((6 y)-(2 y)) \\
& =\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 \ln (x)} \\
& =x^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{2}\left(3 y^{2}+4 x\right) \\
& =3 x^{2} y^{2}+4 x^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{2}(2 x y) \\
& =2 y x^{3}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(3 x^{2} y^{2}+4 x^{3}\right)+\left(2 y x^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2} y^{2}+4 x^{3} \mathrm{~d} x \\
\phi & =x^{3}\left(y^{2}+x\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 y x^{3}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y x^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y x^{3}=2 y x^{3}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{3}\left(y^{2}+x\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{3}\left(y^{2}+x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{3}\left(y^{2}+x\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 65: Slope field plot

Verification of solutions

$$
x^{3}\left(y^{2}+x\right)=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38
dsolve $\left(\left(4 * x+3 * y(x)^{\wedge} 2\right)+(2 * x * y(x)) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(-x^{4}+c_{1}\right)}}{x^{2}} \\
& y(x)=-\frac{\sqrt{x\left(-x^{4}+c_{1}\right)}}{x^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.349 (sec). Leaf size: 46
DSolve $\left[(4 * x+3 * y[x] \sim 2)+(2 * x * y[x]) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-x^{4}+c_{1}}}{x^{3 / 2}} \\
& y(x) \rightarrow \frac{\sqrt{-x^{4}+c_{1}}}{x^{3 / 2}}
\end{aligned}
$$

3.17 problem 22

3.17.1 Solving as homogeneousTypeD2 ode416
3.17.2 Solving as first order ode lie symmetry lookup ode 418
3.17.3 Solving as bernoulli ode 422
3.17.4 Solving as exact ode 426
3.17.5 Solving as riccati ode 430

Internal problem ID [11612]
Internal file name [OUTPUT/10594_Saturday_May_27_2023_03_01_02_AM_9338345/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
y^{2}+2 y x-x^{2} y^{\prime}=0
$$

3.17.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{2} x^{2}+2 u(x) x^{2}-x^{2}\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(u+1)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u(u+1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(u+1)} d u & =\frac{1}{x} d x \\
\int \frac{1}{u(u+1)} d u & =\int \frac{1}{x} d x \\
-\ln (u+1)+\ln (u) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u+1)+\ln (u)}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u}{u+1}=c_{3} x
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =-\frac{x^{2} c_{3}}{c_{3} x-1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2} c_{3}}{c_{3} x-1} \tag{1}
\end{equation*}
$$

Figure 66: Slope field plot

Verification of solutions

$$
y=-\frac{x^{2} c_{3}}{c_{3} x-1}
$$

Verified OK.

3.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y(2 x+y)}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 68: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{y^{2}}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2}}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(2 x+y)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 x}{y} \\
S_{y} & =\frac{x^{2}}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{y}=x+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{y}=x+c_{1}
$$

Which gives

$$
y=-\frac{x^{2}}{x+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(2 x+y)}{x^{2}}$		$\frac{d S}{d R}=1$
$\rightarrow \rightarrow \rightarrow x^{-\infty}$	$R=x$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{x+c_{1}} \tag{1}
\end{equation*}
$$

Figure 67: Slope field plot

Verification of solutions

$$
y=-\frac{x^{2}}{x+c_{1}}
$$

Verified OK.

3.17.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(2 x+y)}{x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{2}{x} y+\frac{1}{x^{2}} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{2}{x} \\
f_{1}(x) & =\frac{1}{x^{2}} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{2}{x y}+\frac{1}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{2 w(x)}{x}+\frac{1}{x^{2}} \\
w^{\prime} & =-\frac{2 w}{x}-\frac{1}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{2 w(x)}{x}=-\frac{1}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} w\right) & =\left(x^{2}\right)\left(-\frac{1}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} w\right) & =-1 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} w=\int-1 \mathrm{~d} x \\
& x^{2} w=-x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
w(x)=-\frac{1}{x}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
w(x)=\frac{-x+c_{1}}{x^{2}}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{-x+c_{1}}{x^{2}}
$$

Or

$$
y=\frac{x^{2}}{-x+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{-x+c_{1}} \tag{1}
\end{equation*}
$$

Figure 68: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}}{-x+c_{1}}
$$

Verified OK.

3.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2}\right) \mathrm{d} y & =\left(-2 x y-y^{2}\right) \mathrm{d} x \\
\left(2 x y+y^{2}\right) \mathrm{d} x+\left(-x^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y+y^{2} \\
N(x, y) & =-x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y+y^{2}\right) \\
& =2 y+2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2}\right) \\
& =-2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x^{2}}((2 y+2 x)-(-2 x)) \\
& =\frac{-4 x-2 y}{x^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y(2 x+y)}((-2 x)-(2 y+2 x)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}\left(2 x y+y^{2}\right) \\
& =\frac{2 x+y}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}\left(-x^{2}\right) \\
& =-\frac{x^{2}}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 x+y}{y}\right)+\left(-\frac{x^{2}}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x+y}{y} \mathrm{~d} x \\
\phi & =\frac{x(y+x)}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x}{y}-\frac{x(y+x)}{y^{2}}+f^{\prime}(y) \tag{4}\\
& =-\frac{x^{2}}{y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{x^{2}}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{x^{2}}{y^{2}}=-\frac{x^{2}}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(y+x)}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(y+x)}{y}
$$

The solution becomes

$$
y=\frac{x^{2}}{-x+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{-x+c_{1}} \tag{1}
\end{equation*}
$$

Figure 69: Slope field plot

Verification of solutions

$$
y=\frac{x^{2}}{-x+c_{1}}
$$

Verified OK.

3.17.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(2 x+y)}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{2 y}{x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{2}{x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =\frac{2}{x^{3}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} x+c_{2}
$$

The above shows that

$$
u^{\prime}(x)=c_{1}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1} x^{2}}{c_{1} x+c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{c_{3} x^{2}}{c_{3} x+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{3} x^{2}}{c_{3} x+1} \tag{1}
\end{equation*}
$$

Figure 70: Slope field plot

Verification of solutions

$$
y=-\frac{c_{3} x^{2}}{c_{3} x+1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve($(y(x) \wedge 2+2 * x * y(x))-x^{\wedge} 2 * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{x^{2}}{c_{1}-x}
$$

\checkmark Solution by Mathematica
Time used: 0.221 (sec). Leaf size: 23
DSolve[(y[x] $2+2 * x * y[x])-x^{\wedge} 2 * y y^{\prime}[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{2}}{x-c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.18 problem 24

3.18.1 Solving as first order ode lie symmetry calculated ode 434
3.18.2 Solving as exact ode . 441

Internal problem ID [11613]
Internal file name [OUTPUT/10595_Saturday_May_27_2023_03_01_05_AM_38663670/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.1 (Exact differential equations and integrating factors). Exercises page 37
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational]

$$
y+x\left(x^{2}+y^{2}\right)^{2}+\left(y\left(x^{2}+y^{2}\right)^{2}-x\right) y^{\prime}=0
$$

3.18.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x^{5}+2 y^{2} x^{3}+x y^{4}+y}{x^{4} y+2 y^{3} x^{2}+y^{5}-x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(x^{5}+2 y^{2} x^{3}+x y^{4}+y\right)\left(b_{3}-a_{2}\right)}{x^{4} y+2 y^{3} x^{2}+y^{5}-x} \\
& -\frac{\left(x^{5}+2 y^{2} x^{3}+x y^{4}+y\right)^{2} a_{3}}{\left(x^{4} y+2 y^{3} x^{2}+y^{5}-x\right)^{2}}-\left(-\frac{5 x^{4}+6 x^{2} y^{2}+y^{4}}{x^{4} y+2 y^{3} x^{2}+y^{5}-x}\right. \\
& \left.+\frac{\left(x^{5}+2 y^{2} x^{3}+x y^{4}+y\right)\left(4 y x^{3}+4 x y^{3}-1\right)}{\left(x^{4} y+2 y^{3} x^{2}+y^{5}-x\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{4 y x^{3}+4 x y^{3}+1}{x^{4} y+2 y^{3} x^{2}+y^{5}-x}\right. \\
& \left.+\frac{\left(x^{5}+2 y^{2} x^{3}+x y^{4}+y\right)\left(x^{4}+6 x^{2} y^{2}+5 y^{4}\right)}{\left(x^{4} y+2 y^{3} x^{2}+y^{5}-x\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{10} a_{3}+x^{10} b_{2}-2 x^{9} y a_{2}+2 x^{9} y b_{3}+3 x^{8} y^{2} a_{3}+3 x^{8} y^{2} b_{2}-8 x^{7} y^{3} a_{2}+8 x^{7} y^{3} b_{3}+2 x^{6} y^{4} a_{3}+2 x^{6} y^{4} b_{2}-12 x^{5}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{10} a_{3}-x^{10} b_{2}+2 x^{9} y a_{2}-2 x^{9} y b_{3}-3 x^{8} y^{2} a_{3}-3 x^{8} y^{2} b_{2}+8 x^{7} y^{3} a_{2} \\
& \quad-8 x^{7} y^{3} b_{3}-2 x^{6} y^{4} a_{3}-2 x^{6} y^{4} b_{2}+12 x^{5} y^{5} a_{2}-12 x^{5} y^{5} b_{3}+2 x^{4} y^{6} a_{3} \\
& +2 x^{4} y^{6} b_{2}+8 x^{3} y^{7} a_{2}-8 x^{3} y^{7} b_{3}+3 x^{2} y^{8} a_{3}+3 x^{2} y^{8} b_{2}+2 x y^{9} a_{2} \\
& -2 x y^{9} b_{3}+y^{10} a_{3}+y^{10} b_{2}-x^{9} b_{1}+x^{8} y a_{1}-4 x^{7} y^{2} b_{1}+4 x^{6} y^{3} a_{1} \tag{6E}\\
& -6 x^{5} y^{4} b_{1}+6 x^{4} y^{5} a_{1}-4 x^{3} y^{6} b_{1}+4 x^{2} y^{7} a_{1}-x y^{8} b_{1}+y^{9} a_{1}-5 x^{6} a_{2} \\
& +x^{6} b_{3}-6 x^{5} y a_{3}-6 x^{5} y b_{2}-9 x^{4} y^{2} a_{2}-3 x^{4} y^{2} b_{3}-12 x^{3} y^{3} a_{3}-12 x^{3} y^{3} b_{2} \\
& -3 x^{2} y^{4} a_{2}-9 x^{2} y^{4} b_{3}-6 x y^{5} a_{3}-6 x y^{5} b_{2}+y^{6} a_{2}-5 y^{6} b_{3}-4 x^{5} a_{1} \\
& -4 x^{4} y b_{1}-8 x^{3} y^{2} a_{1}-8 x^{2} y^{3} b_{1}-4 x y^{4} a_{1}-4 y^{5} b_{1}-x b_{1}+y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{9} v_{2}+8 a_{2} v_{1}^{7} v_{2}^{3}+12 a_{2} v_{1}^{5} v_{2}^{5}+8 a_{2} v_{1}^{3} v_{2}^{7}+2 a_{2} v_{1} v_{2}^{9}-a_{3} v_{1}^{10}-3 a_{3} v_{1}^{8} v_{2}^{2} \\
& \quad-2 a_{3} v_{1}^{6} v_{2}^{4}+2 a_{3} v_{1}^{4} v_{2}^{6}+3 a_{3} v_{1}^{2} v_{2}^{8}+a_{3} v_{2}^{10}-b_{2} v_{1}^{10}-3 b_{2} v_{1}^{8} v_{2}^{2}-2 b_{2} v_{1}^{6} v_{2}^{4} \\
& \quad+2 b_{2} v_{1}^{4} v_{2}^{6}+3 b_{2} v_{1}^{2} v_{2}^{8}+b_{2} v_{2}^{10}-2 b_{3} v_{1}^{9} v_{2}-8 b_{3} v_{1}^{7} v_{2}^{3}-12 b_{3} v_{1}^{5} v_{2}^{5} \\
& \quad-8 b_{3} v_{1}^{3} v_{2}^{7}-2 b_{3} v_{1} v_{2}^{9}+a_{1} v_{1}^{8} v_{2}+4 a_{1} v_{1}^{6} v_{2}^{3}+6 a_{1} v_{1}^{4} v_{2}^{5}+4 a_{1} v_{1}^{2} v_{2}^{7}+a_{1} v_{2}^{9} \tag{7E}\\
& \quad-b_{1} v_{1}^{9}-4 b_{1} v_{1}^{7} v_{2}^{2}-6 b_{1} v_{1}^{5} v_{2}^{4}-4 b_{1} v_{1}^{3} v_{2}^{6}-b_{1} v_{1} v_{2}^{8}-5 a_{2} v_{1}^{6}-9 a_{2} v_{1}^{4} v_{2}^{2} \\
& -3 a_{2} v_{1}^{2} v_{2}^{4}+a_{2} v_{2}^{6}-6 a_{3} v_{1}^{5} v_{2} 12 a_{3} v_{1}^{3} v_{2}^{3}-6 a_{3} v_{1} v_{2}^{5}-6 b_{2} v_{1}^{5} v_{2} \\
& \quad-12 b_{2} v_{3}^{3} v_{2}^{3}-6 b_{2} v_{1} v_{2}^{5}+b_{3} v_{1}^{6}-3 b_{3} v_{1}^{4} v_{2}^{2}-9 b_{3} v_{1}^{2} v_{2}^{4}-5 b_{3} v_{2}^{6}-4 a_{1} v_{1}^{5} \\
& \quad-8 a_{1} v_{1}^{3} v_{2}^{2}-4 a_{1} v_{1} v_{2}^{4}-4 b_{1} v_{1}^{4} v_{2}-8 b_{1} v_{1}^{2} v_{2}^{3}-4 b_{1} v_{2}^{5}+a_{1} v_{2}-b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{3}+2 b_{2}\right) v_{1}^{4} v_{2}^{6}+\left(-9 a_{2}-3 b_{3}\right) v_{1}^{4} v_{2}^{2}+\left(8 a_{2}-8 b_{3}\right) v_{1}^{3} v_{2}^{7}+\left(-3 a_{3}-3 b_{2}\right) v_{1}^{8} v_{2}^{2}+\left(8 a_{2}-8 b_{3}\right) v_{1}^{7} v_{2}^{3} \\
& +\left(-2 a_{3}-2 b_{2}\right) v_{1}^{6} v_{2}^{4}+\left(12 a_{2}-12 b_{3}\right) v_{1}^{5} v_{2}^{5}+\left(-6 a_{3}-6 b_{2}\right) v_{1}^{5} v_{2}+\left(-12 a_{3}-12 b_{2}\right) v_{1}^{3} v_{2}^{3} \\
& +\left(3 a_{3}+3 b_{2}\right) v_{1}^{2} v_{2}^{8}+\left(-3 a_{2}-9 b_{3}\right) v_{1}^{2} v_{2}^{4}+\left(2 a_{2}-2 b_{3}\right) v_{1} v_{2}^{9}+\left(-6 a_{3}-6 b_{2}\right) v_{1} v_{2}^{5} \\
& +\left(2 a_{2}-2 b_{3}\right) v_{1}^{9} v_{2}+a_{1} v_{2}^{9}-b_{1} v_{1}^{9}-4 a_{1} v_{1}^{5}-4 b_{1} v_{2}^{5}+a_{1} v_{2}-b_{1} v_{1}+\left(a_{3}+b_{2}\right) v_{2}^{10} \\
& +\left(a_{2}-5 b_{3}\right) v_{2}^{6}+\left(-5 a_{2}+b_{3}\right) v_{1}^{6}+\left(-a_{3}-b_{2}\right) v_{1}^{10}+a_{1} v_{1}^{8} v_{2}+4 a_{1} v_{1}^{6} v_{2}^{3}+6 a_{1} v_{1}^{4} v_{2}^{5}+4 a_{1} v_{1}^{2} v_{2}^{7} \\
& -4 b_{1} v_{1}^{7} v_{2}^{2}-6 b_{1} v_{1}^{5} v_{2}^{4}-4 b_{1} v_{1}^{3} v_{2}^{6}-b_{1} v_{1} v_{2}^{8}-8 a_{1} v_{1}^{3} v_{2}^{2}-4 a_{1} v_{1} v_{2}^{4}-4 b_{1} v_{1}^{4} v_{2}-8 b_{1} v_{1}^{2} v_{2}^{3}=0 \tag{8E}
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-8 a_{1} & =0 \\
-4 a_{1} & =0 \\
4 a_{1} & =0 \\
6 a_{1} & =0 \\
-8 b_{1} & =0 \\
-6 b_{1} & =0 \\
-4 b_{1} & =0 \\
-b_{1} & =0 \\
-9 a_{2}-3 b_{3} & =0 \\
-5 a_{2}+b_{3} & =0 \\
-3 a_{2}-9 b_{3} & =0 \\
a_{2}-5 b_{3} & =0 \\
2 a_{2}-2 b_{3} & =0 \\
8 a_{2}-8 b_{3} & =0 \\
12 a_{2}-12 b_{3} & =0 \\
-12 a_{3}-12 b_{2} & =0 \\
-6 a_{3}-6 b_{2} & =0 \\
-3 a_{3}-3 b_{2} & =0 \\
-2 a_{3}-2 b_{2} & =0 \\
-a_{3}-b_{2} & =0 \\
a_{3}+b_{2} & =0 \\
2 a_{3}+2 b_{2} & =0 \\
3 a_{3}+3 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =-b_{2} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-y \\
& \eta=x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(-\frac{x^{5}+2 y^{2} x^{3}+x y^{4}+y}{x^{4} y+2 y^{3} x^{2}+y^{5}-x}\right)(-y) \\
& =\frac{-x^{2}-y^{2}}{x^{4} y+2 y^{3} x^{2}+y^{5}-x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}}{x^{4} y+2 y^{3} x^{2}+y^{5}-x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{y^{4}}{4}-\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{y}{x}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x^{5}+2 y^{2} x^{3}+x y^{4}+y}{x^{4} y+2 y^{3} x^{2}+y^{5}-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y\left(y x^{3}+x y^{3}+1\right)}{x^{2}+y^{2}} \\
S_{y} & =-y^{3}-x^{2} y+\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{4}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{y^{4}}{4}-\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{y}{x}\right)=\frac{x^{4}}{4}+c_{1}
$$

Which simplifies to

$$
-\frac{y^{4}}{4}-\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{y}{x}\right)=\frac{x^{4}}{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x^{5}+22^{2} x^{3}+x y^{4}+y}{x^{4} y+2 y^{3} x^{2}+y^{5}-x}$		$\frac{d S}{d R}=R^{3}$
		$\xrightarrow{\text { d }}$
	$R=x$	
		$\xrightarrow{1}$
$\square^{-4} \underbrace{\text { a }}$	$S=-\frac{y^{4}}{1}-\frac{x^{2} y^{2}}{2}+\arctan$	
	- $4-\frac{2}{}+$ arctas	
		$\rightarrow \boldsymbol{\rightarrow}$
-内人		

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{y^{4}}{4}-\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{y}{x}\right)=\frac{x^{4}}{4}+c_{1} \tag{1}
\end{equation*}
$$

Figure 71: Slope field plot

Verification of solutions

$$
-\frac{y^{4}}{4}-\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{y}{x}\right)=\frac{x^{4}}{4}+c_{1}
$$

Verified OK.

3.18.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y\left(x^{2}+y^{2}\right)^{2}-x\right) \mathrm{d} y & =\left(-y-\left(x^{2}+y^{2}\right)^{2} x\right) \mathrm{d} x \\
\left(y+\left(x^{2}+y^{2}\right)^{2} x\right) \mathrm{d} x+\left(y\left(x^{2}+y^{2}\right)^{2}-x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y+\left(x^{2}+y^{2}\right)^{2} x \\
& N(x, y)=y\left(x^{2}+y^{2}\right)^{2}-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y+\left(x^{2}+y^{2}\right)^{2} x\right) \\
& =4 y x^{3}+4 x y^{3}+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y\left(x^{2}+y^{2}\right)^{2}-x\right) \\
& =4 y x^{3}+4 x y^{3}-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2}+y^{2}}$ is an integrating factor. Therefore by multiplying $M=y+x\left(x^{2}+y^{2}\right)^{2}$ and $N=y\left(x^{2}+y^{2}\right)^{2}-x$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{y+x\left(x^{2}+y^{2}\right)^{2}}{x^{2}+y^{2}} \\
N & =\frac{y\left(x^{2}+y^{2}\right)^{2}-x}{x^{2}+y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y\left(x^{2}+y^{2}\right)^{2}-x}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{y+\left(x^{2}+y^{2}\right)^{2} x}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{y+\left(x^{2}+y^{2}\right)^{2} x}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{y\left(x^{2}+y^{2}\right)^{2}-x}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{y+\left(x^{2}+y^{2}\right)^{2} x}{x^{2}+y^{2}} \\
& N(x, y)=\frac{y\left(x^{2}+y^{2}\right)^{2}-x}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y+\left(x^{2}+y^{2}\right)^{2} x}{x^{2}+y^{2}}\right) \\
& =\frac{2 x^{5} y+4 x^{3} y^{3}+2 y^{5} x+x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y\left(x^{2}+y^{2}\right)^{2}-x}{x^{2}+y^{2}}\right) \\
& =\frac{2 x^{5} y+4 x^{3} y^{3}+2 y^{5} x+x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y+\left(x^{2}+y^{2}\right)^{2} x}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2} y-\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y\left(x^{2}+y^{2}\right)^{2}-x}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y\left(x^{2}+y^{2}\right)^{2}-x}{x^{2}+y^{2}}=\frac{x\left(y x^{3}+x y^{3}-1\right)}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{3}\right) \mathrm{d} y \\
f(y) & =\frac{y^{4}}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{x}{y}\right)+\frac{y^{4}}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{x}{y}\right)+\frac{y^{4}}{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{x}{y}\right)+\frac{y^{4}}{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 72: Slope field plot

Verification of solutions

$$
\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\arctan \left(\frac{x}{y}\right)+\frac{y^{4}}{4}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 28
dsolve $\left(\left(y(x)+x *\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)^{\wedge} 2\right)+\left(y(x) *\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)^{\wedge} 2-x\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
y(x)=\cot \left(\operatorname{RootOf}\left(4 c_{1} \sin \left(_Z\right)^{4}-4 _Z \sin \left(_Z\right)^{4}-x^{4}\right)\right) x
$$

Solution by Mathematica
Time used: 0.144 (sec). Leaf size: 40
DSolve $\left[\left(y[x]+x *\left(x^{\wedge} 2+y[x] \sim 2\right)^{\wedge} 2\right)+\left(y[x] *\left(x^{\wedge} 2+y[x] \sim 2\right)^{\wedge} 2-x\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSoluti

Solve $\left[\arctan \left(\frac{x}{y(x)}\right)+\frac{x^{4}}{4}+\frac{1}{2} x^{2} y(x)^{2}+\frac{y(x)^{4}}{4}=c_{1}, y(x)\right]$
4 Chapter 2, section 2.2 (Separable equations). Exercises page 47
4.1 problem 1 449
4.2 problem 2 464
4.3 problem 3 478
4.4 problem 4 492
4.5 problem 5 504
4.6 problem 6 515
4.7 problem 7 527
4.8 problem 8 544
4.9 problem 9 558
4.10 problem 10 572
4.11 problem 11 581
4.12 problem 12 592
4.13 problem 13 608
4.14 problem 14 622
4.15 problem 15 631
4.16 problem 16 645
4.17 problem 17 658
4.18 problem 18 676
4.19 problem 19 693
4.20 problem 20 702
4.21 problem 22(a) 715
4.22 problem 22(b) 731
4.23 problem 23(a) 747
4.24 problem 23(b) 763

4.1 problem 1

4.1.1 Solving as separable ode
4.1.2 Solving as linear ode . 451
4.1.3 Solving as homogeneousTypeD2 ode 452
4.1.4 Solving as first order ode lie symmetry lookup ode 454
4.1.5 Solving as exact ode . 458
4.1.6 Maple step by step solution . 462

Internal problem ID [11614]
Internal file name [OUTPUT/10596_Saturday_May_27_2023_03_01_06_AM_105870/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
4 y x+\left(x^{2}+1\right) y^{\prime}=0
$$

4.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{4 x y}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=-\frac{4 x}{x^{2}+1}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{4 x}{x^{2}+1} d x \\
\int \frac{1}{y} d y & =\int-\frac{4 x}{x^{2}+1} d x \\
\ln (y) & =-2 \ln \left(x^{2}+1\right)+c_{1} \\
y & =\mathrm{e}^{-2 \ln \left(x^{2}+1\right)+c_{1}} \\
& =\frac{c_{1}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\left(x^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 73: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}}{\left(x^{2}+1\right)^{2}}
$$

Verified OK.

4.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{4 x}{x^{2}+1} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{4 x y}{x^{2}+1}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4 x}{x^{2}+1} d x} \\
& =\left(x^{2}+1\right)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\left(x^{2}+1\right)^{2} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\left(x^{2}+1\right)^{2} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\left(x^{2}+1\right)^{2}$ results in

$$
y=\frac{c_{1}}{\left(x^{2}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\left(x^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 74: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}}{\left(x^{2}+1\right)^{2}}
$$

Verified OK.

4.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
4 u(x) x^{2}+\left(x^{2}+1\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(5 x^{2}+1\right)}{x\left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{5 x^{2}+1}{x\left(x^{2}+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5 x^{2}+1}{x\left(x^{2}+1\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{5 x^{2}+1}{x\left(x^{2}+1\right)} d x \\
\ln (u) & =-\ln (x)-2 \ln \left(x^{2}+1\right)+c_{2} \\
u & =\mathrm{e}^{-\ln (x)-2 \ln \left(x^{2}+1\right)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)-2 \ln \left(x^{2}+1\right)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2}}{x\left(x^{2}+1\right)^{2}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{c_{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2}}{\left(x^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 75: Slope field plot
Verification of solutions

$$
y=\frac{c_{2}}{\left(x^{2}+1\right)^{2}}
$$

Verified OK.

4.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{4 x y}{x^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 70: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\left(x^{2}+1\right)^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\left(x^{2}+1\right)^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\left(x^{2}+1\right)^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{4 x y}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =4\left(x^{2}+1\right) y x \\
S_{y} & =\left(x^{2}+1\right)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\left(x^{2}+1\right)^{2} y=c_{1}
$$

Which simplifies to

$$
\left(x^{2}+1\right)^{2} y=c_{1}
$$

Which gives

$$
y=\frac{c_{1}}{\left(x^{2}+1\right)^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{4 x y}{x^{2}+1}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		\rightarrow
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\xrightarrow{\rightarrow-4 \rightarrow \text { 为 }}$	$S=\left(x^{2}+1\right)^{2} y$	
	$S=\left(x^{2}+1\right) y$	
		$\xrightarrow{-23}$
		$\xrightarrow{\text { l }} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\left(x^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 76: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}}{\left(x^{2}+1\right)^{2}}
$$

Verified OK.

4.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{4 y}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x+\left(-\frac{1}{4 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x}{x^{2}+1} \\
N(x, y) & =-\frac{1}{4 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{4 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{4 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{4 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{4 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{4 y}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+1\right)}{2}-\frac{\ln (y)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}-\frac{\ln (y)}{4}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-4 c_{1}}}{\left(x^{2}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-4 c_{1}}}{\left(x^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 77: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{-4 c_{1}}}{\left(x^{2}+1\right)^{2}}
$$

Verified OK.

4.1.6 Maple step by step solution

Let's solve
$4 y x+\left(x^{2}+1\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=-\frac{4 x}{x^{2}+1}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int-\frac{4 x}{x^{2}+1} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-2 \ln \left(x^{2}+1\right)+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{c_{1}}}{\left(x^{2}+1\right)^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve((4*x*y(x))+(x^2+1)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}}{\left(x^{2}+1\right)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 20
DSolve[(4*x*y[x])+(x^2+1)*y'[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1}}{\left(x^{2}+1\right)^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.2 problem 2

4.2.1 Solving as separable ode . 464
4.2.2 Solving as linear ode
4.2.3 Solving as first order ode lie symmetry lookup ode 468
4.2.4 Solving as exact ode . 472
4.2.5 Maple step by step solution . 476

Internal problem ID [11615]
Internal file name [OUTPUT/10597_Saturday_May_27_2023_03_01_08_AM_25265056/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y x+y+\left(x^{2}+2 x\right) y^{\prime}=-2 x-2
$$

4.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{(1+x)(-y-2)}{x(x+2)}
\end{aligned}
$$

Where $f(x)=\frac{1+x}{x(x+2)}$ and $g(y)=-y-2$. Integrating both sides gives

$$
\frac{1}{-y-2} d y=\frac{1+x}{x(x+2)} d x
$$

$$
\begin{aligned}
\int \frac{1}{-y-2} d y & =\int \frac{1+x}{x(x+2)} d x \\
-\ln (y+2) & =\frac{\ln (x(x+2))}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y+2}=\mathrm{e}^{\frac{\ln (x(x+2))}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{y+2}=c_{2} \sqrt{x(x+2)}
$$

Which simplifies to

$$
y=-\frac{\left(2 c_{2} \mathrm{e}^{c_{1}} \sqrt{x^{2}+2 x}-1\right) \mathrm{e}^{-c_{1}}}{c_{2} \sqrt{x^{2}+2 x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(2 c_{2} \mathrm{e}^{c_{1}} \sqrt{x^{2}+2 x}-1\right) \mathrm{e}^{-c_{1}}}{c_{2} \sqrt{x^{2}+2 x}} \tag{1}
\end{equation*}
$$

Figure 78: Slope field plot

Verification of solutions

$$
y=-\frac{\left(2 c_{2} \mathrm{e}^{c_{1}} \sqrt{x^{2}+2 x}-1\right) \mathrm{e}^{-c_{1}}}{c_{2} \sqrt{x^{2}+2 x}}
$$

Verified OK.

4.2.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-x-1}{x(x+2)} \\
& q(x)=\frac{-2 x-2}{x(x+2)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-x-1) y}{x(x+2)}=\frac{-2 x-2}{x(x+2)}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-x-1}{x(x+2)} d x} \\
& =\sqrt{x(x+2)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{-2 x-2}{x(x+2)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{x(x+2)} y) & =(\sqrt{x(x+2)})\left(\frac{-2 x-2}{x(x+2)}\right) \\
\mathrm{d}(\sqrt{x(x+2)} y) & =\left(-\frac{2(1+x) \sqrt{x(x+2)}}{x(x+2)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{x(x+2)} y=\int-\frac{2(1+x) \sqrt{x(x+2)}}{x(x+2)} \mathrm{d} x \\
& \sqrt{x(x+2)} y=-2 \sqrt{x(x+2)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x(x+2)}$ results in

$$
y=-2+\frac{c_{1}}{\sqrt{x(x+2)}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2+\frac{c_{1}}{\sqrt{x(x+2)}} \tag{1}
\end{equation*}
$$

Figure 79: Slope field plot

Verification of solutions

$$
y=-2+\frac{c_{1}}{\sqrt{x(x+2)}}
$$

Verified OK.

4.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x y+2 x+y+2}{x(x+2)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 73: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\sqrt{x(x+2)}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sqrt{x(x+2)}}} d y
\end{aligned}
$$

Which results in

$$
S=\sqrt{x(x+2)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y+2 x+y+2}{x(x+2)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
& =\frac{y(1+x)}{\sqrt{x} \sqrt{x+2}} \\
S_{x} & =\sqrt{x} \sqrt{x+2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{2(1+x)}{\sqrt{x} \sqrt{x+2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{2(1+R)}{\sqrt{R} \sqrt{R+2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \sqrt{R} \sqrt{R+2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sqrt{x} \sqrt{x+2} y=-2 \sqrt{x} \sqrt{x+2}+c_{1}
$$

Which simplifies to

$$
(y+2) \sqrt{x} \sqrt{x+2}-c_{1}=0
$$

Which gives

$$
y=-\frac{2 \sqrt{x} \sqrt{x+2}-c_{1}}{\sqrt{x} \sqrt{x+2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x y+2 x+y+2}{x(x+2)}$		$\frac{d S}{d R}=-\frac{2(1+R)}{\sqrt{R} \sqrt{R+2}}$
		dtdtt dotdtdtt
		- bib ${ }^{4}$
		1t: $t^{5}(R)$
		-tit $2+16.5$
		bti
		babib bibabibat
	$S=\sqrt{x} \sqrt{x+2} y$	
	$S=\sqrt{x} \sqrt{x+2} y$	dot did did
$\rightarrow \rightarrow \rightarrow \rightarrow$ ¢ $\rightarrow-\infty+\infty \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$		
$\rightarrow \rightarrow$ 为		t tit
		titity \quad btitititit

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \sqrt{x} \sqrt{x+2}-c_{1}}{\sqrt{x} \sqrt{x+2}} \tag{1}
\end{equation*}
$$

Figure 80: Slope field plot

Verification of solutions

$$
y=-\frac{2 \sqrt{x} \sqrt{x+2}-c_{1}}{\sqrt{x} \sqrt{x+2}}
$$

Verified OK.

4.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-y-2}\right) \mathrm{d} y & =\left(\frac{1+x}{x(x+2)}\right) \mathrm{d} x \\
\left(-\frac{1+x}{x(x+2)}\right) \mathrm{d} x+\left(\frac{1}{-y-2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1+x}{x(x+2)} \\
& N(x, y)=\frac{1}{-y-2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1+x}{x(x+2)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-y-2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1+x}{x(x+2)} \mathrm{d} x \\
\phi & =-\frac{\ln (x(x+2))}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-y-2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-y-2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y+2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y+2}\right) \mathrm{d} y \\
f(y) & =-\ln (y+2)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln (x(x+2))}{2}-\ln (y+2)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln (x(x+2))}{2}-\ln (y+2)
$$

The solution becomes

$$
y=\mathrm{e}^{-\frac{\ln (x(x+2))}{2}-c_{1}}-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{\ln (x(x+2))}{2}-c_{1}}-2 \tag{1}
\end{equation*}
$$

Figure 81: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{\ln (x(x+2))}{2}-c_{1}}-2
$$

Verified OK.

4.2.5 Maple step by step solution

Let's solve
$y x+y+\left(x^{2}+2 x\right) y^{\prime}=-2 x-2$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y+2}=-\frac{1+x}{x(x+2)}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y+2} d x=\int-\frac{1+x}{x(x+2)} d x+c_{1}$
- Evaluate integral
$\ln (y+2)=-\frac{\ln (x(x+2))}{2}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{-\frac{\ln (x(x+2))}{2}+c_{1}}-2$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

$$
\begin{aligned}
& \text { dsolve }\left((\mathrm{x} * \mathrm{y}(\mathrm{x})+2 * \mathrm{x}+\mathrm{y}(\mathrm{x})+2)+\left(\mathrm{x}^{\wedge} 2+2 * \mathrm{x}\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=0, \mathrm{y}(\mathrm{x}), \text { singsol }=\mathrm{all}\right) \\
& \qquad y(x)=-2+\frac{c_{1}}{\sqrt{x(x+2)}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 27
DSolve $\left[(x * y[x]+2 * x+y[x]+2)+\left(x^{\wedge} 2+2 * x\right) * y\right.$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-2+\frac{c_{1}}{\sqrt{x} \sqrt{x+2}} \\
& y(x) \rightarrow-2
\end{aligned}
$$

4.3 problem 3

4.3.1 Solving as separable ode478
4.3.2 Solving as first order ode lie symmetry lookup ode 480
4.3.3 Solving as exact ode . 484
4.3.4 Solving as riccati ode . 488
4.3.5 Maple step by step solution . 490

Internal problem ID [11616]
Internal file name [OUTPUT/10598_Saturday_May_27_2023_03_01_10_AM_98812696/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 r\left(s^{2}+1\right)+\left(r^{4}+1\right) s^{\prime}=0
$$

4.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
s^{\prime} & =F(r, s) \\
& =f(r) g(s) \\
& =\frac{r\left(-2 s^{2}-2\right)}{r^{4}+1}
\end{aligned}
$$

Where $f(r)=\frac{r}{r^{4}+1}$ and $g(s)=-2 s^{2}-2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-2 s^{2}-2} d s & =\frac{r}{r^{4}+1} d r \\
\int \frac{1}{-2 s^{2}-2} d s & =\int \frac{r}{r^{4}+1} d r
\end{aligned}
$$

$$
-\frac{\arctan (s)}{2}=\frac{\arctan \left(r^{2}\right)}{2}+c_{1}
$$

Which results in

$$
s=-\tan \left(\arctan \left(r^{2}\right)+2 c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
s=-\tan \left(\arctan \left(r^{2}\right)+2 c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 82: Slope field plot

Verification of solutions

$$
s=-\tan \left(\arctan \left(r^{2}\right)+2 c_{1}\right)
$$

Verified OK.

4.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& s^{\prime}=-\frac{2 r\left(s^{2}+1\right)}{r^{4}+1} \\
& s^{\prime}=\omega(r, s)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{r}+\omega\left(\eta_{s}-\xi_{r}\right)-\omega^{2} \xi_{s}-\omega_{r} \xi-\omega_{s} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 76: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(r, s)=\frac{r^{4}+1}{r} \\
& \eta(r, s)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(r, s) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d r}{\xi}=\frac{d s}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial r}+\eta \frac{\partial}{\partial s}\right) S(r, s)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=s
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d r \\
& =\int \frac{1}{\frac{r^{4}+1}{r}} d r
\end{aligned}
$$

Which results in

$$
S=\frac{\arctan \left(r^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{r}+\omega(r, s) S_{s}}{R_{r}+\omega(r, s) R_{s}} \tag{2}
\end{equation*}
$$

Where in the above $R_{r}, R_{s}, S_{r}, S_{s}$ are all partial derivatives and $\omega(r, s)$ is the right hand side of the original ode given by

$$
\omega(r, s)=-\frac{2 r\left(s^{2}+1\right)}{r^{4}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{r} & =0 \\
R_{s} & =1 \\
S_{r} & =\frac{r}{r^{4}+1} \\
S_{s} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2 s^{2}+2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for r, s in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R^{2}+2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\arctan (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to r, s coordinates. This results in

$$
\frac{\arctan \left(r^{2}\right)}{2}=-\frac{\arctan (s)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\arctan \left(r^{2}\right)}{2}=-\frac{\arctan (s)}{2}+c_{1}
$$

Which gives

$$
s=\tan \left(-\arctan \left(r^{2}\right)+2 c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in r, s coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d s}{d r}=-\frac{2 r\left(s^{2}+1\right)}{r^{4}+1}$		$\frac{d S}{d R}=-\frac{1}{2 R^{2}+2}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$R=s$	$\xrightarrow{\sim} \rightarrow \rightarrow \rightarrow \rightarrow$
	$\arctan \left(r^{2}\right)$	$\underset{\rightarrow \rightarrow-4 \rightarrow \rightarrow+\infty}{ }$
	$S=\frac{2}{2}$	$\xrightarrow{R \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
s=\tan \left(-\arctan \left(r^{2}\right)+2 c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 83: Slope field plot

Verification of solutions

$$
s=\tan \left(-\arctan \left(r^{2}\right)+2 c_{1}\right)
$$

Verified OK.

4.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(r, s) \mathrm{d} r+N(r, s) \mathrm{d} s=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-2 s^{2}-2}\right) \mathrm{d} s & =\left(\frac{r}{r^{4}+1}\right) \mathrm{d} r \\
\left(-\frac{r}{r^{4}+1}\right) \mathrm{d} r+\left(\frac{1}{-2 s^{2}-2}\right) \mathrm{d} s & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(r, s) & =-\frac{r}{r^{4}+1} \\
N(r, s) & =\frac{1}{-2 s^{2}-2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial s}=\frac{\partial N}{\partial r}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial s} & =\frac{\partial}{\partial s}\left(-\frac{r}{r^{4}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial r} & =\frac{\partial}{\partial r}\left(\frac{1}{-2 s^{2}-2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial s}=\frac{\partial N}{\partial r}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(r, s)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial r}=M \tag{1}\\
& \frac{\partial \phi}{\partial s}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. r gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial r} \mathrm{~d} r & =\int M \mathrm{~d} r \\
\int \frac{\partial \phi}{\partial r} \mathrm{~d} r & =\int-\frac{r}{r^{4}+1} \mathrm{~d} r \\
\phi & =-\frac{\arctan \left(r^{2}\right)}{2}+f(s) \tag{3}
\end{align*}
$$

Where $f(s)$ is used for the constant of integration since ϕ is a function of both r and s. Taking derivative of equation (3) w.r.t s gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial s}=0+f^{\prime}(s) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial s}=\frac{1}{-2 s^{2}-2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-2 s^{2}-2}=0+f^{\prime}(s) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(s)$ gives

$$
f^{\prime}(s)=-\frac{1}{2\left(s^{2}+1\right)}
$$

Integrating the above w.r.t s gives

$$
\begin{aligned}
\int f^{\prime}(s) \mathrm{d} s & =\int\left(-\frac{1}{2 s^{2}+2}\right) \mathrm{d} s \\
f(s) & =-\frac{\arctan (s)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(s)$ into equation (3) gives ϕ

$$
\phi=-\frac{\arctan \left(r^{2}\right)}{2}-\frac{\arctan (s)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\arctan \left(r^{2}\right)}{2}-\frac{\arctan (s)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\arctan \left(r^{2}\right)}{2}-\frac{\arctan (s)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 84: Slope field plot

Verification of solutions

$$
-\frac{\arctan \left(r^{2}\right)}{2}-\frac{\arctan (s)}{2}=c_{1}
$$

Verified OK.

4.3.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
s^{\prime} & =F(r, s) \\
& =-\frac{2 r\left(s^{2}+1\right)}{r^{4}+1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
s^{\prime}=-\frac{2 r s^{2}}{r^{4}+1}-\frac{2 r}{r^{4}+1}
$$

With Riccati ODE standard form

$$
s^{\prime}=f_{0}(r)+f_{1}(r) s+f_{2}(r) s^{2}
$$

Shows that $f_{0}(r)=-\frac{2 r}{r^{4}+1}, f_{1}(r)=0$ and $f_{2}(r)=-\frac{2 r}{r^{4}+1}$. Let

$$
\begin{align*}
s & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{2 r u}{r^{4}+1}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(r)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(r)+f_{2}^{2} f_{0} u(r)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{r^{4}+1}+\frac{8 r^{4}}{\left(r^{4}+1\right)^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-\frac{8 r^{3}}{\left(r^{4}+1\right)^{3}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{2 r u^{\prime \prime}(r)}{r^{4}+1}-\left(-\frac{2}{r^{4}+1}+\frac{8 r^{4}}{\left(r^{4}+1\right)^{2}}\right) u^{\prime}(r)-\frac{8 r^{3} u(r)}{\left(r^{4}+1\right)^{3}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(r)=\frac{c_{1} r^{2}+c_{2}}{\sqrt{r^{4}+1}}
$$

The above shows that

$$
u^{\prime}(r)=\frac{2 r\left(-c_{2} r^{2}+c_{1}\right)}{\left(r^{4}+1\right)^{\frac{3}{2}}}
$$

Using the above in (1) gives the solution

$$
s=\frac{-c_{2} r^{2}+c_{1}}{c_{1} r^{2}+c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
s=\frac{-r^{2}+c_{3}}{c_{3} r^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
s=\frac{-r^{2}+c_{3}}{c_{3} r^{2}+1} \tag{1}
\end{equation*}
$$

Figure 85: Slope field plot

Verification of solutions

$$
s=\frac{-r^{2}+c_{3}}{c_{3} r^{2}+1}
$$

Verified OK.

4.3.5 Maple step by step solution

Let's solve

$$
2 r\left(s^{2}+1\right)+\left(r^{4}+1\right) s^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
s^{\prime}
$$

- \quad Separate variables

$$
\frac{s^{\prime}}{s^{2}+1}=-\frac{2 r}{r^{4}+1}
$$

- Integrate both sides with respect to r
$\int \frac{s^{\prime}}{s^{2}+1} d r=\int-\frac{2 r}{r^{4}+1} d r+c_{1}$
- Evaluate integral

$$
\arctan (s)=-\arctan \left(r^{2}\right)+c_{1}
$$

- \quad Solve for s

$$
s=\tan \left(-\arctan \left(r^{2}\right)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve($2 * r *\left(s(r)^{\wedge} 2+1\right)+\left(r^{\wedge} 4+1\right) * \operatorname{diff}(s(r), r)=0, s(r)$, singsol=all)

$$
s(r)=-\tan \left(\arctan \left(r^{2}\right)+2 c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.478 (sec). Leaf size: 31
DSolve[2*r*(s[r] $2+1)+\left(r^{\wedge} 4+1\right) * s^{\prime}[r]==0, s[r], r$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& s(r) \rightarrow-\tan \left(\arctan \left(r^{2}\right)-c_{1}\right) \\
& s(r) \rightarrow-i \\
& s(r) \rightarrow i
\end{aligned}
$$

4.4 problem 4

4.4.1 Solving as separable ode . 492
4.4.2 Solving as first order ode lie symmetry lookup ode 494
4.4.3 Solving as exact ode . 498
4.4.4 Maple step by step solution . 502

Internal problem ID [11617]
Internal file name [OUTPUT/10599_Saturday_May_27_2023_03_01_11_AM_17840397/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\csc (y)+y^{\prime} \sec (x)=0
$$

4.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\csc (y)}{\sec (x)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{\sec (x)}$ and $g(y)=\csc (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\csc (y)} d y & =-\frac{1}{\sec (x)} d x \\
\int \frac{1}{\csc (y)} d y & =\int-\frac{1}{\sec (x)} d x \\
-\cos (y) & =-\sin (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\pi-\arccos \left(-\sin (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

Figure 86: Slope field plot

Verification of solutions

$$
y=\pi-\arccos \left(-\sin (x)+c_{1}\right)
$$

Verified OK.

4.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\csc (y)}{\sec (x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 79: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η				
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$				
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0				
quadrature ode	$y^{\prime}=f(x)$	0	1				
quadrature ode	$y^{\prime}=g(y)$	1	0				
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y					
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$				
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$				
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$				
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$					
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$				
$a_{1} b_{2}-a_{2} b_{1}$				$\underline{\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{2}-a_{2} b_{1}}{}}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0
:---	:---	:---					
$-\int(n-1) f(x) d x y^{n}$							

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\sec (x) \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\sec (x)} d x
\end{aligned}
$$

Which results in

$$
S=-\sin (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\csc (y)}{\sec (x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\cos (x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sin (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\cos (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\sin (x)=-\cos (y)+c_{1}
$$

Which simplifies to

$$
-\sin (x)=-\cos (y)+c_{1}
$$

Which gives

$$
y=\arccos \left(\sin (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\csc (y)}{\sec (x)}$		$\frac{d S}{d R}=\sin (R)$
		勿包式
		$\operatorname{s刀口}_{\substack{ \\\rightarrow+\infty}}$
	$R=y$	
\rightarrow－${ }^{-4}$	$S=-\sin (x)$	
		勿が大－－
\rightarrow 刀刀刀 $\rightarrow+x^{4} x x^{2} \rightarrow$ 刀刀刀八刀		分加
$\operatorname{lix}_{\text {a }}$		

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\arccos \left(\sin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 87: Slope field plot

Verification of solutions

$$
y=\arccos \left(\sin (x)+c_{1}\right)
$$

Verified OK.

4.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{\csc (y)}\right) \mathrm{d} y & =\left(\frac{1}{\sec (x)}\right) \mathrm{d} x \\
\left(-\frac{1}{\sec (x)}\right) \mathrm{d} x+\left(-\frac{1}{\csc (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{\sec (x)} \\
& N(x, y)=-\frac{1}{\csc (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\sec (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{\csc (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\sec (x)} \mathrm{d} x \\
\phi & =-\sin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{\csc (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{\csc (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\frac{1}{\csc (y)} \\
& =-\sin (y)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-\sin (y)) \mathrm{d} y \\
f(y) & =\cos (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\sin (x)+\cos (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\sin (x)+\cos (y)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\sin (x)+\cos (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 88: Slope field plot

Verification of solutions

$$
-\sin (x)+\cos (y)=c_{1}
$$

Verified OK.

4.4.4 Maple step by step solution

Let's solve
$\csc (y)+y^{\prime} \sec (x)=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\csc (y)}=-\frac{1}{\sec (x)}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\csc (y)} d x=\int-\frac{1}{\sec (x)} d x+c_{1}$
- Evaluate integral
$-\cos (y)=-\sin (x)+c_{1}$
- \quad Solve for y
$y=\pi-\arccos \left(-\sin (x)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9
dsolve $(\csc (y(x))+\sec (x) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\arccos \left(\sin (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.696 (sec). Leaf size: 27
DSolve[Csc[y[x]]+Sec[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\arccos \left(\sin (x)-c_{1}\right) \\
& y(x) \rightarrow \arccos \left(\sin (x)-c_{1}\right)
\end{aligned}
$$

4.5 problem 5

4.5.1 Solving as separable ode . 504
4.5.2 Solving as first order ode lie symmetry lookup ode 506
4.5.3 Solving as exact ode . 509
4.5.4 Maple step by step solution . 513

Internal problem ID [11618]
Internal file name [OUTPUT/10600_Saturday_May_27_2023_03_01_13_AM_76976138/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\tan (\theta)+2 r \theta^{\prime}=0
$$

4.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
\theta^{\prime} & =F(r, \theta) \\
& =f(r) g(\theta) \\
& =-\frac{\tan (\theta)}{2 r}
\end{aligned}
$$

Where $f(r)=-\frac{1}{2 r}$ and $g(\theta)=\tan (\theta)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (\theta)} d \theta & =-\frac{1}{2 r} d r \\
\int \frac{1}{\tan (\theta)} d \theta & =\int-\frac{1}{2 r} d r \\
\ln (\sin (\theta)) & =-\frac{\ln (r)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (\theta)=\mathrm{e}^{-\frac{\ln (r)}{2}+c_{1}}
$$

Which simplifies to

$$
\sin (\theta)=\frac{c_{2}}{\sqrt{r}}
$$

Which simplifies to

$$
\theta=\arcsin \left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{r}}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\theta=\arcsin \left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{r}}\right) \tag{1}
\end{equation*}
$$

Figure 89: Slope field plot
Verification of solutions

$$
\theta=\arcsin \left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{r}}\right)
$$

Verified OK.

4.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& \theta^{\prime}=-\frac{\tan (\theta)}{2 r} \\
& \theta^{\prime}=\omega(r, \theta)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{r}+\omega\left(\eta_{\theta}-\xi_{r}\right)-\omega^{2} \xi_{\theta}-\omega_{r} \xi-\omega_{\theta} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 82: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(r, \theta)=-2 r \\
& \eta(r, \theta)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(r, \theta) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d r}{\xi}=\frac{d \theta}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial r}+\eta \frac{\partial}{\partial \theta}\right) S(r, \theta)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=\theta
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d r \\
& =\int \frac{1}{-2 r} d r
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (r)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{r}+\omega(r, \theta) S_{\theta}}{R_{r}+\omega(r, \theta) R_{\theta}} \tag{2}
\end{equation*}
$$

Where in the above $R_{r}, R_{\theta}, S_{r}, S_{\theta}$ are all partial derivatives and $\omega(r, \theta)$ is the right hand side of the original ode given by

$$
\omega(r, \theta)=-\frac{\tan (\theta)}{2 r}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{r} & =0 \\
R_{\theta} & =1 \\
S_{r} & =-\frac{1}{2 r} \\
S_{\theta} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cot (\theta) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for r, θ in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cot (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (\sin (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to r, θ coordinates. This results in

$$
-\frac{\ln (r)}{2}=\ln (\sin (\theta))+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (r)}{2}=\ln (\sin (\theta))+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in r, θ coordinates	Canonical coordinates transformation	ODE in canonical coordinates $d r$
		(R, S)

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (r)}{2}=\ln (\sin (\theta))+c_{1} \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot

Verification of solutions

$$
-\frac{\ln (r)}{2}=\ln (\sin (\theta))+c_{1}
$$

Verified OK.

4.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(r, \theta) \mathrm{d} r+N(r, \theta) \mathrm{d} \theta=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2}{\tan (\theta)}\right) \mathrm{d} \theta & =\left(\frac{1}{r}\right) \mathrm{d} r \\
\left(-\frac{1}{r}\right) \mathrm{d} r+\left(-\frac{2}{\tan (\theta)}\right) \mathrm{d} \theta & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(r, \theta) & =-\frac{1}{r} \\
N(r, \theta) & =-\frac{2}{\tan (\theta)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial \theta}=\frac{\partial N}{\partial r}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial \theta} & =\frac{\partial}{\partial \theta}\left(-\frac{1}{r}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial r} & =\frac{\partial}{\partial r}\left(-\frac{2}{\tan (\theta)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial \theta}=\frac{\partial N}{\partial r}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(r, \theta)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial r}=M \tag{1}\\
& \frac{\partial \phi}{\partial \theta}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. r gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial r} \mathrm{~d} r & =\int M \mathrm{~d} r \\
\int \frac{\partial \phi}{\partial r} \mathrm{~d} r & =\int-\frac{1}{r} \mathrm{~d} r \\
\phi & =-\ln (r)+f(\theta) \tag{3}
\end{align*}
$$

Where $f(\theta)$ is used for the constant of integration since ϕ is a function of both r and θ. Taking derivative of equation (3) w.r.t θ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial \theta}=0+f^{\prime}(\theta) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial \theta}=-\frac{2}{\tan (\theta)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2}{\tan (\theta)}=0+f^{\prime}(\theta) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(\theta)$ gives

$$
\begin{aligned}
f^{\prime}(\theta) & =-\frac{2}{\tan (\theta)} \\
& =-2 \cot (\theta)
\end{aligned}
$$

Integrating the above w.r.t θ results in

$$
\begin{aligned}
\int f^{\prime}(\theta) \mathrm{d} \theta & =\int(-2 \cot (\theta)) \mathrm{d} \theta \\
f(\theta) & =-2 \ln (\sin (\theta))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(\theta)$ into equation (3) gives ϕ

$$
\phi=-\ln (r)-2 \ln (\sin (\theta))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (r)-2 \ln (\sin (\theta))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (r)-2 \ln (\sin (\theta))=c_{1} \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot

Verification of solutions

$$
-\ln (r)-2 \ln (\sin (\theta))=c_{1}
$$

Verified OK.

4.5.4 Maple step by step solution

Let's solve

$$
\tan (\theta)+2 r \theta^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

```
0
```

- \quad Separate variables

$$
\frac{\theta^{\prime}}{\tan (\theta)}=-\frac{1}{2 r}
$$

- Integrate both sides with respect to r
$\int \frac{\theta^{\prime}}{\tan (\theta)} d r=\int-\frac{1}{2 r} d r+c_{1}$
- Evaluate integral
$\ln (\sin (\theta))=-\frac{\ln (r)}{2}+c_{1}$
- \quad Solve for θ
$\left\{\theta=-\arcsin \left(\frac{\sqrt{r \mathrm{e}^{2 c_{1}}}}{r}\right), \theta=\arcsin \left(\frac{\sqrt{r \mathrm{e}^{2 c_{1}}}}{r}\right)\right\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.313 (sec). Leaf size: 21
dsolve $(\tan (\operatorname{theta}(r))+2 * r * \operatorname{diff}(\operatorname{theta}(r), r)=0$, theta (r), singsol=all)

$$
\begin{aligned}
& \theta(r)=\arcsin \left(\frac{1}{\sqrt{c_{1} r}}\right) \\
& \theta(r)=-\arcsin \left(\frac{1}{\sqrt{c_{1} r}}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 15.319 (sec). Leaf size: 21
DSolve[Tan[theta[r]] $+2 * r *$ theta $[r]==0$, theta $[r], r$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \theta(r) \rightarrow \arcsin \left(\frac{e^{c_{1}}}{\sqrt{r}}\right) \\
& \theta(r) \rightarrow 0
\end{aligned}
$$

4.6 problem 6

4.6.1 Solving as separable ode . 515
4.6.2 Solving as first order ode lie symmetry lookup ode 517
4.6.3 Solving as exact ode . 521
4.6.4 Maple step by step solution . 525

Internal problem ID [11619]
Internal file name [OUTPUT/10601_Saturday_May_27_2023_03_01_15_AM_62894160/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\left(\mathrm{e}^{v}+1\right) \cos (u)+\mathrm{e}^{v}(1+\sin (u)) v^{\prime}=0
$$

4.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
v^{\prime} & =F(u, v) \\
& =f(u) g(v) \\
& =-\frac{\cos (u)\left(1+\mathrm{e}^{-v}\right)}{1+\sin (u)}
\end{aligned}
$$

Where $f(u)=-\frac{\cos (u)}{1+\sin (u)}$ and $g(v)=1+\mathrm{e}^{-v}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{1+\mathrm{e}^{-v}} d v & =-\frac{\cos (u)}{1+\sin (u)} d u \\
\int \frac{1}{1+\mathrm{e}^{-v}} d v & =\int-\frac{\cos (u)}{1+\sin (u)} d u \\
\ln \left(1+\mathrm{e}^{-v}\right)-\ln \left(\mathrm{e}^{-v}\right) & =-\ln (1+\sin (u))+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln \left(1+\mathrm{e}^{-v}\right)-\ln \left(\mathrm{e}^{-v}\right)}=\mathrm{e}^{-\ln (1+\sin (u))+c_{1}}
$$

Which simplifies to

$$
\mathrm{e}^{v}+1=\frac{c_{2}}{1+\sin (u)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\ln \left(-\frac{1+\sin (u)-c_{2}}{1+\sin (u)}\right) \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot

Verification of solutions

$$
v=\ln \left(-\frac{1+\sin (u)-c_{2}}{1+\sin (u)}\right)
$$

Verified OK.

4.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
v^{\prime} & =-\frac{\left(\mathrm{e}^{v}+1\right) \cos (u) \mathrm{e}^{-v}}{1+\sin (u)} \\
v^{\prime} & =\omega(u, v)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{u}+\omega\left(\eta_{v}-\xi_{u}\right)-\omega^{2} \xi_{v}-\omega_{u} \xi-\omega_{v} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 85: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(u, v)=-\frac{1+\sin (u)}{\cos (u)} \\
& \eta(u, v)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(u, v) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d u}{\xi}=\frac{d v}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial u}+\eta \frac{\partial}{\partial v}\right) S(u, v)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=v
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d u \\
& =\int \frac{1}{-\frac{1+\sin (u)}{\cos (u)}} d u
\end{aligned}
$$

Which results in

$$
S=-\ln (1+\sin (u))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{u}+\omega(u, v) S_{v}}{R_{u}+\omega(u, v) R_{v}} \tag{2}
\end{equation*}
$$

Where in the above $R_{u}, R_{v}, S_{u}, S_{v}$ are all partial derivatives and $\omega(u, v)$ is the right hand side of the original ode given by

$$
\omega(u, v)=-\frac{\left(\mathrm{e}^{v}+1\right) \cos (u) \mathrm{e}^{-v}}{1+\sin (u)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{u} & =0 \\
R_{v} & =1 \\
S_{u} & =-\frac{\cos (u)}{1+\sin (u)} \\
S_{v} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{v}}{\mathrm{e}^{v}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for u, v in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{R}}{\mathrm{e}^{R}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln \left(\mathrm{e}^{R}+1\right)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to u, v coordinates. This results in

$$
-\ln (1+\sin (u))=\ln \left(\mathrm{e}^{v}+1\right)+c_{1}
$$

Which simplifies to

$$
-\ln (1+\sin (u))=\ln \left(\mathrm{e}^{v}+1\right)+c_{1}
$$

Which gives

$$
v=\ln \left(-\frac{-1+\sin (u) \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}}{1+\sin (u)}\right)-c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in u, v coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d v}{d u}=-\frac{\left(\mathrm{e}^{v}+1\right) \cos (u) \mathrm{e}^{-v}}{1+\sin (u)}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{R}}{\mathrm{e}^{R}+1}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\infty]{\rightarrow \rightarrow+\infty}$
		$\xrightarrow[{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { S }[R}]]{ }$
	$R=v$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ }$
	$S=-\ln (1+\sin (u))$	-

Summary

The solution(s) found are the following

$$
\begin{equation*}
v=\ln \left(-\frac{-1+\sin (u) \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}}{1+\sin (u)}\right)-c_{1} \tag{1}
\end{equation*}
$$

Figure 93: Slope field plot

Verification of solutions

$$
v=\ln \left(-\frac{-1+\sin (u) \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}}{1+\sin (u)}\right)-c_{1}
$$

Verified OK.

4.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(u, v) \mathrm{d} u+N(u, v) \mathrm{d} v=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{\mathrm{e}^{v}}{\mathrm{e}^{v}+1}\right) \mathrm{d} v & =\left(\frac{\cos (u)}{1+\sin (u)}\right) \mathrm{d} u \\
\left(-\frac{\cos (u)}{1+\sin (u)}\right) \mathrm{d} u+\left(-\frac{\mathrm{e}^{v}}{\mathrm{e}^{v}+1}\right) \mathrm{d} v & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(u, v)=-\frac{\cos (u)}{1+\sin (u)} \\
& N(u, v)=-\frac{\mathrm{e}^{v}}{\mathrm{e}^{v}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial v}=\frac{\partial N}{\partial u}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial v} & =\frac{\partial}{\partial v}\left(-\frac{\cos (u)}{1+\sin (u)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial u} & =\frac{\partial}{\partial u}\left(-\frac{\mathrm{e}^{v}}{\mathrm{e}^{v}+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial v}=\frac{\partial N}{\partial u}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(u, v)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial u}=M \tag{1}\\
& \frac{\partial \phi}{\partial v}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. u gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial u} \mathrm{~d} u & =\int M \mathrm{~d} u \\
\int \frac{\partial \phi}{\partial u} \mathrm{~d} u & =\int-\frac{\cos (u)}{1+\sin (u)} \mathrm{d} u \\
\phi & =-\ln (1+\sin (u))+f(v) \tag{3}
\end{align*}
$$

Where $f(v)$ is used for the constant of integration since ϕ is a function of both u and v. Taking derivative of equation (3) w.r.t v gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial v}=0+f^{\prime}(v) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial v}=-\frac{e^{v}}{\mathrm{e}^{v}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{\mathrm{e}^{v}}{\mathrm{e}^{v}+1}=0+f^{\prime}(v) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(v)$ gives

$$
f^{\prime}(v)=-\frac{\mathrm{e}^{v}}{\mathrm{e}^{v}+1}
$$

Integrating the above w.r.t v gives

$$
\begin{aligned}
\int f^{\prime}(v) \mathrm{d} v & =\int\left(-\frac{\mathrm{e}^{v}}{\mathrm{e}^{v}+1}\right) \mathrm{d} v \\
f(v) & =-\ln \left(\mathrm{e}^{v}+1\right)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(v)$ into equation (3) gives ϕ

$$
\phi=-\ln (1+\sin (u))-\ln \left(\mathrm{e}^{v}+1\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (1+\sin (u))-\ln \left(\mathrm{e}^{v}+1\right)
$$

The solution becomes

$$
v=\ln \left(-\frac{-1+\sin (u) \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}}{1+\sin (u)}\right)-c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\ln \left(-\frac{-1+\sin (u) \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}}{1+\sin (u)}\right)-c_{1} \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot

Verification of solutions

$$
v=\ln \left(-\frac{-1+\sin (u) \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}}{1+\sin (u)}\right)-c_{1}
$$

Verified OK.

4.6.4 Maple step by step solution

Let's solve
$\left(\mathrm{e}^{v}+1\right) \cos (u)+\mathrm{e}^{v}(1+\sin (u)) v^{\prime}=0$

- Highest derivative means the order of the ODE is 1
v^{\prime}
- Integrate both sides with respect to u
$\int\left(\left(\mathrm{e}^{v}+1\right) \cos (u)+\mathrm{e}^{v}(1+\sin (u)) v^{\prime}\right) d u=\int 0 d u+c_{1}$
- Evaluate integral
$\mathrm{e}^{v} \sin (u)+\sin (u)+\mathrm{e}^{v}=c_{1}$
- \quad Solve for v
$v=\ln \left(-\frac{\sin (u)-c_{1}}{1+\sin (u)}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.64 (sec). Leaf size: 29

```
dsolve((exp(v(u))+1)*\operatorname{cos}(u) + exp(v(u))*(1+\operatorname{sin}(u))*diff(v(u),u)=0,v(u), singsol=all)
```

$$
v(u)=-\ln \left(\frac{-1-\sin (u)}{-1+(1+\sin (u)) \mathrm{e}^{c_{1}}}\right)-c_{1}
$$

\checkmark Solution by Mathematica
Time used: 5.457 (sec). Leaf size: 37
DSolve $\left[(\operatorname{Exp}[v[u]]+1) * \operatorname{Cos}[u]+\operatorname{Exp}[v[u]] *(1+\operatorname{Sin}[u]) * v^{\prime}[u]==0, v[u], u\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& v(u) \rightarrow \log \left(-1+\frac{e^{c_{1}}}{\left(\sin \left(\frac{u}{2}\right)+\cos \left(\frac{u}{2}\right)\right)^{2}}\right) \\
& v(u) \rightarrow i \pi
\end{aligned}
$$

4.7 problem 7

4.7.1 Solving as separable ode 527
4.7.2 Solving as first order ode lie symmetry lookup ode 529
4.7.3 Solving as bernoulli ode 533
4.7.4 Solving as exact ode 537
4.7.5 Maple step by step solution 541

Internal problem ID [11620]
Internal file name [OUTPUT/10602_Saturday_May_27_2023_03_01_16_AM_78210111/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(x+4)\left(1+y^{2}\right)+y\left(x^{2}+3 x+2\right) y^{\prime}=0
$$

4.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{(x+4)\left(-y^{2}-1\right)}{(1+x)(x+2) y}
\end{aligned}
$$

Where $f(x)=\frac{x+4}{(1+x)(x+2)}$ and $g(y)=\frac{-y^{2}-1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{-y^{2}-1}{y}} d y=\frac{x+4}{(1+x)(x+2)} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{-y^{2}-1}{y}} d y & =\int \frac{x+4}{(1+x)(x+2)} d x \\
-\frac{\ln \left(y^{2}+1\right)}{2} & =3 \ln (1+x)-2 \ln (x+2)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{y^{2}+1}}=\mathrm{e}^{3 \ln (1+x)-2 \ln (x+2)+c_{1}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{y^{2}+1}}=c_{2} \mathrm{e}^{3 \ln (1+x)-2 \ln (x+2)}
$$

The solution is

$$
\frac{1}{\sqrt{1+y^{2}}}=c_{2} \mathrm{e}^{3 \ln (1+x)-2 \ln (x+2)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{1}{\sqrt{1+y^{2}}}=c_{2} \mathrm{e}^{3 \ln (1+x)-2 \ln (x+2)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 95: Slope field plot

Verification of solutions

$$
\frac{1}{\sqrt{1+y^{2}}}=c_{2} \mathrm{e}^{3 \ln (1+x)-2 \ln (x+2)+c_{1}}
$$

Verified OK.

4.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x y^{2}+4 y^{2}+x+4}{y\left(x^{2}+3 x+2\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 88: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{(1+x)(x+2)}{x+4} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{(1+x)(x+2)}{x+4}} d x
\end{aligned}
$$

Which results in

$$
S=3 \ln (1+x)-2 \ln (x+2)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y^{2}+4 y^{2}+x+4}{y\left(x^{2}+3 x+2\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x+4}{(1+x)(x+2)} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{y}{y^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{R}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln \left(R^{2}+1\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
3 \ln (1+x)-2 \ln (x+2)=-\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

Which simplifies to

$$
3 \ln (1+x)-2 \ln (x+2)=-\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x y^{2}+4 y^{2}+x+4}{y\left(x^{2}+3 x+2\right)}$		$\frac{d S}{d R}=-\frac{R}{R^{2}+1}$
$\rightarrow \rightarrow \rightarrow{ }_{\rightarrow \rightarrow \infty}$		$\cdots \rightarrow \rightarrow+\infty$
		$\rightarrow \rightarrow+\infty$
		-
		$\xrightarrow{\rightarrow+\infty \rightarrow+\rightarrow+\infty}$
	$S=3 \ln (1+x)-2 \ln (x$	$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow \rightarrow \pm \pm 0 \rightarrow 0$
		$\rightarrow \rightarrow \rightarrow \infty \rightarrow \infty \rightarrow \infty$

Summary

The solution(s) found are the following

$$
\begin{equation*}
3 \ln (1+x)-2 \ln (x+2)=-\frac{\ln \left(1+y^{2}\right)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 96: Slope field plot

Verification of solutions

$$
3 \ln (1+x)-2 \ln (x+2)=-\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

Verified OK.

4.7.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x y^{2}+4 y^{2}+x+4}{y\left(x^{2}+3 x+2\right)}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{x+4}{x^{2}+3 x+2} y-\frac{x+4}{x^{2}+3 x+2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{x+4}{x^{2}+3 x+2} \\
f_{1}(x) & =-\frac{x+4}{x^{2}+3 x+2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{(x+4) y^{2}}{x^{2}+3 x+2}-\frac{x+4}{x^{2}+3 x+2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{(x+4) w(x)}{x^{2}+3 x+2}-\frac{x+4}{x^{2}+3 x+2} \\
w^{\prime} & =-\frac{2(x+4) w}{x^{2}+3 x+2}-\frac{2(x+4)}{x^{2}+3 x+2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-2 x-8}{x^{2}+3 x+2} \\
& q(x)=\frac{-2 x-8}{x^{2}+3 x+2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{(-2 x-8) w(x)}{x^{2}+3 x+2}=\frac{-2 x-8}{x^{2}+3 x+2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-2 x-8}{x^{2}+3 x+2} d x} \\
& =\mathrm{e}^{6 \ln (1+x)-4 \ln (x+2)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(1+x)^{6}}{(x+2)^{4}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{-2 x-8}{x^{2}+3 x+2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(1+x)^{6} w}{(x+2)^{4}}\right) & =\left(\frac{(1+x)^{6}}{(x+2)^{4}}\right)\left(\frac{-2 x-8}{x^{2}+3 x+2}\right) \\
\mathrm{d}\left(\frac{(1+x)^{6} w}{(x+2)^{4}}\right) & =\left(-\frac{2(1+x)^{5}(x+4)}{(x+2)^{5}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{(1+x)^{6} w}{(x+2)^{4}} & =\int-\frac{2(1+x)^{5}(x+4)}{(x+2)^{5}} \mathrm{~d} x \\
\frac{(1+x)^{6} w}{(x+2)^{4}} & =-x^{2}+2 x+\frac{6}{(x+2)^{3}}-\frac{15}{(x+2)^{2}}+\frac{20}{x+2}-\frac{1}{(x+2)^{4}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{(1+x)^{6}}{(x+2)^{4}}$ results in

$$
w(x)=\frac{(x+2)^{4}\left(-x^{2}+2 x+\frac{6}{(x+2)^{3}}-\frac{15}{(x+2)^{2}}+\frac{20}{x+2}-\frac{1}{(x+2)^{4}}\right)}{(1+x)^{6}}+\frac{c_{1}(x+2)^{4}}{(1+x)^{6}}
$$

which simplifies to
$w(x)=\frac{-x^{6}-6 x^{5}+\left(c_{1}-8\right) x^{4}+\left(8 c_{1}+36\right) x^{3}+\left(24 c_{1}+153\right) x^{2}+\left(32 c_{1}+218\right) x+16 c_{1}+111}{(1+x)^{6}}$
Replacing w in the above by y^{2} using equation (5) gives the final solution.
$y^{2}=\frac{-x^{6}-6 x^{5}+\left(c_{1}-8\right) x^{4}+\left(8 c_{1}+36\right) x^{3}+\left(24 c_{1}+153\right) x^{2}+\left(32 c_{1}+218\right) x+16 c_{1}+111}{(1+x)^{6}}$
Solving for y gives
$y(x)=\frac{\sqrt{-x^{6}-6 x^{5}+\left(c_{1}-8\right) x^{4}+\left(8 c_{1}+36\right) x^{3}+\left(24 c_{1}+153\right) x^{2}+\left(32 c_{1}+218\right) x+16 c_{1}+111}}{(1+x)^{3}}$
$y(x)=-\frac{\sqrt{-x^{6}-6 x^{5}+\left(c_{1}-8\right) x^{4}+\left(8 c_{1}+36\right) x^{3}+\left(24 c_{1}+153\right) x^{2}+\left(32 c_{1}+218\right) x+16 c_{1}+111}}{(1+x)^{3}}$

Summary

The solution(s) found are the following
y
$=\frac{\sqrt{-x^{6}-6 x^{5}+\left(c_{1}-8\right) x^{4}+\left(8 c_{1}+36\right) x^{3}+\left(24 c_{1}+153\right) x^{2}+\left(32 c_{1}+218\right) x+16 c_{1}+111}}{(1+x)^{3}}$
$y=$
$-\frac{\sqrt{-x^{6}-6 x^{5}+\left(c_{1}-8\right) x^{4}+\left(8 c_{1}+36\right) x^{3}+\left(24 c_{1}+153\right) x^{2}+\left(32 c_{1}+218\right) x+16 c_{1}+111}}{(1+x)^{3}}$

Figure 97: Slope field plot

Verification of solutions

$$
\begin{aligned}
& y \\
& =\frac{\sqrt{-x^{6}-6 x^{5}+\left(c_{1}-8\right) x^{4}+\left(8 c_{1}+36\right) x^{3}+\left(24 c_{1}+153\right) x^{2}+\left(32 c_{1}+218\right) x+16 c_{1}+111}}{(1+x)^{3}}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
& y= \\
& \quad-\frac{\sqrt{-x^{6}-6 x^{5}+\left(c_{1}-8\right) x^{4}+\left(8 c_{1}+36\right) x^{3}+\left(24 c_{1}+153\right) x^{2}+\left(32 c_{1}+218\right) x+16 c_{1}+111}}{(1+x)^{3}}
\end{aligned}
$$

Verified OK.

4.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y}{-y^{2}-1}\right) \mathrm{d} y & =\left(\frac{x+4}{(1+x)(x+2)}\right) \mathrm{d} x \\
\left(-\frac{x+4}{(1+x)(x+2)}\right) \mathrm{d} x+\left(\frac{y}{-y^{2}-1}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x+4}{(1+x)(x+2)} \\
N(x, y) & =\frac{y}{-y^{2}-1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x+4}{(1+x)(x+2)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y}{-y^{2}-1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x+4}{(1+x)(x+2)} \mathrm{d} x \\
\phi & =-3 \ln (1+x)+2 \ln (x+2)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y}{-y^{2}-1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y}{-y^{2}-1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln \left(y^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 \ln (1+x)+2 \ln (x+2)-\frac{\ln \left(y^{2}+1\right)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 \ln (1+x)+2 \ln (x+2)-\frac{\ln \left(y^{2}+1\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-3 \ln (1+x)+2 \ln (x+2)-\frac{\ln \left(1+y^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 98: Slope field plot

Verification of solutions

$$
-3 \ln (1+x)+2 \ln (x+2)-\frac{\ln \left(1+y^{2}\right)}{2}=c_{1}
$$

Verified OK.

4.7.5 Maple step by step solution

Let's solve
$(x+4)\left(1+y^{2}\right)+y\left(x^{2}+3 x+2\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y y^{\prime}}{1+y^{2}}=-\frac{x+4}{x^{2}+3 x+2}
$$

- Integrate both sides with respect to x
$\int \frac{y y^{\prime}}{1+y^{2}} d x=\int-\frac{x+4}{x^{2}+3 x+2} d x+c_{1}$
- Evaluate integral

$$
\frac{\ln \left(1+y^{2}\right)}{2}=-3 \ln (1+x)+2 \ln (x+2)+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{x^{4}\left(\mathrm{e}^{\frac{c_{1}}{3}}\right)^{6}+8 x^{3}\left(\mathrm{e}^{\frac{c_{1}}{3}}\right)^{6}+24 x^{2}\left(\mathrm{e}^{\frac{c_{1}}{3}}\right)^{6}+32 x\left(\mathrm{e}^{\frac{c_{1}}{3}}\right)^{6}+16\left(\mathrm{e}^{\frac{c_{1}}{3}}\right)^{6}-x^{6}-6 x^{5}-15 x^{4}-20 x^{3}-15 x^{2}-6 x-1}}{(1+x)^{3}}, y=-\frac{\sqrt{x^{4}\left(\mathrm{e}^{\frac{c_{1}}{3}}\right)^{6}}}{}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 114

```
dsolve((x+4)*(y(x)^2+1) + y(x)*(x^2+3*x+2)*diff (y(x),x)=0,y(x), singsol=all)
```

$y(x)$
$=\frac{\sqrt{-x^{6}-6 x^{5}+x^{4} c_{1}+\left(8 c_{1}+100\right) x^{3}+\left(24 c_{1}+345\right) x^{2}+\left(32 c_{1}+474\right) x+16 c_{1}+239}}{(1+x)^{3}}$
$y(x)=$
$-\frac{\sqrt{-x^{6}-6 x^{5}+x^{4} c_{1}+\left(8 c_{1}+100\right) x^{3}+\left(24 c_{1}+345\right) x^{2}+\left(32 c_{1}+474\right) x+16 c_{1}+239}}{(1+x)^{3}}$
\checkmark Solution by Mathematica
Time used: 5.501 (sec). Leaf size: 126
DSolve $\left[(x+4) *(y[x] \sim 2+1)+y[x] *\left(x^{\wedge} 2+3 * x+2\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-(x+1)^{6}+e^{2 c_{1}}(x+2)^{4}}}{(x+1)^{3}} \\
& y(x) \rightarrow \frac{\sqrt{-(x+1)^{6}+e^{2 c_{1}}(x+2)^{4}}}{(x+1)^{3}} \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i \\
& y(x) \rightarrow \frac{(x+1)^{3}}{\sqrt{-(x+1)^{6}}} \\
& y(x) \rightarrow \frac{\sqrt{-(x+1)^{6}}}{(x+1)^{3}}
\end{aligned}
$$

4.8 problem 8

4.8.1 Solving as linear ode 544
4.8.2 Solving as homogeneousTypeD2 ode 546
4.8.3 Solving as first order ode lie symmetry lookup ode 547
4.8.4 Solving as exact ode 551
4.8.5 Maple step by step solution 556

Internal problem ID [11621]
Internal file name [OUTPUT/10603_Saturday_May_27_2023_03_01_19_AM_16407112/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y-y^{\prime} x=-x
$$

4.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\frac{1}{x} \\
\mathrm{~d}\left(\frac{y}{x}\right) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{1}{x} \mathrm{~d} x \\
& \frac{y}{x}=\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x \ln (x)+c_{1} x
$$

which simplifies to

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 99: Slope field plot
Verification of solutions

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Verified OK.

4.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x-\left(u^{\prime}(x) x+u(x)\right) x=-x
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \frac{1}{x} \mathrm{~d} x \\
& =\ln (x)+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x\left(\ln (x)+c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x)+c_{2}\right) \tag{1}
\end{equation*}
$$

Figure 100: Slope field plot
Verification of solutions

$$
y=x\left(\ln (x)+c_{2}\right)
$$

Verified OK.

4.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y+x}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 91: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+x}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y}{x}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x}=\ln (x)+c_{1}
$$

Which gives

$$
y=x\left(\ln (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+x}{x}$		$\frac{d S}{d R}=\frac{1}{R}$
		－
		Frary
	$R=x$	込
	$S=\underline{y}$	成 \rightarrow 年
		－
		2，${ }^{4}$
		\cdots

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=x\left(\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 101: Slope field plot

Verification of solutions

$$
y=x\left(\ln (x)+c_{1}\right)
$$

Verified OK.

4.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-x) \mathrm{d} y & =(-y-x) \mathrm{d} x \\
(y+x) \mathrm{d} x+(-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y+x \\
N(x, y) & =-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y+x) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x}((1)-(-1)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}(y+x) \\
& =\frac{y+x}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(-x) \\
& =-\frac{1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y+x}{x^{2}}\right)+\left(-\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y+x}{x^{2}} \mathrm{~d} x \\
\phi & =-\frac{y}{x}+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{x}=-\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{y}{x}+\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{y}{x}+\ln (x)
$$

The solution becomes

$$
y=x\left(\ln (x)-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x)-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 102: Slope field plot

Verification of solutions

$$
y=x\left(\ln (x)-c_{1}\right)
$$

Verified OK.

4.8.5 Maple step by step solution

Let's solve
$y-y^{\prime} x=-x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}+1$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int \frac{1}{x} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x\left(\ln (x)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve((x+y(x))- x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 12
DSolve[($x+y[x])-x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x\left(\log (x)+c_{1}\right)
$$

4.9 problem 9

4.9.1 Solving as homogeneousTypeD2 ode 558
4.9.2 Solving as first order ode lie symmetry calculated ode 560
4.9.3 Solving as exact ode . 566

Internal problem ID [11622]
Internal file name [OUTPUT/10604_Saturday_May_27_2023_03_01_21_AM_5585912/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,
class B`]]

$$
2 y x+3 y^{2}-\left(2 y x+x^{2}\right) y^{\prime}=0
$$

4.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x^{2}+3 u(x)^{2} x^{2}-\left(2 u(x) x^{2}+x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(u+1)}{(2 u+1) x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{u(u+1)}{2 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u+1)}{2 u+1}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{u(u+1)}{2 u+1}} d u & =\int \frac{1}{x} d x \\
\ln (u(u+1)) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u(u+1)=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
u(u+1)=c_{3} x
$$

Which simplifies to

$$
u(x)(u(x)+1)=c_{3} \mathrm{e}^{c_{2}} x
$$

The solution is

$$
u(x)(u(x)+1)=c_{3} \mathrm{e}^{c_{2}} x
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y\left(\frac{y}{x}+1\right)}{x}=c_{3} \mathrm{e}^{c_{2}} x \\
& \frac{y(y+x)}{x^{2}}=c_{3} \mathrm{e}^{c_{2}} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y(y+x)}{x^{2}}=c_{3} \mathrm{e}^{c_{2}} x \tag{1}
\end{equation*}
$$

Figure 103: Slope field plot
Verification of solutions

$$
\frac{y(y+x)}{x^{2}}=c_{3} \mathrm{e}^{c_{2}} x
$$

Verified OK.

4.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y(2 x+3 y)}{x(x+2 y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y(2 x+3 y)\left(b_{3}-a_{2}\right)}{x(x+2 y)}-\frac{y^{2}(2 x+3 y)^{2} a_{3}}{x^{2}(x+2 y)^{2}} \\
& -\left(\frac{2 y}{x(x+2 y)}-\frac{y(2 x+3 y)}{x^{2}(x+2 y)}-\frac{y(2 x+3 y)}{x(x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 x+3 y}{x(x+2 y)}+\frac{3 y}{x(x+2 y)}-\frac{2 y(2 x+3 y)}{x(x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} b_{2}+2 x^{3} y b_{2}+x^{2} y^{2} a_{2}+2 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}-x^{2} y^{2} b_{3}+6 x y^{3} a_{3}+3 y^{4} a_{3}+2 x^{3} b_{1}-2 x^{2} y a_{1}+6 x^{2} y b_{1}-}{x^{2}(x+2 y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} b_{2}-2 x^{3} y b_{2}-x^{2} y^{2} a_{2}-2 x^{2} y^{2} a_{3}-2 x^{2} y^{2} b_{2}+x^{2} y^{2} b_{3}-6 x y^{3} a_{3} \tag{6E}\\
& \quad-3 y^{4} a_{3}-2 x^{3} b_{1}+2 x^{2} y a_{1}-6 x^{2} y b_{1}+6 x y^{2} a_{1}-6 x y^{2} b_{1}+6 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2} v_{2}^{2}-2 a_{3} v_{1}^{2} v_{2}^{2}-6 a_{3} v_{1} v_{2}^{3}-3 a_{3} v_{2}^{4}-b_{2} v_{1}^{4}-2 b_{2} v_{1}^{3} v_{2}-2 b_{2} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& +b_{3} v_{1}^{2} v_{2}^{2}+2 a_{1} v_{1}^{2} v_{2}+6 a_{1} v_{1} v_{2}^{2}+6 a_{1} v_{2}^{3}-2 b_{1} v_{1}^{3}-6 b_{1} v_{1}^{2} v_{2}-6 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -b_{2} v_{1}^{4}-2 b_{2} v_{1}^{3} v_{2}-2 b_{1} v_{1}^{3}+\left(-a_{2}-2 a_{3}-2 b_{2}+b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(2 a_{1}-6 b_{1}\right) v_{1}^{2} v_{2}-6 a_{3} v_{1} v_{2}^{3}+\left(6 a_{1}-6 b_{1}\right) v_{1} v_{2}^{2}-3 a_{3} v_{2}^{4}+6 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
6 a_{1} & =0 \\
-6 a_{3} & =0 \\
-3 a_{3} & =0 \\
-2 b_{1} & =0 \\
-2 b_{2} & =0 \\
-b_{2} & =0 \\
2 a_{1}-6 b_{1} & =0 \\
6 a_{1}-6 b_{1} & =0 \\
-a_{2}-2 a_{3}-2 b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y(2 x+3 y)}{x(x+2 y)}\right)(x) \\
& =\frac{-x y-y^{2}}{x+2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x y-y^{2}}{x+2 y}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (y(y+x))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(2 x+3 y)}{x(x+2 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{y+x} \\
S_{y} & =\frac{-x-2 y}{y(y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-3 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (y)-\ln (y+x)=-3 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln (y)-\ln (y+x)=-3 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(2 x+3 y)}{x(x+2 y)}$		$\frac{d S}{d R}=-\frac{3}{R}$
$\xrightarrow{\rightarrow \rightarrow-\infty}$	$R=x$	
	$S=-\ln (y)-\ln (y+x)$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (y)-\ln (y+x)=-3 \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 104: Slope field plot

Verification of solutions

$$
-\ln (y)-\ln (y+x)=-3 \ln (x)+c_{1}
$$

Verified OK.

4.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2}-2 x y\right) \mathrm{d} y & =\left(-2 x y-3 y^{2}\right) \mathrm{d} x \\
\left(2 x y+3 y^{2}\right) \mathrm{d} x+\left(-x^{2}-2 x y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y+3 y^{2} \\
N(x, y) & =-x^{2}-2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y+3 y^{2}\right) \\
& =6 y+2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2}-2 x y\right) \\
& =-2 x-2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x(x+2 y)}((6 y+2 x)-(-2 x-2 y)) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(2 x y+3 y^{2}\right) \\
& =\frac{y(2 x+3 y)}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}\left(-x^{2}-2 x y\right) \\
& =\frac{-x-2 y}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y(2 x+3 y)}{x^{4}}\right)+\left(\frac{-x-2 y}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y(2 x+3 y)}{x^{4}} \mathrm{~d} x \\
\phi & =-\frac{y(y+x)}{x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{y+x}{x^{3}}-\frac{y}{x^{3}}+f^{\prime}(y) \tag{4}\\
& =\frac{-x-2 y}{x^{3}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x-2 y}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x-2 y}{x^{3}}=\frac{-x-2 y}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{y(y+x)}{x^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{y(y+x)}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{y(y+x)}{x^{3}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 105: Slope field plot

Verification of solutions

$$
-\frac{y(y+x)}{x^{3}}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33
dsolve $\left(\left(2 * x * y(x)+3 * y(x)^{\wedge} 2\right)-\left(2 * x * y(x)+x^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{\left(1+\sqrt{4 c_{1} x+1}\right) x}{2} \\
& y(x)=\frac{\left(-1+\sqrt{4 c_{1} x+1}\right) x}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.618 (sec). Leaf size: 61
DSolve $\left[(2 * x * y[x]+3 * y[x] \sim 2)-\left(2 * x * y[x]+x^{\wedge} 2\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{2} x\left(1+\sqrt{1+4 e^{c_{1}} x}\right) \\
& y(x) \rightarrow \frac{1}{2} x\left(-1+\sqrt{1+4 e^{c_{1}} x}\right) \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-x
\end{aligned}
$$

4.10 problem 10

4.10.1 Solving as homogeneousTypeD2 ode572
4.10.2 Solving as first order ode lie symmetry calculated ode. 574

Internal problem ID [11623]
Internal file name [OUTPUT/10605_Saturday_May_27_2023_03_05_11_AM_66707145/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
v^{3}+\left(u^{3}-u v^{2}\right) v^{\prime}=0
$$

4.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables $v=u(u) u$ on the above ode results in new ode in $u(u)$

$$
u(u)^{3} u^{3}+\left(u^{3}-u^{3} u(u)^{2}\right)\left(u^{\prime}(u) u+u(u)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(u, u) \\
& =f(u) g(u) \\
& =\frac{u}{\left(u^{2}-1\right) u}
\end{aligned}
$$

Where $f(u)=\frac{1}{u}$ and $g(u)=\frac{u}{u^{2}-1}$. Integrating both sides gives

$$
\frac{1}{\frac{u}{u^{2}-1}} d u=\frac{1}{u} d u
$$

$$
\begin{aligned}
\int \frac{1}{\frac{u}{u^{2}-1}} d u & =\int \frac{1}{u} d u \\
\frac{u^{2}}{2}-\ln (u) & =\ln (u)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{u(u)^{2}}{2}-\ln (u(u))-\ln (u)-c_{2}=0
$$

Replacing $u(u)$ in the above solution by $\frac{v}{u}$ results in the solution for v in implicit form

$$
\begin{gathered}
\frac{v^{2}}{2 u^{2}}-\ln \left(\frac{v}{u}\right)-\ln (u)-c_{2}=0 \\
\frac{v^{2}}{2 u^{2}}-\ln \left(\frac{v}{u}\right)-\ln (u)-c_{2}=0
\end{gathered}
$$

Summary
The solution(s) found are the following

Figure 106: Slope field plot

Verification of solutions

$$
\frac{v^{2}}{2 u^{2}}-\ln \left(\frac{v}{u}\right)-\ln (u)-c_{2}=0
$$

Verified OK.

4.10.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
v^{\prime} & =\frac{v^{3}}{u\left(-u^{2}+v^{2}\right)} \\
v^{\prime} & =\omega(u, v)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{u}+\omega\left(\eta_{v}-\xi_{u}\right)-\omega^{2} \xi_{v}-\omega_{u} \xi-\omega_{v} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=u a_{2}+v a_{3}+a_{1} \tag{1E}\\
& \eta=u b_{2}+v b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{v^{3}\left(b_{3}-a_{2}\right)}{u\left(-u^{2}+v^{2}\right)}-\frac{v^{6} a_{3}}{u^{2}\left(-u^{2}+v^{2}\right)^{2}} \\
& -\left(-\frac{v^{3}}{u^{2}\left(-u^{2}+v^{2}\right)}+\frac{2 v^{3}}{\left(-u^{2}+v^{2}\right)^{2}}\right)\left(u a_{2}+v a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{3 v^{2}}{u\left(-u^{2}+v^{2}\right)}-\frac{2 v^{4}}{u\left(-u^{2}+v^{2}\right)^{2}}\right)\left(u b_{2}+v b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{u^{6} b_{2}+u^{4} v^{2} b_{2}-2 u^{3} v^{3} a_{2}+2 u^{3} v^{3} b_{3}-3 u^{2} v^{4} a_{3}+3 u^{3} v^{2} b_{1}-3 u^{2} v^{3} a_{1}-u v^{4} b_{1}+v^{5} a_{1}}{u^{2}\left(u^{2}-v^{2}\right)^{2}}=0$

Setting the numerator to zero gives
$u^{6} b_{2}+u^{4} v^{2} b_{2}-2 u^{3} v^{3} a_{2}+2 u^{3} v^{3} b_{3}-3 u^{2} v^{4} a_{3}+3 u^{3} v^{2} b_{1}-3 u^{2} v^{3} a_{1}-u v^{4} b_{1}+v^{5} a_{1}=0$

Looking at the above PDE shows the following are all the terms with $\{u, v\}$ in them.

$$
\{u, v\}
$$

The following substitution is now made to be able to collect on all terms with $\{u, v\}$ in them

$$
\left\{u=v_{1}, v=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{2} v_{1}^{3} v_{2}^{3}-3 a_{3} v_{1}^{2} v_{2}^{4}+b_{2} v_{1}^{6}+b_{2} v_{1}^{4} v_{2}^{2}+2 b_{3} v_{1}^{3} v_{2}^{3}-3 a_{1} v_{1}^{2} v_{2}^{3}+a_{1} v_{2}^{5}+3 b_{1} v_{1}^{3} v_{2}^{2}-b_{1} v_{1} v_{2}^{4}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes
$b_{2} v_{1}^{6}+b_{2} v_{1}^{4} v_{2}^{2}+\left(-2 a_{2}+2 b_{3}\right) v_{1}^{3} v_{2}^{3}+3 b_{1} v_{1}^{3} v_{2}^{2}-3 a_{3} v_{1}^{2} v_{2}^{4}-3 a_{1} v_{1}^{2} v_{2}^{3}-b_{1} v_{1} v_{2}^{4}+a_{1} v_{2}^{5}=0$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{2} & =0 \\
-3 a_{1} & =0 \\
-3 a_{3} & =0 \\
-b_{1} & =0 \\
3 b_{1} & =0 \\
-2 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=u \\
& \eta=v
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(u, v) \xi \\
& =v-\left(\frac{v^{3}}{u\left(-u^{2}+v^{2}\right)}\right)(u) \\
& =\frac{u^{2} v}{u^{2}-v^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(u, v) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d u}{\xi}=\frac{d v}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial u}+\eta \frac{\partial}{\partial v}\right) S(u, v)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=u
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{u^{2} v}{u^{2}-v^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{v^{2}}{2 u^{2}}+\ln (v)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{u}+\omega(u, v) S_{v}}{R_{u}+\omega(u, v) R_{v}} \tag{2}
\end{equation*}
$$

Where in the above $R_{u}, R_{v}, S_{u}, S_{v}$ are all partial derivatives and $\omega(u, v)$ is the right hand side of the original ode given by

$$
\omega(u, v)=\frac{v^{3}}{u\left(-u^{2}+v^{2}\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{u} & =1 \\
R_{v} & =0 \\
S_{u} & =\frac{v^{2}}{u^{3}} \\
S_{v} & =\frac{u^{2}-v^{2}}{u^{2} v}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for u, v in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to u, v coordinates. This results in

$$
\frac{2 \ln (v) u^{2}-v^{2}}{2 u^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{2 \ln (v) u^{2}-v^{2}}{2 u^{2}}=c_{1}
$$

Which gives

$$
v=\mathrm{e}^{-\frac{\text { LambertW }\left(-\frac{\mathrm{e}^{2 c_{1}}}{u^{2}}\right)}{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in u, v coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d v}{d u}=\frac{v^{3}}{u\left(-u^{2}+v^{2}\right)}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$ 里
		$\xrightarrow{\rightarrow \rightarrow \rightarrow} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 边
		$\xrightarrow{\rightarrow 2} \rightarrow$
	$R=u$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{\text { a }}$
	$2 \ln (v) u^{2}-v^{2}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow{\rightarrow \rightarrow \longrightarrow}$
$\rightarrow \rightarrow$ 为 ${ }^{\text {a }}$		

Summary

The solution（s）found are the following

$$
\begin{equation*}
v=\mathrm{e}^{-\frac{\text { LambertW }\left(-\frac{\mathrm{e}^{2 c_{1}}}{u^{2}}\right)}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 107: Slope field plot

Verification of solutions

$$
v=\mathrm{e}^{-\frac{\text { LambertW }\left(-\frac{\mathrm{e}^{2 c_{1}}}{u^{2}}\right)}{2}+c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 32
dsolve(v(u)~3+(u^3-u*v(u)~2)*diff(v(u),u)=0,v(u), singsol=all)

$$
v(u)=\frac{\mathrm{e}^{-c_{1}}}{\sqrt{-\frac{\mathrm{e}^{-2 c_{1}}}{u^{2} \operatorname{LambertW}\left(-\frac{\mathrm{e}^{-2 c_{1}}}{u^{2}}\right)}}}
$$

\checkmark Solution by Mathematica
Time used: 9.023 (sec). Leaf size: 56
DSolve $\left[v[u]^{\wedge} 3+\left(u^{\wedge} 3-u * v[u]^{\wedge} 2\right) * v^{\prime}[u]==0, v[u], u\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& v(u) \rightarrow-i u \sqrt{W\left(-\frac{e^{-2 c_{1}}}{u^{2}}\right)} \\
& v(u) \rightarrow i u \sqrt{W\left(-\frac{e^{-2 c_{1}}}{u^{2}}\right)} \\
& v(u) \rightarrow 0
\end{aligned}
$$

4.11 problem 11

4.11.1 Solving as homogeneousTypeD ode 581
4.11.2 Solving as homogeneousTypeD2 ode 584
4.11.3 Solving as first order ode lie symmetry lookup ode 585

Internal problem ID [11624]
Internal file name [OUTPUT/10606_Saturday_May_27_2023_03_05_11_AM_67096172/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _dAlembert]
```

$$
x \tan \left(\frac{y}{x}\right)+y-y^{\prime} x=0
$$

4.11.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\tan \left(\frac{y}{x}\right)+\frac{y}{x} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =1 \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\tan \left(\frac{y}{x}\right)
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=\frac{\tan (u(x))}{x}
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\tan (u)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\tan (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (u)} d u & =\frac{1}{x} d x \\
\int \frac{1}{\tan (u)} d u & =\int \frac{1}{x} d x \\
\ln (\sin (u)) & =\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (u)=\mathrm{e}^{\ln (x)+c_{1}}
$$

Which simplifies to

$$
\sin (u)=c_{2} x
$$

Therefore the solution is

$$
\begin{aligned}
y & =u x \\
& =x \arcsin \left(c_{2} x \mathrm{e}^{c_{1}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \arcsin \left(c_{2} x \mathrm{e}^{c_{1}}\right) \tag{1}
\end{equation*}
$$

Figure 108: Slope field plot

Verification of solutions

$$
y=x \arcsin \left(c_{2} x \mathrm{e}^{c_{1}}\right)
$$

Verified OK.

4.11.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x \tan (u(x))+u(x) x-\left(u^{\prime}(x) x+u(x)\right) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\tan (u)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\tan (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (u)} d u & =\frac{1}{x} d x \\
\int \frac{1}{\tan (u)} d u & =\int \frac{1}{x} d x \\
\ln (\sin (u)) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (u)=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sin (u)=c_{3} x
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x \arcsin \left(c_{3} \mathrm{e}^{c_{2}} x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \arcsin \left(c_{3} \mathrm{e}^{c_{2}} x\right) \tag{1}
\end{equation*}
$$

Figure 109: Slope field plot
Verification of solutions

$$
y=x \arcsin \left(c_{3} \mathrm{e}^{c_{2}} x\right)
$$

Verified OK.

4.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x \tan \left(\frac{y}{x}\right)+y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 94: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=x y \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{x y}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x \tan \left(\frac{y}{x}\right)+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\cot \left(\frac{y}{x}\right)}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\cot (R) S(R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{c_{1}}{\sin (R)} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=\frac{c_{1}}{\sin \left(\frac{y}{x}\right)}
$$

Which simplifies to

$$
-\frac{1}{x}=\frac{c_{1}}{\sin \left(\frac{y}{x}\right)}
$$

Which gives

$$
y=-\arcsin \left(c_{1} x\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x \tan \left(\frac{y}{x}\right)+y}{x}$		$\frac{d S}{d R}=-\cot (R) S(R)$
- Lix		
	$R=\frac{y}{x}$	
	$S=-\frac{1}{x}$	
	x	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\arcsin \left(c_{1} x\right) x \tag{1}
\end{equation*}
$$

Figure 110: Slope field plot

Verification of solutions

$$
y=-\arcsin \left(c_{1} x\right) x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 10
dsolve $((x * \tan (y(x) / x)+y(x))-x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\arcsin \left(c_{1} x\right) x
$$

\checkmark Solution by Mathematica
Time used: 8.002 (sec). Leaf size: 19
DSolve $\left[(x * \operatorname{Tan}[y[x] / x]+y[x])-x * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x \arcsin \left(e^{c_{1}} x\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.12 problem 12

4.12.1 Solving as homogeneousTypeD2 ode 592
4.12.2 Solving as first order ode lie symmetry calculated ode 594
4.12.3 Solving as exact ode . 600
4.12.4 Maple step by step solution . 604

Internal problem ID [11625]
Internal file name [OUTPUT/10607_Saturday_May_27_2023_03_05_14_AM_78327122/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]

$$
\left(2 s^{2}+2 s t+t^{2}\right) s^{\prime}+s^{2}+2 s t=t^{2}
$$

4.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables $s=u(t) t$ on the above ode results in new ode in $u(t)$

$$
\left(2 u(t)^{2} t^{2}+2 u(t) t^{2}+t^{2}\right)\left(u^{\prime}(t) t+u(t)\right)+u(t)^{2} t^{2}+2 u(t) t^{2}=t^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{2 u^{3}+3 u^{2}+3 u-1}{t\left(2 u^{2}+2 u+1\right)}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(u)=\frac{2 u^{3}+3 u^{2}+3 u-1}{2 u^{2}+2 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{2 u^{3}+3 u^{2}+3 u-1}{2 u^{2}+2 u+1}} d u & =-\frac{1}{t} d t \\
\int \frac{1}{\frac{2 u^{3}+3 u^{2}+3 u-1}{2 u^{2}+2 u+1}} d u & =\int-\frac{1}{t} d t \\
\frac{\ln \left(2 u^{3}+3 u^{2}+3 u-1\right)}{3} & =-\ln (t)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(2 u^{3}+3 u^{2}+3 u-1\right)^{\frac{1}{3}}=\mathrm{e}^{-\ln (t)+c_{2}}
$$

Which simplifies to

$$
\left(2 u^{3}+3 u^{2}+3 u-1\right)^{\frac{1}{3}}=\frac{c_{3}}{t}
$$

Which simplifies to

$$
\left(2 u(t)^{3}+3 u(t)^{2}+3 u(t)-1\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{t}
$$

The solution is

$$
\left(2 u(t)^{3}+3 u(t)^{2}+3 u(t)-1\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{t}
$$

Replacing $u(t)$ in the above solution by $\frac{s}{t}$ results in the solution for s in implicit form

$$
\begin{aligned}
\left(\frac{2 s^{3}}{t^{3}}+\frac{3 s^{2}}{t^{2}}+\frac{3 s}{t}-1\right)^{\frac{1}{3}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{t} \\
\left(\frac{2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}}{t^{3}}\right)^{\frac{1}{3}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}}{t^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{c}_{2}}{t} \tag{1}
\end{equation*}
$$

Figure 111: Slope field plot
Verification of solutions

$$
\left(\frac{2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}}{t^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{t}
$$

Verified OK.

4.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& s^{\prime}=-\frac{s^{2}+2 s t-t^{2}}{2 s^{2}+2 s t+t^{2}} \\
& s^{\prime}=\omega(t, s)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{s}-\xi_{t}\right)-\omega^{2} \xi_{s}-\omega_{t} \xi-\omega_{s} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=s a_{3}+t a_{2}+a_{1} \tag{1E}\\
& \eta=s b_{3}+t b_{2}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(s^{2}+2 s t-t^{2}\right)\left(b_{3}-a_{2}\right)}{2 s^{2}+2 s t+t^{2}}-\frac{\left(s^{2}+2 s t-t^{2}\right)^{2} a_{3}}{\left(2 s^{2}+2 s t+t^{2}\right)^{2}} \\
& -\left(-\frac{2 s-2 t}{2 s^{2}+2 s t+t^{2}}+\frac{\left(s^{2}+2 s t-t^{2}\right)(2 s+2 t)}{\left(2 s^{2}+2 s t+t^{2}\right)^{2}}\right)\left(s a_{3}+t a_{2}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 s+2 t}{2 s^{2}+2 s t+t^{2}}+\frac{\left(s^{2}+2 s t-t^{2}\right)(4 s+2 t)}{\left(2 s^{2}+2 s t+t^{2}\right)^{2}}\right)\left(s b_{3}+t b_{2}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\underline{2 s^{4} a_{2}+s^{4} a_{3}+4 s^{4} b_{2}-2 s^{4} b_{3}+8 s^{3} t a_{2}-10 s^{3} t a_{3}+8 s^{3} t b_{2}-8 s^{3} t b_{3}-3 s^{2} t^{2} a_{2}-6 s^{2} t^{2} a_{3}+6 s^{2} t^{2} b_{2}+3 s^{2} t^{2} b}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 s^{4} a_{2}+s^{4} a_{3}+4 s^{4} b_{2}-2 s^{4} b_{3}+8 s^{3} t a_{2}-10 s^{3} t a_{3}+8 s^{3} t b_{2}-8 s^{3} t b_{3}-3 s^{2} t^{2} a_{2} \tag{6E}\\
& \quad-6 s^{2} t^{2} a_{3}+6 s^{2} t^{2} b_{2}+3 s^{2} t^{2} b_{3}-4 s t^{3} a_{2}+4 s t^{3} a_{3}+10 s t^{3} b_{2}+4 s t^{3} b_{3}-t^{4} a_{2} \\
& \quad-t^{4} a_{3}+5 t^{4} b_{2}+t^{4} b_{3}+2 s^{3} a_{1}-6 s^{2} t a_{1}-2 s^{2} t b_{1}-4 s t^{2} a_{1}+6 s t^{2} b_{1}+4 t^{3} b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{s, t\}$ in them.

$$
\{s, t\}
$$

The following substitution is now made to be able to collect on all terms with $\{s, t\}$ in them

$$
\left\{s=v_{1}, t=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{4}+8 a_{2} v_{1}^{3} v_{2}-3 a_{2} v_{1}^{2} v_{2}^{2}-4 a_{2} v_{1} v_{2}^{3}-a_{2} v_{2}^{4}+a_{3} v_{1}^{4}-10 a_{3} v_{1}^{3} v_{2} \\
& \quad-6 a_{3} v_{1}^{2} v_{2}^{2}+4 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+4 b_{2} v_{1}^{4}+8 b_{2} v_{1}^{3} v_{2}+6 b_{2} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& \quad+10 b_{2} v_{1} v_{2}^{3}+5 b_{2} v_{2}^{4}-2 b_{3} v_{1}^{4}-8 b_{3} v_{1}^{3} v_{2}+3 b_{3} v_{1}^{2} v_{2}^{2}+4 b_{3} v_{1} v_{2}^{3}+b_{3} v_{2}^{4} \\
& +2 a_{1} v_{1}^{3}-6 a_{1} v_{1}^{2} v_{2}-4 a_{1} v_{1} v_{2}^{2}-2 b_{1} v_{1}^{2} v_{2}+6 b_{1} v_{1} v_{2}^{2}+4 b_{1} v_{2}^{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{2}+a_{3}+4 b_{2}-2 b_{3}\right) v_{1}^{4}+\left(8 a_{2}-10 a_{3}+8 b_{2}-8 b_{3}\right) v_{1}^{3} v_{2} \\
& \quad+2 a_{1} v_{1}^{3}+\left(-3 a_{2}-6 a_{3}+6 b_{2}+3 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(-6 a_{1}-2 b_{1}\right) v_{1}^{2} v_{2}+\left(-4 a_{2}+4 a_{3}+10 b_{2}+4 b_{3}\right) v_{1} v_{2}^{3} \\
& \quad+\left(-4 a_{1}+6 b_{1}\right) v_{1} v_{2}^{2}+\left(-a_{2}-a_{3}+5 b_{2}+b_{3}\right) v_{2}^{4}+4 b_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
4 b_{1} & =0 \\
-6 a_{1}-2 b_{1} & =0 \\
-4 a_{1}+6 b_{1} & =0 \\
-4 a_{2}+4 a_{3}+10 b_{2}+4 b_{3} & =0 \\
-3 a_{2}-6 a_{3}+6 b_{2}+3 b_{3} & =0 \\
-a_{2}-a_{3}+5 b_{2}+b_{3} & =0 \\
2 a_{2}+a_{3}+4 b_{2}-2 b_{3} & =0 \\
8 a_{2}-10 a_{3}+8 b_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=t \\
& \eta=s
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(t, s) \xi \\
& =s-\left(-\frac{s^{2}+2 s t-t^{2}}{2 s^{2}+2 s t+t^{2}}\right)(t) \\
& =\frac{2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}}{2 s^{2}+2 s t+t^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, s) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d s}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial s}\right) S(t, s)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}}{2 s^{2}+2 s t+t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, s) S_{s}}{R_{t}+\omega(t, s) R_{s}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{s}, S_{t}, S_{s}$ are all partial derivatives and $\omega(t, s)$ is the right hand side of the original ode given by

$$
\omega(t, s)=-\frac{s^{2}+2 s t-t^{2}}{2 s^{2}+2 s t+t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{s} & =0 \\
S_{t} & =\frac{s^{2}+2 s t-t^{2}}{2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}} \\
S_{s} & =\frac{2 s^{2}+2 s t+t^{2}}{2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, s in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, s coordinates. This results in

$$
\frac{\ln \left(2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}\right)}{3}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}\right)}{3}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, s coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d s}{d t}=-\frac{s^{2}+2 s t-t^{2}}{2 s^{2}+2 s t+t^{2}}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
	$R=t$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
	$S=\ln \left(2 s^{3}+3 s^{2} t+3 s t\right.$	
	$S=\frac{1}{3}$	\rightarrow R
$\therefore \sim x^{2}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}\right)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot

Verification of solutions

$$
\frac{\ln \left(2 s^{3}+3 s^{2} t+3 s t^{2}-t^{3}\right)}{3}=c_{1}
$$

Verified OK.

4.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, s) \mathrm{d} t+N(t, s) \mathrm{d} s=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 s^{2}+2 s t+t^{2}\right) \mathrm{d} s & =\left(-s^{2}-2 s t+t^{2}\right) \mathrm{d} t \\
\left(s^{2}+2 s t-t^{2}\right) \mathrm{d} t+\left(2 s^{2}+2 s t+t^{2}\right) \mathrm{d} s & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, s)=s^{2}+2 s t-t^{2} \\
& N(t, s)=2 s^{2}+2 s t+t^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial s}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial s} & =\frac{\partial}{\partial s}\left(s^{2}+2 s t-t^{2}\right) \\
& =2 s+2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(2 s^{2}+2 s t+t^{2}\right) \\
& =2 s+2 t
\end{aligned}
$$

Since $\frac{\partial M}{\partial s}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, s)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial s}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int s^{2}+2 s t-t^{2} \mathrm{~d} t \\
\phi & =s^{2} t+s t^{2}-\frac{1}{3} t^{3}+f(s) \tag{3}
\end{align*}
$$

Where $f(s)$ is used for the constant of integration since ϕ is a function of both t and s. Taking derivative of equation (3) w.r.t s gives

$$
\begin{align*}
\frac{\partial \phi}{\partial s} & =2 s t+t^{2}+f^{\prime}(s) \tag{4}\\
& =t(2 s+t)+f^{\prime}(s)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial s}=2 s^{2}+2 s t+t^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 s^{2}+2 s t+t^{2}=t(2 s+t)+f^{\prime}(s) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(s)$ gives

$$
f^{\prime}(s)=2 s^{2}
$$

Integrating the above w.r.t s gives

$$
\begin{aligned}
\int f^{\prime}(s) \mathrm{d} s & =\int\left(2 s^{2}\right) \mathrm{d} s \\
f(s) & =\frac{2 s^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(s)$ into equation (3) gives ϕ

$$
\phi=s^{2} t+s t^{2}-\frac{1}{3} t^{3}+\frac{2}{3} s^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=s^{2} t+s t^{2}-\frac{1}{3} t^{3}+\frac{2}{3} s^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
s^{2} t+s t^{2}-\frac{t^{3}}{3}+\frac{2 s^{3}}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 113: Slope field plot

Verification of solutions

$$
s^{2} t+s t^{2}-\frac{t^{3}}{3}+\frac{2 s^{3}}{3}=c_{1}
$$

Verified OK.

4.12.4 Maple step by step solution

Let's solve

$$
\left(2 s^{2}+2 s t+t^{2}\right) s^{\prime}+s^{2}+2 s t=t^{2}
$$

- Highest derivative means the order of the ODE is 1 s^{\prime}
$\square \quad$ Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(t, s)=0$
- Compute derivative of lhs

$$
F^{\prime}(t, s)+\left(\frac{\partial}{\partial s} F(t, s)\right) s^{\prime}=0
$$

- Evaluate derivatives

$$
2 s+2 t=2 s+2 t
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(t, s)=c_{1}, M(t, s)=F^{\prime}(t, s), N(t, s)=\frac{\partial}{\partial s} F(t, s)\right]
$$

- \quad Solve for $F(t, s)$ by integrating $M(t, s)$ with respect to t

$$
F(t, s)=\int\left(s^{2}+2 s t-t^{2}\right) d t+f_{1}(s)
$$

- Evaluate integral

$$
F(t, s)=s^{2} t+s t^{2}-\frac{t^{3}}{3}+f_{1}(s)
$$

- \quad Take derivative of $F(t, s)$ with respect to s

$$
N(t, s)=\frac{\partial}{\partial s} F(t, s)
$$

- Compute derivative
$2 s^{2}+2 s t+t^{2}=2 s t+t^{2}+\frac{d}{d s} f_{1}(s)$
- Isolate for $\frac{d}{d s} f_{1}(s)$

$$
\frac{d}{d s} f_{1}(s)=2 s^{2}
$$

- \quad Solve for $f_{1}(s)$
$f_{1}(s)=\frac{2 s^{3}}{3}$
- \quad Substitute $f_{1}(s)$ into equation for $F(t, s)$
$F(t, s)=s^{2} t+s t^{2}-\frac{1}{3} t^{3}+\frac{2}{3} s^{3}$
- \quad Substitute $F(t, s)$ into the solution of the ODE

$$
s^{2} t+s t^{2}-\frac{1}{3} t^{3}+\frac{2}{3} s^{3}=c_{1}
$$

- \quad Solve for s

$$
\left\{s=\frac{\left(4 t^{3}+6 c_{1}+\sqrt{17 t^{6}+48 t^{3} c_{1}+36 c_{1}^{2}}\right)^{\frac{1}{3}}}{2}-\frac{t^{2}}{2\left(4 t^{3}+6 c_{1}+\sqrt{17 t^{6}+48 t^{3} c_{1}+36 c_{1}^{2}}\right)^{\frac{1}{3}}}-\frac{t}{2}, s=-\frac{\left(4 t^{3}+6 c_{1}+\sqrt{17 t^{6}+48 t^{3} c_{1}+}\right.}{4}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 348
dsolve($\left(2 * s(t) \wedge 2+2 * s(t) * t+t^{\wedge} 2\right) * \operatorname{diff}(s(t), t)+\left(s(t) \wedge 2+2 * s(t) * t-t^{\wedge} 2\right)=0, s(t), \quad$ singsol $\left.=a l l\right)$

$$
\begin{aligned}
& s(t)=\frac{\left(4 t^{3} c_{1}^{3}+2+\sqrt{17 c_{1}^{6} t^{6}+16 t^{3} c_{1}^{3}+4}\right)^{\frac{1}{3}}-\frac{t^{2} c_{1}^{2}}{\left(4 t^{3} c_{1}^{3}+2+\sqrt{17 c_{1}^{6} t^{6}+16 t^{3} c_{1}^{3}+4}\right)^{\frac{1}{3}}}-c_{1} t}{2 c_{1}} \\
& s(t)= \\
& -\frac{(1+i \sqrt{3})\left(4 t^{3} c_{1}^{3}+2+\sqrt{17 c_{1}^{6} t^{6}+16 t^{3} c_{1}^{3}+4}\right)^{\frac{2}{3}}+c_{1} t\left(2\left(4 t^{3} c_{1}^{3}+2+\sqrt{17 c_{1}^{6} t^{6}+16 t^{3} c_{1}^{3}+4}\right)^{\frac{1}{3}}+\left(i \sqrt{4\left(4 t^{3} c_{1}^{3}+2+\sqrt{17 c_{1}^{6} t^{6}+16 t^{3} c_{1}^{3}+4}\right)^{\frac{1}{3}} c_{1}}\right.\right.}{s(t)} \\
& =\frac{(i \sqrt{3}-1)\left(4 t^{3} c_{1}^{3}+2+\sqrt{17 c_{1}^{6} t^{6}+16 t^{3} c_{1}^{3}+4}\right)^{\frac{2}{3}}+\left(-2\left(4 t^{3} c_{1}^{3}+2+\sqrt{17 c_{1}^{6} t^{6}+16 t^{3} c_{1}^{3}+4}\right)^{\frac{1}{3}}+c_{1} t(1-\right.}{4\left(4 t^{3} c_{1}^{3}+2+\sqrt{17 c_{1}^{6} t^{6}+16 t^{3} c_{1}^{3}+4}\right)^{\frac{1}{3}} c_{1}}
\end{aligned}
$$

Solution by Mathematica

Time used: 48.03 (sec). Leaf size: 616
DSolve $\left[\left(2 * s[t] \sim 2+2 * s[t] * t+t^{\wedge} 2\right) * s^{\prime}[t]+\left(s[t] \sim 2+2 * s[t] * t-t^{\wedge} 2\right)==0, s[t], t\right.$, IncludeSingularSolution

$$
\begin{aligned}
& s(t) \rightarrow \frac{1}{2}\left(\sqrt[3]{4 t^{3}+\sqrt{17 t^{6}+16 e^{3 c_{1}} t^{3}+4 e^{6 c_{1}}}+2 e^{3 c_{1}}}\right. \\
& \left.-\frac{t^{2}}{\sqrt[3]{4 t^{3}+\sqrt{17 t^{6}+16 e^{3 c_{1}} t^{3}+4 e^{6 c_{1}}}+2 e^{3 c_{1}}}}-t\right) \\
& s(t) \rightarrow \frac{1}{8}\left(2 i(\sqrt{3}+i) \sqrt[3]{4 t^{3}+\sqrt{17 t^{6}+16 e^{3 c_{1}} t^{3}+4 e^{6 c_{1}}}+2 e^{3 c_{1}}}\right. \\
& \left.+\frac{2(1+i \sqrt{3}) t^{2}}{\sqrt[3]{4 t^{3}+\sqrt{17 t^{6}+16 e^{3 c_{1}} t^{3}+4 e^{6 c_{1}}}+2 e^{3 c_{1}}}}-4 t\right) \\
& s(t) \rightarrow \frac{1}{8}\left(-2(1+i \sqrt{3}) \sqrt[3]{4 t^{3}+\sqrt{17 t^{6}+16 e^{3 c_{1}} t^{3}+4 e^{6 c_{1}}}+2 e^{3 c_{1}}}\right. \\
& \left.+\frac{2(1-i \sqrt{3}) t^{2}}{\sqrt[3]{4 t^{3}+\sqrt{17 t^{6}+16 e^{3 c_{1}} t^{3}+4 e^{6 c_{1}}}+2 e^{3 c_{1}}}}-4 t\right) \\
& s(t) \rightarrow \frac{1}{2}\left(\sqrt[3]{\sqrt{17} \sqrt{t^{6}}+4 t^{3}}-\frac{t^{2}}{\sqrt[3]{\sqrt{17} \sqrt{t^{6}}+4 t^{3}}}-t\right) \\
& s(t) \rightarrow \frac{1}{4}\left((-1-i \sqrt{3}) \sqrt[3]{\sqrt{17} \sqrt{t^{6}}+4 t^{3}}+\frac{(1-i \sqrt{3}) t^{2}}{\sqrt[3]{\sqrt{17} \sqrt{t^{6}}+4 t^{3}}}-2 t\right) \\
& s(t) \rightarrow \frac{1}{4}\left(i(\sqrt{3}+i) \sqrt[3]{\sqrt{17} \sqrt{t^{6}}+4 t^{3}}+\frac{(1+i \sqrt{3}) t^{2}}{\sqrt[3]{\sqrt{17} \sqrt{t^{6}}+4 t^{3}}}-2 t\right)
\end{aligned}
$$

4.13 problem 13

4.13.1 Solving as first order ode lie symmetry calculated ode 608
4.13.2 Solving as exact ode . 615

Internal problem ID [11626]
Internal file name [OUTPUT/10608_Saturday_May_27_2023_03_05_22_AM_44852541/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _dAlembert]
```

$$
y^{2} \sqrt{x^{2}+y^{2}}-x y \sqrt{x^{2}+y^{2}} y^{\prime}=-x^{3}
$$

4.13.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x y \sqrt{x^{2}+y^{2}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(x^{3}+y^{2} \sqrt{x^{2}+y^{2}}\right)\left(b_{3}-a_{2}\right)}{x y \sqrt{x^{2}+y^{2}}}-\frac{\left(x^{3}+y^{2} \sqrt{x^{2}+y^{2}}\right)^{2} a_{3}}{x^{2} y^{2}\left(x^{2}+y^{2}\right)} \\
& -\left(\frac{3 x^{2}+\frac{y^{2} x}{\sqrt{x^{2}+y^{2}}}}{x y \sqrt{x^{2}+y^{2}}}-\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x^{2} y \sqrt{x^{2}+y^{2}}}-\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{y\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 y \sqrt{x^{2}+y^{2}}+\frac{y^{3}}{\sqrt{x^{2}+y^{2}}}}{x y \sqrt{x^{2}+y^{2}}}-\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x y^{2} \sqrt{x^{2}+y^{2}}}\right. \\
& \left.-\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\underline{\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{6} a_{3}-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} y^{6} a_{3}-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} y^{5} a_{1}-2 x^{8} y b_{3}+3 x^{4} y^{5} a_{2}+4 x^{3} y^{6} a_{3}+2 x^{3} y^{5} a_{1}-x^{9} b_{2}-}
$$

$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{6} a_{3}+\left(x^{2}+y^{2}\right)^{\frac{3}{2}} y^{6} a_{3}+\left(x^{2}+y^{2}\right)^{\frac{3}{2}} y^{5} a_{1}+2 x^{8} y b_{3} \\
& \quad-3 x^{4} y^{5} a_{2}-4 x^{3} y^{6} a_{3}-2 x^{3} y^{5} a_{1}+x^{9} b_{2}+x^{8} b_{1}+\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{2} y^{4} a_{3} \tag{6E}\\
& -\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{3} y^{2} b_{1}+\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{2} y^{3} a_{1}-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x y^{4} b_{1}-2 x^{8} y a_{2} \\
& -3 x^{7} y^{2} a_{3}+3 x^{7} y^{2} b_{2}-5 x^{6} y^{3} a_{2}+5 x^{6} y^{3} b_{3}-7 x^{5} y^{4} a_{3}+2 x^{5} y^{4} b_{2} \\
& +3 x^{4} y^{5} b_{3}-x^{7} y a_{1}+3 x^{6} y^{2} b_{1}-3 x^{5} y^{3} a_{1}+2 x^{4} y^{4} b_{1}-\left(x^{2}+y^{2}\right)^{\frac{5}{2}} y^{4} a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{6} a_{3}+\left(x^{2}+y^{2}\right)^{\frac{3}{2}} y^{6} a_{3}+\left(x^{2}+y^{2}\right) x^{7} b_{2} \\
& +\left(x^{2}+y^{2}\right)^{\frac{3}{2}} y^{5} a_{1}+\left(x^{2}+y^{2}\right) x^{6} b_{1}-2\left(x^{2}+y^{2}\right)^{2} x^{3} y^{2} a_{3} \\
& +\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{2} y^{4} a_{3}-3\left(x^{2}+y^{2}\right) x^{6} y a_{2}+2\left(x^{2}+y^{2}\right) x^{6} y b_{3} \\
& -2\left(x^{2}+y^{2}\right) x^{5} y^{2} a_{3}+\left(x^{2}+y^{2}\right) x^{5} y^{2} b_{2}-3\left(x^{2}+y^{2}\right) x^{4} y^{3} a_{2} \tag{6E}\\
& +2\left(x^{2}+y^{2}\right) x^{4} y^{3} b_{3}-2\left(x^{2}+y^{2}\right) x^{3} y^{4} a_{3}-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{3} y^{2} b_{1} \\
& +\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x^{2} y^{3} a_{1}-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} x y^{4} b_{1}-2\left(x^{2}+y^{2}\right) x^{5} y a_{1} \\
& +\left(x^{2}+y^{2}\right) x^{4} y^{2} b_{1}-2\left(x^{2}+y^{2}\right) x^{3} y^{3} a_{1}+x^{8} y a_{2}+x^{7} y^{2} a_{3} \\
& +x^{7} y^{2} b_{2}+x^{6} y^{3} a_{2}+x^{3} y^{3} b_{3}+x^{5} y^{4} a_{3}+x^{5} y^{4} b_{2}+x^{4} y^{5} b_{3} \\
& +x^{7} y a_{1}+x^{6} y^{2} b_{1}+x^{5} y^{3} a_{1}+x^{4} y^{4} b_{1}-\left(x^{2}+y^{2}\right)^{\frac{5}{2}} y^{4} a_{3}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -x^{8} \sqrt{x^{2}+y^{2}} a_{3}+\sqrt{x^{2}+y^{2}} y^{7} a_{1}-2 x^{3} \sqrt{x^{2}+y^{2}} y^{4} b_{1}+2 x^{2} \sqrt{x^{2}+y^{2}} y^{5} a_{1} \\
& \quad-x \sqrt{x^{2}+y^{2}} y^{6} b_{1}+2 x^{8} y b_{3}-3 x^{4} y^{5} a_{2}-4 x^{3} y^{6} a_{3}-2 x^{3} y^{5} a_{1} \\
& -x^{6} \sqrt{x^{2}+y^{2}} y^{2} a_{3}-x^{5} \sqrt{x^{2}+y^{2}} y^{2} b_{1}+x^{4} \sqrt{x^{2}+y^{2}} y^{3} a_{1}+x^{9} b_{2} \\
& +x^{8} b_{1}-2 x^{8} y a_{2}-3 x^{7} y^{2} a_{3}+3 x^{7} y^{2} b_{2}-5 x^{6} y^{3} a_{2}+5 x^{6} y^{3} b_{3}-7 x^{5} y^{4} a_{3} \\
& +2 x^{5} y^{4} b_{2}+3 x^{4} y^{5} b_{3}-x^{7} y a_{1}+3 x^{6} y^{2} b_{1}-3 x^{5} y^{3} a_{1}+2 x^{4} y^{4} b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{1}^{8} v_{2} a_{2}-5 v_{1}^{6} v_{2}^{3} a_{2}-3 v_{1}^{4} v_{2}^{5} a_{2}-v_{1}^{8} v_{3} a_{3}-3 v_{1}^{7} v_{2}^{2} a_{3}-v_{1}^{6} v_{3} v_{2}^{2} a_{3}-7 v_{1}^{5} v_{2}^{4} a_{3} \\
& -4 v_{1}^{3} v_{2}^{6} a_{3}+v_{1}^{9} b_{2}+3 v_{1}^{7} v_{2}^{2} b_{2}+2 v_{1}^{5} v_{2}^{4} b_{2}+2 v_{1}^{8} v_{2} b_{3}+5 v_{1}^{6} v_{2}^{3} b_{3}+3 v_{1}^{4} v_{2}^{5} b_{3} \tag{7E}\\
& -v_{1}^{7} v_{2} a_{1}-3 v_{1}^{5} v_{2}^{3} a_{1}+v_{1}^{4} v_{3} v_{2}^{3} a_{1}-2 v_{1}^{3} v_{2}^{5} a_{1}+2 v_{1}^{2} v_{3} v_{2}^{5} a_{1}+v_{3} v_{2}^{7} a_{1} \\
& +v_{1}^{8} b_{1}+3 v_{1}^{6} v_{2}^{2} b_{1}-v_{1}^{5} v_{3} v_{2}^{2} b_{1}+2 v_{1}^{4} v_{2}^{4} b_{1}-2 v_{1}^{3} v_{3} v_{2}^{4} b_{1}-v_{1} v_{3} v_{2}^{6} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& v_{1}^{9} b_{2}+\left(-2 a_{2}+2 b_{3}\right) v_{1}^{8} v_{2}-v_{1}^{8} v_{3} a_{3}+v_{1}^{8} b_{1}+\left(-3 a_{3}+3 b_{2}\right) v_{1}^{7} v_{2}^{2}-v_{1}^{7} v_{2} a_{1} \\
& \quad+\left(-5 a_{2}+5 b_{3}\right) v_{1}^{6} v_{2}^{3}-v_{1}^{6} v_{3} v_{2}^{2} a_{3}+3 v_{1}^{6} v_{2}^{2} b_{1}+\left(-7 a_{3}+2 b_{2}\right) v_{1}^{5} v_{2}^{4} \tag{8E}\\
& \quad-3 v_{1}^{5} v_{2}^{3} a_{1}-v_{1}^{5} v_{3} v_{2}^{2} b_{1}+\left(-3 a_{2}+3 b_{3}\right) v_{1}^{4} v_{2}^{5}+2 v_{1}^{4} v_{2}^{4} b_{1}+v_{1}^{4} v_{3} v_{2}^{3} a_{1} \\
& \quad-4 v_{1}^{3} v_{2}^{6} a_{3}-2 v_{1}^{3} v_{2}^{5} a_{1}-2 v_{1}^{3} v_{3} v_{2}^{4} b_{1}+2 v_{1}^{2} v_{3} v_{2}^{5} a_{1}-v_{1} v_{3} v_{2}^{6} b_{1}+v_{3} v_{2}^{7} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
-3 a_{1} & =0 \\
-2 a_{1} & =0 \\
-a_{1} & =0 \\
2 a_{1} & =0 \\
-4 a_{3} & =0 \\
-a_{3} & =0 \\
-2 b_{1} & =0 \\
-b_{1} & =0 \\
2 b_{1} & =0 \\
3 b_{1} & =0 \\
-5 a_{2}+5 b_{3} & =0 \\
-3 a_{2}+3 b_{3} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
-7 a_{3}+2 b_{2} & =0 \\
-3 a_{3}+3 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x y \sqrt{x^{2}+y^{2}}}\right)(x) \\
& =-\frac{x^{3}}{y \sqrt{x^{2}+y^{2}}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{x^{3}}{y \sqrt{x^{2}+y^{2}}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}{3 x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x y \sqrt{x^{2}+y^{2}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\sqrt{x^{2}+y^{2}} y^{2}}{x^{4}} \\
S_{y} & =-\frac{y \sqrt{x^{2}+y^{2}}}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}{3 x^{3}}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}{3 x^{3}}=-\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x y \sqrt{x^{2}+y^{2}}}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\xrightarrow{\text { P }}$
		${ }_{\rightarrow \rightarrow \infty} \rightarrow+\infty$
		$\rightarrow \infty$
	$R=x$	$\rightarrow \pm \pm \infty$
	$S=-\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}{3 x}$	
	$S=-\frac{\left(x^{2}+y^{3}\right)}{3 x^{3}}$	${ }_{\square \rightarrow \infty}+\infty \times \infty$
		砤
		$\rightarrow+\infty \times \infty$ -

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}{3 x^{3}}=-\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot

Verification of solutions

$$
-\frac{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}{3 x^{3}}=-\ln (x)+c_{1}
$$

Verified OK.

4.13.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x y \sqrt{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-x^{3}-y^{2} \sqrt{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(x^{3}+y^{2} \sqrt{x^{2}+y^{2}}\right) \mathrm{d} x+\left(-x y \sqrt{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=x^{3}+y^{2} \sqrt{x^{2}+y^{2}} \\
& N(x, y)=-x y \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{3}+y^{2} \sqrt{x^{2}+y^{2}}\right) \\
& =\frac{2 x^{2} y+3 y^{3}}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x y \sqrt{x^{2}+y^{2}}\right) \\
& =\frac{\left(-2 x^{2}-y^{2}\right) y}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x y \sqrt{x^{2}+y^{2}}}\left(\left(2 y \sqrt{x^{2}+y^{2}}+\frac{y^{3}}{\sqrt{x^{2}+y^{2}}}\right)-\left(-y \sqrt{x^{2}+y^{2}}-\frac{x^{2} y}{\sqrt{x^{2}+y^{2}}}\right)\right) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(x^{3}+y^{2} \sqrt{x^{2}+y^{2}}\right) \\
& =\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}\left(-x y \sqrt{x^{2}+y^{2}}\right) \\
& =-\frac{y \sqrt{x^{2}+y^{2}}}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x^{4}}\right)+\left(-\frac{y \sqrt{x^{2}+y^{2}}}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{3}+y^{2} \sqrt{x^{2}+y^{2}}}{x^{4}} \mathrm{~d} x \\
\phi & =\frac{3 \ln (x) x^{3}-x^{2} \sqrt{x^{2}+y^{2}}-y^{2} \sqrt{x^{2}+y^{2}}}{3 x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{-\frac{x^{2} y}{\sqrt{x^{2}+y^{2}}}-2 y \sqrt{x^{2}+y^{2}}-\frac{y^{3}}{\sqrt{x^{2}+y^{2}}}}{3 x^{3}}+f^{\prime}(y) \tag{4}\\
& =-\frac{y \sqrt{x^{2}+y^{2}}}{x^{3}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y \sqrt{x^{2}+y^{2}}}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y \sqrt{x^{2}+y^{2}}}{x^{3}}=-\frac{y \sqrt{x^{2}+y^{2}}}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{3 \ln (x) x^{3}-x^{2} \sqrt{x^{2}+y^{2}}-y^{2} \sqrt{x^{2}+y^{2}}}{3 x^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{3 \ln (x) x^{3}-x^{2} \sqrt{x^{2}+y^{2}}-y^{2} \sqrt{x^{2}+y^{2}}}{3 x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{3 \ln (x) x^{3}-x^{2} \sqrt{x^{2}+y^{2}}-y^{2} \sqrt{x^{2}+y^{2}}}{3 x^{3}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot

Verification of solutions

$$
\frac{3 \ln (x) x^{3}-x^{2} \sqrt{x^{2}+y^{2}}-y^{2} \sqrt{x^{2}+y^{2}}}{3 x^{3}}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 42
dsolve $\left(\left(x^{\wedge} 3+y(x) \wedge 2 * \operatorname{sqrt}\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)\right)-x * y(x) * \operatorname{sqrt}\left(x^{\wedge} 2+y(x)^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol $=a l$

$$
\frac{\left(-y(x)^{2}-x^{2}\right) \sqrt{y(x)^{2}+x^{2}}-x^{3}\left(c_{1}-3 \ln (x)\right)}{x^{3}}=0
$$

\checkmark Solution by Mathematica
Time used: 28.664 (sec). Leaf size: 265
DSolve $\left[\left(x^{\wedge} 3+y[x] \sim 2 * \operatorname{Sqrt}\left[x^{\wedge} 2+y[x] \wedge 2\right]\right)-x * y[x] * S q r t\left[x^{\wedge} 2+y[x]^{\wedge} 2\right] * y '[x]==0, y[x], x\right.$, IncludeSingular

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x^{2}-\frac{1}{2} \sqrt[6]{3}(\sqrt{3}+3 i) \sqrt[3]{x^{6}\left(\log (x)+c_{1}\right)^{2}}} \\
& y(x) \rightarrow \sqrt{-x^{2}-\frac{1}{2} \sqrt[6]{3}(\sqrt{3}+3 i) \sqrt[3]{x^{6}\left(\log (x)+c_{1}\right)^{2}}} \\
& y(x) \rightarrow-\sqrt{-x^{2}-\frac{1}{2} \sqrt[6]{3}(\sqrt{3}-3 i) \sqrt[3]{x^{6}\left(\log (x)+c_{1}\right)^{2}}} \\
& y(x) \rightarrow \sqrt{-x^{2}-\frac{1}{2} \sqrt[6]{3}(\sqrt{3}-3 i) \sqrt[3]{x^{6}\left(\log (x)+c_{1}\right)^{2}}} \\
& y(x) \rightarrow-\sqrt{-x^{2}+3^{2 / 3} \sqrt[3]{x^{6}\left(\log (x)+c_{1}\right)^{2}}} \\
& y(x) \rightarrow \sqrt{-x^{2}+3 / \sqrt[3]{x^{6}\left(\log (x)+c_{1}\right)^{2}}}
\end{aligned}
$$

4.14 problem 14

4.14.1 Solving as first order ode lie symmetry calculated ode 622

Internal problem ID [11627]
Internal file name [OUTPUT/10609_Saturday_May_27_2023_03_05_26_AM_83606361/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _dAlembert]

$$
\sqrt{y+x}+\sqrt{-y+x}+(\sqrt{-y+x}-\sqrt{y+x}) y^{\prime}=0
$$

4.14.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sqrt{y+x}+\sqrt{-y+x}}{\sqrt{-y+x}-\sqrt{y+x}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(\sqrt{y+x}+\sqrt{-y+x})\left(b_{3}-a_{2}\right)}{\sqrt{-y+x}-\sqrt{y+x}} \\
& -\frac{(\sqrt{y+x}+\sqrt{-y+x})^{2} a_{3}}{(\sqrt{-y+x}-\sqrt{y+x})^{2}}-\left(-\frac{\frac{1}{2 \sqrt{y+x}}+\frac{1}{\sqrt{-y+x}-\sqrt{y+x}}}{(\sqrt{-y+x}-\sqrt{y+x})^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& +\frac{(\sqrt{y+x}+\sqrt{-y+x})\left(\frac{1}{2 \sqrt{-y+x}}-\frac{1}{2 \sqrt{y+x}}\right)}{(\sqrt{2})} \tag{5E}\\
& -\left(-\frac{\frac{1}{2 \sqrt{y+x}}-\frac{1}{2 \sqrt{-y+x}}}{\sqrt{-y+x}-\sqrt{y+x}}\right. \\
& \left.+\frac{(\sqrt{y+x}+\sqrt{-y+x})\left(-\frac{1}{2 \sqrt{-y+x}}-\frac{1}{2 \sqrt{y+x}}\right)}{(\sqrt{-y+x}-\sqrt{y+x})^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{(y+x)^{\frac{3}{2}} \sqrt{-y+x} a_{2}+(y+x)^{\frac{3}{2}} \sqrt{-y+x} a_{3}-(y+x)^{\frac{3}{2}} \sqrt{-y+x} b_{2}-(y+x)^{\frac{3}{2}} \sqrt{-y+x} b_{3}-\sqrt{y+x}}{(-\sqrt{-}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -(y+x)^{\frac{3}{2}} \sqrt{-y+x} a_{2}-(y+x)^{\frac{3}{2}} \sqrt{-y+x} a_{3}+(y+x)^{\frac{3}{2}} \sqrt{-y+x} b_{2} \\
& +(y+x)^{\frac{3}{2}} \sqrt{-y+x} b_{3}+\sqrt{y+x}(-y+x)^{\frac{3}{2}} a_{2}-\sqrt{y+x}(-y+x)^{\frac{3}{2}} a_{3} \tag{6E}\\
& +\sqrt{y+x}(-y+x)^{\frac{3}{2}} b_{2}-\sqrt{y+x}(-y+x)^{\frac{3}{2}} b_{3}-2 x^{2} a_{3} \\
& -2 x a_{2} y+2 y b_{3} x+2 y^{2} b_{2}+2 b_{1} x-2 a_{1} y=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -(y+x)^{\frac{3}{2}} \sqrt{-y+x} a_{2}-(y+x)^{\frac{3}{2}} \sqrt{-y+x} a_{3}+(y+x)^{\frac{3}{2}} \sqrt{-y+x} b_{2} \\
& +(y+x)^{\frac{3}{2}} \sqrt{-y+x} b_{3}-2(y+x)(-y+x) a_{3}-2(y+x)(-y+x) b_{2} \\
& +\sqrt{y+x}(-y+x)^{\frac{3}{2}} a_{2}-\sqrt{y+x}(-y+x)^{\frac{3}{2}} a_{3}+\sqrt{y+x}(-y+x)^{\frac{3}{2}} b_{2} \tag{6E}\\
& -\sqrt{y+x}(-y+x)^{\frac{3}{2}} b_{3}-(y+x) x a_{2}+(y+x) x b_{2}-(y+x) y a_{3} \\
& +(y+x) y b_{3}+(-y+x) x a_{2}+(-y+x) x b_{2}+(-y+x) y a_{3} \\
& +(-y+x) y b_{3}-(y+x) a_{1}+(y+x) b_{1}+(-y+x) a_{1}+(-y+x) b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -2 \sqrt{y+x} \sqrt{-y+x} a_{3} x+2 \sqrt{y+x} \sqrt{-y+x} b_{2} x-2 \sqrt{y+x} \sqrt{-y+x} a_{2} y \\
& +2 \sqrt{y+x} \sqrt{-y+x} b_{3} y-2 x^{2} a_{3}-2 x a_{2} y+2 y b_{3} x+2 y^{2} b_{2}+2 b_{1} x-2 a_{1} y=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{-y+x}, \sqrt{y+x}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{-y+x}=v_{3}, \sqrt{y+x}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{4} v_{3} a_{2} v_{2}-2 v_{4} v_{3} a_{3} v_{1}+2 v_{4} v_{3} b_{2} v_{1}+2 v_{4} v_{3} b_{3} v_{2}-2 v_{1} a_{2} v_{2} \tag{7E}\\
& -2 v_{1}^{2} a_{3}+2 v_{2}^{2} b_{2}+2 v_{2} b_{3} v_{1}-2 a_{1} v_{2}+2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 v_{1}^{2} a_{3}+\left(-2 a_{2}+2 b_{3}\right) v_{1} v_{2}+\left(-2 a_{3}+2 b_{2}\right) v_{1} v_{3} v_{4} \tag{8E}\\
& +2 b_{1} v_{1}+2 v_{2}^{2} b_{2}+\left(-2 a_{2}+2 b_{3}\right) v_{2} v_{3} v_{4}-2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
-2 a_{3} & =0 \\
2 b_{1} & =0 \\
2 b_{2} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
-2 a_{3}+2 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{x} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sqrt{y+x}+\sqrt{-y+x}}{\sqrt{-y+x}-\sqrt{y+x}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{(-\sqrt{-y+x}+\sqrt{y+x}) x}{(y+x) \sqrt{-y+x}+\sqrt{y+x}(-y+x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{-\sqrt{-1+R}-i \sqrt{1+R}}{(1+R) \sqrt{-1+R}+i \sqrt{1+R}(-1+R)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{i \sqrt{-1+R} \sqrt{1+R} \arctan \left(\frac{1}{\sqrt{R^{2}-1}}\right)}{\sqrt{R^{2}-1}}-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=\frac{i \sqrt{\frac{y}{x}-1} \sqrt{\frac{y}{x}+1} \arctan \left(\frac{1}{\sqrt{\frac{y^{2}}{x^{2}}-1}}\right)}{\sqrt{\frac{y^{2}}{x^{2}}-1}}-\ln \left(\frac{y}{x}\right)+c_{1}
$$

Which simplifies to

$$
\ln (x)=\frac{i \sqrt{\frac{y}{x}-1} \sqrt{\frac{y}{x}+1} \arctan \left(\frac{1}{\sqrt{\frac{y^{2}}{x^{2}}-1}}\right)}{\sqrt{\frac{y^{2}}{x^{2}}-1}}-\ln \left(\frac{y}{x}\right)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\sqrt{y+x}+\sqrt{-y+x}}{\sqrt{-y+x}-\sqrt{y+x}}$		$\frac{d S}{d R}=\frac{-\sqrt{-1+R}-i \sqrt{1+R}}{(1+R) \sqrt{-1+R}+i \sqrt{1+R}(-1+R)}$
2		

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln (x)=\frac{i \sqrt{\frac{y}{x}-1} \sqrt{\frac{y}{x}+1} \arctan \left(\frac{1}{\sqrt{\frac{y^{2}}{x^{2}}-1}}\right)}{\sqrt{\frac{y^{2}}{x^{2}}-1}}-\ln \left(\frac{y}{x}\right)+c_{1} \tag{1}
\end{equation*}
$$

Figure 116: Slope field plot

Verification of solutions

$$
\ln (x)=\frac{i \sqrt{\frac{y}{x}-1} \sqrt{\frac{y}{x}+1} \arctan \left(\frac{1}{\sqrt{\frac{y^{2}}{x^{2}}-1}}\right)}{\sqrt{\frac{y^{2}}{x^{2}}-1}}-\ln \left(\frac{y}{x}\right)+c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = y(x)/x, y(x)`
        Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- 1st order, canonical coordinates successful`
```

Solution by Maple
Time used: 2.796 (sec). Leaf size: 36

```
dsolve((sqrt (x+y(x))+sqrt(x-y(x)))+(sqrt(x-y(x))-sqrt(x+y(x)))*diff(y(x),x)=0,y(x), singsol=
```

$$
\ln (x)+\ln \left(\frac{y(x)}{x}\right)-\operatorname{arctanh}\left(\frac{1}{\sqrt{-\frac{-x^{2}+y(x)^{2}}{x^{2}}}}\right)-c_{1}=0
$$

Solution by Mathematica
Time used: 2.828 (sec). Leaf size: 84
DSolve[(Sqrt $[x+y[x]]+\operatorname{Sqrt}[x-y[x]])+(\operatorname{Sqrt}[x-y[x]]-\operatorname{Sqrt}[x+y[x]]) * y \cdot[x]==0, y[x], x$, IncludeSingul

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{4}\left(\cosh \left(\frac{c_{1}}{2}\right)+\sinh \left(\frac{c_{1}}{2}\right)\right) \sqrt{-8 i x+\cosh \left(c_{1}\right)+\sinh \left(c_{1}\right)} \\
& y(x) \rightarrow \frac{1}{4}\left(\cosh \left(\frac{c_{1}}{2}\right)+\sinh \left(\frac{c_{1}}{2}\right)\right) \sqrt{-8 i x+\cosh \left(c_{1}\right)+\sinh \left(c_{1}\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.15 problem 15

4.15.1 Existence and uniqueness analysis 631
4.15.2 Solving as separable ode . 632
4.15.3 Solving as first order ode lie symmetry lookup ode 634
4.15.4 Solving as exact ode . 638
4.15.5 Maple step by step solution . 642

Internal problem ID [11628]
Internal file name [OUTPUT/10610_Saturday_May_27_2023_03_05_35_AM_36326262/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y+y(x+4) y^{\prime}=-2
$$

With initial conditions

$$
[y(-3)=-1]
$$

4.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{y+2}{y(x+4)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{x<-4 \vee-4<x\}
$$

And the point $x_{0}=-3$ is inside this domain. The y domain of $f(x, y)$ when $x=-3$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y+2}{y(x+4)}\right) \\
& =-\frac{1}{y(x+4)}+\frac{y+2}{y^{2}(x+4)}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{x<-4 \vee-4<x\}
$$

And the point $x_{0}=-3$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-3$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

4.15.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y+2}{y(x+4)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x+4}$ and $g(y)=\frac{y+2}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y+2}{y}} d y & =-\frac{1}{x+4} d x \\
\int \frac{1}{\frac{y+2}{y}} d y & =\int-\frac{1}{x+4} d x \\
y-2 \ln (y+2) & =-\ln (x+4)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{-1+\frac{\ln (x+4)}{2}-\frac{c_{1}}{2}}}{2}\right)-1+\frac{\ln (x+4)}{2}-\frac{c_{1}}{2}}-2
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-3$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-2 \text { LambertW }\left(-\frac{\mathrm{e}^{-1-\frac{c_{1}}{2}}}{2}\right)-2 \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{x+4}}{2}\right)-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{x+4}}{2}\right)-2 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{x+4}}{2}\right)-2
$$

Verified OK.

4.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y+2}{y(x+4)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 97: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-x-4 \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-x-4} d x
\end{aligned}
$$

Which results in

$$
S=-\ln (-x-4)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y+2}{y(x+4)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{-x-4} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{y+2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R+2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R-2 \ln (R+2)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (-x-4)=y-2 \ln (y+2)+c_{1}
$$

Which simplifies to

$$
-\ln (-x-4)=y-2 \ln (y+2)+c_{1}
$$

Which gives

$$
\left.y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}}{\frac{\ln (-x-4)}{2}-1+\frac{c_{1}}{2}} 2\right.}\right)+\frac{\ln (-x-4)}{2}-1+\frac{c_{1}}{2}-2
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y+2}{y(x+4)}$		$\frac{d S}{d R}=\frac{R}{R+2}$
	$R=y$	
$x^{\text {a }}$	$S=-\ln (-x-4)$	
$\xrightarrow{\prime}$		
$\rightarrow \nmid \dot{1}$		

Initial conditions are used to solve for c_{1}. Substituting $x=-3$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-2 \text { LambertW }\left(-\frac{i \mathrm{e}^{-1+\frac{c_{1}}{2}}}{2}\right)-2 \\
c_{1}=-i \pi+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 \text { LambertW }\left(\frac{i \sqrt{-x-4} \mathrm{e}^{-\frac{1}{2}}}{2}\right)-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \text { LambertW }\left(\frac{i \sqrt{-x-4} \mathrm{e}^{-\frac{1}{2}}}{2}\right)-2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2 \text { LambertW }\left(\frac{i \sqrt{-x-4} \mathrm{e}^{-\frac{1}{2}}}{2}\right)-2
$$

Verified OK.

4.15.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y}{y+2}\right) \mathrm{d} y & =\left(\frac{1}{x+4}\right) \mathrm{d} x \\
\left(-\frac{1}{x+4}\right) \mathrm{d} x+\left(-\frac{y}{y+2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x+4} \\
& N(x, y)=-\frac{y}{y+2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x+4}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y}{y+2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x+4} \mathrm{~d} x \\
\phi & =-\ln (x+4)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y}{y+2}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y}{y+2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y}{y+2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y}{y+2}\right) \mathrm{d} y \\
f(y) & =-y+2 \ln (y+2)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x+4)-y+2 \ln (y+2)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x+4)-y+2 \ln (y+2)
$$

The solution becomes

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e} \frac{\ln (x+4)}{2}-1+\frac{c_{1}}{2}}{2}\right)+\frac{\ln (x+4)}{2}-1+\frac{c_{1}}{2}}-2
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-3$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-2 \text { LambertW }\left(-\frac{\mathrm{e}^{-1+\frac{c_{1}}{2}}}{2}\right)-2 \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{x+4}}{2}\right)-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{x+4}}{2}\right)-2 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{x+4}}{2}\right)-2
$$

Verified OK.

4.15.5 Maple step by step solution

Let's solve

$$
\left[y+y(x+4) y^{\prime}=-2, y(-3)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime} y}{-y-2}=\frac{1}{x+4}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime} y}{-y-2} d x=\int \frac{1}{x+4} d x+c_{1}$
- Evaluate integral
$-y+2 \ln (y+2)=\ln (x+4)+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{\frac{\ln (x+4)}{2}-1+\frac{c_{1}}{2}}}{2}\right)+\frac{\ln (x+4)}{2}-1+\frac{c_{1}}{2}}-2
$$

- Use initial condition $y(-3)=-1$

$$
-1=\mathrm{e}^{-\operatorname{Lambert} W\left(-\frac{\mathrm{e}^{-1+\frac{c_{1}}{2}}}{2}\right)-1+\frac{c_{1}}{2}}-2
$$

- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=-2 L a m b e r t W\left(-\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{x+4}}{2}\right)-2
$$

- \quad Solution to the IVP

$$
y=-2 \text { Lambert } W\left(-\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{x+4}}{2}\right)-2
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 18

```
dsolve([(y(x)+2)+(y(x)*(x+4))*diff(y(x),x)=0,y(-3) = -1],y(x), singsol=all)
```

$$
y(x)=-2 \text { LambertW }\left(-\frac{\sqrt{x+4} \mathrm{e}^{-\frac{1}{2}}}{2}\right)-2
$$

\checkmark Solution by Mathematica
Time used: 12.779 (sec). Leaf size: 26
DSolve $\left[\left\{(\mathrm{y}[\mathrm{x}]+2)+(\mathrm{y}[\mathrm{x}] *(\mathrm{x}+4)) * \mathrm{y}^{\prime}[\mathrm{x}]==0,\{\mathrm{y}[-3]==-1\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow-2\left(W\left(-\frac{\sqrt{x+4}}{2 \sqrt{e}}\right)+1\right)
$$

4.16 problem 16

4.16.1 Existence and uniqueness analysis 645
4.16.2 Solving as separable ode . 646
4.16.3 Solving as first order ode lie symmetry lookup ode 648
4.16.4 Solving as exact ode . 652
4.16.5 Maple step by step solution . 656

Internal problem ID [11629]
Internal file name [OUTPUT/10611_Saturday_May_27_2023_03_05_45_AM_99833809/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
8 \cos (y)^{2}+\csc (x)^{2} y^{\prime}=0
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{12}\right)=\frac{\pi}{4}\right]
$$

4.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{8 \cos (y)^{2}}{\csc (x)^{2}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{\pi}{4}$ is

$$
\left\{x<\pi _Z 95 \vee \pi _Z 95<x\right\}
$$

And the point $x_{0}=\frac{\pi}{12}$ is inside this domain. The y domain of $f(x, y)$ when $x=\frac{\pi}{12}$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{\pi}{4}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{8 \cos (y)^{2}}{\csc (x)^{2}}\right) \\
& =\frac{16 \cos (y) \sin (y)}{\csc (x)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{\pi}{4}$ is

$$
\left\{x<\pi _Z 95 \vee \pi _Z 95<x\right\}
$$

And the point $x_{0}=\frac{\pi}{12}$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=\frac{\pi}{12}$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{\pi}{4}$ is inside this domain. Therefore solution exists and is unique.

4.16.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{8 \cos (y)^{2}}{\csc (x)^{2}}
\end{aligned}
$$

Where $f(x)=-\frac{8}{\csc (x)^{2}}$ and $g(y)=\cos (y)^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (y)^{2}} d y & =-\frac{8}{\csc (x)^{2}} d x \\
\int \frac{1}{\cos (y)^{2}} d y & =\int-\frac{8}{\csc (x)^{2}} d x \\
\tan (y) & =4 \cos (x) \sin (x)-4 x+c_{1}
\end{aligned}
$$

Which results in

$$
y=\arctan \left(4 \cos (x) \sin (x)-4 x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{12}$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{\pi}{4}=\arctan \left(4 \cos \left(\frac{\pi}{12}\right) \sin \left(\frac{\pi}{12}\right)-\frac{\pi}{3}+c_{1}\right) \\
c_{1}=\frac{\pi}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\arctan \left(-4 \cos (x) \sin (x)+4 x-\frac{\pi}{3}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\arctan \left(-4 \cos (x) \sin (x)+4 x-\frac{\pi}{3}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\arctan \left(-4 \cos (x) \sin (x)+4 x-\frac{\pi}{3}\right)
$$

Verified OK.

4.16.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{8 \cos (y)^{2}}{\csc (x)^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 100: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{\csc (x)^{2}}{8} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{\csc (x)^{2}}{8}} d x
\end{aligned}
$$

Which results in

$$
S=4 \cos (x) \sin (x)-4 x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{8 \cos (y)^{2}}{\csc (x)^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-4+4 \cos (2 x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sec (y)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sec (R)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\tan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-4 x+2 \sin (2 x)=\tan (y)+c_{1}
$$

Which simplifies to

$$
-4 x+2 \sin (2 x)=\tan (y)+c_{1}
$$

Which gives

$$
y=-\arctan \left(4 x-2 \sin (2 x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{8 \cos (y)^{2}}{\csc (x)^{2}}$		$\frac{d S}{d R}=\sec (R)^{2}$
	$S=-4 x+2 \sin (2 x)$	

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{12}$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{\pi}{4}=-\arctan \left(\frac{\pi}{3}-1+c_{1}\right) \\
c_{1}=-\frac{\pi}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\arctan \left(4 x-\frac{\pi}{3}-2 \sin (2 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\arctan \left(4 x-\frac{\pi}{3}-2 \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\arctan \left(4 x-\frac{\pi}{3}-2 \sin (2 x)\right)
$$

Verified OK.

4.16.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{8 \cos (y)^{2}}\right) \mathrm{d} y & =\left(\frac{1}{\csc (x)^{2}}\right) \mathrm{d} x \\
\left(-\frac{1}{\csc (x)^{2}}\right) \mathrm{d} x+\left(-\frac{1}{8 \cos (y)^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{\csc (x)^{2}} \\
& N(x, y)=-\frac{1}{8 \cos (y)^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\csc (x)^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{8 \cos (y)^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\csc (x)^{2}} \mathrm{~d} x \\
\phi & =\frac{\sin (2 x)}{4}-\frac{x}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{8 \cos (y)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{8 \cos (y)^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{8 \cos (y)^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{\sec (y)^{2}}{8}\right) \mathrm{d} y \\
f(y) & =-\frac{\tan (y)}{8}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\sin (2 x)}{4}-\frac{x}{2}-\frac{\tan (y)}{8}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\sin (2 x)}{4}-\frac{x}{2}-\frac{\tan (y)}{8}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{12}$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{\pi}{24}=c_{1} \\
& c_{1}=-\frac{\pi}{24}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\sin (2 x)}{4}-\frac{x}{2}-\frac{\tan (y)}{8}=-\frac{\pi}{24}
$$

Solving for y from the above gives

$$
y=-\arctan \left(4 x-\frac{\pi}{3}-2 \sin (2 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\arctan \left(4 x-\frac{\pi}{3}-2 \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\arctan \left(4 x-\frac{\pi}{3}-2 \sin (2 x)\right)
$$

Verified OK.

4.16.5 Maple step by step solution

Let's solve
$\left[8 \cos (y)^{2}+\csc (x)^{2} y^{\prime}=0, y\left(\frac{\pi}{12}\right)=\frac{\pi}{4}\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\cos (y)^{2}}=-\frac{8}{\csc (x)^{2}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\cos (y)^{2}} d x=\int-\frac{8}{\csc (x)^{2}} d x+c_{1}
$$

- Evaluate integral

$$
\tan (y)=4 \cos (x) \sin (x)-4 x+c_{1}
$$

- \quad Solve for y

$$
y=\arctan \left(4 \cos (x) \sin (x)-4 x+c_{1}\right)
$$

- Use initial condition $y\left(\frac{\pi}{12}\right)=\frac{\pi}{4}$

$$
\frac{\pi}{4}=\arctan \left(4 \cos \left(\frac{\pi}{12}\right) \sin \left(\frac{\pi}{12}\right)-\frac{\pi}{3}+c_{1}\right)
$$

- \quad Solve for c_{1}
$c_{1}=-4 \cos \left(\frac{\pi}{12}\right) \sin \left(\frac{\pi}{12}\right)+\frac{\pi}{3}+1$
- Substitute $c_{1}=-4 \cos \left(\frac{\pi}{12}\right) \sin \left(\frac{\pi}{12}\right)+\frac{\pi}{3}+1$ into general solution and simplify $y=-\arctan \left(4 x-\frac{\pi}{3}-2 \sin (2 x)\right)$
- Solution to the IVP
$y=-\arctan \left(4 x-\frac{\pi}{3}-2 \sin (2 x)\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.156 (sec). Leaf size: 20

```
dsolve([(8*\operatorname{cos}(y(x))^2)+\operatorname{csc}(x)^2*diff (y(x),x)=0,y(1/12*Pi) = 1/4*Pi],y(x), singsol=all)
```

$$
y(x)=-\arctan \left(-\frac{\pi}{3}+4 x-2 \sin (2 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 1.156 (sec). Leaf size: 21
DSolve $\left[\left\{\left(8 * \operatorname{Cos}[y[x]]^{\sim} 2\right)+\operatorname{Csc}[x] \sim 2 * y '[x]==0,\{y[P i / 12]==P i / 4\}\right\}, y[x], x\right.$, IncludeSingularSolutions

$$
y(x) \rightarrow \arctan \left(-4 x+2 \sin (2 x)+\frac{\pi}{3}\right)
$$

4.17 problem 17

4.17.1 Existence and uniqueness analysis 658
4.17.2 Solving as separable ode . 659
4.17.3 Solving as first order ode lie symmetry lookup ode 661
4.17.4 Solving as bernoulli ode . 666
4.17.5 Solving as exact ode . 669
4.17.6 Maple step by step solution . 673

Internal problem ID [11630]
Internal file name [OUTPUT/10612_Saturday_May_27_2023_03_05_49_AM_45469359/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(3 x+8)\left(y^{2}+4\right)-4 y\left(x^{2}+5 x+6\right) y^{\prime}=0
$$

With initial conditions

$$
[y(1)=2]
$$

4.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{3 x y^{2}+8 y^{2}+12 x+32}{4 y\left(x^{2}+5 x+6\right)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{-\infty \leq x<-3,-3<x<-2,-2<x \leq \infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{3 x y^{2}+8 y^{2}+12 x+32}{4 y\left(x^{2}+5 x+6\right)}\right) \\
& =\frac{6 x y+16 y}{4 y\left(x^{2}+5 x+6\right)}-\frac{3 x y^{2}+8 y^{2}+12 x+32}{4 y^{2}\left(x^{2}+5 x+6\right)}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

4.17.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\left(y^{2}+4\right)(3 x+8)}{4 y(x+3)(x+2)}
\end{aligned}
$$

Where $f(x)=\frac{3 x+8}{4(x+3)(x+2)}$ and $g(y)=\frac{y^{2}+4}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{2}+4}{y}} d y & =\frac{3 x+8}{4(x+3)(x+2)} d x \\
\int \frac{1}{\frac{y^{2}+4}{y}} d y & =\int \frac{3 x+8}{4(x+3)(x+2)} d x \\
\frac{\ln \left(y^{2}+4\right)}{2} & =\frac{\ln (x+3)}{4}+\frac{\ln (x+2)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{y^{2}+4}=\mathrm{e}^{\frac{\ln (x+3)}{4}+\frac{\ln (x+2)}{2}+c_{1}}
$$

Which simplifies to

$$
\sqrt{y^{2}+4}=c_{2} \mathrm{e}^{\frac{\ln (x+3)}{4}+\frac{\ln (x+2)}{2}}
$$

Which can be simplified to become

$$
\sqrt{y^{2}+4}=c_{2}(x+3)^{\frac{1}{4}} \sqrt{x+2} \mathrm{e}^{c_{1}}
$$

The solution is

$$
\sqrt{y^{2}+4}=c_{2}(x+3)^{\frac{1}{4}} \sqrt{x+2} \mathrm{e}^{c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2 \sqrt{2}=4^{\frac{1}{4}} \sqrt{3} \mathrm{e}^{c_{1}} c_{2} \\
c_{1}=\frac{\ln \left(\frac{4}{3 c_{2}^{2}}\right)}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\sqrt{y^{2}+4}=\frac{2 c_{2} \sqrt{x+2}(x+3)^{\frac{1}{4}} \sqrt{3} \sqrt{\frac{1}{c_{2}^{2}}}}{3}
$$

Solving for y from the above gives

$$
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

Verified OK. \{positive\}

4.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{3 x y^{2}+8 y^{2}+12 x+32}{4 y\left(x^{2}+5 x+6\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 103: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{4(x+3)(x+2)}{3 x+8} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{4(x+3)(x+2)}{3 x+8}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (x+3)}{4}+\frac{\ln (x+2)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{3 x y^{2}+8 y^{2}+12 x+32}{4 y\left(x^{2}+5 x+6\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{3 x+8}{4(x+3)(x+2)} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{y^{2}+4} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R^{2}+4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{2}+4\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (x+3)}{4}+\frac{\ln (x+2)}{2}=\frac{\ln \left(y^{2}+4\right)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (x+3)}{4}+\frac{\ln (x+2)}{2}=\frac{\ln \left(y^{2}+4\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{3 x y^{2}+8 y^{2}+12 x+32}{4 y\left(x^{2}+5 x+6\right)}$		$\frac{d S}{d R}=\frac{R}{R^{2}+4}$
-1.		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow$ STRT $\rightarrow \rightarrow \rightarrow \rightarrow \infty \rightarrow \infty \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$R=y$	
	$S=\frac{\ln (x+3)}{\underline{\ln (x+}} \underline{(x)}$	
	$S=\frac{4}{4}+\frac{2}{2}$	
		+
		\rightarrow
		$\rightarrow \rightarrow \rightarrow-\infty$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{\ln (2)}{2}+\frac{\ln (3)}{2}=\frac{3 \ln (2)}{2}+c_{1}
$$

$$
c_{1}=-\ln (2)+\frac{\ln (3)}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln (x+3)}{4}+\frac{\ln (x+2)}{2}=\frac{\ln \left(y^{2}+4\right)}{2}-\ln (2)+\frac{\ln (3)}{2}
$$

Solving for y from the above gives

$$
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

Verified OK. \{positive\}

4.17.4 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{3 x y^{2}+8 y^{2}+12 x+32}{4 y\left(x^{2}+5 x+6\right)}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{3 x+8}{4 x^{2}+20 x+24} y+\frac{12 x+32}{4 x^{2}+20 x+24} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{3 x+8}{4 x^{2}+20 x+24} \\
f_{1}(x) & =\frac{12 x+32}{4 x^{2}+20 x+24} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{(3 x+8) y^{2}}{4 x^{2}+20 x+24}+\frac{12 x+32}{4 x^{2}+20 x+24} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{(3 x+8) w(x)}{4 x^{2}+20 x+24}+\frac{12 x+32}{4 x^{2}+20 x+24} \\
w^{\prime} & =\frac{(3 x+8) w}{2 x^{2}+10 x+12}+\frac{12 x+32}{2 x^{2}+10 x+12} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3 x+8}{2 x^{2}+10 x+12} \\
& q(x)=\frac{6 x+16}{x^{2}+5 x+6}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{(3 x+8) w(x)}{2 x^{2}+10 x+12}=\frac{6 x+16}{x^{2}+5 x+6}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3 x+8}{2 x^{2}+10 x+12} d x} \\
& =\mathrm{e}^{-\frac{\ln (x+3)}{2}-\ln (x+2)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1}{\sqrt{x+3}(x+2)}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{6 x+16}{x^{2}+5 x+6}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{\sqrt{x+3}(x+2)}\right) & =\left(\frac{1}{\sqrt{x+3}(x+2)}\right)\left(\frac{6 x+16}{x^{2}+5 x+6}\right) \\
\mathrm{d}\left(\frac{w}{\sqrt{x+3}(x+2)}\right) & =\left(\frac{6 x+16}{(x+3)^{\frac{3}{2}}(x+2)^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{\sqrt{x+3}(x+2)}=\int \frac{6 x+16}{(x+3)^{\frac{3}{2}}(x+2)^{2}} \mathrm{~d} x \\
& \frac{w}{\sqrt{x+3}(x+2)}=-\frac{4}{\sqrt{x+3}(x+2)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x+3}(x+2)}$ results in

$$
w(x)=-4+c_{1}(x+2) \sqrt{x+3}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-4+c_{1}(x+2) \sqrt{x+3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=-4+6 c_{1} \\
c_{1}=\frac{4}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2}=-4+\frac{4 \sqrt{x+3} x}{3}+\frac{8 \sqrt{x+3}}{3}
$$

Solving for y from the above gives

$$
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

Verified OK. \{positive\}

4.17.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{4 y}{y^{2}+4}\right) \mathrm{d} y & =\left(\frac{3 x+8}{(x+3)(x+2)}\right) \mathrm{d} x \\
\left(-\frac{3 x+8}{(x+3)(x+2)}\right) \mathrm{d} x+\left(\frac{4 y}{y^{2}+4}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{3 x+8}{(x+3)(x+2)} \\
& N(x, y)=\frac{4 y}{y^{2}+4}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 x+8}{(x+3)(x+2)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{4 y}{y^{2}+4}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{3 x+8}{(x+3)(x+2)} \mathrm{d} x \\
\phi & =-\ln (x+3)-2 \ln (x+2)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{4 y}{y^{2}+4}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{4 y}{y^{2}+4}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{4 y}{y^{2}+4}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{4 y}{y^{2}+4}\right) \mathrm{d} y \\
f(y) & =2 \ln \left(y^{2}+4\right)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x+3)-2 \ln (x+2)+2 \ln \left(y^{2}+4\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x+3)-2 \ln (x+2)+2 \ln \left(y^{2}+4\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4 \ln (2)-2 \ln (3)=c_{1} \\
& c_{1}=4 \ln (2)-2 \ln (3)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\ln (x+3)-2 \ln (x+2)+2 \ln \left(y^{2}+4\right)=4 \ln (2)-2 \ln (3)
$$

Solving for y from the above gives

$$
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

Verified OK. \{positive\}

4.17.6 Maple step by step solution

Let's solve
$\left[(3 x+8)\left(y^{2}+4\right)-4 y\left(x^{2}+5 x+6\right) y^{\prime}=0, y(1)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime} y}{y^{2}+4}=\frac{3 x+8}{4\left(x^{2}+5 x+6\right)}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime} y}{y^{2}+4} d x=\int \frac{3 x+8}{4\left(x^{2}+5 x+6\right)} d x+c_{1}$
- Evaluate integral

$$
\frac{\ln \left(y^{2}+4\right)}{2}=\frac{\ln (x+3)}{4}+\frac{\ln (x+2)}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{-\mathrm{e}^{-\frac{\ln (x+3)}{2}-2 c_{1}}\left(4 \mathrm{e}^{-\frac{\ln (x+3)}{2}-2 c_{1}}-x-2\right)}}{\mathrm{e}^{-\frac{\ln (x+3)}{2}-2 c_{1}}}, y=-\frac{\sqrt{-\mathrm{e}^{-\frac{\ln (x+3)}{2}-2 c_{1}}\left(4 \mathrm{e}^{-\frac{\ln (x+3)}{2}-2 c_{1}}-x-2\right)}}{\mathrm{e}^{-\frac{\ln (x+3)}{2}-2 c_{1}}}\right\}
$$

- Use initial condition $y(1)=2$

$$
2=\frac{\sqrt{-\mathrm{e}^{-\ln (2)-2 c_{1}\left(4 \mathrm{e}^{\left.-\ln (2)-2 c_{1}-3\right)}\right.}}}{\mathrm{e}^{-\ln (2)-2 c_{1}}}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{\ln (2)}{2}-\frac{\ln \left(\frac{3}{8}\right)}{2}
$$

- Substitute $c_{1}=-\frac{\ln (2)}{2}-\frac{\ln \left(\frac{3}{8}\right)}{2}$ into general solution and simplify
$y=\frac{2 \sqrt{3} \sqrt{x+3} \sqrt{\frac{-3+(x+2) \sqrt{x+3}}{x+3}}}{3}$
- Use initial condition $y(1)=2$
$2=-\frac{\sqrt{-\mathrm{e}^{-\ln (2)-2 c_{1}\left(4 \mathrm{e}^{\left.-\ln (2)-2 c_{1}-3\right)}\right.}}}{\mathrm{e}^{-\ln (2)-2 c_{1}}}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=\frac{2 \sqrt{3} \sqrt{x+3} \sqrt{\frac{-3+(x+2) \sqrt{x+3}}{x+3}}}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 21

```
dsolve([(3*x+8)*(y(x)^2+4)-4*y(x)*(x^2+5*x+6)*\operatorname{diff (y (x), x )=0,y(1) = 2],y(x), singsol=all)}
```

$$
y(x)=\frac{2 \sqrt{-9+(3 x+6) \sqrt{x+3}}}{3}
$$

\checkmark Solution by Mathematica
Time used: 4.88 (sec). Leaf size: 36
DSolve $\left[\left\{(3 * x+8) *(y[x] \sim 2+4)-4 * y[x] *\left(x^{\wedge} 2+5 * x+6\right) * y{ }^{\prime}[x]==0,\{y[1]==2\}\right\}, y[x], x\right.$, IncludeSingularSolu

$$
y(x) \rightarrow \frac{2 \sqrt{\sqrt{x+3} x+2 \sqrt{x+3}-3}}{\sqrt{3}}
$$

4.18 problem 18

4.18.1 Existence and uniqueness analysis 676
4.18.2 Solving as homogeneousTypeD2 ode 677]
4.18.3 Solving as first order ode lie symmetry lookup ode 679
4.18.4 Solving as bernoulli ode . 684
4.18.5 Solving as exact ode . 687

Internal problem ID [11631]
Internal file name [OUTPUT/10613_Saturday_May_27_2023_03_05_51_AM_85233479/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
3 y^{2}-2 x y y^{\prime}=-x^{2}
$$

With initial conditions

$$
[y(2)=6]
$$

4.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x^{2}+3 y^{2}}{2 x y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=6$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $f(x, y)$ when $x=2$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=6$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x^{2}+3 y^{2}}{2 x y}\right) \\
& =\frac{3}{x}-\frac{x^{2}+3 y^{2}}{2 x y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=6$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=2$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=6$ is inside this domain. Therefore solution exists and is unique.

4.18.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
3 u(x)^{2} x^{2}-2 x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)=-x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}+1}{2 u x}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(u)=\frac{u^{2}+1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u}} d u & =\frac{1}{2 x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u}} d u & =\int \frac{1}{2 x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2} & =\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+1}=\mathrm{e}^{\frac{\ln (x)}{2}+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+1}=c_{3} \sqrt{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}+1}=c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
$$

The solution is

$$
\sqrt{u(x)^{2}+1}=c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}+1} & =c_{3} \sqrt{x} \mathrm{e}^{c_{2}} \\
\sqrt{\frac{x^{2}+y^{2}}{x^{2}}} & =c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
\end{aligned}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\frac{\ln \left(\frac{5}{c_{3}^{2}}\right)}{2}$. Hence the solution becomes Initial conditions are used to solve for c_{3}. Substituting $x=2$ and $y=6$ in the above solution gives an equation to solve for the constant of integration.

$$
\sqrt{10}=\sqrt{2} c_{3} \sqrt{5} \sqrt{\frac{1}{c_{3}^{2}}}
$$

This solution is valid for any c_{3}. Hence there are infinite number of solutions.
Solving for y from the above gives

$$
y=\sqrt{5 x-1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{5 x-1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{5 x-1} x
$$

Verified OK. \{positive\}

4.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+3 y^{2}}{2 x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 106: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x^{3}}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{3}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+3 y^{2}}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y^{2}}{2 x^{4}} \\
S_{y} & =\frac{y}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2 R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{2 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2}}{2 x^{3}}=-\frac{1}{2 x}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x^{3}}=-\frac{1}{2 x}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+3 y^{2}}{2 x y}$		$\frac{d S}{d R}=\frac{1}{2 R^{2}}$
		$\rightarrow+1$
		$\rightarrow \rightarrow$
	$R=x$	
	$S=\frac{y^{\prime}}{2 x^{3}}$	
		$\rightarrow \rightarrow+1$
		$\rightarrow \rightarrow$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=6$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{9}{4}=c_{1}-\frac{1}{4}
$$

$$
c_{1}=\frac{5}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{y^{2}}{2 x^{3}}=\frac{5 x-1}{2 x}
$$

The above simplifies to

$$
-5 x^{3}+x^{2}+y^{2}=0
$$

Solving for y from the above gives

$$
y=\sqrt{5 x-1} x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{5 x-1} x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{5 x-1} x
$$

Verified OK. \{positive\}

4.18.4 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+3 y^{2}}{2 x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{3}{2 x} y+\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{3}{2 x} \\
f_{1}(x) & =\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{3 y^{2}}{2 x}+\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{3 w(x)}{2 x}+\frac{x}{2} \\
w^{\prime} & =\frac{3 w}{x}+x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x}=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)(x) \\
\mathrm{d}\left(\frac{w}{x^{3}}\right) & =\frac{1}{x^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{3}}=\int \frac{1}{x^{2}} \mathrm{~d} x \\
& \frac{w}{x^{3}}=-\frac{1}{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
w(x)=c_{1} x^{3}-x^{2}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=c_{1} x^{3}-x^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=6$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
36=8 c_{1}-4 \\
c_{1}=5
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2}=5 x^{3}-x^{2}
$$

Solving for y from the above gives

$$
y=\sqrt{5 x-1} x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{5 x-1} x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{5 x-1} x
$$

Verified OK. \{positive\}

4.18.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-2 x y) \mathrm{d} y & =\left(-x^{2}-3 y^{2}\right) \mathrm{d} x \\
\left(x^{2}+3 y^{2}\right) \mathrm{d} x+(-2 x y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+3 y^{2} \\
N(x, y) & =-2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+3 y^{2}\right) \\
& =6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-2 x y) \\
& =-2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{2 x y}((6 y)-(-2 y)) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(x^{2}+3 y^{2}\right) \\
& =\frac{x^{2}+3 y^{2}}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}(-2 x y) \\
& =-\frac{2 y}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{2}+3 y^{2}}{x^{4}}\right)+\left(-\frac{2 y}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}+3 y^{2}}{x^{4}} \mathrm{~d} x \\
\phi & =\frac{-x^{2}-y^{2}}{x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{2 y}{x^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 y}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 y}{x^{3}}=-\frac{2 y}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-x^{2}-y^{2}}{x^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-x^{2}-y^{2}}{x^{3}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=6$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -5=c_{1} \\
& c_{1}=-5
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{-x^{2}-y^{2}}{x^{3}}=-5
$$

The above simplifies to

$$
5 x^{3}-x^{2}-y^{2}=0
$$

Solving for y from the above gives

$$
y=\sqrt{5 x-1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{5 x-1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{5 x-1} x
$$

Verified OK. \{positive\}
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 13

```
dsolve([(x^2+3*y(x)^2)-2*x*y(x)*diff (y (x),x)=0,y(2) = 6],y(x), singsol=all)
```

$$
y(x)=\sqrt{5 x-1} x
$$

\checkmark Solution by Mathematica
Time used: 0.455 (sec). Leaf size: 16
DSolve $\left[\left\{\left(x^{\wedge} 2+3 * y[x] \sim 2\right)-2 * x * y[x] * y '[x]==0,\{y[2]==6\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow x \sqrt{5 x-1}
$$

4.19 problem 19

4.19.1 Existence and uniqueness analysis 693
4.19.2 Solving as homogeneousTypeD2 ode 694
4.19.3 Solving as first order ode lie symmetry calculated ode 695

Internal problem ID [11632]
Internal file name [OUTPUT/10614_Saturday_May_27_2023_03_06_24_AM_45212028/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, ` class A`]]

$$
-5 y+(4 x-y) y^{\prime}=-2 x
$$

With initial conditions

$$
[y(1)=4]
$$

4.19.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{-2 x+5 y}{-4 x+y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=4$ is

$$
\{x<1 \vee 1<x\}
$$

But the point $x_{0}=1$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

4.19.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-5 u(x) x+(4 x-u(x) x)\left(u^{\prime}(x) x+u(x)\right)=-2 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+u-2}{(u-4) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+u-2}{u-4}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+u-2}{u-4}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+u-2}{u-4}} d u & =\int-\frac{1}{x} d x \\
-\ln (u-1)+2 \ln (u+2) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u-1)+2 \ln (u+2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{(u+2)^{2}}{u-1}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{(u(x)+2)^{2}}{u(x)-1}=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{gathered}
\frac{\left(\frac{y}{x}+2\right)^{2}}{\frac{y}{x}-1}=\frac{c_{3}}{x} \\
\frac{(2 x+y)^{2}}{(y-x) x}=\frac{c_{3}}{x}
\end{gathered}
$$

Which simplifies to

$$
-\frac{(2 x+y)^{2}}{-y+x}=c_{3}
$$

Substituting initial conditions and solving for c_{3} gives $c_{3}=12$. Hence the solution beSummary
The solution(s) found are the following
comes

$$
\begin{equation*}
-\frac{(2 x+y)^{2}}{-y+x}=12 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{(2 x+y)^{2}}{-y+x}=12
$$

Verified OK.

4.19.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-2 x+5 y}{-4 x+y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(-2 x+5 y)\left(b_{3}-a_{2}\right)}{-4 x+y}-\frac{(-2 x+5 y)^{2} a_{3}}{(-4 x+y)^{2}} \\
& -\left(\frac{2}{-4 x+y}-\frac{4(-2 x+5 y)}{(-4 x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{5}{-4 x+y}+\frac{-2 x+5 y}{(-4 x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{8 x^{2} a_{2}-4 x^{2} a_{3}-2 x^{2} b_{2}-8 x^{2} b_{3}-4 x y a_{2}+20 x y a_{3}-8 x y b_{2}+4 x y b_{3}+5 y^{2} a_{2}-7 y^{2} a_{3}+y^{2} b_{2}-5 y^{2} b_{3}-18 x}{(4 x-y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 8 x^{2} a_{2}-4 x^{2} a_{3}-2 x^{2} b_{2}-8 x^{2} b_{3}-4 x y a_{2}+20 x y a_{3}-8 x y b_{2} \tag{6E}\\
& \quad+4 x y b_{3}+5 y^{2} a_{2}-7 y^{2} a_{3}+y^{2} b_{2}-5 y^{2} b_{3}-18 x b_{1}+18 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 a_{2} v_{1}^{2}-4 a_{2} v_{1} v_{2}+5 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}+20 a_{3} v_{1} v_{2}-7 a_{3} v_{2}^{2}-2 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-8 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-8 b_{3} v_{1}^{2}+4 b_{3} v_{1} v_{2}-5 b_{3} v_{2}^{2}+18 a_{1} v_{2}-18 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(8 a_{2}-4 a_{3}-2 b_{2}-8 b_{3}\right) v_{1}^{2}+\left(-4 a_{2}+20 a_{3}-8 b_{2}+4 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-18 b_{1} v_{1}+\left(5 a_{2}-7 a_{3}+b_{2}-5 b_{3}\right) v_{2}^{2}+18 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
18 a_{1} & =0 \\
-18 b_{1} & =0 \\
-4 a_{2}+20 a_{3}-8 b_{2}+4 b_{3} & =0 \\
5 a_{2}-7 a_{3}+b_{2}-5 b_{3}= & 0 \\
8 a_{2}-4 a_{3}-2 b_{2}-8 b_{3}= & 0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =2 a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{-2 x+5 y}{-4 x+y}\right)(x) \\
& =\frac{2 x^{2}-x y-y^{2}}{4 x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2}-x y-y^{2}}{4 x-y}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (y-x)+2 \ln (2 x+y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-2 x+5 y}{-4 x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y-x}+\frac{4}{2 x+y} \\
S_{y} & =\frac{1}{-y+x}+\frac{2}{2 x+y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (y-x)+2 \ln (2 x+y)=c_{1}
$$

Which simplifies to

$$
-\ln (y-x)+2 \ln (2 x+y)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-2 x+5 y}{-4 x+y}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$ -
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
\cdots vix		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	\rightarrow
	$S=-\ln (y-x)+2 \ln (2$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$ (
		$\rightarrow \rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2 \ln (2)+\ln (3)=c_{1} \\
& c_{1}=2 \ln (2)+\ln (3)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\ln (y-x)+2 \ln (2 x+y)=2 \ln (2)+\ln (3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (y-x)+2 \ln (2 x+y)=2 \ln (2)+\ln (3) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\ln (y-x)+2 \ln (2 x+y)=2 \ln (2)+\ln (3)
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

Solution by Maple
Time used: 0.218 (sec). Leaf size: 35

```
dsolve([(2*x-5*y(x))+(4*x-y(x))*diff (y(x),x)=0,y(1) = 4],y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=6-2 x-6 \sqrt{1-x} \\
& y(x)=6-2 x+6 \sqrt{1-x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.199 (sec). Leaf size: 41
DSolve $[\{(2 * x-5 * y[x])+(4 * x-y[x]) * y '[x]==0,\{y[1]==4\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-2 x-6 i \sqrt{x-1}+6 \\
& y(x) \rightarrow-2 x+6 i \sqrt{x-1}+6
\end{aligned}
$$

4.20 problem 20

4.20.1 Existence and uniqueness analysis 702
4.20.2 Solving as homogeneousTypeD2 ode 703
4.20.3 Solving as first order ode lie symmetry calculated ode 705
4.20.4 Solving as exact ode . 710

Internal problem ID [11633]
Internal file name [OUTPUT/10615_Saturday_May_27_2023_03_06_35_AM_56839210/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class B`]]
```

$$
9 y x+5 y^{2}-\left(6 x^{2}+4 y x\right) y^{\prime}=-3 x^{2}
$$

With initial conditions

$$
[y(2)=-6]
$$

4.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{3 x^{2}+9 x y+5 y^{2}}{2 x(3 x+2 y)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-6$ is

$$
\{-\infty \leq x<0,0<x<4,4<x \leq \infty\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $f(x, y)$ when $x=2$ is

$$
\{y<-3 \vee-3<y\}
$$

And the point $y_{0}=-6$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{3 x^{2}+9 x y+5 y^{2}}{2 x(3 x+2 y)}\right) \\
& =\frac{10 y+9 x}{2 x(3 x+2 y)}-\frac{3 x^{2}+9 x y+5 y^{2}}{x(3 x+2 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-6$ is

$$
\{-\infty \leq x<0,0<x<4,4<x \leq \infty\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=2$ is

$$
\{y<-3 \vee-3<y\}
$$

And the point $y_{0}=-6$ is inside this domain. Therefore solution exists and is unique.

4.20.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
9 u(x) x^{2}+5 u(x)^{2} x^{2}-\left(6 x^{2}+4 u(x) x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=-3 x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}+3 u+3}{2 x(2 u+3)}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(u)=\frac{u^{2}+3 u+3}{2 u+3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+3 u+3}{2 u+3}} d u & =\frac{1}{2 x} d x \\
\int \frac{1}{\frac{u^{2}+3 u+3}{2 u+3}} d u & =\int \frac{1}{2 x} d x \\
\ln \left(u^{2}+3 u+3\right) & =\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u^{2}+3 u+3=\mathrm{e}^{\frac{\ln (x)}{2}+c_{2}}
$$

Which simplifies to

$$
u^{2}+3 u+3=c_{3} \sqrt{x}
$$

Which simplifies to

$$
u(x)^{2}+3 u(x)+3=c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
$$

The solution is

$$
u(x)^{2}+3 u(x)+3=c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}+\frac{3 y}{x}+3=c_{3} \sqrt{x} \mathrm{e}^{c_{2}} \\
& \frac{y^{2}}{x^{2}}+\frac{3 y}{x}+3=c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
\end{aligned}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\frac{\ln \left(\frac{9}{2 c_{3}^{2}}\right)}{2}$. Hence the solution becomes Initial conditions are used to solve for c_{3}. Substituting $x=2$ and $y=-6$ in the above solution gives an equation to solve for the constant of integration.

$$
3=3 c_{3} \sqrt{\frac{1}{c_{3}^{2}}}
$$

This solution is valid for any c_{3}. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{x^{2}}+\frac{3 y}{x}+3=\frac{3 c_{3} \sqrt{x} \sqrt{2} \sqrt{\frac{1}{c_{3}^{2}}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{y^{2}}{x^{2}}+\frac{3 y}{x}+3=\frac{3 c_{3} \sqrt{x} \sqrt{2} \sqrt{\frac{1}{c_{3}^{2}}}}{2}
$$

Verified OK.

4.20.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{3 x^{2}+9 x y+5 y^{2}}{2 x(3 x+2 y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(3 x^{2}+9 x y+5 y^{2}\right)\left(b_{3}-a_{2}\right)}{2 x(3 x+2 y)}-\frac{\left(3 x^{2}+9 x y+5 y^{2}\right)^{2} a_{3}}{4 x^{2}(3 x+2 y)^{2}} \\
& -\left(\frac{9 y+6 x}{2 x(3 x+2 y)}-\frac{3 x^{2}+9 x y+5 y^{2}}{2 x^{2}(3 x+2 y)}-\frac{3\left(3 x^{2}+9 x y+5 y^{2}\right)}{2 x(3 x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{10 y+9 x}{2 x(3 x+2 y)}-\frac{3 x^{2}+9 x y+5 y^{2}}{x(3 x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{18 x^{4} a_{2}+9 x^{4} a_{3}+6 x^{4} b_{2}-18 x^{4} b_{3}+24 x^{3} y a_{2}+54 x^{3} y a_{3}+12 x^{3} y b_{2}-24 x^{3} y b_{3}+6 x^{2} y^{2} a_{2}+69 x^{2} y^{2} a_{3}+4}{4 x^{2}(3 x+} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -18 x^{4} a_{2}-9 x^{4} a_{3}-6 x^{4} b_{2}+18 x^{4} b_{3}-24 x^{3} y a_{2}-54 x^{3} y a_{3}-12 x^{3} y b_{2} \tag{6E}\\
& +24 x^{3} y b_{3}-6 x^{2} y^{2} a_{2}-69 x^{2} y^{2} a_{3}-4 x^{2} y^{2} b_{2}+6 x^{2} y^{2} b_{3}-30 x y^{3} a_{3}-5 y^{4} a_{3} \\
& -42 x^{3} b_{1}+42 x^{2} y a_{1}-60 x^{2} y b_{1}+60 x y^{2} a_{1}-20 x y^{2} b_{1}+20 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& -18 a_{2} v_{1}^{4}-24 a_{2} v_{1}^{3} v_{2}-6 a_{2} v_{1}^{2} v_{2}^{2}-9 a_{3} v_{1}^{4}-54 a_{3} v_{1}^{3} v_{2}-69 a_{3} v_{1}^{2} v_{2}^{2}-30 a_{3} v_{1} v_{2}^{3} \\
& -5 a_{3} v_{2}^{4}-6 b_{2} v_{1}^{4}-12 b_{2} v_{1}^{3} v_{2}-4 b_{2} v_{1}^{2} v_{2}^{2}+18 b_{3} v_{1}^{4}+24 b_{3} v_{1}^{3} v_{2}+6 b_{3} v_{1}^{2} v_{2}^{2} \\
& +42 a_{1} v_{1}^{2} v_{2}+60 a_{1} v_{1} v_{2}^{2}+20 a_{1} v_{2}^{3}-42 b_{1} v_{1}^{3}-60 b_{1} v_{1}^{2} v_{2}-20 b_{1} v_{1} v_{2}^{2}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-18 a_{2}-9 a_{3}-6 b_{2}+18 b_{3}\right) v_{1}^{4}+\left(-24 a_{2}-54 a_{3}-12 b_{2}+24 b_{3}\right) v_{1}^{3} v_{2} \tag{8E}\\
& \quad-42 b_{1} v_{1}^{3}+\left(-6 a_{2}-69 a_{3}-4 b_{2}+6 b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(42 a_{1}-60 b_{1}\right) v_{1}^{2} v_{2} \\
& \quad-30 a_{3} v_{1} v_{2}^{3}+\left(60 a_{1}-20 b_{1}\right) v_{1} v_{2}^{2}-5 a_{3} v_{2}^{4}+20 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
20 a_{1} & =0 \\
-30 a_{3} & =0 \\
-5 a_{3} & =0 \\
-42 b_{1} & =0 \\
42 a_{1}-60 b_{1} & =0 \\
60 a_{1}-20 b_{1} & =0 \\
-24 a_{2}-54 a_{3}-12 b_{2}+24 b_{3} & =0 \\
-18 a_{2}-9 a_{3}-6 b_{2}+18 b_{3} & =0 \\
-6 a_{2}-69 a_{3}-4 b_{2}+6 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{3 x^{2}+9 x y+5 y^{2}}{2 x(3 x+2 y)}\right)(x) \\
& =\frac{-3 x^{2}-3 x y-y^{2}}{6 x+4 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-3 x^{2}-3 x y-y^{2}}{6 x+4 y}} d y
\end{aligned}
$$

Which results in

$$
S=-2 \ln \left(3 x^{2}+3 x y+y^{2}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{3 x^{2}+9 x y+5 y^{2}}{2 x(3 x+2 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{-12 x-6 y}{3 x^{2}+3 x y+y^{2}} \\
S_{y} & =\frac{-6 x-4 y}{3 x^{2}+3 x y+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{5}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{5}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-5 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-2 \ln \left(y^{2}+3 y x+3 x^{2}\right)=-5 \ln (x)+c_{1}
$$

Which simplifies to

$$
-2 \ln \left(y^{2}+3 y x+3 x^{2}\right)=-5 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{3 x^{2}+9 x y+5 y^{2}}{2 x(3 x+2 y)}$		$\frac{d S}{d R}=-\frac{5}{R}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$	$R=x$	
	$S=-2 \ln \left(3 x^{2}+3\right.$	
	$S=-2 \ln \left(3 x^{2}+3\right.$	

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=-6$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2 \ln (3)-4 \ln (2)=-5 \ln (2)+c_{1} \\
c_{1}=\ln (2)-2 \ln (3)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-2 \ln \left(3 x^{2}+3 x y+y^{2}\right)=-5 \ln (x)+\ln (2)-2 \ln (3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2 \ln \left(y^{2}+3 y x+3 x^{2}\right)=-5 \ln (x)+\ln (2)-2 \ln (3) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-2 \ln \left(y^{2}+3 y x+3 x^{2}\right)=-5 \ln (x)+\ln (2)-2 \ln (3)
$$

Verified OK.

4.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-6 x^{2}-4 x y\right) \mathrm{d} y & =\left(-3 x^{2}-9 x y-5 y^{2}\right) \mathrm{d} x \\
\left(3 x^{2}+9 x y+5 y^{2}\right) \mathrm{d} x+\left(-6 x^{2}-4 x y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x^{2}+9 x y+5 y^{2} \\
N(x, y) & =-6 x^{2}-4 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2}+9 x y+5 y^{2}\right) \\
& =10 y+9 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-6 x^{2}-4 x y\right) \\
& =-12 x-4 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{6 x^{2}+4 x y}((10 y+9 x)-(-12 x-4 y)) \\
& =-\frac{7}{2 x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{7}{2 x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{7 \ln (x)}{2}} \\
& =\frac{1}{x^{\frac{7}{2}}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{\frac{7}{2}}}\left(3 x^{2}+9 x y+5 y^{2}\right) \\
& =\frac{3 x^{2}+9 x y+5 y^{2}}{x^{\frac{7}{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{\frac{7}{2}}}\left(-6 x^{2}-4 x y\right) \\
& =\frac{-6 x-4 y}{x^{\frac{5}{2}}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{3 x^{2}+9 x y+5 y^{2}}{x^{\frac{7}{2}}}\right)+\left(\frac{-6 x-4 y}{x^{\frac{5}{2}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{3 x^{2}+9 x y+5 y^{2}}{x^{\frac{7}{2}}} \mathrm{~d} x \\
\phi & =-\frac{6\left(x^{2}+x y+\frac{1}{3} y^{2}\right)}{x^{\frac{5}{2}}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{6\left(x+\frac{2 y}{3}\right)}{x^{\frac{5}{2}}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-6 x-4 y}{x^{\frac{5}{2}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-6 x-4 y}{x^{\frac{5}{2}}}=\frac{-6 x-4 y}{x^{\frac{5}{2}}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{6\left(x^{2}+x y+\frac{1}{3} y^{2}\right)}{x^{\frac{5}{2}}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{6\left(x^{2}+x y+\frac{1}{3} y^{2}\right)}{x^{\frac{5}{2}}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=-6$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -3 \sqrt{2}=c_{1} \\
& c_{1}=-3 \sqrt{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{6\left(x^{2}+x y+\frac{1}{3} y^{2}\right)}{x^{\frac{5}{2}}}=-3 \sqrt{2}
$$

The above simplifies to

$$
3 \sqrt{2} x^{\frac{5}{2}}-6 x^{2}-6 x y-2 y^{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
3 \sqrt{2} x^{\frac{5}{2}}-6 x^{2}-6 y x-2 y^{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
3 \sqrt{2} x^{\frac{5}{2}}-6 x^{2}-6 y x-2 y^{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.265 (sec). Leaf size: 21
dsolve $\left(\left[\left(3 * x^{\wedge} 2+9 * x * y(x)+5 * y(x)^{\wedge} 2\right)-\left(6 * x^{\wedge} 2+4 * x * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(2)=-6\right], y(x)\right.$, singsol=a

$$
y(x)=-\frac{(3+\sqrt{-3+6 \sqrt{2} \sqrt{x}}) x}{2}
$$

\checkmark Solution by Mathematica
Time used: 37.251 (sec). Leaf size: 30
DSolve $\left[\left\{\left(3 * x^{\wedge} 2+9 * x * y[x]+5 * y[x] \sim 2\right)-\left(6 * x^{\wedge} 2+4 * x * y[x]\right) * y \cdot[x]==0,\{y[2]==-6\}\right\}, y[x], x\right.$, IncludeSingul

$$
y(x) \rightarrow-\frac{1}{2}(\sqrt{6 \sqrt{2} \sqrt{x}-3}+3) x
$$

4.21 problem 22(a)

4.21.1 Solving as homogeneousTypeD2 ode 715
4.21.2 Solving as differentialType ode 717
4.21.3 Solving as first order ode lie symmetry calculated ode 719
4.21.4 Solving as exact ode 724
4.21.5 Maple step by step solution 728

Internal problem ID [11634]
Internal file name [OUTPUT/10616_Saturday_May_27_2023_04_14_52_AM_90704318/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 22(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]

$$
2 y+(2 x-y) y^{\prime}=-x
$$

4.21.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x+(2 x-u(x) x)\left(u^{\prime}(x) x+u(x)\right)=-x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-4 u-1}{(u-2) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-4 u-1}{u-2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-4 u-1}{u-2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-4 u-1}{u-2}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}-4 u-1\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}-4 u-1}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}-4 u-1}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}-4 u(x)-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2}-4 u(x)-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}-\frac{4 y}{x}-1} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y^{2}-4 y x-x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y^{2}-4 y x-x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 130: Slope field plot
Verification of solutions

$$
\sqrt{\frac{y^{2}-4 y x-x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

4.21.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-x-2 y}{2 x-y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-y) d y=(-2 x) d y+(-x-2 y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-2 x) d y+(-x-2 y) d x=d\left(-\frac{1}{2} x^{2}-2 x y\right)
$$

Hence (2) becomes

$$
(-y) d y=d\left(-\frac{1}{2} x^{2}-2 x y\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=2 x+\sqrt{5 x^{2}-2 c_{1}}+c_{1} \\
& y=2 x-\sqrt{5 x^{2}-2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=2 x+\sqrt{5 x^{2}-2 c_{1}}+c_{1} \tag{1}\\
& y=2 x-\sqrt{5 x^{2}-2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 131: Slope field plot
Verification of solutions

$$
y=2 x+\sqrt{5 x^{2}-2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=2 x-\sqrt{5 x^{2}-2 c_{1}}+c_{1}
$$

Verified OK.

4.21.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x+2 y}{-2 x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(x+2 y)\left(b_{3}-a_{2}\right)}{-2 x+y}-\frac{(x+2 y)^{2} a_{3}}{(-2 x+y)^{2}} \\
& -\left(\frac{1}{-2 x+y}+\frac{2 x+4 y}{(-2 x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2}{-2 x+y}-\frac{x+2 y}{(-2 x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{2 x^{2} a_{2}-x^{2} a_{3}+9 x^{2} b_{2}-2 x^{2} b_{3}-2 x y a_{2}-4 x y a_{3}-4 x y b_{2}+2 x y b_{3}-2 y^{2} a_{2}-9 y^{2} a_{3}+y^{2} b_{2}+2 y^{2} b_{3}+5 x b_{1}}{(2 x-y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{2} a_{2}-x^{2} a_{3}+9 x^{2} b_{2}-2 x^{2} b_{3}-2 x y a_{2}-4 x y a_{3}-4 x y b_{2} \tag{6E}\\
& \quad+2 x y b_{3}-2 y^{2} a_{2}-9 y^{2} a_{3}+y^{2} b_{2}+2 y^{2} b_{3}+5 x b_{1}-5 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{2}-2 a_{2} v_{1} v_{2}-2 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-4 a_{3} v_{1} v_{2}-9 a_{3} v_{2}^{2}+9 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-2 b_{3} v_{1}^{2}+2 b_{3} v_{1} v_{2}+2 b_{3} v_{2}^{2}-5 a_{1} v_{2}+5 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{2}-a_{3}+9 b_{2}-2 b_{3}\right) v_{1}^{2}+\left(-2 a_{2}-4 a_{3}-4 b_{2}+2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+5 b_{1} v_{1}+\left(-2 a_{2}-9 a_{3}+b_{2}+2 b_{3}\right) v_{2}^{2}-5 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-5 a_{1} & =0 \\
5 b_{1} & =0 \\
-2 a_{2}-9 a_{3}+b_{2}+2 b_{3} & =0 \\
-2 a_{2}-4 a_{3}-4 b_{2}+2 b_{3} & =0 \\
2 a_{2}-a_{3}+9 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-4 a_{3}+b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=0 \\
& b_{2}=a_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x+2 y}{-2 x+y}\right)(x) \\
& =\frac{x^{2}+4 x y-y^{2}}{2 x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}+4 x y-y^{2}}{2 x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-x^{2}-4 x y+y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x+2 y}{-2 x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+2 y}{x^{2}+4 x y-y^{2}} \\
S_{y} & =\frac{2 x-y}{x^{2}+4 x y-y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}-4 y x-x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}-4 y x-x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x+2 y}{-2 x+y}$		$\frac{d S}{d R}=0$
$\rightarrow \mathrm{O}$ -		\rightarrow
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		\rightarrow
	$S=\underline{\ln \left(-x^{2}-4 x y+y^{2}\right)}$	
戈	$S=\frac{2}{2}$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}-4 y x-x^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 132: Slope field plot
Verification of solutions

$$
\frac{\ln \left(y^{2}-4 y x-x^{2}\right)}{2}=c_{1}
$$

Verified OK.

4.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x-y) \mathrm{d} y & =(-x-2 y) \mathrm{d} x \\
(x+2 y) \mathrm{d} x+(2 x-y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x+2 y \\
N(x, y) & =2 x-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x+2 y) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x-y) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x+2 y \mathrm{~d} x \\
\phi & =\frac{x(x+4 y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x-y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x-y=2 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(x+4 y)}{2}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(x+4 y)}{2}-\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x(4 y+x)}{2}-\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 133: Slope field plot

Verification of solutions

$$
\frac{x(4 y+x)}{2}-\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

4.21.5 Maple step by step solution

Let's solve

$$
2 y+(2 x-y) y^{\prime}=-x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$2=2$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(x+2 y) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{x^{2}}{2}+2 x y+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$2 x-y=2 x+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-y$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-\frac{y^{2}}{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{1}{2} x^{2}+2 x y-\frac{1}{2} y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{1}{2} x^{2}+2 x y-\frac{1}{2} y^{2}=c_{1}$
- \quad Solve for y

$$
\left\{y=2 x-\sqrt{5 x^{2}-2 c_{1}}, y=2 x+\sqrt{5 x^{2}-2 c_{1}}\right\}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 51

```
dsolve((x+2*y(x))+(2*x-y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{2 c_{1} x-\sqrt{5 c_{1}^{2} x^{2}+1}}{c_{1}} \\
& y(x)=\frac{2 c_{1} x+\sqrt{5 c_{1}^{2} x^{2}+1}}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.777 (sec). Leaf size: 94
DSolve $\left[(x+2 * y[x])+(2 * x-y[x]) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow 2 x-\sqrt{5 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow 2 x+\sqrt{5 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow 2 x-\sqrt{5} \sqrt{x^{2}} \\
& y(x) \rightarrow \sqrt{5} \sqrt{x^{2}}+2 x
\end{aligned}
$$

4.22 problem 22(b)

4.22.1 Solving as homogeneousTypeD2 ode 731
4.22.2 Solving as differentialType ode 733
4.22.3 Solving as first order ode lie symmetry calculated ode 735
4.22.4 Solving as exact ode . 740
4.22.5 Maple step by step solution . 744

Internal problem ID [11635]
Internal file name [OUTPUT/10617_Saturday_May_27_2023_04_14_56_AM_12227773/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 22(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]

$$
-y-(y+x) y^{\prime}=-3 x
$$

4.22.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-u(x) x-(u(x) x+x)\left(u^{\prime}(x) x+u(x)\right)=-3 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+2 u-3}{(u+1) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+2 u-3}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+2 u-3}{u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+2 u-3}{u+1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+2 u-3\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+2 u-3}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+2 u-3}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}+2 u(x)-3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2}+2 u(x)-3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}+\frac{2 y}{x}-3} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{y^{2}+2 y x-3 x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Which simplifies to

$$
\sqrt{-\frac{(3 x+y)(-y+x)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{-\frac{(3 x+y)(-y+x)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 134: Slope field plot

Verification of solutions

$$
\sqrt{-\frac{(3 x+y)(-y+x)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

4.22.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-3 x+y}{-y-x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(-x) d y+(3 x-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(3 x-y) d x=d\left(\frac{3}{2} x^{2}-x y\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{3}{2} x^{2}-x y\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-x+\sqrt{4 x^{2}+2 c_{1}}+c_{1} \\
& y=-x-\sqrt{4 x^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-x+\sqrt{4 x^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-x-\sqrt{4 x^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 135: Slope field plot
Verification of solutions

$$
y=-x+\sqrt{4 x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-x-\sqrt{4 x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

4.22.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{-3 x+y}{y+x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(-3 x+y)\left(b_{3}-a_{2}\right)}{y+x}-\frac{(-3 x+y)^{2} a_{3}}{(y+x)^{2}} \\
& -\left(\frac{3}{y+x}+\frac{-3 x+y}{(y+x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{y+x}+\frac{-3 x+y}{(y+x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{3 x^{2} a_{2}+9 x^{2} a_{3}-5 x^{2} b_{2}-3 x^{2} b_{3}+6 x y a_{2}-6 x y a_{3}-2 x y b_{2}-6 x y b_{3}-y^{2} a_{2}+5 y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}-4 x b_{1}}{(y+x)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -3 x^{2} a_{2}-9 x^{2} a_{3}+5 x^{2} b_{2}+3 x^{2} b_{3}-6 x y a_{2}+6 x y a_{3}+2 x y b_{2} \tag{6E}\\
& +6 x y b_{3}+y^{2} a_{2}-5 y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}+4 x b_{1}-4 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -3 a_{2} v_{1}^{2}-6 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-9 a_{3} v_{1}^{2}+6 a_{3} v_{1} v_{2}-5 a_{3} v_{2}^{2}+5 b_{2} v_{1}^{2} \tag{7E}\\
& \quad+2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+3 b_{3} v_{1}^{2}+6 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}-4 a_{1} v_{2}+4 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-3 a_{2}-9 a_{3}+5 b_{2}+3 b_{3}\right) v_{1}^{2}+\left(-6 a_{2}+6 a_{3}+2 b_{2}+6 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+4 b_{1} v_{1}+\left(a_{2}-5 a_{3}+b_{2}-b_{3}\right) v_{2}^{2}-4 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-4 a_{1} & =0 \\
4 b_{1} & =0 \\
-6 a_{2}+6 a_{3}+2 b_{2}+6 b_{3} & =0 \\
-3 a_{2}-9 a_{3}+5 b_{2}+3 b_{3} & =0 \\
a_{2}-5 a_{3}+b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =3 a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{-3 x+y}{y+x}\right)(x) \\
& =\frac{-3 x^{2}+2 x y+y^{2}}{y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-3 x^{2}+2 x y+y^{2}}{y+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-3 x^{2}+2 x y+y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-3 x+y}{y+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 x-y}{(3 x+y)(-y+x)} \\
S_{y} & =\frac{-y-x}{(3 x+y)(-y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (-3 x-y)}{2}+\frac{\ln (-y+x)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (-3 x-y)}{2}+\frac{\ln (-y+x)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-3 x+y}{y+x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 20 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$S=\ln (-3 x-y)$	
	$S=\frac{2}{2}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow-2^{2} \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+ \pm+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (-3 x-y)}{2}+\frac{\ln (-y+x)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 136: Slope field plot

Verification of solutions

$$
\frac{\ln (-3 x-y)}{2}+\frac{\ln (-y+x)}{2}=c_{1}
$$

Verified OK.

4.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-y-x) \mathrm{d} y & =(-3 x+y) \mathrm{d} x \\
(3 x-y) \mathrm{d} x+(-y-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=3 x-y \\
& N(x, y)=-y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(3 x-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-y-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x-y \mathrm{~d} x \\
\phi & =\frac{x(3 x-2 y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y-x$. Therefore equation (4) becomes

$$
\begin{equation*}
-y-x=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(3 x-2 y)}{2}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(3 x-2 y)}{2}-\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x(3 x-2 y)}{2}-\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 137: Slope field plot

Verification of solutions

$$
\frac{x(3 x-2 y)}{2}-\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

4.22.5 Maple step by step solution

Let's solve

$$
-y-(y+x) y^{\prime}=-3 x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives

$$
-1=-1
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(3 x-y) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{3 x^{2}}{2}-x y+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$-y-x=-x+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-y$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-\frac{y^{2}}{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{3}{2} x^{2}-x y-\frac{1}{2} y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{3}{2} x^{2}-x y-\frac{1}{2} y^{2}=c_{1}$
- \quad Solve for y

$$
\left\{y=-x-\sqrt{4 x^{2}-2 c_{1}}, y=-x+\sqrt{4 x^{2}-2 c_{1}}\right\}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 51

```
dsolve((3*x-y(x))-(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-c_{1} x-\sqrt{4 c_{1}^{2} x^{2}+1}}{c_{1}} \\
& y(x)=\frac{-c_{1} x+\sqrt{4 c_{1}^{2} x^{2}+1}}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.752 (sec). Leaf size: 85
DSolve[(3*x-y[x])-(x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x-\sqrt{4 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-x+\sqrt{4 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-2 \sqrt{x^{2}}-x \\
& y(x) \rightarrow 2 \sqrt{x^{2}}-x
\end{aligned}
$$

4.23 problem 23(a)

$$
\text { 4.23.1 Solving as homogeneousTypeD2 ode } 747
$$

4.23.2 Solving as first order ode lie symmetry calculated ode 749
4.23.3 Solving as exact ode 755
4.23.4 Maple step by step solution 759

Internal problem ID [11636]
Internal file name [OUTPUT/10618_Saturday_May_27_2023_04_15_00_AM_83412974/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 23(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]

$$
2 y^{2}+\left(4 y x-y^{2}\right) y^{\prime}=-x^{2}
$$

4.23.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x)^{2} x^{2}+\left(4 u(x) x^{2}-u(x)^{2} x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=-x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}-6 u^{2}-1}{u x(u-4)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{3}-6 u^{2}-1}{(u-4) u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}-6 u^{2}-1}{(u-4) u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{3}-6 u^{2}-1}{(u-4) u}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{3}-6 u^{2}-1\right)}{3} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(u^{3}-6 u^{2}-1\right)^{\frac{1}{3}}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\left(u^{3}-6 u^{2}-1\right)^{\frac{1}{3}}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\left(u(x)^{3}-6 u(x)^{2}-1\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\left(u(x)^{3}-6 u(x)^{2}-1\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{y^{3}}{x^{3}}-\frac{6 y^{2}}{x^{2}}-1\right)^{\frac{1}{3}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\left(\frac{y^{3}-6 y^{2} x-x^{3}}{x^{3}}\right)^{\frac{1}{3}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{y^{3}-6 y^{2} x-x^{3}}{x^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 138: Slope field plot
Verification of solutions

$$
\left(\frac{y^{3}-6 y^{2} x-x^{3}}{x^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

4.23.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x^{2}+2 y^{2}}{y(-4 x+y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(x^{2}+2 y^{2}\right)\left(b_{3}-a_{2}\right)}{y(-4 x+y)}-\frac{\left(x^{2}+2 y^{2}\right)^{2} a_{3}}{y^{2}(-4 x+y)^{2}} \\
& -\left(\frac{2 x}{y(-4 x+y)}+\frac{4 x^{2}+8 y^{2}}{y(-4 x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{4}{-4 x+y}-\frac{x^{2}+2 y^{2}}{y^{2}(-4 x+y)}-\frac{x^{2}+2 y^{2}}{y(-4 x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} a_{3}+4 x^{4} b_{2}-8 x^{3} y a_{2}-2 x^{3} y b_{2}+8 x^{3} y b_{3}+3 x^{2} y^{2} a_{2}-24 x^{2} y^{2} b_{2}-3 x^{2} y^{2} b_{3}+2 x y^{3} a_{3}+8 x y^{3} b_{2}+2 y^{4} a_{2}}{y^{2}(4 x-y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} a_{3}-4 x^{4} b_{2}+8 x^{3} y a_{2}+2 x^{3} y b_{2}-8 x^{3} y b_{3}-3 x^{2} y^{2} a_{2}+24 x^{2} y^{2} b_{2} \tag{6E}\\
& +3 x^{2} y^{2} b_{3}-2 x y^{3} a_{3}-8 x y^{3} b_{2}-2 y^{4} a_{2}-12 y^{4} a_{3}+y^{4} b_{2}+2 y^{4} b_{3} \\
& -4 x^{3} b_{1}+4 x^{2} y a_{1}+2 x^{2} y b_{1}-2 x y^{2} a_{1}+8 x y^{2} b_{1}-8 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 a_{2} v_{1}^{3} v_{2}-3 a_{2} v_{1}^{2} v_{2}^{2}-2 a_{2} v_{2}^{4}-a_{3} v_{1}^{4}-2 a_{3} v_{1} v_{2}^{3}-12 a_{3} v_{2}^{4}-4 b_{2} v_{1}^{4} \tag{7E}\\
& \quad+2 b_{2} v_{1}^{3} v_{2}+24 b_{2} v_{1}^{2} v_{2}^{2}-8 b_{2} v_{1} v_{2}^{3}+b_{2} v_{2}^{4}-8 b_{3} v_{1}^{3} v_{2}+3 b_{3} v_{1}^{2} v_{2}^{2}+2 b_{3} v_{2}^{4} \\
& \quad+4 a_{1} v_{1}^{2} v_{2}-2 a_{1} v_{1} v_{2}^{2}-8 a_{1} v_{2}^{3}-4 b_{1} v_{1}^{3}+2 b_{1} v_{1}^{2} v_{2}+8 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{3}-4 b_{2}\right) v_{1}^{4}+\left(8 a_{2}+2 b_{2}-8 b_{3}\right) v_{1}^{3} v_{2}-4 b_{1} v_{1}^{3} \tag{8E}\\
& \quad+\left(-3 a_{2}+24 b_{2}+3 b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(4 a_{1}+2 b_{1}\right) v_{1}^{2} v_{2}+\left(-2 a_{3}-8 b_{2}\right) v_{1} v_{2}^{3} \\
& \quad+\left(-2 a_{1}+8 b_{1}\right) v_{1} v_{2}^{2}+\left(-2 a_{2}-12 a_{3}+b_{2}+2 b_{3}\right) v_{2}^{4}-8 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-8 a_{1} & =0 \\
-4 b_{1} & =0 \\
-2 a_{1}+8 b_{1} & =0 \\
4 a_{1}+2 b_{1} & =0 \\
-2 a_{3}-8 b_{2} & =0 \\
-a_{3}-4 b_{2} & =0 \\
-3 a_{2}+24 b_{2}+3 b_{3} & =0 \\
8 a_{2}+2 b_{2}-8 b_{3} & =0 \\
-2 a_{2}-12 a_{3}+b_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2 E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x^{2}+2 y^{2}}{y(-4 x+y)}\right)(x) \\
& =\frac{x^{3}+6 x y^{2}-y^{3}}{4 x y-y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{3}+6 x y^{2}-y^{3}}{4 x y-y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-x^{3}-6 x y^{2}+y^{3}\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+2 y^{2}}{y(-4 x+y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x^{2}+2 y^{2}}{x^{3}+6 x y^{2}-y^{3}} \\
S_{y} & =\frac{y(4 x-y)}{x^{3}+6 x y^{2}-y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{3}-6 y^{2} x-x^{3}\right)}{3}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{3}-6 y^{2} x-x^{3}\right)}{3}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+2 y^{2}}{y(-4 x+y)}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{\text { a }}$
		S(R)
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	S $\quad \ln \left(-x^{3}-6 x y^{2}+y^{3}\right.$	\square
	$S=\frac{\ln \left(-x^{3}-6 x y^{2}+y^{3}\right.}{3}$	
		$\xrightarrow[-2 \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
-10.1.		$\xrightarrow{\rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{3}-6 y^{2} x-x^{3}\right)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 139: Slope field plot

Verification of solutions

$$
\frac{\ln \left(y^{3}-6 y^{2} x-x^{3}\right)}{3}=c_{1}
$$

Verified OK.

4.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(4 x y-y^{2}\right) \mathrm{d} y & =\left(-x^{2}-2 y^{2}\right) \mathrm{d} x \\
\left(x^{2}+2 y^{2}\right) \mathrm{d} x+\left(4 x y-y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+2 y^{2} \\
N(x, y) & =4 x y-y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+2 y^{2}\right) \\
& =4 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(4 x y-y^{2}\right) \\
& =4 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x^{2}+2 y^{2} \mathrm{~d} x \\
\phi & =\frac{1}{3} x^{3}+2 x y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=4 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=4 x y-y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
4 x y-y^{2}=4 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-y^{2}\right) \mathrm{d} y \\
f(y) & =-\frac{y^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{1}{3} x^{3}+2 x y^{2}-\frac{1}{3} y^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{1}{3} x^{3}+2 x y^{2}-\frac{1}{3} y^{3}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \frac{x^{3}}{3}+2 y^{2} x-\frac{y^{3}}{3}=c_{1} \tag{1}
\end{align*}
$$

Figure 140: Slope field plot
Verification of solutions

$$
\frac{x^{3}}{3}+2 y^{2} x-\frac{y^{3}}{3}=c_{1}
$$

Verified OK.

4.23.4 Maple step by step solution

Let's solve

$$
2 y^{2}+\left(4 y x-y^{2}\right) y^{\prime}=-x^{2}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
4 y=4 y
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(x^{2}+2 y^{2}\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\frac{x^{3}}{3}+2 x y^{2}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative

$$
4 x y-y^{2}=4 x y+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-y^{2}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-\frac{y^{3}}{3}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{1}{3} x^{3}+2 x y^{2}-\frac{1}{3} y^{3}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{1}{3} x^{3}+2 x y^{2}-\frac{1}{3} y^{3}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\left(68 x^{3}-12 c_{1}+4 \sqrt{33 x^{6}-102 c_{1} x^{3}+9 c_{1}^{2}}\right)^{\frac{1}{3}}}{2}+\frac{8 x^{2}}{\left(68 x^{3}-12 c_{1}+4 \sqrt{33 x^{6}-102 c_{1} x^{3}+9 c_{1}^{2}}\right)^{\frac{1}{3}}}+2 x, y=-\frac{\left(68 x^{3}-12 c_{1}+4 v\right.}{}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 439

```
dsolve((x^2+2*y(x)^2)+(4*x*y(x)-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\frac{\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x^{6}+34 c_{1}^{3} x^{3}+1}\right)^{\frac{1}{3}}}{2}+\frac{8 x^{2} c_{1}^{2}}{\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x^{6}+34 c_{1}^{3} x^{3}+1}\right)^{\frac{1}{3}}}+2 c_{1} x}{c_{1}} \\
& y(x) \\
& =\frac{-\frac{\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x^{6}+34 c_{1}^{3} x^{3}+1}\right)^{\frac{1}{3}}}{4}-\frac{4 x^{2} c_{1}^{2}}{\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x^{6}+34 c_{1}^{3} x^{3}+1}\right)^{\frac{1}{3}}}+2 c_{1} x-\frac{i \sqrt{3}\left(-16 c_{1}^{2} x^{2}+\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x^{6}}\right.\right.}{c_{1}}}{4\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x^{6}+34 c_{1}^{3}}\right.} \\
& y(x)= \\
& -\frac{16 i \sqrt{3} c_{1}^{2} x^{2}-i \sqrt{3}\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x^{6}+34 c_{1}^{3} x^{3}+1}\right)^{\frac{2}{3}}+16 c_{1}^{2} x^{2}-8 c_{1} x\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x}\right.}{4\left(4+68 c_{1}^{3} x^{3}+4 \sqrt{33 c_{1}^{6} x^{6}+34 c_{1}^{3} x^{3}+1}\right)}
\end{aligned}
$$

> Solution by Mathematica

Time used: 33.481 (sec). Leaf size: 731
DSolve $\left[\left(x^{\wedge} 2+2 * y[x] \sim 2\right)+(4 * x * y[x]-y[x] \sim 2) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt[3]{17 x^{3}+\sqrt{33 x^{6}+34 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}{\sqrt[3]{2}} \\
&+\frac{4 \sqrt[3]{2} x^{2}}{\sqrt[3]{17 x^{3}+\sqrt{33 x^{6}+34 e^{3 c_{1} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}+2 x} \\
& y(x) \rightarrow-\frac{(1-i \sqrt{3}) \sqrt[3]{17 x^{3}+\sqrt{33 x^{6}+34 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}{2 \sqrt[3]{2}} \\
&-\frac{2 \sqrt[3]{2}(1+i \sqrt{3}) x^{2}}{\sqrt[3]{17 x^{3}+\sqrt{33 x^{6}+34 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}+2 x \\
& y(x) \rightarrow-\frac{(1+i \sqrt{3}) \sqrt[3]{17 x^{3}+\sqrt{33 x^{6}+34 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}{2 \sqrt[3]{2}} \\
&-\frac{2 \sqrt[3]{2}(1-i \sqrt{3}) x^{2}}{\sqrt[3]{17 x^{3}+\sqrt{33 x^{6}+34 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}} \\
& y(x) \rightarrow\left.8 \sqrt[3]{2} x^{2}+4 \sqrt[3]{\sqrt{33} \sqrt{x^{6}}+17 x^{3} x+2^{2 / 3}(\sqrt{33}} \sqrt{x^{6}}+17 x^{3}\right)^{2 / 3} \\
& 2 \sqrt[3]{\sqrt{33} \sqrt{x^{6}}+17 x^{3}}
\end{aligned}
$$

$$
\rightarrow \xrightarrow{8 i \sqrt[3]{2} \sqrt{3} x^{2}-8 \sqrt[3]{2} x^{2}+8 \sqrt[3]{\sqrt{33} \sqrt{x^{6}}+17 x^{3}} x-i 2^{2 / 3} \sqrt{3}\left(\sqrt{33} \sqrt{x^{6}}+17 x^{3}\right)^{2 / 3}-2^{2 / 3}\left(\sqrt{33} \sqrt{x^{6}}+17 x^{3}\right)}
$$

$$
4 \sqrt[3]{\sqrt{33} \sqrt{x^{6}}+17 x^{3}}
$$

$$
y(x) \rightarrow \frac{\left(\sqrt{33} \sqrt{x^{6}}+17 x^{3}\right)^{2 / 3} \operatorname{Root}\left[2 \# 1^{3}-1 \&, 3\right]-4 \sqrt[3]{-2} x^{2}+2 \sqrt[3]{\sqrt{33} \sqrt{x^{6}}+17 x^{3} x}}{\sqrt[3]{\sqrt{33} \sqrt{x^{6}}+17 x^{3}}}
$$

4.24 problem 23(b)

4.24.1 Solving as homogeneousTypeD2 ode 763
4.24.2 Solving as first order ode lie symmetry calculated ode 765
4.24.3 Solving as exact ode . 777
4.24.4 Maple step by step solution . 775

Internal problem ID [11637]
Internal file name [OUTPUT/10619_Saturday_May_27_2023_04_15_05_AM_75348991/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number: 23(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
    type`, `class B`]]
```

$$
2 y x+y^{2}+\left(2 y x+x^{2}\right) y^{\prime}=-2 x^{2}
$$

4.24.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x^{2}+u(x)^{2} x^{2}+\left(2 u(x) x^{2}+x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=-2 x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u^{2}+3 u+2}{x(2 u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{3 u^{2}+3 u+2}{2 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{3 u^{2}+3 u+2}{2 u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{3 u^{2}+3 u+2}{2 u+1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(3 u^{2}+3 u+2\right)}{3} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(3 u^{2}+3 u+2\right)^{\frac{1}{3}}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\left(3 u^{2}+3 u+2\right)^{\frac{1}{3}}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\left(3 u(x)^{2}+3 u(x)+2\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\left(3 u(x)^{2}+3 u(x)+2\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{3 y^{2}}{x^{2}}+\frac{3 y}{x}+2\right)^{\frac{1}{3}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\left(\frac{3 y^{2}+3 y x+2 x^{2}}{x^{2}}\right)^{\frac{1}{3}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{3 y^{2}+3 y x+2 x^{2}}{x^{2}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 141: Slope field plot
Verification of solutions

$$
\left(\frac{3 y^{2}+3 y x+2 x^{2}}{x^{2}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

4.24.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 x^{2}+2 x y+y^{2}}{x(x+2 y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(2 x^{2}+2 x y+y^{2}\right)\left(b_{3}-a_{2}\right)}{x(x+2 y)}-\frac{\left(2 x^{2}+2 x y+y^{2}\right)^{2} a_{3}}{x^{2}(x+2 y)^{2}} \\
& -\left(-\frac{4 x+2 y}{x(x+2 y)}+\frac{2 x^{2}+2 x y+y^{2}}{x^{2}(x+2 y)}+\frac{2 x^{2}+2 x y+y^{2}}{x(x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 y+2 x}{x(x+2 y)}+\frac{4 x^{2}+4 x y+2 y^{2}}{x(x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{2 x^{4} a_{2}-4 x^{4} a_{3}-x^{4} b_{2}-2 x^{4} b_{3}+8 x^{3} y a_{2}-8 x^{3} y a_{3}+6 x^{3} y b_{2}-8 x^{3} y b_{3}+3 x^{2} y^{2} a_{2}-6 x^{2} y^{2} a_{3}+6 x^{2} y^{2} b_{2}-3 x}{x^{2}(x+2 y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{4} a_{2}-4 x^{4} a_{3}-x^{4} b_{2}-2 x^{4} b_{3}+8 x^{3} y a_{2}-8 x^{3} y a_{3}+6 x^{3} y b_{2}-8 x^{3} y b_{3} \tag{6E}\\
& +3 x^{2} y^{2} a_{2}-6 x^{2} y^{2} a_{3}+6 x^{2} y^{2} b_{2}-3 x^{2} y^{2} b_{3}-6 x y^{3} a_{3}-3 y^{4} a_{3} \\
& -2 x^{3} b_{1}+2 x^{2} y a_{1}+2 x^{2} y b_{1}-2 x y^{2} a_{1}+2 x y^{2} b_{1}-2 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{4}+8 a_{2} v_{1}^{3} v_{2}+3 a_{2} v_{1}^{2} v_{2}^{2}-4 a_{3} v_{1}^{4}-8 a_{3} v_{1}^{3} v_{2}-6 a_{3} v_{1}^{2} v_{2}^{2}-6 a_{3} v_{1} v_{2}^{3} \tag{7E}\\
& \quad-3 a_{3} v_{2}^{4}-b_{2} v_{1}^{4}+6 b_{2} v_{1}^{3} v_{2}+6 b_{2} v_{1}^{2} v_{2}^{2}-2 b_{3} v_{1}^{4}-8 b_{3} v_{1}^{3} v_{2}-3 b_{3} v_{1}^{2} v_{2}^{2} \\
& +2 a_{1} v_{1}^{2} v_{2}-2 a_{1} v_{1} v_{2}^{2}-2 a_{1} v_{2}^{3}-2 b_{1} v_{1}^{3}+2 b_{1} v_{1}^{2} v_{2}+2 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{2}-4 a_{3}-b_{2}-2 b_{3}\right) v_{1}^{4}+\left(8 a_{2}-8 a_{3}+6 b_{2}-8 b_{3}\right) v_{1}^{3} v_{2} \tag{8E}\\
& \quad-2 b_{1} v_{1}^{3}+\left(3 a_{2}-6 a_{3}+6 b_{2}-3 b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(2 a_{1}+2 b_{1}\right) v_{1}^{2} v_{2} \\
& \quad-6 a_{3} v_{1} v_{2}^{3}+\left(-2 a_{1}+2 b_{1}\right) v_{1} v_{2}^{2}-3 a_{3} v_{2}^{4}-2 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
-6 a_{3} & =0 \\
-3 a_{3} & =0 \\
-2 b_{1} & =0 \\
-2 a_{1}+2 b_{1} & =0 \\
2 a_{1}+2 b_{1} & =0 \\
2 a_{2}-4 a_{3}-b_{2}-2 b_{3} & =0 \\
3 a_{2}-6 a_{3}+6 b_{2}-3 b_{3} & =0 \\
8 a_{2}-8 a_{3}+6 b_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 x^{2}+2 x y+y^{2}}{x(x+2 y)}\right)(x) \\
& =\frac{2 x^{2}+3 x y+3 y^{2}}{x+2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2}+3 x y+3 y^{2}}{x+2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(2 x^{2}+3 x y+3 y^{2}\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x^{2}+2 x y+y^{2}}{x(x+2 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4 x+3 y}{6 x^{2}+9 x y+9 y^{2}} \\
S_{y} & =\frac{x+2 y}{2 x^{2}+3 x y+3 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{3 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(3 y^{2}+3 y x+2 x^{2}\right)}{3}=-\frac{\ln (x)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(3 y^{2}+3 y x+2 x^{2}\right)}{3}=-\frac{\ln (x)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x^{2}+2 x y+y^{2}}{x(x+2 y)}$		$\frac{d S}{d R}=-\frac{1}{3 R}$
		\rightarrow
		$S[R]$
		$\rightarrow \rightarrow \rightarrow-3 y$
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$\ln \left(2 x^{2}+3 x y+3 y^{2}\right)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ } \rightarrow$
	$S=\frac{\ln \left(2 x^{2}+3 x y+3 y^{2}\right)}{3}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
	3	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
-tidyty		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\rightarrow \rightarrow+$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(3 y^{2}+3 y x+2 x^{2}\right)}{3}=-\frac{\ln (x)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 142: Slope field plot
Verification of solutions

$$
\frac{\ln \left(3 y^{2}+3 y x+2 x^{2}\right)}{3}=-\frac{\ln (x)}{3}+c_{1}
$$

Verified OK.

4.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+2 x y\right) \mathrm{d} y & =\left(-2 x^{2}-2 x y-y^{2}\right) \mathrm{d} x \\
\left(2 x^{2}+2 x y+y^{2}\right) \mathrm{d} x+\left(x^{2}+2 x y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x^{2}+2 x y+y^{2} \\
N(x, y) & =x^{2}+2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x^{2}+2 x y+y^{2}\right) \\
& =2 y+2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+2 x y\right) \\
& =2 y+2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x^{2}+2 x y+y^{2} \mathrm{~d} x \\
\phi & =\frac{2}{3} x^{3}+x^{2} y+x y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x^{2}+2 x y+f^{\prime}(y) \tag{4}\\
& =x(x+2 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}+2 x y$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}+2 x y=x(x+2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{2}{3} x^{3}+x^{2} y+x y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{2}{3} x^{3}+x^{2} y+x y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{2 x^{3}}{3}+x^{2} y+y^{2} x=c_{1} \tag{1}
\end{equation*}
$$

Figure 143: Slope field plot

Verification of solutions

$$
\frac{2 x^{3}}{3}+x^{2} y+y^{2} x=c_{1}
$$

Verified OK.

4.24.4 Maple step by step solution

Let's solve

$$
2 y x+y^{2}+\left(2 y x+x^{2}\right) y^{\prime}=-2 x^{2}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$2 y+2 x=2 y+2 x$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 x^{2}+2 x y+y^{2}\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{2 x^{3}}{3}+x^{2} y+x y^{2}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative

$$
x^{2}+2 x y=x^{2}+2 x y+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=0$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{2}{3} x^{3}+x^{2} y+x y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{2}{3} x^{3}+x^{2} y+x y^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{-3 x^{2}+\sqrt{-15 x^{4}+36 c_{1} x}}{6 x}, y=-\frac{3 x^{2}+\sqrt{-15 x^{4}+36 c_{1} x}}{6 x}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 80
dsolve $\left(\left(2 * x^{\wedge} 2+2 * x * y(x)+y(x)^{\wedge} 2\right)+\left(x^{\wedge} 2+2 * x * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{-3 c_{1}^{2} x^{2}+\sqrt{3} \sqrt{-5\left(c_{1}^{3} x^{3}-\frac{4}{5}\right) c_{1} x}}{6 c_{1}^{2} x} \\
& y(x)=\frac{-3 c_{1}^{2} x^{2}-\sqrt{3} \sqrt{-5\left(c_{1}^{3} x^{3}-\frac{4}{5}\right) c_{1} x}}{6 c_{1}^{2} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.277 (sec). Leaf size: 150
DSolve $\left[\left(2 * x^{\wedge} 2+2 * x * y[x]+y[x] \sim 2\right)+\left(x^{\wedge} 2+2 * x * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{6}\left(-3 x-\frac{\sqrt{3} \sqrt{-5 x^{3}+4 e^{3 c_{1}}}}{\sqrt{x}}\right) \\
& y(x) \rightarrow \frac{1}{6}\left(-3 x+\frac{\sqrt{3} \sqrt{-5 x^{3}+4 e^{3 c_{1}}}}{\sqrt{x}}\right) \\
& y(x) \rightarrow \frac{1}{6} x\left(\frac{\sqrt{15} x^{3 / 2}}{\sqrt{-x^{3}}}-3\right) \\
& y(x) \rightarrow \frac{\sqrt{\frac{5}{3}} \sqrt{-x^{3}}}{2 \sqrt{x}}-\frac{x}{2}
\end{aligned}
$$

5 Chapter 2, section 2.3 (Linear equations). Exercises page 56
5.1 problem 1 780
5.2 problem 2 793
5.3 problem 3 806
5.4 problem 4 819
5.5 problem 5 832
5.6 problem 6 846
5.7 problem 7 860
5.8 problem 8 874
5.9 problem 9 887
5.10 problem 10 900
5.11 problem 11 906
5.12 problem 12 919
5.13 problem 13 932
5.14 problem 14 945
5.15 problem 15 957
5.16 problem 16 975
5.17 problem 17 990
5.18 problem 18 1006
5.19 problem 19 1021
5.20 problem 20 1035
5.21 problem 21 1050
5.22 problem 22 1063
5.23 problem 23 1077
5.24 problem 24 1092
5.25 problem 25 1106
5.26 problem 26 1119
5.27 problem 27 1133
5.28 problem 28 1145
5.29 problem 29 1157
5.30 problem 30 1169
5.31 problem 31 1182
5.32 problem 35 (b) 1193
5.33 problem 37 (a) 1206
5.34 problem 37 (b) 1211
5.35 problem 39 1223
5.36 problem 40 1234
5.37 problem 41 . 1238

5.1 problem 1

5.1.1 Solving as linear ode
5.1.2 Solving as first order ode lie symmetry lookup ode 782
5.1.3 Solving as exact ode . 786
5.1.4 Maple step by step solution . 791

Internal problem ID [11638]
Internal file name [OUTPUT/11647_Tuesday_April_09_2024_02_04_51_AM_19754612/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{3 y}{x}=6 x^{2}
$$

5.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=6 x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=6 x^{2}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{3}{x} d x} \\
=x^{3}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(6 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{3}\right) & =\left(x^{3}\right)\left(6 x^{2}\right) \\
\mathrm{d}\left(y x^{3}\right) & =\left(6 x^{5}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{3}=\int 6 x^{5} \mathrm{~d} x \\
& y x^{3}=x^{6}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=x^{3}+\frac{c_{1}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}+\frac{c_{1}}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 144: Slope field plot

Verification of solutions

$$
y=x^{3}+\frac{c_{1}}{x^{3}}
$$

Verified OK.

5.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3\left(-2 x^{3}+y\right)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 112: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=y x^{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3\left(-2 x^{3}+y\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 x^{2} y \\
S_{y} & =x^{3}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=6 x^{5} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=6 R^{5}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{6}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y x^{3}=x^{6}+c_{1}
$$

Which simplifies to

$$
y x^{3}=x^{6}+c_{1}
$$

Which gives

$$
y=\frac{x^{6}+c_{1}}{x^{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3\left(-2 x^{3}+y\right)}{x}$		$\frac{d S}{d R}=6 R^{5}$
\&		
		$\xrightarrow[\rightarrow \rightarrow+1]{\rightarrow \rightarrow+1}$
	$S=y x^{3}$	
20 ${ }^{\text {a }}$		
+		$\rightarrow 1$
Ltatalatatat		$\rightarrow 1$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{6}+c_{1}}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 145: Slope field plot

Verification of solutions

$$
y=\frac{x^{6}+c_{1}}{x^{3}}
$$

Verified OK.

5.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-\frac{3 y}{x}+6 x^{2}\right) \mathrm{d} x \\
\left(\frac{3 y}{x}-6 x^{2}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{3 y}{x}-6 x^{2} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{3 y}{x}-6 x^{2}\right) \\
& =\frac{3}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{3}{x}\right)-(0)\right) \\
& =\frac{3}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{3}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 \ln (x)} \\
& =x^{3}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{3}\left(\frac{3 y}{x}-6 x^{2}\right) \\
& =-6 x^{5}+3 x^{2} y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{3}(1) \\
& =x^{3}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-6 x^{5}+3 x^{2} y\right)+\left(x^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-6 x^{5}+3 x^{2} y \mathrm{~d} x \\
\phi & =-\frac{\left(2 x^{3}-y\right)^{2}}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{3}-\frac{y}{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{3}=x^{3}-\frac{y}{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y}{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y}{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\left(2 x^{3}-y\right)^{2}}{4}+\frac{y^{2}}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\left(2 x^{3}-y\right)^{2}}{4}+\frac{y^{2}}{4}
$$

The solution becomes

$$
y=\frac{x^{6}+c_{1}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{6}+c_{1}}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 146: Slope field plot

Verification of solutions

$$
y=\frac{x^{6}+c_{1}}{x^{3}}
$$

Verified OK.

5.1.4 Maple step by step solution

Let's solve
$y^{\prime}+\frac{3 y}{x}=6 x^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{3 y}{x}+6 x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{3 y}{x}=6 x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{3 y}{x}\right)=6 \mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{3 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{3 \mu(x)}{x}$
- Solve to find the integrating factor

$$
\mu(x)=x^{3}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 6 \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int 6 \mu(x) x^{2} d x+c_{1}
$$

- \quad Solve for y
$y=\frac{\int 6 \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{3}$

$$
y=\frac{\int 6 x^{5} d x+c_{1}}{x^{3}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{x^{6}+c_{1}}{x^{3}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(x),x)+3*y(x)/x=6*x^2,y(x), singsol=all)
```

$$
y(x)=\frac{x^{6}+c_{1}}{x^{3}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 15
DSolve $\left[y\right.$ ' $[x]+3 * y[x] / x==6 * x^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{x^{6}+c_{1}}{x^{3}}
$$

5.2 problem 2

5.2.1 Solving as linear ode . 793
5.2.2 Solving as first order ode lie symmetry lookup ode 795
5.2.3 Solving as exact ode . 799
5.2.4 Maple step by step solution . 804

Internal problem ID [11639]
Internal file name [OUTPUT/11648_Tuesday_April_09_2024_02_04_53_AM_58150107/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
x^{4} y^{\prime}+2 y x^{3}=1
$$

5.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{1}{x^{4}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{1}{x^{4}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x^{4}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{1}{x^{4}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\frac{1}{x^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int \frac{1}{x^{2}} \mathrm{~d} x \\
& x^{2} y=-\frac{1}{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=-\frac{1}{x^{3}}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} x-1}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-1}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 147: Slope field plot
Verification of solutions

$$
y=\frac{c_{1} x-1}{x^{3}}
$$

Verified OK.

5.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 y x^{3}-1}{x^{4}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 115: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=x^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y x^{3}-1}{x^{4}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 x y \\
S_{y} & =x^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2} y=-\frac{1}{x}+c_{1}
$$

Which simplifies to

$$
x^{2} y=-\frac{1}{x}+c_{1}
$$

Which gives

$$
y=\frac{c_{1} x-1}{x^{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y x^{3}-1}{x^{4}}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow+\infty$ 代
		14
	$R=x$	- $0^{\text {a }}+$
边	$S=x^{2} y$	
		5 4
		$\xrightarrow[\rightarrow \rightarrow \rightarrow+\infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-1}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 148: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x-1}{x^{3}}
$$

Verified OK.

5.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{4}\right) \mathrm{d} y & =\left(-2 y x^{3}+1\right) \mathrm{d} x \\
\left(2 y x^{3}-1\right) \mathrm{d} x+\left(x^{4}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y x^{3}-1 \\
N(x, y) & =x^{4}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y x^{3}-1\right) \\
& =2 x^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{4}\right) \\
& =4 x^{3}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{4}}\left(\left(2 x^{3}\right)-\left(4 x^{3}\right)\right) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(2 y x^{3}-1\right) \\
& =\frac{2 y x^{3}-1}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}\left(x^{4}\right) \\
& =x^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 y x^{3}-1}{x^{2}}\right)+\left(x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 y x^{3}-1}{x^{2}} \mathrm{~d} x \\
\phi & =x^{2} y+\frac{1}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2} y+\frac{1}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2} y+\frac{1}{x}
$$

The solution becomes

$$
y=\frac{c_{1} x-1}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-1}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 149: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x-1}{x^{3}}
$$

Verified OK.

5.2.4 Maple step by step solution

Let's solve
$x^{4} y^{\prime}+2 y x^{3}=1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{x}+\frac{1}{x^{4}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x}=\frac{1}{x^{4}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\frac{\mu(x)}{x^{4}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x^{4}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x^{4}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x^{4}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}$
$y=\frac{\int \frac{1}{x^{2}} d x+c_{1}}{x^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{1}{x}+c_{1}}{x^{2}}$
- Simplify

$$
y=\frac{c_{1} x-1}{x^{3}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 13

```
dsolve(x^4*diff(y(x),x)+2*x^3*y(x)=1,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x-1}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 15

```
DSolve[x^4*y'[x]+2*x^3*y[x]==1,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{-1+c_{1} x}{x^{3}}
$$

5.3 problem 3

$$
\text { 5.3.1 Solving as linear ode . } 806
$$

5.3.2 Solving as first order ode lie symmetry lookup ode 808
5.3.3 Solving as exact ode . 812
5.3.4 Maple step by step solution . 816

Internal problem ID [11640]
Internal file name [OUTPUT/11649_Tuesday_April_09_2024_02_04_54_AM_84307621/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+3 y=3 x^{2} \mathrm{e}^{-3 x}
$$

5.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=3 \\
& q(x)=3 x^{2} \mathrm{e}^{-3 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y=3 x^{2} \mathrm{e}^{-3 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(3 x^{2} \mathrm{e}^{-3 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{3 x} y\right) & =\left(\mathrm{e}^{3 x}\right)\left(3 x^{2} \mathrm{e}^{-3 x}\right) \\
\mathrm{d}\left(\mathrm{e}^{3 x} y\right) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 x} y=\int 3 x^{2} \mathrm{~d} x \\
& \mathrm{e}^{3 x} y=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 x}$ results in

$$
y=\mathrm{e}^{-3 x} x^{3}+c_{1} \mathrm{e}^{-3 x}
$$

which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 150: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

5.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-3 y+3 x^{2} \mathrm{e}^{-3 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 118: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-3 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{3 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-3 y+3 x^{2} \mathrm{e}^{-3 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 \mathrm{e}^{3 x} y \\
S_{y} & =\mathrm{e}^{3 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{3 x} y=x^{3}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{3 x} y=x^{3}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-3 y+3 x^{2} \mathrm{e}^{-3 x}$		$\frac{d S}{d R}=3 R^{2}$
totytityt		
	$R=x$	$4+4+4+4 \rightarrow+4+4+4+4$
	$S=\mathrm{e}^{3 x} y$	
¢ ¢ ¢-4 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 151: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

5.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-3 y+3 x^{2} \mathrm{e}^{-3 x}\right) \mathrm{d} x \\
\left(3 y-3 x^{2} \mathrm{e}^{-3 x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y-3 x^{2} \mathrm{e}^{-3 x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y-3 x^{2} \mathrm{e}^{-3 x}\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((3)-(0)) \\
& =3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 3 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{3 x}\left(3 y-3 x^{2} \mathrm{e}^{-3 x}\right) \\
& =3 \mathrm{e}^{3 x} y-3 x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{3 x}(1) \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(3 \mathrm{e}^{3 x} y-3 x^{2}\right)+\left(\mathrm{e}^{3 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 \mathrm{e}^{3 x} y-3 x^{2} \mathrm{~d} x \\
\phi & =\mathrm{e}^{3 x} y-x^{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 x}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{3 x} y-x^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{3 x} y-x^{3}
$$

The solution becomes

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 152: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)
$$

Verified OK.

5.3.4 Maple step by step solution

Let's solve

$$
y^{\prime}+3 y=3 x^{2} \mathrm{e}^{-3 x}
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative
$y^{\prime}=-3 y+3 x^{2} \mathrm{e}^{-3 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}+3 y=3 x^{2} \mathrm{e}^{-3 x}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+3 y\right)=3 \mu(x) x^{2} \mathrm{e}^{-3 x}
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+3 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=3 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{3 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 3 \mu(x) x^{2} \mathrm{e}^{-3 x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 3 \mu(x) x^{2} \mathrm{e}^{-3 x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(x) x^{2} \mathrm{e}^{-3 x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{3 x}$
$y=\frac{\int 3 x^{2} \mathrm{e}^{-3 x} \mathrm{e}^{3 x} d x+c_{1}}{\mathrm{e}^{3 x}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{3}+c_{1}}{\mathrm{e}^{3 x}}$
- Simplify
$y=\mathrm{e}^{-3 x}\left(x^{3}+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve($\operatorname{diff}(y(x), x)+3 * y(x)=3 * x^{\wedge} 2 * \exp (-3 * x), y(x)$, singsol=all)

$$
y(x)=\left(x^{3}+c_{1}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 17
DSolve $\left[y^{\prime}[x]+3 * y[x]==3 * x^{\wedge} 2 * \operatorname{Exp}[-3 * x], y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x}\left(x^{3}+c_{1}\right)
$$

5.4 problem 4

5.4.1 Solving as separable ode . 819
5.4.2 Solving as linear ode . 821
5.4.3 Solving as first order ode lie symmetry lookup ode 822
5.4.4 Solving as exact ode . 826
5.4.5 Maple step by step solution . 830

Internal problem ID [11641]
Internal file name [OUTPUT/11650_Tuesday_April_09_2024_02_04_54_AM_54658325/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+4 y x=8 x
$$

5.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x(-4 y+8)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=-4 y+8$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-4 y+8} d y & =x d x \\
\int \frac{1}{-4 y+8} d y & =\int x d x
\end{aligned}
$$

$$
-\frac{\ln (y-2)}{4}=\frac{x^{2}}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\frac{1}{(y-2)^{\frac{1}{4}}}=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(y-2)^{\frac{1}{4}}}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 c_{2}^{4} \mathrm{e}^{2 x^{2}+4 c_{1}}+1\right) \mathrm{e}^{-2 x^{2}-4 c_{1}}}{c_{2}^{4}} \tag{1}
\end{equation*}
$$

Figure 153: Slope field plot
Verification of solutions

$$
y=\frac{\left(2 c_{2}^{4} \mathrm{e}^{2 x^{2}+4 c_{1}}+1\right) \mathrm{e}^{-2 x^{2}-4 c_{1}}}{c_{2}^{4}}
$$

Verified OK.

5.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=4 x \\
& q(x)=8 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+4 y x=8 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 x d x} \\
& =\mathrm{e}^{2 x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(8 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 x^{2}} y\right) & =\left(\mathrm{e}^{2 x^{2}}\right)(8 x) \\
\mathrm{d}\left(\mathrm{e}^{2 x^{2}} y\right) & =\left(8 x \mathrm{e}^{2 x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 x^{2}} y=\int 8 x \mathrm{e}^{2 x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{2 x^{2}} y=2 \mathrm{e}^{2 x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 x^{2}}$ results in

$$
y=2 \mathrm{e}^{-2 x^{2}} \mathrm{e}^{2 x^{2}}+c_{1} \mathrm{e}^{-2 x^{2}}
$$

which simplifies to

$$
y=2+c_{1} \mathrm{e}^{-2 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2+c_{1} \mathrm{e}^{-2 x^{2}} \tag{1}
\end{equation*}
$$

Figure 154: Slope field plot
Verification of solutions

$$
y=2+c_{1} \mathrm{e}^{-2 x^{2}}
$$

Verified OK.

5.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-4 x y+8 x \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 121: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-2 x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-4 x y+8 x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =4 x \mathrm{e}^{2 x^{2}} y \\
S_{y} & =\mathrm{e}^{2 x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=8 x \mathrm{e}^{2 x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=8 R \mathrm{e}^{2 R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \mathrm{e}^{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{2 x^{2}} y=2 \mathrm{e}^{2 x^{2}}+c_{1}
$$

Which simplifies to

$$
(y-2) \mathrm{e}^{2 x^{2}}-c_{1}=0
$$

Which gives

$$
y=\left(2 \mathrm{e}^{2 x^{2}}+c_{1}\right) \mathrm{e}^{-2 x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-4 x y+8 x$		$\frac{d S}{d R}=8 R \mathrm{e}^{2 R^{2}}$
		+ $\square_{1}^{1}+1$
	$R=x$	
	$S=\mathrm{e}^{2 x^{2}} y$	
		L $\mathrm{H}_{1} 1111$
W Lattatat		
W1-4tatatat		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 \mathrm{e}^{2 x^{2}}+c_{1}\right) \mathrm{e}^{-2 x^{2}} \tag{1}
\end{equation*}
$$

Figure 155: Slope field plot

Verification of solutions

$$
y=\left(2 \mathrm{e}^{2 x^{2}}+c_{1}\right) \mathrm{e}^{-2 x^{2}}
$$

Verified OK.

5.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-4 y+8}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{-4 y+8}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{-4 y+8}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-4 y+8}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-4 y+8}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-4 y+8}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{4(y-2)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{4 y-8}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y-2)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln (y-2)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln (y-2)}{4}
$$

The solution becomes

$$
y=\mathrm{e}^{-2 x^{2}-4 c_{1}}+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x^{2}-4 c_{1}}+2 \tag{1}
\end{equation*}
$$

Figure 156: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-2 x^{2}-4 c_{1}}+2
$$

Verified OK.

5.4.5 Maple step by step solution

Let's solve

$$
y^{\prime}+4 y x=8 x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y-2}=-4 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y-2} d x=\int-4 x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y-2)=-2 x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-2 x^{2}+c_{1}}+2
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})+4 * \mathrm{x} * \mathrm{y}(\mathrm{x})=8 * \mathrm{x}, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=2+\mathrm{e}^{-2 x^{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 22
DSolve $[y$ ' $[x]+4 * x * y[x]==8 * x, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow 2+c_{1} e^{-2 x^{2}} \\
& y(x) \rightarrow 2
\end{aligned}
$$

5.5 problem 5

5.5.1 Solving as separable ode832
5.5.2 Solving as linear ode 834
5.5.3 Solving as first order ode lie symmetry lookup ode 836
5.5.4 Solving as exact ode 840
5.5.5 Maple step by step solution 844

Internal problem ID [11642]
Internal file name [OUTPUT/11651_Tuesday_April_09_2024_02_04_55_AM_68847940/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{\prime}+\frac{x}{t^{2}}=\frac{1}{t^{2}}
$$

5.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
x^{\prime} & =F(t, x) \\
& =f(t) g(x) \\
& =\frac{1-x}{t^{2}}
\end{aligned}
$$

Where $f(t)=\frac{1}{t^{2}}$ and $g(x)=1-x$. Integrating both sides gives

$$
\frac{1}{1-x} d x=\frac{1}{t^{2}} d t
$$

$$
\begin{aligned}
\int \frac{1}{1-x} d x & =\int \frac{1}{t^{2}} d t \\
-\ln (x-1) & =-\frac{1}{t}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{x-1}=\mathrm{e}^{-\frac{1}{t}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{x-1}=c_{2} \mathrm{e}^{-\frac{1}{t}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{\left(c_{2} \mathrm{e}^{\frac{c_{1} t-1}{t}}+1\right) \mathrm{e}^{-\frac{c_{1} t-1}{t}}}{c_{2}} \tag{1}
\end{equation*}
$$

Figure 157: Slope field plot

Verification of solutions

$$
x=\frac{\left(c_{2} \mathrm{e}^{\frac{c_{1} t-1}{t}}+1\right) \mathrm{e}^{-\frac{c_{1} t-1}{t}}}{c_{2}}
$$

Verified OK.

5.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
x^{\prime}+p(t) x=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{t^{2}} \\
& q(t)=\frac{1}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
x^{\prime}+\frac{x}{t^{2}}=\frac{1}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{t^{2}} d t} \\
& =\mathrm{e}^{-\frac{1}{t}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu x) & =(\mu)\left(\frac{1}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{1}{t}} x\right) & =\left(\mathrm{e}^{-\frac{1}{t}}\right)\left(\frac{1}{t^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{1}{t}} x\right) & =\left(\frac{\mathrm{e}^{-\frac{1}{t}}}{t^{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{1}{t}} x=\int \frac{\mathrm{e}^{-\frac{1}{t}}}{t^{2}} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{1}{t}} x=\mathrm{e}^{-\frac{1}{t}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{1}{t}}$ results in

$$
x=\mathrm{e}^{\frac{1}{t}} \mathrm{e}^{-\frac{1}{t}}+c_{1} \mathrm{e}^{\frac{1}{t}}
$$

which simplifies to

$$
x=1+c_{1} \mathrm{e}^{\frac{1}{t}}
$$

Summary
The solution(s) found are the following

Figure 158: Slope field plot

Verification of solutions

$$
x=1+c_{1} \mathrm{e}^{\frac{1}{t}}
$$

Verified OK.

5.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
x^{\prime} & =-\frac{x-1}{t^{2}} \\
x^{\prime} & =\omega(t, x)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{x}-\xi_{t}\right)-\omega^{2} \xi_{x}-\omega_{t} \xi-\omega_{x} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 124: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, x)=0 \\
& \eta(t, x)=\mathrm{e}^{\frac{1}{t}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, x) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d x}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial x}\right) S(t, x)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{1}{t}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{1}{t}} x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, x) S_{x}}{R_{t}+\omega(t, x) R_{x}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{x}, S_{t}, S_{x}$ are all partial derivatives and $\omega(t, x)$ is the right hand side of the original ode given by

$$
\omega(t, x)=-\frac{x-1}{t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{x} & =0 \\
S_{t} & =\frac{\mathrm{e}^{-\frac{1}{t}} x}{t^{2}} \\
S_{x} & =\mathrm{e}^{-\frac{1}{t}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{1}{t}}}{t^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, x in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{1}{R}}}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{-\frac{1}{R}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, x coordinates. This results in

$$
\mathrm{e}^{-\frac{1}{t}} x=\mathrm{e}^{-\frac{1}{t}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{1}{t}}(x-1)-c_{1}=0
$$

Which gives

$$
x=\left(\mathrm{e}^{-\frac{1}{t}}+c_{1}\right) \mathrm{e}^{\frac{1}{t}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d x}{d t}=-\frac{x-1}{t^{2}}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{1}{R}}}{R^{2}}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\triangle 1 \uparrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 禺
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$	$R=t$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$S=\mathrm{e}^{-\frac{1}{t}} x$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		$\rightarrow \rightarrow \rightarrow+\infty$
$\rightarrow \rightarrow \rightarrow \pm \infty$		$\rightarrow \rightarrow \rightarrow-\infty$
		$\xrightarrow{ }$
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=\left(\mathrm{e}^{-\frac{1}{t}}+c_{1}\right) \mathrm{e}^{\frac{1}{t}} \tag{1}
\end{equation*}
$$

Figure 159: Slope field plot

Verification of solutions

$$
x=\left(\mathrm{e}^{-\frac{1}{t}}+c_{1}\right) \mathrm{e}^{\frac{1}{t}}
$$

Verified OK.

5.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, x) \mathrm{d} t+N(t, x) \mathrm{d} x=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{1-x}\right) \mathrm{d} x & =\left(\frac{1}{t^{2}}\right) \mathrm{d} t \\
\left(-\frac{1}{t^{2}}\right) \mathrm{d} t+\left(\frac{1}{1-x}\right) \mathrm{d} x & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, x)=-\frac{1}{t^{2}} \\
& N(t, x)=\frac{1}{1-x}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{t^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{1-x}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, x)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial x}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{t^{2}} \mathrm{~d} t \\
\phi & =\frac{1}{t}+f(x) \tag{3}
\end{align*}
$$

Where $f(x)$ is used for the constant of integration since ϕ is a function of both t and x. Taking derivative of equation (3) w.r.t x gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=0+f^{\prime}(x) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial x}=\frac{1}{1-x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{1-x}=0+f^{\prime}(x) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(x)$ gives

$$
f^{\prime}(x)=-\frac{1}{x-1}
$$

Integrating the above w.r.t x gives

$$
\begin{aligned}
\int f^{\prime}(x) \mathrm{d} x & =\int\left(-\frac{1}{x-1}\right) \mathrm{d} x \\
f(x) & =-\ln (x-1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(x)$ into equation (3) gives ϕ

$$
\phi=\frac{1}{t}-\ln (x-1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{1}{t}-\ln (x-1)
$$

The solution becomes

$$
x=\mathrm{e}^{-\frac{c_{1} t-1}{t}}+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{c_{1} t-1}{t}}+1 \tag{1}
\end{equation*}
$$

Figure 160: Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{c_{1} t-1}{t}}+1
$$

Verified OK.

5.5.5 Maple step by step solution

Let's solve

$$
x^{\prime}+\frac{x}{t^{2}}=\frac{1}{t^{2}}
$$

- Highest derivative means the order of the ODE is 1 x^{\prime}
- Separate variables

$$
\frac{x^{\prime}}{x-1}=-\frac{1}{t^{2}}
$$

- Integrate both sides with respect to t

$$
\int \frac{x^{\prime}}{x-1} d t=\int-\frac{1}{t^{2}} d t+c_{1}
$$

- Evaluate integral

$$
\ln (x-1)=\frac{1}{t}+c_{1}
$$

- \quad Solve for x

$$
x=\mathrm{e}^{\frac{c_{1} t+1}{t}}+1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(x(t),t)+x(t)/t^2=1/t^2,x(t), singsol=all)
```

$$
x(t)=1+\mathrm{e}^{\frac{1}{t}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 20
DSolve[x'[t]+x[t]/t^2==1/t^2,x[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& x(t) \rightarrow 1+c_{1} e^{\frac{1}{t}} \\
& x(t) \rightarrow 1
\end{aligned}
$$

5.6 problem 6

$$
\text { 5.6.1 Solving as separable ode . } 846
$$

5.6.2 Solving as linear ode 848
5.6.3 Solving as first order ode lie symmetry lookup ode 850
5.6.4 Solving as exact ode 854
5.6.5 Maple step by step solution 858

Internal problem ID [11643]
Internal file name [OUTPUT/11652_Tuesday_April_09_2024_02_04_56_AM_51780437/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
\left(u^{2}+1\right) v^{\prime}+4 v u=3 u
$$

5.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
v^{\prime} & =F(u, v) \\
& =f(u) g(v) \\
& =\frac{u(-4 v+3)}{u^{2}+1}
\end{aligned}
$$

Where $f(u)=\frac{u}{u^{2}+1}$ and $g(v)=-4 v+3$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-4 v+3} d v & =\frac{u}{u^{2}+1} d u \\
\int \frac{1}{-4 v+3} d v & =\int \frac{u}{u^{2}+1} d u
\end{aligned}
$$

$$
-\frac{\ln (-4 v+3)}{4}=\frac{\ln \left(u^{2}+1\right)}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\frac{1}{(-4 v+3)^{\frac{1}{4}}}=\mathrm{e}^{\frac{\ln \left(u^{2}+1\right)}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(-4 v+3)^{\frac{1}{4}}}=c_{2} \sqrt{u^{2}+1}
$$

Which simplifies to

$$
v=\frac{\left(3 c_{2}^{4} \mathrm{e}^{4 c_{1}}\left(u^{2}+1\right)^{2}-1\right) \mathrm{e}^{-4 c_{1}}}{4 c_{2}^{4}\left(u^{2}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\frac{\left(3 c_{2}^{4} \mathrm{e}^{4 c_{1}}\left(u^{2}+1\right)^{2}-1\right) \mathrm{e}^{-4 c_{1}}}{4 c_{2}^{4}\left(u^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 161: Slope field plot

Verification of solutions

$$
v=\frac{\left(3 c_{2}^{4} \mathrm{e}^{4 c_{1}}\left(u^{2}+1\right)^{2}-1\right) \mathrm{e}^{-4 c_{1}}}{4 c_{2}^{4}\left(u^{2}+1\right)^{2}}
$$

Verified OK.

5.6.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
v^{\prime}+p(u) v=q(u)
$$

Where here

$$
\begin{aligned}
p(u) & =\frac{4 u}{u^{2}+1} \\
q(u) & =\frac{3 u}{u^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
v^{\prime}+\frac{4 u v}{u^{2}+1}=\frac{3 u}{u^{2}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4 u}{u^{2}+1} d u} \\
& =\left(u^{2}+1\right)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} u}(\mu v) & =(\mu)\left(\frac{3 u}{u^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} u}\left(\left(u^{2}+1\right)^{2} v\right) & =\left(\left(u^{2}+1\right)^{2}\right)\left(\frac{3 u}{u^{2}+1}\right) \\
\mathrm{d}\left(\left(u^{2}+1\right)^{2} v\right) & =\left(3 u\left(u^{2}+1\right)\right) \mathrm{d} u
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(u^{2}+1\right)^{2} v=\int 3 u\left(u^{2}+1\right) \mathrm{d} u \\
& \left(u^{2}+1\right)^{2} v=\frac{3\left(u^{2}+1\right)^{2}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\left(u^{2}+1\right)^{2}$ results in

$$
v=\frac{3}{4}+\frac{c_{1}}{\left(u^{2}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\frac{3}{4}+\frac{c_{1}}{\left(u^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 162: Slope field plot

Verification of solutions

$$
v=\frac{3}{4}+\frac{c_{1}}{\left(u^{2}+1\right)^{2}}
$$

Verified OK.

5.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& v^{\prime}=-\frac{u(4 v-3)}{u^{2}+1} \\
& v^{\prime}=\omega(u, v)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{u}+\omega\left(\eta_{v}-\xi_{u}\right)-\omega^{2} \xi_{v}-\omega_{u} \xi-\omega_{v} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 127: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(u, v) & =0 \\
\eta(u, v) & =\frac{1}{\left(u^{2}+1\right)^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(u, v) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d u}{\xi}=\frac{d v}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial u}+\eta \frac{\partial}{\partial v}\right) S(u, v)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=u
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\left(u^{2}+1\right)^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\left(u^{2}+1\right)^{2} v
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{u}+\omega(u, v) S_{v}}{R_{u}+\omega(u, v) R_{v}} \tag{2}
\end{equation*}
$$

Where in the above $R_{u}, R_{v}, S_{u}, S_{v}$ are all partial derivatives and $\omega(u, v)$ is the right hand side of the original ode given by

$$
\omega(u, v)=-\frac{u(4 v-3)}{u^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{u} & =1 \\
R_{v} & =0 \\
S_{u} & =4\left(u^{2}+1\right) v u \\
S_{v} & =\left(u^{2}+1\right)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 u^{3}+3 u \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for u, v in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{3}+3 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3\left(R^{2}+1\right)^{2}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to u, v coordinates. This results in

$$
\left(u^{2}+1\right)^{2} v=\frac{3\left(u^{2}+1\right)^{2}}{4}+c_{1}
$$

Which simplifies to

$$
\left(u^{2}+1\right)^{2} v=\frac{3\left(u^{2}+1\right)^{2}}{4}+c_{1}
$$

Which gives

$$
v=\frac{3 u^{4}+6 u^{2}+4 c_{1}+3}{4\left(u^{2}+1\right)^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in u, v coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d v}{d u}=-\frac{u(4 v-3)}{u^{2}+1}$		$\frac{d S}{d R}=3 R^{3}+3 R$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow ~]{\text { a }}$	$R=u$	
5xyldady		
	$S=\left(u^{2}+1\right)^{2} v$	
		¢ ${ }^{\text {i }}$
...............		.

Summary

The solution(s) found are the following

$$
\begin{equation*}
v=\frac{3 u^{4}+6 u^{2}+4 c_{1}+3}{4\left(u^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 163: Slope field plot

Verification of solutions

$$
v=\frac{3 u^{4}+6 u^{2}+4 c_{1}+3}{4\left(u^{2}+1\right)^{2}}
$$

Verified OK.

5.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(u, v) \mathrm{d} u+N(u, v) \mathrm{d} v=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-4 v+3}\right) \mathrm{d} v & =\left(\frac{u}{u^{2}+1}\right) \mathrm{d} u \\
\left(-\frac{u}{u^{2}+1}\right) \mathrm{d} u+\left(\frac{1}{-4 v+3}\right) \mathrm{d} v & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(u, v) & =-\frac{u}{u^{2}+1} \\
N(u, v) & =\frac{1}{-4 v+3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial v}=\frac{\partial N}{\partial u}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial v} & =\frac{\partial}{\partial v}\left(-\frac{u}{u^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial u} & =\frac{\partial}{\partial u}\left(\frac{1}{-4 v+3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial v}=\frac{\partial N}{\partial u}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(u, v)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial u}=M \tag{1}\\
& \frac{\partial \phi}{\partial v}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. u gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial u} \mathrm{~d} u & =\int M \mathrm{~d} u \\
\int \frac{\partial \phi}{\partial u} \mathrm{~d} u & =\int-\frac{u}{u^{2}+1} \mathrm{~d} u \\
\phi & =-\frac{\ln \left(u^{2}+1\right)}{2}+f(v) \tag{3}
\end{align*}
$$

Where $f(v)$ is used for the constant of integration since ϕ is a function of both u and v. Taking derivative of equation (3) w.r.t v gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial v}=0+f^{\prime}(v) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial v}=\frac{1}{-4 v+3}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-4 v+3}=0+f^{\prime}(v) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(v)$ gives

$$
f^{\prime}(v)=-\frac{1}{4 v-3}
$$

Integrating the above w.r.t v gives

$$
\begin{aligned}
\int f^{\prime}(v) \mathrm{d} v & =\int\left(-\frac{1}{4 v-3}\right) \mathrm{d} v \\
f(v) & =-\frac{\ln (4 v-3)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(v)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(u^{2}+1\right)}{2}-\frac{\ln (4 v-3)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(u^{2}+1\right)}{2}-\frac{\ln (4 v-3)}{4}
$$

The solution becomes

$$
v=\frac{3 u^{4}+6 u^{2}+\mathrm{e}^{-4 c_{1}}+3}{4 u^{4}+8 u^{2}+4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
v=\frac{3 u^{4}+6 u^{2}+\mathrm{e}^{-4 c_{1}}+3}{4 u^{4}+8 u^{2}+4} \tag{1}
\end{equation*}
$$

Figure 164: Slope field plot

Verification of solutions

$$
v=\frac{3 u^{4}+6 u^{2}+\mathrm{e}^{-4 c_{1}}+3}{4 u^{4}+8 u^{2}+4}
$$

Verified OK.

5.6.5 Maple step by step solution

Let's solve

$$
\left(u^{2}+1\right) v^{\prime}+4 v u=3 u
$$

- Highest derivative means the order of the ODE is 1

$$
v^{\prime}
$$

- \quad Separate variables

$$
\frac{v^{\prime}}{4 v-3}=-\frac{u}{u^{2}+1}
$$

- Integrate both sides with respect to u

$$
\int \frac{v^{\prime}}{4 v-3} d u=\int-\frac{u}{u^{2}+1} d u+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (4 v-3)}{4}=-\frac{\ln \left(u^{2}+1\right)}{2}+c_{1}
$$

- \quad Solve for v

$$
v=\frac{3 u^{4}+6 u^{2}+\mathrm{e}^{4 c_{1}}+3}{4\left(u^{4}+2 u^{2}+1\right)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(($\left.u^{\sim} 2+1\right) * \operatorname{diff}(v(u), u)+4 * u * v(u)=3 * u, v(u)$, singsol=all)

$$
v(u)=\frac{3}{4}+\frac{c_{1}}{\left(u^{2}+1\right)^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 38
DSolve[($\left.u^{\wedge} 2+1\right) * v^{\prime}[u]+4 * u * v[u]==3 * u, v[u], u$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& v(u) \rightarrow \frac{3 u^{4}+6 u^{2}+4 c_{1}}{4\left(u^{2}+1\right)^{2}} \\
& v(u) \rightarrow \frac{3}{4}
\end{aligned}
$$

5.7 problem 7

5.7.1 Solving as linear ode 860
5.7.2 Solving as differentialType ode 862
5.7.3 Solving as first order ode lie symmetry lookup ode 864
5.7.4 Solving as exact ode 868
5.7.5 Maple step by step solution 872

Internal problem ID [11644]
Internal file name [OUTPUT/11653_Tuesday_April_09_2024_02_04_57_AM_21312822/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x+\frac{(2 x+1) y}{1+x}=x-1
$$

5.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{-2 x-1}{x(1+x)} \\
q(x) & =\frac{x-1}{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-2 x-1) y}{x(1+x)}=\frac{x-1}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-2 x-1}{x(1+x)} d x} \\
& =x(1+x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x-1}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x(1+x) y) & =(x(1+x))\left(\frac{x-1}{x}\right) \\
\mathrm{d}(x(1+x) y) & =\left(x^{2}-1\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x(1+x) y=\int x^{2}-1 \mathrm{~d} x \\
& x(1+x) y=\frac{1}{3} x^{3}-x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x(1+x)$ results in

$$
y=\frac{\frac{1}{3} x^{3}-x}{x(1+x)}+\frac{c_{1}}{x(1+x)}
$$

which simplifies to

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)} \tag{1}
\end{equation*}
$$

Figure 165: Slope field plot
Verification of solutions

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}
$$

Verified OK.

5.7.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-\frac{(2 x+1) y}{1+x}+x-1}{x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=\left(-x^{2}-x\right) d y+\left(x^{2}-2 x y-y-1\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-x^{2}-x\right) d y+\left(x^{2}-2 x y-y-1\right) d x=d\left(\frac{1}{3} x^{3}-x^{2} y-x y-x\right)
$$

Hence (2) becomes

$$
0=d\left(\frac{1}{3} x^{3}-x^{2} y-x y-x\right)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}+c_{1} \tag{1}
\end{equation*}
$$

Figure 166: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}+c_{1}
$$

Verified OK.

5.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-x^{2}+2 x y+y+1}{(1+x) x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 130: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η				
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$				
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0				
quadrature ode	$y^{\prime}=f(x)$	0	1				
quadrature ode	$y^{\prime}=g(y)$	1	0				
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y				
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$				
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$				
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$				
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$					
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0
:---	:---	:---					
$-\int(n-1) f(x) d x y^{n}$							

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{x(1+x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x(1+x)}} d y
\end{aligned}
$$

Which results in

$$
S=x(1+x) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-x^{2}+2 x y+y+1}{(1+x) x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =(2 x+1) y \\
S_{y} & =x(1+x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{2}-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2}-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{3} R^{3}-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x(1+x) y=\frac{1}{3} x^{3}-x+c_{1}
$$

Which simplifies to

$$
x(1+x) y=\frac{1}{3} x^{3}-x+c_{1}
$$

Which gives

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-x^{2}+2 x y+y+1}{(1+x) x}$		$\frac{d S}{d R}=R^{2}-1$
		+1 4 ¢ \uparrow
	$R=x$	
	$S=x(1+x) y$	
		1919 -

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)} \tag{1}
\end{equation*}
$$

Figure 167: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}
$$

Verified OK.

5.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x(1+x)) \mathrm{d} y & =\left(x^{2}-2 x y-y-1\right) \mathrm{d} x \\
\left(-x^{2}+2 x y+y+1\right) \mathrm{d} x+(x(1+x)) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2}+2 x y+y+1 \\
N(x, y) & =x(1+x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}+2 x y+y+1\right) \\
& =2 x+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x(1+x)) \\
& =2 x+1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2}+2 x y+y+1 \mathrm{~d} x \\
\phi & =-\frac{1}{3} x^{3}+x^{2} y+x y+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x(1+x)$. Therefore equation (4) becomes

$$
\begin{equation*}
x(1+x)=x^{2}+x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{3} x^{3}+x^{2} y+x y+x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{3} x^{3}+x^{2} y+x y+x
$$

The solution becomes

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)} \tag{1}
\end{equation*}
$$

Figure 168: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}
$$

Verified OK.

5.7.5 Maple step by step solution

Let's solve
$y^{\prime} x+\frac{(2 x+1) y}{1+x}=x-1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{(2 x+1) y}{x(1+x)}+\frac{x-1}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{(2 x+1) y}{x(1+x)}=\frac{x-1}{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{(2 x+1) y}{x(1+x)}\right)=\frac{\mu(x)(x-1)}{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{(2 x+1) y}{x(1+x)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)(2 x+1)}{x(1+x)}$
- \quad Solve to find the integrating factor
$\mu(x)=x(1+x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)(x-1)}{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)(x-1)}{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)(x-1)}{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x(1+x)$
$y=\frac{\int(x-1)(1+x) d x+c_{1}}{x(1+x)}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{1}{3} x^{3}-x+c_{1}}{x(1+x)}$
- Simplify

$$
y=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve $(x * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+(2 * \mathrm{x}+1) /(\mathrm{x}+1) * \mathrm{y}(\mathrm{x})=\mathrm{x}-1, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\frac{x^{3}+3 c_{1}-3 x}{3 x(1+x)}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 28
DSolve $[x * y$ ' $[x]+(2 * x+1) /(x+1) * y[x]==x-1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{3}-3 x+3 c_{1}}{3 x(x+1)}
$$

5.8 problem 8

5.8.1 Solving as linear ode . 874
5.8.2 Solving as first order ode lie symmetry lookup ode 876
5.8.3 Solving as exact ode . 880
5.8.4 Maple step by step solution . 885

Internal problem ID [11645]
Internal file name [OUTPUT/11654_Tuesday_April_09_2024_02_04_58_AM_13102016/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[_linear]

$$
\left(x^{2}+x-2\right) y^{\prime}+3 y(1+x)=x-1
$$

5.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-3 x-3}{x^{2}+x-2} \\
& q(x)=\frac{1}{x+2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-3 x-3) y}{x^{2}+x-2}=\frac{1}{x+2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-3 x-3}{x^{2}+x-2} d x} \\
& =\mathrm{e}^{2 \ln (x-1)+\ln (x+2)}
\end{aligned}
$$

Which simplifies to

$$
\mu=x^{3}-3 x+2
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x+2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{3}-3 x+2\right) y\right) & =\left(x^{3}-3 x+2\right)\left(\frac{1}{x+2}\right) \\
\mathrm{d}\left(\left(x^{3}-3 x+2\right) y\right) & =(x-1)^{2} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{3}-3 x+2\right) y=\int(x-1)^{2} \mathrm{~d} x \\
& \left(x^{3}-3 x+2\right) y=\frac{(x-1)^{3}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}-3 x+2$ results in

$$
y=\frac{(x-1)^{3}}{3 x^{3}-9 x+6}+\frac{c_{1}}{x^{3}-3 x+2}
$$

which simplifies to

$$
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x-1}{3 x^{3}-9 x+6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x-1}{3 x^{3}-9 x+6} \tag{1}
\end{equation*}
$$

Figure 169: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x-1}{3 x^{3}-9 x+6}
$$

Verified OK.

5.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x y-x+3 y+1}{x^{2}+x-2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 133: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-2 \ln (x-1)-\ln (x+2)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 \ln (x-1)-\ln (x+2)}} d y
\end{aligned}
$$

Which results in

$$
S=(x-1)^{2}(x+2) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x y-x+3 y+1}{x^{2}+x-2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 x^{2} y-3 y \\
S_{y} & =(x-1)^{2}(x+2)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(x-1)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(R-1)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{(R-1)^{3}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(x-1)^{2}(x+2) y=\frac{(x-1)^{3}}{3}+c_{1}
$$

Which simplifies to

$$
(x-1)^{2}(x+2) y=\frac{(x-1)^{3}}{3}+c_{1}
$$

Which gives

$$
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x-1}{3(x-1)^{2}(x+2)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x y-x+3 y+1}{x^{2}+x-2}$		$\frac{d S}{d R}=(R-1)^{2}$
¢ ¢ ¢ ¢ ¢ ¢ d ¢ ¢ ¢ ¢ ¢ d d d d d d ${ }^{\text {a }}$		
		$19+19$
	$R=x$	
	$S=(x-1)^{2}(x+2) y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x-1}{3(x-1)^{2}(x+2)} \tag{1}
\end{equation*}
$$

Figure 170: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x-1}{3(x-1)^{2}(x+2)}
$$

Verified OK.

5.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+x-2\right) \mathrm{d} y & =(-3 y(1+x)+x-1) \mathrm{d} x \\
(3 y(1+x)-x+1) \mathrm{d} x+\left(x^{2}+x-2\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y(1+x)-x+1 \\
N(x, y) & =x^{2}+x-2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(3 y(1+x)-x+1) \\
& =3 x+3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+x-2\right) \\
& =2 x+1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+x-2}((3 x+3)-(2 x+1)) \\
& =\frac{1}{x-1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x-1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x-1)} \\
& =x-1
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x-1(3 y(1+x)-x+1) \\
& =(3 y-1) x^{2}+2 x-1-3 y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x-1\left(x^{2}+x-2\right) \\
& =(x-1)^{2}(x+2)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left((3 y-1) x^{2}+2 x-1-3 y\right)+\left((x-1)^{2}(x+2)\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(3 y-1) x^{2}+2 x-1-3 y \mathrm{~d} x \\
\phi & =\frac{x\left(3 x^{2} y-x^{2}+3 x-9 y-3\right)}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x\left(3 x^{2}-9\right)}{3}+f^{\prime}(y) \tag{4}\\
& =x\left(x^{2}-3\right)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(x-1)^{2}(x+2)$. Therefore equation (4) becomes

$$
\begin{equation*}
(x-1)^{2}(x+2)=x\left(x^{2}-3\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2) \mathrm{d} y \\
f(y) & =2 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x\left(3 x^{2} y-x^{2}+3 x-9 y-3\right)}{3}+2 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x\left(3 x^{2} y-x^{2}+3 x-9 y-3\right)}{3}+2 y
$$

The solution becomes

$$
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x}{3 x^{3}-9 x+6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x}{3 x^{3}-9 x+6} \tag{1}
\end{equation*}
$$

Figure 171: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}-3 x^{2}+3 c_{1}+3 x}{3 x^{3}-9 x+6}
$$

Verified OK.

5.8.4 Maple step by step solution

Let's solve
$\left(x^{2}+x-2\right) y^{\prime}+3 y(1+x)=x-1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{3(1+x) y}{x^{2}+x-2}+\frac{1}{x+2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{3(1+x) y}{x^{2}+x-2}=\frac{1}{x+2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{3(1+x) y}{x^{2}+x-2}\right)=\frac{\mu(x)}{x+2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{3(1+x) y}{x^{2}+x-2}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{3 \mu(x)(1+x)}{x^{2}+x-2}$
- Solve to find the integrating factor
$\mu(x)=(x-1)^{2}(x+2)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x+2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x+2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x+2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=(x-1)^{2}(x+2)$

$$
y=\frac{\int(x-1)^{2} d x+c_{1}}{(x-1)^{2}(x+2)}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{\frac{(x-1)^{3}}{3}+c_{1}}{(x-1)^{2}(x+2)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve((x~2+x-2)*diff(y(x),x)+3*(x+1)*y(x)=x-1,y(x), singsol=all)
```

$$
y(x)=\frac{\frac{(-1+x)^{3}}{3}+c_{1}}{(x+2)(-1+x)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 34
DSolve[($\left.x^{\wedge} 2+x-2\right) * y^{\prime}[x]+3 *(x+1) * y[x]==x-1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{3}-3 x^{2}+3 x+3 c_{1}}{3 x^{3}-9 x+6}
$$

5.9 problem 9

$$
\text { 5.9.1 Solving as linear ode . } 887
$$

5.9.2 Solving as first order ode lie symmetry lookup ode 889
5.9.3 Solving as exact ode 893
5.9.4 Maple step by step solution 897

Internal problem ID [11646]

Internal file name [OUTPUT/11655_Tuesday_April_09_2024_02_04_59_AM_70744530/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x+y x+y=1
$$

5.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-x-1}{x} \\
& q(x)=\frac{1}{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-x-1) y}{x}=\frac{1}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-x-1}{x} d x} \\
& =\mathrm{e}^{x+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=x \mathrm{e}^{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \mathrm{e}^{x} y\right) & =\left(x \mathrm{e}^{x}\right)\left(\frac{1}{x}\right) \\
\mathrm{d}\left(x \mathrm{e}^{x} y\right) & =\mathrm{e}^{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x \mathrm{e}^{x} y=\int \mathrm{e}^{x} \mathrm{~d} x \\
& x \mathrm{e}^{x} y=\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x \mathrm{e}^{x}$ results in

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{x}}{x}+\frac{c_{1} \mathrm{e}^{-x}}{x}
$$

which simplifies to

$$
y=\frac{c_{1} \mathrm{e}^{-x}+1}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \mathrm{e}^{-x}+1}{x} \tag{1}
\end{equation*}
$$

Figure 172: Slope field plot
Verification of solutions

$$
y=\frac{c_{1} \mathrm{e}^{-x}+1}{x}
$$

Verified OK.

5.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x y+y-1}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 136: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x-\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x-\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=x \mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y+y-1}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y(1+x) \\
S_{y} & =x \mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y x \mathrm{e}^{x}=\mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
y x \mathrm{e}^{x}=\mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x y+y-1}{x}$		$\frac{d S}{d R}=\mathrm{e}^{R}$
-		$\xrightarrow[\longrightarrow \rightarrow-\infty]{\rightarrow \rightarrow-\infty}$
zryrrwzry	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
	$S=x \mathrm{e}^{x} y$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\infty]{\rightarrow \rightarrow+\infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}}{x} \tag{1}
\end{equation*}
$$

Figure 173: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}}{x}
$$

Verified OK.

5.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =(-x y-y+1) \mathrm{d} x \\
(x y+y-1) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x y+y-1 \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x y+y-1) \\
& =1+x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((1+x)-(1)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(x y+y-1) \\
& =\mathrm{e}^{x}(x y+y-1)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(x) \\
& =x \mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{x}(x y+y-1)\right)+\left(x \mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x}(x y+y-1) \mathrm{d} x \\
\phi & =(x y-1) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x \mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
x \mathrm{e}^{x}=x \mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(x y-1) \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(x y-1) \mathrm{e}^{x}
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}}{x} \tag{1}
\end{equation*}
$$

Figure 174: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}}{x}
$$

Verified OK.

5.9.4 Maple step by step solution

Let's solve

$$
y^{\prime} x+y x+y=1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{(1+x) y}{x}+\frac{1}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{(1+x) y}{x}=\frac{1}{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{(1+x) y}{x}\right)=\frac{\mu(x)}{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{(1+x) y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)(1+x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=x \mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x \mathrm{e}^{x}$
$y=\frac{\int \mathrm{e}^{x} d x+c_{1}}{x \mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x} x}$
- Simplify
$y=\frac{c_{1} \mathrm{e}^{-x}+1}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(x*diff(y(x),x)+(x*y(x)+y(x)-1)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} \mathrm{e}^{-x}+1}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 19
DSolve[x*y' $[x]+(x * y[x]+y[x]-1)==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1+c_{1} e^{-x}}{x}
$$

5.10 problem 10

5.10.1 Solving as exact ode 900

Internal problem ID [11647]
Internal file name [OUTPUT/11656_Tuesday_April_09_2024_02_04_59_AM_24934280/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]

$$
y+\left(y^{2} x+x-y\right) y^{\prime}=0
$$

5.10.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x y^{2}+x-y\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(x y^{2}+x-y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \\
N(x, y) & =x y^{2}+x-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x y^{2}+x-y\right) \\
& =y^{2}+1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x y^{2}+x-y}\left((1)-\left(y^{2}+1\right)\right) \\
& =-\frac{y^{2}}{x y^{2}+x-y}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}\left(\left(y^{2}+1\right)-(1)\right) \\
& =y
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int y \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{y^{2}}{2}} \\
& =\mathrm{e}^{\frac{y^{2}}{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{y^{2}}{2}}(y) \\
& =y \mathrm{e}^{\frac{y^{2}}{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{y^{2}}{2}}\left(x y^{2}+x-y\right) \\
& =\left(x y^{2}+x-y\right) \mathrm{e}^{\frac{y^{2}}{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y \mathrm{e}^{\frac{y^{2}}{2}}\right)+\left(\left(x y^{2}+x-y\right) \mathrm{e}^{\frac{y}{}^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \mathrm{e}^{\frac{y^{2}}{2}} \mathrm{~d} x \\
\phi & =y \mathrm{e}^{\frac{y^{2}}{2}} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\mathrm{e}^{\frac{y^{2}}{2}} x+y^{2} \mathrm{e}^{\frac{y^{2}}{2}} x+f^{\prime}(y) \tag{4}\\
& =\mathrm{e}^{\frac{y^{2}}{2}} x\left(y^{2}+1\right)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\left(x y^{2}+x-y\right) \mathrm{e}^{\frac{y^{2}}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\left(x y^{2}+x-y\right) \mathrm{e}^{\frac{y^{2}}{2}}=\mathrm{e}^{\frac{y^{2}}{2}} x\left(y^{2}+1\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y \mathrm{e}^{\frac{y^{2}}{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-y \mathrm{e}^{\frac{y^{2}}{2}}\right) \mathrm{d} y \\
f(y) & =-\mathrm{e}^{\frac{y^{2}}{2}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y \mathrm{e}^{\frac{y^{2}}{2}} x-\mathrm{e}^{\frac{y^{2}}{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y \mathrm{e}^{\frac{y^{2}}{2}} x-\mathrm{e}^{\frac{y^{2}}{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y \mathrm{e}^{\frac{y^{2}}{2}} x-\mathrm{e}^{\frac{y^{2}}{2}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 175: Slope field plot

Verification of solutions

$$
y \mathrm{e}^{\frac{y^{2}}{2}} x-\mathrm{e}^{\frac{y^{2}}{2}}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 35

```
dsolve(y(x)+(x*y(x)^2+x-y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{\operatorname{RootOf}\left(c_{1}^{2} \mathrm{e}^{2}-Z_{+}+2 x^{2}-Z+2 c_{1} \mathrm{e}^{Z}+1\right)} c_{1}+1}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.206 (sec). Leaf size: 27
DSolve $\left[y[x]+(x * y[x] \sim 2+x-y[x]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=\frac{1}{y(x)}+\frac{c_{1} e^{-\frac{1}{2} y(x)^{2}}}{y(x)}, y(x)\right]
$$

5.11 problem 11

$$
\text { 5.11.1 Solving as linear ode . } 906
$$

5.11.2 Solving as first order ode lie symmetry lookup ode 908
5.11.3 Solving as exact ode 912
5.11.4 Maple step by step solution 916

Internal problem ID [11648]

Internal file name [OUTPUT/11657_Tuesday_April_09_2024_02_05_00_AM_74603805/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
r^{\prime}+r \tan (t)=\cos (t)
$$

5.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
r^{\prime}+p(t) r=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\tan (t) \\
q(t) & =\cos (t)
\end{aligned}
$$

Hence the ode is

$$
r^{\prime}+r \tan (t)=\cos (t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \tan (t) d t} \\
& =\frac{1}{\cos (t)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sec (t)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu r) & =(\mu)(\cos (t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\sec (t) r) & =(\sec (t))(\cos (t)) \\
\mathrm{d}(\sec (t) r) & =\mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sec (t) r=\int \mathrm{d} t \\
& \sec (t) r=t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sec (t)$ results in

$$
r=\cos (t) t+c_{1} \cos (t)
$$

which simplifies to

$$
r=\cos (t)\left(t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=\cos (t)\left(t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 176: Slope field plot

Verification of solutions

$$
r=\cos (t)\left(t+c_{1}\right)
$$

Verified OK.

5.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& r^{\prime}=-r \tan (t)+\cos (t) \\
& r^{\prime}=\omega(t, r)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{r}-\xi_{t}\right)-\omega^{2} \xi_{r}-\omega_{t} \xi-\omega_{r} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 139: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, r)=0 \\
& \eta(t, r)=\cos (t) \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, r) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d r}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial r}\right) S(t, r)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\cos (t)} d y
\end{aligned}
$$

Which results in

$$
S=\frac{r}{\cos (t)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, r) S_{r}}{R_{t}+\omega(t, r) R_{r}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{r}, S_{t}, S_{r}$ are all partial derivatives and $\omega(t, r)$ is the right hand side of the original ode given by

$$
\omega(t, r)=-r \tan (t)+\cos (t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{r} & =0 \\
S_{t} & =\tan (t) \sec (t) r \\
S_{r} & =\sec (t)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, r in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, r coordinates．This results in

$$
\sec (t) r=t+c_{1}
$$

Which simplifies to

$$
\sec (t) r=t+c_{1}
$$

Which gives

$$
r=\frac{t+c_{1}}{\sec (t)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, r coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d r}{d t}=-r \tan (t)+\cos (t)$		$\frac{d S}{d R}=1$
		ハフプ
		㧅界分
－	$S=\sec (t) r$	
		（1）
		而

Summary

The solution（s）found are the following

$$
\begin{equation*}
r=\frac{t+c_{1}}{\sec (t)} \tag{1}
\end{equation*}
$$

Figure 177: Slope field plot

Verification of solutions

$$
r=\frac{t+c_{1}}{\sec (t)}
$$

Verified OK.

5.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, r) \mathrm{d} t+N(t, r) \mathrm{d} r=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} r & =(-r \tan (t)+\cos (t)) \mathrm{d} t \\
(r \tan (t)-\cos (t)) \mathrm{d} t+\mathrm{d} r & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, r) & =r \tan (t)-\cos (t) \\
N(t, r) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial r}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial r} & =\frac{\partial}{\partial r}(r \tan (t)-\cos (t)) \\
& =\tan (t)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial r} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial r}-\frac{\partial N}{\partial t}\right) \\
& =1((\tan (t))-(0)) \\
& =\tan (t)
\end{aligned}
$$

Since A does not depend on r, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \tan (t) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (\cos (t))} \\
& =\sec (t)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sec (t)(r \tan (t)-\cos (t)) \\
& =-1+\tan (t) \sec (t) r
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sec (t)(1) \\
& =\sec (t)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} r}{\mathrm{~d} t} & =0 \\
(-1+\tan (t) \sec (t) r)+(\sec (t)) \frac{\mathrm{d} r}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, r)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial r}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-1+\tan (t) \sec (t) r \mathrm{~d} t \\
\phi & =-t+\sec (t) r+f(r) \tag{3}
\end{align*}
$$

Where $f(r)$ is used for the constant of integration since ϕ is a function of both t and r. Taking derivative of equation (3) w.r.t r gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial r}=\sec (t)+f^{\prime}(r) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial r}=\sec (t)$. Therefore equation (4) becomes

$$
\begin{equation*}
\sec (t)=\sec (t)+f^{\prime}(r) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(r)$ gives

$$
f^{\prime}(r)=0
$$

Therefore

$$
f(r)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(r)$ into equation (3) gives ϕ

$$
\phi=-t+\sec (t) r+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t+\sec (t) r
$$

The solution becomes

$$
r=\frac{t+c_{1}}{\sec (t)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=\frac{t+c_{1}}{\sec (t)} \tag{1}
\end{equation*}
$$

Figure 178: Slope field plot
Verification of solutions

$$
r=\frac{t+c_{1}}{\sec (t)}
$$

Verified OK.

5.11.4 Maple step by step solution

Let's solve

$$
r^{\prime}+r \tan (t)=\cos (t)
$$

- Highest derivative means the order of the ODE is 1

$$
r^{\prime}
$$

- Isolate the derivative
$r^{\prime}=-r \tan (t)+\cos (t)$
- Group terms with r on the lhs of the ODE and the rest on the rhs of the ODE $r^{\prime}+r \tan (t)=\cos (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(r^{\prime}+r \tan (t)\right)=\mu(t) \cos (t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) r)$
$\mu(t)\left(r^{\prime}+r \tan (t)\right)=\mu^{\prime}(t) r+\mu(t) r^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t) \tan (t)$
- \quad Solve to find the integrating factor
$\mu(t)=\frac{1}{\cos (t)}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) r)\right) d t=\int \mu(t) \cos (t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) r=\int \mu(t) \cos (t) d t+c_{1}$
- \quad Solve for r
$r=\frac{\int \mu(t) \cos (t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{\cos (t)}$
$r=\cos (t)\left(\int 1 d t+c_{1}\right)$
- Evaluate the integrals on the rhs

$$
r=\cos (t)\left(t+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve($\operatorname{diff}(r(t), t)+r(t) * \tan (t)=\cos (t), r(t)$, singsol=all)

$$
r(t)=\left(t+c_{1}\right) \cos (t)
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 12
DSolve[r'[t]+r[t]*Tan[t]==Cos[t],r[t],t,IncludeSingularSolutions -> True]

$$
r(t) \rightarrow\left(t+c_{1}\right) \cos (t)
$$

5.12 problem 12

5.12.1 Solving as linear ode
919
5.12.2 Solving as first order ode lie symmetry lookup ode 921
5.12.3 Solving as exact ode . 925
5.12.4 Maple step by step solution . 930

Internal problem ID [11649]
Internal file name [OUTPUT/11658_Tuesday_April_09_2024_02_05_01_AM_43799744/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
\cos (t) r^{\prime}+r \sin (t)=\cos (t)^{4}
$$

5.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
r^{\prime}+p(t) r=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\tan (t) \\
q(t) & =\cos (t)^{3}
\end{aligned}
$$

Hence the ode is

$$
r^{\prime}+r \tan (t)=\cos (t)^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \tan (t) d t} \\
& =\frac{1}{\cos (t)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sec (t)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu r) & =(\mu)\left(\cos (t)^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\sec (t) r) & =(\sec (t))\left(\cos (t)^{3}\right) \\
\mathrm{d}(\sec (t) r) & =\cos (t)^{2} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sec (t) r=\int \cos (t)^{2} \mathrm{~d} t \\
& \sec (t) r=\frac{\cos (t) \sin (t)}{2}+\frac{t}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sec (t)$ results in

$$
r=\cos (t)\left(\frac{\cos (t) \sin (t)}{2}+\frac{t}{2}\right)+c_{1} \cos (t)
$$

which simplifies to

$$
r=\frac{\cos (t)\left(\cos (t) \sin (t)+2 c_{1}+t\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=\frac{\cos (t)\left(\cos (t) \sin (t)+2 c_{1}+t\right)}{2} \tag{1}
\end{equation*}
$$

Figure 179: Slope field plot

Verification of solutions

$$
r=\frac{\cos (t)\left(\cos (t) \sin (t)+2 c_{1}+t\right)}{2}
$$

Verified OK.

5.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& r^{\prime}=\frac{-r \sin (t)+\cos (t)^{4}}{\cos (t)} \\
& r^{\prime}=\omega(t, r)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{r}-\xi_{t}\right)-\omega^{2} \xi_{r}-\omega_{t} \xi-\omega_{r} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 142: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, r)=0 \\
& \eta(t, r)=\cos (t) \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, r) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d r}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial r}\right) S(t, r)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\cos (t)} d y
\end{aligned}
$$

Which results in

$$
S=\frac{r}{\cos (t)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, r) S_{r}}{R_{t}+\omega(t, r) R_{r}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{r}, S_{t}, S_{r}$ are all partial derivatives and $\omega(t, r)$ is the right hand side of the original ode given by

$$
\omega(t, r)=\frac{-r \sin (t)+\cos (t)^{4}}{\cos (t)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{r} & =0 \\
S_{t} & =\tan (t) \sec (t) r \\
S_{r} & =\sec (t)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (t)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, r in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1}+\frac{\sin (2 R)}{4} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, r coordinates. This results in

$$
\sec (t) r=\frac{t}{2}+c_{1}+\frac{\sin (2 t)}{4}
$$

Which simplifies to

$$
\sec (t) r=\frac{t}{2}+c_{1}+\frac{\sin (2 t)}{4}
$$

Which gives

$$
r=\frac{4 c_{1}+2 t+\sin (2 t)}{4 \sec (t)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, r coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d r}{d t}=\frac{-r \sin (t)+\cos (t)^{4}}{\cos (t)}$		$\frac{d S}{d R}=\cos (R)^{2}$
		$\rightarrow \rightarrow 0$ OS ${ }_{\text {a }} \rightarrow$
		\rightarrow
		$\rightarrow \rightarrow-\infty, x \rightarrow \infty$
	$S=\sec (t) r$	
		\rightarrow

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=\frac{4 c_{1}+2 t+\sin (2 t)}{4 \sec (t)} \tag{1}
\end{equation*}
$$

Figure 180: Slope field plot

Verification of solutions

$$
r=\frac{4 c_{1}+2 t+\sin (2 t)}{4 \sec (t)}
$$

Verified OK.

5.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, r) \mathrm{d} t+N(t, r) \mathrm{d} r=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\cos (t)) \mathrm{d} r & =\left(-r \sin (t)+\cos (t)^{4}\right) \mathrm{d} t \\
\left(r \sin (t)-\cos (t)^{4}\right) \mathrm{d} t+(\cos (t)) \mathrm{d} r & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, r) & =r \sin (t)-\cos (t)^{4} \\
N(t, r) & =\cos (t)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial r}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial r} & =\frac{\partial}{\partial r}\left(r \sin (t)-\cos (t)^{4}\right) \\
& =\sin (t)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(\cos (t)) \\
& =-\sin (t)
\end{aligned}
$$

Since $\frac{\partial M}{\partial r} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial r}-\frac{\partial N}{\partial t}\right) \\
& =\sec (t)((\sin (t))-(-\sin (t))) \\
& =2 \tan (t)
\end{aligned}
$$

Since A does not depend on r, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 \tan (t) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (\cos (t))} \\
& =\sec (t)^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sec (t)^{2}\left(r \sin (t)-\cos (t)^{4}\right) \\
& =\tan (t) \sec (t) r-\cos (t)^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sec (t)^{2}(\cos (t)) \\
& =\sec (t)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} r}{\mathrm{~d} t} & =0 \\
\left(\tan (t) \sec (t) r-\cos (t)^{2}\right)+(\sec (t)) \frac{\mathrm{d} r}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, r)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial r}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \tan (t) \sec (t) r-\cos (t)^{2} \mathrm{~d} t \\
\phi & =\sec (t) r-\frac{\cos (t) \sin (t)}{2}-\frac{t}{2}+f(r) \tag{3}
\end{align*}
$$

Where $f(r)$ is used for the constant of integration since ϕ is a function of both t and r. Taking derivative of equation (3) w.r.t r gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial r}=\sec (t)+f^{\prime}(r) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial r}=\sec (t)$. Therefore equation (4) becomes

$$
\begin{equation*}
\sec (t)=\sec (t)+f^{\prime}(r) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(r)$ gives

$$
f^{\prime}(r)=0
$$

Therefore

$$
f(r)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(r)$ into equation (3) gives ϕ

$$
\phi=\sec (t) r-\frac{\cos (t) \sin (t)}{2}-\frac{t}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sec (t) r-\frac{\cos (t) \sin (t)}{2}-\frac{t}{2}
$$

The solution becomes

$$
r=\frac{\cos (t) \sin (t)+2 c_{1}+t}{2 \sec (t)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=\frac{\cos (t) \sin (t)+2 c_{1}+t}{2 \sec (t)} \tag{1}
\end{equation*}
$$

Figure 181: Slope field plot

Verification of solutions

$$
r=\frac{\cos (t) \sin (t)+2 c_{1}+t}{2 \sec (t)}
$$

Verified OK.

5.12.4 Maple step by step solution

Let's solve
$\cos (t) r^{\prime}+r \sin (t)=\cos (t)^{4}$

- Highest derivative means the order of the ODE is 1
r^{\prime}
- Isolate the derivative
$r^{\prime}=-\frac{\sin (t) r}{\cos (t)}+\cos (t)^{3}$
- Group terms with r on the lhs of the ODE and the rest on the rhs of the ODE $r^{\prime}+\frac{\sin (t) r}{\cos (t)}=\cos (t)^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(r^{\prime}+\frac{\sin (t) r}{\cos (t)}\right)=\mu(t) \cos (t)^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) r)$
$\mu(t)\left(r^{\prime}+\frac{\sin (t) r}{\cos (t)}\right)=\mu^{\prime}(t) r+\mu(t) r^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t) \sin (t)}{\cos (t)}$
- Solve to find the integrating factor
$\mu(t)=\frac{1}{\cos (t)}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) r)\right) d t=\int \mu(t) \cos (t)^{3} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) r=\int \mu(t) \cos (t)^{3} d t+c_{1}$
- \quad Solve for r
$r=\frac{\int \mu(t) \cos (t)^{3} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{\cos (t)}$

$$
r=\cos (t)\left(\int \cos (t)^{2} d t+c_{1}\right)
$$

- Evaluate the integrals on the rhs

$$
r=\cos (t)\left(\frac{\cos (t) \sin (t)}{2}+\frac{t}{2}+c_{1}\right)
$$

- Simplify

$$
r=\frac{\cos (t)\left(\cos (t) \sin (t)+2 c_{1}+t\right)}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(cos(t)*diff(r(t),t)+(r(t)*sin(t)-\operatorname{cos}(t)~4)=0,r(t), singsol=all)
```

$$
r(t)=\frac{\left(2 t+\sin (2 t)+4 c_{1}\right) \cos (t)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 22
DSolve[Cos[t]*r'[t]+(r[t]*Sin[t]-Cos[t]-4)==0,r[t],t,IncludeSingularSolutions \rightarrow True]

$$
r(t) \rightarrow \frac{1}{2} \cos (t)\left(t+\sin (t) \cos (t)+2 c_{1}\right)
$$

5.13 problem 13

5.13.1 Solving as linear ode
5.13.2 Solving as first order ode lie symmetry lookup ode 934
5.13.3 Solving as exact ode . 938
5.13.4 Maple step by step solution . 942

Internal problem ID [11650]
Internal file name [OUTPUT/11659_Tuesday_April_09_2024_02_05_03_AM_81013467/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-y \cos (x)-(1+\sin (x)) y^{\prime}=-\cos (x)^{2}
$$

5.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{\cos (x)}{1+\sin (x)} \\
& q(x)=-\sin (x)+1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{\cos (x) y}{1+\sin (x)}=-\sin (x)+1
$$

The integrating factor μ is

$$
\begin{array}{r}
\mu=\mathrm{e}^{\int \frac{\cos (x)}{1+\sin (x)} d x} \\
=1+\sin (x)
\end{array}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-\sin (x)+1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}((1+\sin (x)) y) & =(1+\sin (x))(-\sin (x)+1) \\
\mathrm{d}((1+\sin (x)) y) & =\cos (x)^{2} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
(1+\sin (x)) y & =\int \cos (x)^{2} \mathrm{~d} x \\
(1+\sin (x)) y & =\frac{\cos (x) \sin (x)}{2}+\frac{x}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=1+\sin (x)$ results in

$$
y=\frac{\frac{\cos (x) \sin (x)}{2}+\frac{x}{2}}{1+\sin (x)}+\frac{c_{1}}{1+\sin (x)}
$$

which simplifies to

$$
y=\frac{\cos (x) \sin (x)+2 c_{1}+x}{2+2 \sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\cos (x) \sin (x)+2 c_{1}+x}{2+2 \sin (x)} \tag{1}
\end{equation*}
$$

Figure 182: Slope field plot

Verification of solutions

$$
y=\frac{\cos (x) \sin (x)+2 c_{1}+x}{2+2 \sin (x)}
$$

Verified OK.

5.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\cos (x)(\cos (x)-y)}{1+\sin (x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 145: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{1+\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{1+\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=(1+\sin (x)) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\cos (x)(\cos (x)-y)}{1+\sin (x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\cos (x) y \\
S_{y} & =1+\sin (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R)^{2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1}+\frac{\sin (2 R)}{4} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
(1+\sin (x)) y=\frac{x}{2}+c_{1}+\frac{\sin (2 x)}{4}
$$

Which simplifies to

$$
(1+\sin (x)) y=\frac{x}{2}+c_{1}+\frac{\sin (2 x)}{4}
$$

Which gives

$$
y=\frac{4 c_{1}+2 x+\sin (2 x)}{4+4 \sin (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\cos (x)(\cos (x)-y)}{1+\sin (x)}$		$\frac{d S}{d R}=\cos (R)^{2}$
		\rightarrow ハアハーが可パー
		$\rightarrow \rightarrow$－${ }_{\rightarrow \rightarrow 0}$
		$\rightarrow \rightarrow$－${ }_{\text {a }} \rightarrow$
		\rightarrow
	$R=x$	$\rightarrow \rightarrow$－
$\xrightarrow[\rightarrow \rightarrow-4]{\rightarrow \rightarrow-\infty}$		
	$S=(1+\sin (x)) y$	
		\rightarrow－
		\rightarrow－${ }_{\rightarrow}$
1．1．19449		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 c_{1}+2 x+\sin (2 x)}{4+4 \sin (x)} \tag{1}
\end{equation*}
$$

Figure 183: Slope field plot

Verification of solutions

$$
y=\frac{4 c_{1}+2 x+\sin (2 x)}{4+4 \sin (x)}
$$

Verified OK.

5.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-1-\sin (x)) \mathrm{d} y & =\left(-\cos (x)^{2}+\cos (x) y\right) \mathrm{d} x \\
\left(\cos (x)^{2}-\cos (x) y\right) \mathrm{d} x+(-1-\sin (x)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\cos (x)^{2}-\cos (x) y \\
& N(x, y)=-1-\sin (x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\cos (x)^{2}-\cos (x) y\right) \\
& =-\cos (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-1-\sin (x)) \\
& =-\cos (x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x)^{2}-\cos (x) y \mathrm{~d} x \\
\phi & =\frac{\sin (x)(\cos (x)-2 y)}{2}+\frac{x}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\sin (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-1-\sin (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
-1-\sin (x)=-\sin (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-1) \mathrm{d} y \\
f(y) & =-y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\sin (x)(\cos (x)-2 y)}{2}+\frac{x}{2}-y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\sin (x)(\cos (x)-2 y)}{2}+\frac{x}{2}-y
$$

The solution becomes

$$
y=\frac{\cos (x) \sin (x)-2 c_{1}+x}{2+2 \sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\cos (x) \sin (x)-2 c_{1}+x}{2+2 \sin (x)} \tag{1}
\end{equation*}
$$

Figure 184: Slope field plot

Verification of solutions

$$
y=\frac{\cos (x) \sin (x)-2 c_{1}+x}{2+2 \sin (x)}
$$

Verified OK.

5.13.4 Maple step by step solution

Let's solve
$-y \cos (x)-(1+\sin (x)) y^{\prime}=-\cos (x)^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{\cos (x) y}{1+\sin (x)}+\frac{\cos (x)^{2}}{1+\sin (x)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{\cos (x) y}{1+\sin (x)}=\frac{\cos (x)^{2}}{1+\sin (x)}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{\cos (x) y}{1+\sin (x)}\right)=\frac{\mu(x) \cos (x)^{2}}{1+\sin (x)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{\cos (x) y}{1+\sin (x)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) \cos (x)}{1+\sin (x)}$
- Solve to find the integrating factor
$\mu(x)=1+\sin (x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \cos (x)^{2}}{1+\sin (x)} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \cos (x)^{2}}{1+\sin (x)} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) \cos (x)^{2}}{1+\sin (x)} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=1+\sin (x)$
$y=\frac{\int \cos (x)^{2} d x+c_{1}}{1+\sin (x)}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\cos (x) \sin (x)}{2}+\frac{x}{2}+c_{1}}{1+\sin (x)}$
- Simplify
$y=\frac{\cos (x) \sin (x)+2 c_{1}+x}{2+2 \sin (x)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve $((\cos (x) \wedge 2-y(x) * \cos (x))-(1+\sin (x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all $)$

$$
y(x)=\frac{\sin (x) \cos (x)+2 c_{1}+x}{2+2 \sin (x)}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.314 (sec). Leaf size: 25
DSolve $[(\operatorname{Cos}[x] \sim 2-y[x] * \operatorname{Cos}[x])-(1+\operatorname{Sin}[x]) * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x+\sin (x) \cos (x)+2 c_{1}}{2 \sin (x)+2}
$$

5.14 problem 14

5.14.1 Solving as linear ode . 945
5.14.2 Solving as first order ode lie symmetry lookup ode 947
5.14.3 Solving as exact ode . 951
5.14.4 Maple step by step solution . 955

Internal problem ID [11651]
Internal file name [OUTPUT/11660_Tuesday_April_09_2024_02_05_05_AM_97015726/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y \sin (2 x)+\left(1+\sin (x)^{2}\right) y^{\prime}=\cos (x)
$$

5.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2 \sin (2 x)}{-3+\cos (2 x)} \\
& q(x)=-\frac{\cos (x)}{\cos (x)^{2}-2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 \sin (2 x) y}{-3+\cos (2 x)}=-\frac{\cos (x)}{\cos (x)^{2}-2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 \sin (2 x)}{-3+\cos (2 x)} d x} \\
& =-3+\cos (2 x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(-\frac{\cos (x)}{\cos (x)^{2}-2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}((-3+\cos (2 x)) y) & =(-3+\cos (2 x))\left(-\frac{\cos (x)}{\cos (x)^{2}-2}\right) \\
\mathrm{d}((-3+\cos (2 x)) y) & =(-2 \cos (x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (-3+\cos (2 x)) y=\int-2 \cos (x) \mathrm{d} x \\
& (-3+\cos (2 x)) y=-2 \sin (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=-3+\cos (2 x)$ results in

$$
y=-\frac{2 \sin (x)}{-3+\cos (2 x)}+\frac{c_{1}}{-3+\cos (2 x)}
$$

which simplifies to

$$
y=\frac{-2 \sin (x)+c_{1}}{2 \cos (x)^{2}-4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-2 \sin (x)+c_{1}}{2 \cos (x)^{2}-4} \tag{1}
\end{equation*}
$$

Figure 185: Slope field plot
Verification of solutions

$$
y=\frac{-2 \sin (x)+c_{1}}{2 \cos (x)^{2}-4}
$$

Verified OK.

5.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y \sin (2 x)+\cos (x)}{1+\sin (x)^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 148: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{-3+\cos (2 x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-3+\cos (2 x)} d y
\end{aligned}
$$

Which results in

$$
S=(-3+\cos (2 x)) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-y \sin (2 x)+\cos (x)}{1+\sin (x)^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 y \sin (2 x) \\
S_{y} & =-3+\cos (2 x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-2 \cos (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-2 \cos (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(-3+\cos (2 x)) y=-2 \sin (x)+c_{1}
$$

Which simplifies to

$$
(-3+\cos (2 x)) y=-2 \sin (x)+c_{1}
$$

Which gives

$$
y=-\frac{2 \sin (x)-c_{1}}{-3+\cos (2 x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-y \sin (2 x)+\cos (x)}{1+\sin (x)^{2}}$		$\frac{d S}{d R}=-2 \cos (R)$
	$R=x$	
${ }_{\sim}$	$S=(-3+\cos (2 x)) y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \sin (x)-c_{1}}{-3+\cos (2 x)} \tag{1}
\end{equation*}
$$

Figure 186: Slope field plot

Verification of solutions

$$
y=-\frac{2 \sin (x)-c_{1}}{-3+\cos (2 x)}
$$

Verified OK.

5.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(1+\sin (x)^{2}\right) \mathrm{d} y & =(-y \sin (2 x)+\cos (x)) \mathrm{d} x \\
(y \sin (2 x)-\cos (x)) \mathrm{d} x+\left(1+\sin (x)^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y \sin (2 x)-\cos (x) \\
& N(x, y)=1+\sin (x)^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y \sin (2 x)-\cos (x)) \\
& =\sin (2 x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(1+\sin (x)^{2}\right) \\
& =\sin (2 x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \sin (2 x)-\cos (x) \mathrm{d} x \\
\phi & =-y \cos (x)^{2}-\sin (x)+\frac{y}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\cos (x)^{2}+\frac{1}{2}+f^{\prime}(y) \tag{4}\\
& =-\frac{\cos (2 x)}{2}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=1+\sin (x)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
1+\sin (x)^{2}=-\frac{\cos (2 x)}{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{\cos (2 x)}{2}+1+\sin (x)^{2} \\
& =\frac{3}{2}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{3}{2}\right) \mathrm{d} y \\
f(y) & =\frac{3 y}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-y \cos (x)^{2}-\sin (x)+2 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-y \cos (x)^{2}-\sin (x)+2 y
$$

The solution becomes

$$
y=-\frac{\sin (x)+c_{1}}{\cos (x)^{2}-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sin (x)+c_{1}}{\cos (x)^{2}-2} \tag{1}
\end{equation*}
$$

Figure 187: Slope field plot

Verification of solutions

$$
y=-\frac{\sin (x)+c_{1}}{\cos (x)^{2}-2}
$$

Verified OK.

5.14.4 Maple step by step solution

Let's solve
$y \sin (2 x)+\left(1+\sin (x)^{2}\right) y^{\prime}=\cos (x)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{\sin (2 x) y}{1+\sin (x)^{2}}+\frac{\cos (x)}{1+\sin (x)^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{\sin (2 x) y}{1+\sin (x)^{2}}=\frac{\cos (x)}{1+\sin (x)^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{\sin (2 x) y}{1+\sin (x)^{2}}\right)=\frac{\mu(x) \cos (x)}{1+\sin (x)^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{\sin (2 x) y}{1+\sin (x)^{2}}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) \sin (2 x)}{1+\sin (x)^{2}}$
- Solve to find the integrating factor
$\mu(x)=\cos (x)^{2}-2$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \cos (x)}{1+\sin (x)^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \cos (x)}{1+\sin (x)^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) \cos (x)}{1+\sin (x)^{2} d x+c_{1}}}{\mu(x)}$
- \quad Substitute $\mu(x)=\cos (x)^{2}-2$

$$
y=\frac{\int \frac{\left(\cos (x)^{2}-2\right) \cos (x)}{1+\sin (x)^{2}} d x+c_{1}}{\cos (x)^{2}-2}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{-\sin (x)+c_{1}}{\cos (x)^{2}-2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve((y(x)*\operatorname{sin}(2*x)-\operatorname{cos}(x))+(1+\operatorname{sin}(x)^2)*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{-\sin (x)-c_{1}}{\cos (x)^{2}-2}
$$

\checkmark Solution by Mathematica
Time used: 0.173 (sec). Leaf size: 21
DSolve $\left[(y[x] * \operatorname{Sin}[2 * x]-\operatorname{Cos}[x])+(1+\operatorname{Sin}[x] \sim 2) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{-2 \sin (x)+c_{1}}{\cos (2 x)-3}
$$

5.15 problem 15

5.15.1 Solving as separable ode 957
5.15.2 Solving as homogeneousTypeD2 ode 959
5.15.3 Solving as first order ode lie symmetry lookup ode 960
5.15.4 Solving as bernoulli ode 964
5.15.5 Solving as exact ode 967
5.15.6 Solving as riccati ode 971
5.15.7 Maple step by step solution 973

Internal problem ID [11652]
Internal file name [OUTPUT/11661_Tuesday_April_09_2024_02_05_08_AM_34006736/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-\frac{y}{x}+\frac{y^{2}}{x}=0
$$

5.15.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y(y-1)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(y)=y(y-1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y(y-1)} d y & =-\frac{1}{x} d x \\
\int \frac{1}{y(y-1)} d y & =\int-\frac{1}{x} d x \\
\ln (y-1)-\ln (y) & =-\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)-\ln (y)}=\mathrm{e}^{-\ln (x)+c_{1}}
$$

Which simplifies to

$$
\frac{y-1}{y}=\frac{c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{-x+c_{2}} \tag{1}
\end{equation*}
$$

Figure 188: Slope field plot

Verification of solutions

$$
y=-\frac{x}{-x+c_{2}}
$$

Verified OK.

5.15.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)^{2} x=0
$$

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{u^{2}} d u & =x+c_{2} \\
\frac{1}{u} & =x+c_{2}
\end{aligned}
$$

Solving for u gives these solutions

$$
u_{1}=\frac{1}{x+c_{2}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =\frac{x}{x+c_{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{x+c_{2}} \tag{1}
\end{equation*}
$$

Figure 189: Slope field plot
Verification of solutions

$$
y=\frac{x}{x+c_{2}}
$$

Verified OK.

5.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y(y-1)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 151: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\bar{\xi}} d x \\
& =\int \frac{1}{-x} d x
\end{aligned}
$$

Which results in

$$
S=-\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(y-1)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y(y-1)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R(R-1)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R-1)-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (x)=\ln (y-1)-\ln (y)+c_{1}
$$

Which simplifies to

$$
-\ln (x)=\ln (y-1)-\ln (y)+c_{1}
$$

Which gives

$$
y=\frac{x \mathrm{e}^{c_{1}}}{\mathrm{e}^{c_{1}} x-1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(y-1)}{x}$		$\frac{d S}{d R}=\frac{1}{R(R-1)}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }{ }_{\text {a }}{ }^{\text {a }}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
	$S=-\ln (x)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-1]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \mathrm{e}^{c_{1}}}{\mathrm{e}^{c_{1}} x-1} \tag{1}
\end{equation*}
$$

Figure 190: Slope field plot

Verification of solutions

$$
y=\frac{x \mathrm{e}^{c_{1}}}{\mathrm{e}^{c_{1}} x-1}
$$

Verified OK.

5.15.4 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y(y-1)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y-\frac{1}{x} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =-\frac{1}{x} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{1}{x y}-\frac{1}{x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x)}{x}-\frac{1}{x} \\
w^{\prime} & =-\frac{w}{x}+\frac{1}{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{1}{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=\frac{1}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{1}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x w) & =(x)\left(\frac{1}{x}\right) \\
\mathrm{d}(x w) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x w=\int \mathrm{d} x \\
& x w=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=1+\frac{c_{1}}{x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=1+\frac{c_{1}}{x}
$$

Or

$$
y=\frac{1}{1+\frac{c_{1}}{x}}
$$

Which is simplified to

$$
y=\frac{x}{x+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{x+c_{1}} \tag{1}
\end{equation*}
$$

Figure 191: Slope field plot
Verification of solutions

$$
y=\frac{x}{x+c_{1}}
$$

Verified OK.

5.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y(y-1)}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(-\frac{1}{y(y-1)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=-\frac{1}{y(y-1)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y(y-1)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y(y-1)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y(y-1)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y(y-1)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y(y-1)}\right) \mathrm{d} y \\
f(y) & =-\ln (y-1)+\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\ln (y-1)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\ln (y-1)+\ln (y)
$$

The solution becomes

$$
y=\frac{x \mathrm{e}^{c_{1}}}{\mathrm{e}^{c_{1}} x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \mathrm{e}^{c_{1}}}{\mathrm{e}^{c_{1}} x-1} \tag{1}
\end{equation*}
$$

Figure 192: Slope field plot

Verification of solutions

$$
y=\frac{x \mathrm{e}^{c_{1}}}{\mathrm{e}^{c_{1}} x-1}
$$

Verified OK.

5.15.6 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y(y-1)}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{y}{x}-\frac{y^{2}}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=-\frac{1}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{1}{x^{2}} \\
f_{1} f_{2} & =-\frac{1}{x^{2}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{u^{\prime \prime}(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} x+c_{2}
$$

The above shows that

$$
u^{\prime}(x)=c_{1}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{1} x}{c_{1} x+c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{c_{3} x}{c_{3} x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{3} x}{c_{3} x+1} \tag{1}
\end{equation*}
$$

Figure 193: Slope field plot

Verification of solutions

$$
y=\frac{c_{3} x}{c_{3} x+1}
$$

Verified OK.

5.15.7 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y}{x}+\frac{y^{2}}{x}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y(y-1)}=-\frac{1}{x}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y(y-1)} d x=\int-\frac{1}{x} d x+c_{1}$
- Evaluate integral
$\ln (y-1)-\ln (y)=-\ln (x)+c_{1}$
- \quad Solve for y
$y=-\frac{x}{\mathrm{e}^{c_{1}-x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
dsolve(diff $(y(x), x)-y(x) / x=-y(x) \sim 2 / x, y(x)$, singsol=all)

$$
y(x)=\frac{x}{c_{1}+x}
$$

\checkmark Solution by Mathematica
Time used: 0.238 (sec). Leaf size: 25
DSolve[y'[x]-y[x]/x==-y[x]~2/x,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{x}{x+e^{c_{1}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 1
\end{aligned}
$$

5.16 problem 16

5.16.1 Solving as first order ode lie symmetry lookup ode 975
5.16.2 Solving as bernoulli ode . 979
5.16.3 Solving as exact ode . 983

Internal problem ID [11653]
Internal file name [OUTPUT/11662_Tuesday_April_09_2024_02_05_09_AM_12694163/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
y^{\prime} x+y+2 x^{6} y^{4}=0
$$

5.16.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(2 x^{6} y^{3}+1\right)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 154: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{4} x^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{4} x^{3}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{3 x^{3} y^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(2 x^{6} y^{3}+1\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x^{4} y^{3}} \\
S_{y} & =\frac{1}{x^{3} y^{4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-2 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-2 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{2 R^{3}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{3 x^{3} y^{3}}=-\frac{2 x^{3}}{3}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{3 x^{3} y^{3}}=-\frac{2 x^{3}}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(2 x^{6} y^{3}+1\right)}{x}$		$\frac{d S}{d R}=-2 R^{2}$
		, ${ }^{1}+{ }^{\text {d }}$
		d
		St
	$S=-\frac{1}{3 x^{2} y^{3}}$	
	$3 x^{3} y^{3}$	
- 0		
! \dagger		

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{3 x^{3} y^{3}}=-\frac{2 x^{3}}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 194: Slope field plot
Verification of solutions

$$
-\frac{1}{3 x^{3} y^{3}}=-\frac{2 x^{3}}{3}+c_{1}
$$

Verified OK.

5.16.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(2 x^{6} y^{3}+1\right)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y-2 x^{5} y^{4} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =-2 x^{5} \\
n & =4
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{4}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{4}}=-\frac{1}{x y^{3}}-2 x^{5} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{3}{y^{4}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{3} & =-\frac{w(x)}{x}-2 x^{5} \\
w^{\prime} & =\frac{3 w}{x}+6 x^{5} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=6 x^{5}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x}=6 x^{5}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(6 x^{5}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(6 x^{5}\right) \\
\mathrm{d}\left(\frac{w}{x^{3}}\right) & =\left(6 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{3}}=\int 6 x^{2} \mathrm{~d} x \\
& \frac{w}{x^{3}}=2 x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
w(x)=2 x^{6}+c_{1} x^{3}
$$

Replacing w in the above by $\frac{1}{y^{3}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{3}}=2 x^{6}+c_{1} x^{3}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x} \\
& y(x)=\frac{i \sqrt{3}-1}{2\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x} \\
& y(x)=-\frac{1+i \sqrt{3}}{2\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x} \tag{1}\\
& y=\frac{i \sqrt{3}-1}{2\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x} \tag{2}\\
& y=-\frac{1+i \sqrt{3}}{2\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x} \tag{3}
\end{align*}
$$

Figure 195: Slope field plot

Verification of solutions

$$
y=\frac{1}{\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

$$
y=\frac{i \sqrt{3}-1}{2\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

$$
y=-\frac{1+i \sqrt{3}}{2\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x}
$$

Verified OK.

5.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-2 x^{6} y^{4}-y\right) \mathrm{d} x \\
\left(2 x^{6} y^{4}+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x^{6} y^{4}+y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x^{6} y^{4}+y\right) \\
& =8 x^{6} y^{3}+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}\left(\left(8 x^{6} y^{3}+1\right)-(1)\right) \\
& =8 x^{5} y^{3}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 x^{6} y^{4}+y}\left((1)-\left(8 x^{6} y^{3}+1\right)\right) \\
& =-\frac{8 x^{6} y^{2}}{2 x^{6} y^{3}+1}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(1)-\left(8 x^{6} y^{3}+1\right)}{x\left(2 x^{6} y^{4}+y\right)-y(x)} \\
& =-\frac{4}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{4}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{4}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (t)} \\
& =\frac{1}{t^{4}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{4} y^{4}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4} y^{4}}\left(2 x^{6} y^{4}+y\right) \\
& =\frac{2 x^{6} y^{3}+1}{x^{4} y^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4} y^{4}}(x) \\
& =\frac{1}{x^{3} y^{4}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 x^{6} y^{3}+1}{x^{4} y^{3}}\right)+\left(\frac{1}{x^{3} y^{4}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x^{6} y^{3}+1}{x^{4} y^{3}} \mathrm{~d} x \\
\phi & =\frac{2 x^{6} y^{3}-1}{3 x^{3} y^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{2 x^{3}}{y}-\frac{2 x^{6} y^{3}-1}{x^{3} y^{4}}+f^{\prime}(y) \tag{4}\\
& =\frac{1}{x^{3} y^{4}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{3} y^{4}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{3} y^{4}}=\frac{1}{x^{3} y^{4}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{2 x^{6} y^{3}-1}{3 x^{3} y^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{2 x^{6} y^{3}-1}{3 x^{3} y^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{2 y^{3} x^{6}-1}{3 x^{3} y^{3}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 196: Slope field plot

Verification of solutions

$$
\frac{2 y^{3} x^{6}-1}{3 x^{3} y^{3}}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 67
dsolve($x * \operatorname{diff}(y(x), x)+y(x)=-2 * x \wedge 6 * y(x) \wedge 4, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1}{\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x} \\
& y(x)=-\frac{1+i \sqrt{3}}{2\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x} \\
& y(x)=\frac{i \sqrt{3}-1}{2\left(2 x^{3}+c_{1}\right)^{\frac{1}{3}} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.87 (sec). Leaf size: 79
DSolve[x*y' $[x]+y[x]==-2 * x^{\wedge} 6 * y[x] \wedge 4, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{\sqrt[3]{x^{3}\left(2 x^{3}+c_{1}\right)}} \\
& y(x) \rightarrow-\frac{\sqrt[3]{-1}}{\sqrt[3]{x^{3}\left(2 x^{3}+c_{1}\right)}} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3}}{\sqrt[3]{x^{3}\left(2 x^{3}+c_{1}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.17 problem 17

5.17.1 Solving as separable ode . 990
5.17.2 Solving as first order ode lie symmetry lookup ode 992
5.17.3 Solving as bernoulli ode . 996
5.17.4 Solving as exact ode . 1000
5.17.5 Maple step by step solution . 1004

Internal problem ID [11654]
Internal file name [OUTPUT/11663_Tuesday_April_09_2024_02_05_10_AM_56841430/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+\left(4 y-\frac{8}{y^{3}}\right) x=0
$$

5.17.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{4 x\left(y^{4}-2\right)}{y^{3}}
\end{aligned}
$$

Where $f(x)=-4 x$ and $g(y)=\frac{y^{4}-2}{y^{3}}$. Integrating both sides gives

$$
\frac{1}{\frac{y^{4}-2}{y^{3}}} d y=-4 x d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{y^{4}-2}{y^{3}}} d y & =\int-4 x d x \\
\frac{\ln \left(y^{4}-2\right)}{4} & =-2 x^{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(y^{4}-2\right)^{\frac{1}{4}}=\mathrm{e}^{-2 x^{2}+c_{1}}
$$

Which simplifies to

$$
\left(y^{4}-2\right)^{\frac{1}{4}}=c_{2} \mathrm{e}^{-2 x^{2}}
$$

The solution is

$$
\left(y^{4}-2\right)^{\frac{1}{4}}=c_{2} \mathrm{e}^{-2 x^{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(y^{4}-2\right)^{\frac{1}{4}}=c_{2} \mathrm{e}^{-2 x^{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 197: Slope field plot

Verification of solutions

$$
\left(y^{4}-2\right)^{\frac{1}{4}}=c_{2} \mathrm{e}^{-2 x^{2}+c_{1}}
$$

Verified OK.

5.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{4 x\left(y^{4}-2\right)}{y^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 156: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{4 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{4 x}} d x
\end{aligned}
$$

Which results in

$$
S=-2 x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{4 x\left(y^{4}-2\right)}{y^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-4 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y^{3}}{y^{4}-2} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{3}}{R^{4}-2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{4}-2\right)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
-2 x^{2}=\frac{\ln \left(y^{4}-2\right)}{4}+c_{1}
$$

Which simplifies to

$$
-2 x^{2}=\frac{\ln \left(y^{4}-2\right)}{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{4 x\left(y^{4}-2\right)}{y^{3}}$		$\frac{d S}{d R}=\frac{R^{3}}{R^{4}-2}$
		$\rightarrow \rightarrow$
		时 $\times 20 \rightarrow 0 \rightarrow 0 \rightarrow 0$
		就 $\rightarrow \rightarrow+1$
$\begin{aligned} & 1-4+9 \\ & 4+4+1 \end{aligned}$	$S=-2 x^{2}$	
		$\rightarrow \rightarrow \rightarrow 0$
		\rightarrow 为
1		$\rightarrow+x_{0}$

Summary

The solution（s）found are the following

$$
\begin{equation*}
-2 x^{2}=\frac{\ln \left(y^{4}-2\right)}{4}+c_{1} \tag{1}
\end{equation*}
$$

Figure 198: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
-2 x^{2}=\frac{\ln \left(y^{4}-2\right)}{4}+c_{1}
$$

Verified OK.

5.17.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{4 x\left(y^{4}-2\right)}{y^{3}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-4 x y+8 x \frac{1}{y^{3}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-4 x \\
f_{1}(x) & =8 x \\
n & =-3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{3}}$ gives

$$
\begin{equation*}
y^{\prime} y^{3}=-4 x y^{4}+8 x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{4} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=4 y^{3} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{4} & =-4 w(x) x+8 x \\
w^{\prime} & =-16 x w+32 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=16 x \\
& q(x)=32 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+16 w(x) x=32 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 16 x d x} \\
& =\mathrm{e}^{8 x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(32 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{8 x^{2}} w\right) & =\left(\mathrm{e}^{8 x^{2}}\right)(32 x) \\
\mathrm{d}\left(\mathrm{e}^{8 x^{2}} w\right) & =\left(32 x \mathrm{e}^{8 x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{8 x^{2}} w=\int 32 x \mathrm{e}^{8 x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{8 x^{2}} w=2 \mathrm{e}^{8 x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{8 x^{2}}$ results in

$$
w(x)=2 \mathrm{e}^{-8 x^{2}} \mathrm{e}^{8 x^{2}}+c_{1} \mathrm{e}^{-8 x^{2}}
$$

which simplifies to

$$
w(x)=2+c_{1} \mathrm{e}^{-8 x^{2}}
$$

Replacing w in the above by y^{4} using equation (5) gives the final solution.

$$
y^{4}=2+c_{1} \mathrm{e}^{-8 x^{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \\
& y(x)=i\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \\
& y(x)=-\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \\
& y(x)=-i\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \tag{1}\\
& y=i\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \tag{2}\\
& y=-\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \tag{3}\\
& y=-i\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \tag{4}
\end{align*}
$$

Figure 199: Slope field plot

Verification of solutions

$$
y=\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}}
$$

Verified OK.

$$
y=i\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}}
$$

Verified OK.

$$
y=-\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}}
$$

Verified OK.

$$
y=-i\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}}
$$

Verified OK.

5.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y^{3}}{4\left(y^{4}-2\right)}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{y^{3}}{4\left(y^{4}-2\right)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{y^{3}}{4\left(y^{4}-2\right)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y^{3}}{4\left(y^{4}-2\right)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y^{3}}{4\left(y^{4}-2\right)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y^{3}}{4\left(y^{4}-2\right)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y^{3}}{4\left(y^{4}-2\right)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y^{3}}{4 y^{4}-8}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln \left(y^{4}-2\right)}{16}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln \left(y^{4}-2\right)}{16}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln \left(y^{4}-2\right)}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}-\frac{\ln \left(y^{4}-2\right)}{16}=c_{1} \tag{1}
\end{equation*}
$$

Figure 200: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}-\frac{\ln \left(y^{4}-2\right)}{16}=c_{1}
$$

Verified OK.

5.17.5 Maple step by step solution

Let's solve

$$
y^{\prime}+\left(4 y-\frac{8}{y^{3}}\right) x=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{4 y-\frac{8}{y^{3}}}=-x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{4 y-\frac{8}{y^{3}}} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln \left(y^{4}-2\right)}{16}=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\left(\left(\mathrm{e}^{c_{1}}\right)^{16}+2\left(\mathrm{e}^{x^{2}}\right)^{8}\right)^{\frac{1}{4}}}{\left(\mathrm{e}^{x^{2}}\right)^{2}}, y=-\frac{\left(\left(\mathrm{e}^{c_{1}}\right)^{16}+2\left(\mathrm{e}^{x^{2}}\right)^{8}\right)^{\frac{1}{4}}}{\left(\mathrm{e}^{x^{2}}\right)^{2}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 94
dsolve(diff $(y(x), x)+(4 * y(x)-8 / y(x)-3) * x=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \\
& y(x)=-\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \\
& y(x)=-i\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}} \\
& y(x)=i\left(2 \mathrm{e}^{8 x^{2}}+c_{1}\right)^{\frac{1}{4}} \mathrm{e}^{-2 x^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.939 (sec). Leaf size: 145
DSolve $[y$ ' $[x]+(4 * y[x]-8 / y[x] \sim 3) * x==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt[4]{2+e^{-8 x^{2}+4 c_{1}}} \\
& y(x) \rightarrow-i \sqrt[4]{2+e^{-8 x^{2}+4 c_{1}}} \\
& y(x) \rightarrow i \sqrt[4]{2+e^{-8 x^{2}+4 c_{1}}} \\
& y(x) \rightarrow \sqrt[4]{2+e^{-8 x^{2}+4 c_{1}}} \\
& y(x) \rightarrow-\sqrt[4]{2} \\
& y(x) \rightarrow-i \sqrt[4]{2} \\
& y(x) \rightarrow i \sqrt[4]{2} \\
& y(x) \rightarrow \sqrt[4]{2}
\end{aligned}
$$

5.18 problem 18

5.18.1 Solving as separable ode . 1006
5.18.2 Solving as first order ode lie symmetry lookup ode 1008
5.18.3 Solving as bernoulli ode . 1012
5.18.4 Solving as exact ode . 1016
5.18.5 Maple step by step solution . 1019

Internal problem ID [11655]
Internal file name [OUTPUT/11664_Tuesday_April_09_2024_02_05_12_AM_38753072/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{\prime}+\frac{(1+t) x}{2 t}-\frac{1+t}{x t}=0
$$

5.18.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
x^{\prime} & =F(t, x) \\
& =f(t) g(x) \\
& =\frac{(1+t)\left(-x^{2}+2\right)}{2 t x}
\end{aligned}
$$

Where $f(t)=\frac{1+t}{2 t}$ and $g(x)=\frac{-x^{2}+2}{x}$. Integrating both sides gives

$$
\frac{1}{\frac{-x^{2}+2}{x}} d x=\frac{1+t}{2 t} d t
$$

$$
\begin{aligned}
\int \frac{1}{\frac{-x^{2}+2}{x}} d x & =\int \frac{1+t}{2 t} d t \\
-\frac{\ln \left(x^{2}-2\right)}{2} & =\frac{t}{2}+\frac{\ln (t)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{x^{2}-2}}=\mathrm{e}^{\frac{t}{2}+\frac{\ln (t)}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{x^{2}-2}}=c_{2} \mathrm{e}^{\frac{t}{2}+\frac{\ln (t)}{2}}
$$

The solution is

$$
\frac{1}{\sqrt{x^{2}-2}}=c_{2} \frac{\mathrm{e}}{}_{\frac{t}{+}+\frac{\ln (t)}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{1}{\sqrt{x^{2}-2}}=c_{2} \mathrm{e}^{\frac{t}{2}+\frac{\ln (t)}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 201: Slope field plot

Verification of solutions

$$
\frac{1}{\sqrt{x^{2}-2}}=c_{2} \mathrm{e}^{\frac{t}{2}+\frac{\ln (t)}{2}+c_{1}}
$$

Verified OK.

5.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
x^{\prime} & =-\frac{t x^{2}+x^{2}-2 t-2}{2 t x} \\
x^{\prime} & =\omega(t, x)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{x}-\xi_{t}\right)-\omega^{2} \xi_{x}-\omega_{t} \xi-\omega_{x} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 159: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(t, x) & =\frac{2 t}{1+t} \\
\eta(t, x) & =0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, x) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d x}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial x}\right) S(t, x)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{2 t}{1+t}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{t}{2}+\frac{\ln (t)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, x) S_{x}}{R_{t}+\omega(t, x) R_{x}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{x}, S_{t}, S_{x}$ are all partial derivatives and $\omega(t, x)$ is the right hand side of the original ode given by

$$
\omega(t, x)=-\frac{t x^{2}+x^{2}-2 t-2}{2 t x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{x} & =1 \\
S_{t} & =\frac{1+t}{2 t} \\
S_{x} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{x}{x^{2}-2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, x in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{R}{R^{2}-2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln \left(R^{2}-2\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, x coordinates．This results in

$$
\frac{t}{2}+\frac{\ln (t)}{2}=-\frac{\ln \left(x^{2}-2\right)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{t}{2}+\frac{\ln (t)}{2}=-\frac{\ln \left(x^{2}-2\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, x coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d x}{d t}=-\frac{t x^{2}+x^{2}-2 t-2}{2 t x}$		$\frac{d S}{d R}=-\frac{R}{R^{2}-2}$
－didtravett		$\rightarrow \rightarrow \rightarrow-\infty$ 号
$x \rightarrow x \rightarrow x+t) x^{\prime}$		$\Rightarrow \rightarrow \pm$ 为 (R)
$\rightarrow \rightarrow \rightarrow \rightarrow$ 为		
	$R=x$	$\rightarrow \rightarrow \rightarrow \infty$
	$t \quad \ln (t)$	$\xrightarrow{\rightarrow} \rightarrow{ }^{\text {a }}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$S=\overline{2}+\frac{1}{2}$	
		$\rightarrow \rightarrow 0$ 此

Summary

The solution（s）found are the following

$$
\begin{equation*}
\frac{t}{2}+\frac{\ln (t)}{2}=-\frac{\ln \left(x^{2}-2\right)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 202: Slope field plot

Verification of solutions

$$
\frac{t}{2}+\frac{\ln (t)}{2}=-\frac{\ln \left(x^{2}-2\right)}{2}+c_{1}
$$

Verified OK.

5.18.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
x^{\prime} & =F(t, x) \\
& =-\frac{t x^{2}+x^{2}-2 t-2}{2 t x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
x^{\prime}=-\frac{1+t}{2 t} x-\frac{-2 t-2}{2 t} \frac{1}{x} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
x^{\prime}=f_{0}(t) x+f_{1}(t) x^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by x^{n} which gives

$$
\begin{equation*}
\frac{x^{\prime}}{x^{n}}=f_{0}(t) x^{1-n}+f_{1}(t) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=x^{1-n}$ in equation (3) which generates a new ODE in $w(t)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $x(t)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(t) & =-\frac{1+t}{2 t} \\
f_{1}(t) & =-\frac{-2 t-2}{2 t} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $x^{n}=\frac{1}{x}$ gives

$$
\begin{equation*}
x^{\prime} x=-\frac{(1+t) x^{2}}{2 t}-\frac{-2 t-2}{2 t} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =x^{1-n} \\
& =x^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t t gives

$$
\begin{equation*}
w^{\prime}=2 x x^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(t)}{2} & =-\frac{(1+t) w(t)}{2 t}-\frac{-2 t-2}{2 t} \\
w^{\prime} & =-\frac{(1+t) w}{t}-\frac{-2 t-2}{t} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(t)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(t)+p(t) w(t)=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{-1-t}{t} \\
& q(t)=\frac{2 t+2}{t}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(t)-\frac{(-1-t) w(t)}{t}=\frac{2 t+2}{t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-1-t}{t} d t} \\
& =\mathrm{e}^{t+\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
\mu=t \mathrm{e}^{t}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu w) & =(\mu)\left(\frac{2 t+2}{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t \mathrm{e}^{t} w\right) & =\left(t \mathrm{e}^{t}\right)\left(\frac{2 t+2}{t}\right) \\
\mathrm{d}\left(t \mathrm{e}^{t} w\right) & =\left(2 \mathrm{e}^{t}(1+t)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t \mathrm{e}^{t} w=\int 2 \mathrm{e}^{t}(1+t) \mathrm{d} t \\
& t \mathrm{e}^{t} w=2 t \mathrm{e}^{t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t \mathrm{e}^{t}$ results in

$$
w(t)=2 \mathrm{e}^{-t} \mathrm{e}^{t}+\frac{c_{1} \mathrm{e}^{-t}}{t}
$$

which simplifies to

$$
w(t)=\frac{c_{1} \mathrm{e}^{-t}+2 t}{t}
$$

Replacing w in the above by x^{2} using equation (5) gives the final solution.

$$
x^{2}=\frac{c_{1} \mathrm{e}^{-t}+2 t}{t}
$$

Solving for x gives

$$
\begin{aligned}
& x(t)=\frac{\sqrt{t \mathrm{e}^{-t} c_{1}+2 t^{2}}}{t} \\
& x(t)=-\frac{\sqrt{t \mathrm{e}^{-t} c_{1}+2 t^{2}}}{t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& x=\frac{\sqrt{t \mathrm{e}^{-t} c_{1}+2 t^{2}}}{t} \tag{1}\\
& x=-\frac{\sqrt{t \mathrm{e}^{-t} c_{1}+2 t^{2}}}{t} \tag{2}
\end{align*}
$$

Figure 203: Slope field plot

Verification of solutions

$$
x=\frac{\sqrt{t \mathrm{e}^{-t} c_{1}+2 t^{2}}}{t}
$$

Verified OK.

$$
x=-\frac{\sqrt{t \mathrm{e}^{-t} c_{1}+2 t^{2}}}{t}
$$

Verified OK.

5.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, x) \mathrm{d} t+N(t, x) \mathrm{d} x=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2 x}{-x^{2}+2}\right) \mathrm{d} x & =\left(\frac{1+t}{t}\right) \mathrm{d} t \\
\left(-\frac{1+t}{t}\right) \mathrm{d} t+\left(\frac{2 x}{-x^{2}+2}\right) \mathrm{d} x & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, x)=-\frac{1+t}{t} \\
& N(t, x)=\frac{2 x}{-x^{2}+2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1+t}{t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{2 x}{-x^{2}+2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, x)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial x}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1+t}{t} \mathrm{~d} t \\
\phi & =-t-\ln (t)+f(x) \tag{3}
\end{align*}
$$

Where $f(x)$ is used for the constant of integration since ϕ is a function of both t and x. Taking derivative of equation (3) w.r.t x gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=0+f^{\prime}(x) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial x}=\frac{2 x}{-x^{2}+2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 x}{-x^{2}+2}=0+f^{\prime}(x) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(x)$ gives

$$
f^{\prime}(x)=-\frac{2 x}{x^{2}-2}
$$

Integrating the above w.r.t x gives

$$
\begin{aligned}
\int f^{\prime}(x) \mathrm{d} x & =\int\left(-\frac{2 x}{x^{2}-2}\right) \mathrm{d} x \\
f(x) & =-\ln \left(x^{2}-2\right)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(x)$ into equation (3) gives ϕ

$$
\phi=-t-\ln (t)-\ln \left(x^{2}-2\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t-\ln (t)-\ln \left(x^{2}-2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-t-\ln (t)-\ln \left(x^{2}-2\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 204: Slope field plot

Verification of solutions

$$
-t-\ln (t)-\ln \left(x^{2}-2\right)=c_{1}
$$

Verified OK.

5.18.5 Maple step by step solution

Let's solve

$$
x^{\prime}+\frac{(1+t) x}{2 t}-\frac{1+t}{x t}=0
$$

- Highest derivative means the order of the ODE is 1
x^{\prime}
- \quad Separate variables

$$
\frac{x^{\prime} x}{x^{2}-2}=-\frac{1+t}{2 t}
$$

- Integrate both sides with respect to t
$\int \frac{x^{\prime} x}{x^{2}-2} d t=\int-\frac{1+t}{2 t} d t+c_{1}$
- Evaluate integral

$$
\frac{\ln \left(x^{2}-2\right)}{2}=-\frac{t}{2}-\frac{\ln (t)}{2}+c_{1}
$$

- \quad Solve for x

$$
\left\{x=\frac{\sqrt{t\left(\mathrm{e}^{\left.-t+2 c_{1}+2 t\right)}\right.}}{t}, x=-\frac{\sqrt{t\left(\mathrm{e}^{\left.-t+2 c_{1}+2 t\right)}\right.}}{t}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 46

```
dsolve(diff(x(t),t)+(t+1)/(2*t)*x(t)=(t+1)/(x(t)*t),x(t), singsol=all)
```

$$
\begin{aligned}
& x(t)=\frac{\sqrt{t \mathrm{e}^{-t} c_{1}+2 t^{2}}}{t} \\
& x(t)=-\frac{\sqrt{t \mathrm{e}^{-t} c_{1}+2 t^{2}}}{t}
\end{aligned}
$$

Solution by Mathematica
Time used: 3.335 (sec). Leaf size: 78
DSolve $\left[x^{\prime}[t]+(t+1) /(2 * t) * x[t]==(t+1) /(x[t] * t), x[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& x(t) \rightarrow-\frac{\sqrt{2 t+e^{-t+2 c_{1}}}}{\sqrt{t}} \\
& x(t) \rightarrow \frac{\sqrt{2 t+e^{-t+2 c_{1}}}}{\sqrt{t}} \\
& x(t) \rightarrow-\sqrt{2} \\
& x(t) \rightarrow \sqrt{2}
\end{aligned}
$$

5.19 problem 19

5.19.1 Existence and uniqueness analysis 1021
5.19.2 Solving as linear ode . 1022
5.19.3 Solving as first order ode lie symmetry lookup ode 1023
5.19.4 Solving as exact ode . 1027
5.19.5 Maple step by step solution . 1032

Internal problem ID [11656]
Internal file name [OUTPUT/11665_Wednesday_April_10_2024_04_53_59_PM_19754612/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x-2 y=2 x^{4}
$$

With initial conditions

$$
[y(2)=8]
$$

5.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=2 x^{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=2 x^{3}
$$

The domain of $p(x)=-\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=2 x^{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

5.19.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(2 x^{3}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =(2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int 2 x \mathrm{~d} x \\
\frac{y}{x^{2}} & =x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=x^{4}+c_{1} x^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=8$ in the above solution gives an equation to solve for the constant of integration.

$$
8=16+4 c_{1}
$$

$$
c_{1}=-2
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{4}-2 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{4}-2 x^{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x^{4}-2 x^{2}
$$

Verified OK.

5.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 x^{4}+2 y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 162: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x^{4}+2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{2 y}{x^{3}} \\
& S_{y}=\frac{1}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{2}}=x^{2}+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}}=x^{2}+c_{1}
$$

Which gives

$$
y=x^{2}\left(x^{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x^{4}+2 y}{x}$		$\frac{d S}{d R}=2 R$
		v-3
		W!
	$S=\frac{y}{x^{2}}$	
	$S=\frac{y}{x^{2}}$	
		- 14 ¢ $4+4$
d dopatad datapata		

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=8$ in the above solution gives an equation to solve for the constant of integration.

$$
8=16+4 c_{1}
$$

$$
c_{1}=-2
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{2}\left(x^{2}-2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(x^{2}-2\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x^{2}\left(x^{2}-2\right)
$$

Verified OK.

5.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(2 x^{4}+2 y\right) \mathrm{d} x \\
\left(-2 x^{4}-2 y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 x^{4}-2 y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 x^{4}-2 y\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-2)-(1)) \\
& =-\frac{3}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{3}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (x)} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3}}\left(-2 x^{4}-2 y\right) \\
& =\frac{-2 x^{4}-2 y}{x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3}}(x) \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-2 x^{4}-2 y}{x^{3}}\right)+\left(\frac{1}{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-2 x^{4}-2 y}{x^{3}} \mathrm{~d} x \\
\phi & =\frac{-x^{4}+y}{x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{2}}=\frac{1}{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-x^{4}+y}{x^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-x^{4}+y}{x^{2}}
$$

The solution becomes

$$
y=x^{2}\left(x^{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=8$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
8=16+4 c_{1} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x^{2}\left(x^{2}-2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(x^{2}-2\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(x^{2}-2\right)
$$

Verified OK.

5.19.5 Maple step by step solution

Let's solve
$\left[y^{\prime} x-2 y=2 x^{4}, y(2)=8\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 y}{x}+2 x^{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{x}=2 x^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=2 \mu(x) x^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$

$$
\mu^{\prime}(x)=-\frac{2 \mu(x)}{x}
$$

- Solve to find the integrating factor

$$
\mu(x)=\frac{1}{x^{2}}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) x^{3} d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int 2 \mu(x) x^{3} d x+c_{1}
$$

- Solve for y
$y=\frac{\int 2 \mu(x) x^{3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{2}}$
$y=x^{2}\left(\int 2 x d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x^{2}\left(x^{2}+c_{1}\right)$
- Use initial condition $y(2)=8$
$8=16+4 c_{1}$
- Solve for c_{1}
$c_{1}=-2$
- Substitute $c_{1}=-2$ into general solution and simplify

$$
y=x^{2}\left(x^{2}-2\right)
$$

- Solution to the IVP

$$
y=x^{2}\left(x^{2}-2\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve([x*diff $\left.(y(x), x)-2 * y(x)=2 * x^{\wedge} 4, y(2)=8\right], y(x)$, singsol=all)

$$
y(x)=\left(x^{2}-2\right) x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 14
DSolve[\{x*y'[x]-2*y[x]==2*x^4,\{y[2]==8\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(x^{2}-2\right)
$$

5.20 problem 20

5.20.1 Existence and uniqueness analysis 1035
5.20.2 Solving as separable ode . 1036
5.20.3 Solving as linear ode . 1038
5.20.4 Solving as first order ode lie symmetry lookup ode 1039
5.20.5 Solving as exact ode . 1044
5.20.6 Maple step by step solution . 1047

Internal problem ID [11657]
Internal file name [OUTPUT/11666_Wednesday_April_10_2024_04_54_01_PM_33212483/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+3 x^{2} y=x^{2}
$$

With initial conditions

$$
[y(0)=2]
$$

5.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =3 x^{2} \\
q(x) & =x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 x^{2} y=x^{2}
$$

The domain of $p(x)=3 x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.20.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x^{2}(-3 y+1)
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=-3 y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-3 y+1} d y & =x^{2} d x \\
\int \frac{1}{-3 y+1} d y & =\int x^{2} d x \\
-\frac{\ln (-3 y+1)}{3} & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(-3 y+1)^{\frac{1}{3}}}=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(-3 y+1)^{\frac{1}{3}}}=c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\frac{\mathrm{e}^{-3 c_{1}} \mathrm{e}^{3 c_{1}} c_{2}^{3}-\mathrm{e}^{-3 c_{1}}}{3 c_{2}^{3}} \\
c_{1}=-\frac{\ln \left(-5 c_{2}^{3}\right)}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Verified OK.

5.20.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 x^{2} d x} \\
& =\mathrm{e}^{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{3}} y\right) & =\left(\mathrm{e}^{x^{3}}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{x^{3}} y\right) & =\left(x^{2} \mathrm{e}^{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x^{3}} y=\int x^{2} \mathrm{e}^{x^{3}} \mathrm{~d} x \\
& \mathrm{e}^{x^{3}} y=\frac{\mathrm{e}^{x^{3}}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{3}}$ results in

$$
y=\frac{\mathrm{e}^{-x^{3}} \mathrm{e}^{x^{3}}}{3}+c_{1} \mathrm{e}^{-x^{3}}
$$

which simplifies to

$$
y=\frac{1}{3}+c_{1} \mathrm{e}^{-x^{3}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=c_{1}+\frac{1}{3} \\
c_{1}=\frac{5}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Verified OK.

5.20.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-3 x^{2} y+x^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 165: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x^{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-3 x^{2} y+x^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 x^{2} \mathrm{e}^{x^{3}} y \\
S_{y} & =\mathrm{e}^{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{2} \mathrm{e}^{x^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2} \mathrm{e}^{R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{R^{3}}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x^{3}} y=\frac{\mathrm{e}^{x^{3}}}{3}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x^{3}} y=\frac{\mathrm{e}^{x^{3}}}{3}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{x^{3}}+3 c_{1}\right) \mathrm{e}^{-x^{3}}}{3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-3 x^{2} y+x^{2}$		$\frac{d S}{d R}=R^{2} \mathrm{e}^{R^{3}}$
		$\rightarrow \rightarrow \rightarrow+$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }+$
	$R=x$	
	$S=\mathrm{e}^{x^{3}} y$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$ (${ }_{\text {a }}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\rightarrow \text {, }]{\rightarrow \rightarrow \rightarrow \text {, }}$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=c_{1}+\frac{1}{3}
$$

$$
c_{1}=\frac{5}{3}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Verified OK.

5.20.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-3 y+1}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(\frac{1}{-3 y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2} \\
N(x, y) & =\frac{1}{-3 y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-3 y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-3 y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-3 y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{3 y-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{3 y-1}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (3 y-1)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-\frac{\ln (3 y-1)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-\frac{\ln (3 y-1)}{3}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-x^{3}-3 c_{1}}}{3}+\frac{1}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=\frac{\mathrm{e}^{-3 c_{1}}}{3}+\frac{1}{3} \\
& c_{1}=-\frac{\ln (5)}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Verified OK.

5.20.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+3 x^{2} y=x^{2}, y(0)=2\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables
$\frac{y^{\prime}}{3 y-1}=-x^{2}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{3 y-1} d x=\int-x^{2} d x+c_{1}$
- Evaluate integral
$\frac{\ln (3 y-1)}{3}=-\frac{x^{3}}{3}+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{-x^{3}+3 c_{1}}}{3}+\frac{1}{3}$
- Use initial condition $y(0)=2$
$2=\frac{\mathrm{e}^{3 c_{1}}}{3}+\frac{1}{3}$
- \quad Solve for c_{1}
$c_{1}=\frac{\ln (5)}{3}$
- Substitute $c_{1}=\frac{\ln (5)}{3}$ into general solution and simplify $y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}$
- Solution to the IVP

$$
y=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([diff(y(x),x)+3*x^2*y(x)=x^2,y(0) = 2],y(x), singsol=all)
```

$$
y(x)=\frac{1}{3}+\frac{5 \mathrm{e}^{-x^{3}}}{3}
$$

\checkmark Solution by Mathematica
Time used: 2.884 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}[x]+3 * x^{\wedge} 2 * y[x]==x^{\wedge} 2,\{y[0]==2\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{5 e^{-x^{3}}}{3}+\frac{1}{3}
$$

5.21 problem 21

5.21.1 Existence and uniqueness analysis 1050
5.21.2 Solving as linear ode . 1051
5.21.3 Solving as first order ode lie symmetry lookup ode 1052
5.21.4 Solving as exact ode . 1057
5.21.5 Maple step by step solution . 1060

Internal problem ID [11658]
Internal file name [OUTPUT/11667_Wednesday_April_10_2024_04_54_02_PM_91574622/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
\mathrm{e}^{x}\left(y-3\left(\mathrm{e}^{x}+1\right)^{2}\right)+\left(\mathrm{e}^{x}+1\right) y^{\prime}=0
$$

With initial conditions

$$
[y(0)=4]
$$

5.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1} \\
& q(x)=3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{\mathrm{e}^{x} y}{\mathrm{e}^{x}+1}=3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)
$$

The domain of $p(x)=\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1}$ is

$$
\left\{2 i \pi _Z 100+i \pi<x\right\}
$$

But the point $x_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

5.21.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1} d x} \\
& =\mathrm{e}^{x}+1
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(\mathrm{e}^{x}+1\right) y\right) & =\left(\mathrm{e}^{x}+1\right)\left(3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)\right) \\
\mathrm{d}\left(\left(\mathrm{e}^{x}+1\right) y\right) & =\left(3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(\mathrm{e}^{x}+1\right) y=\int 3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)^{2} \mathrm{~d} x \\
& \left(\mathrm{e}^{x}+1\right) y=\left(\mathrm{e}^{x}+1\right)^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}+1$ results in

$$
y=\left(\mathrm{e}^{x}+1\right)^{2}+\frac{c_{1}}{\mathrm{e}^{x}+1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
4=4+\frac{c_{1}}{2}
$$

$$
c_{1}=0
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1
$$

Verified OK.

5.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\mathrm{e}^{x}\left(3 \mathrm{e}^{2 x}+6 \mathrm{e}^{x}-y+3\right)}{\mathrm{e}^{x}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 168: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η				
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$				
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0				
quadrature ode	$y^{\prime}=f(x)$	0	1				
quadrature ode	$y^{\prime}=g(y)$	1	0				
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y				
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$				
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$				
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$				
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$					
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}}{}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0
:---	:---	:---					

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{\mathrm{e}^{x}+1} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\mathrm{e}^{x}+1}} d y
\end{aligned}
$$

Which results in

$$
S=\left(\mathrm{e}^{x}+1\right) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\mathrm{e}^{x}\left(3 \mathrm{e}^{2 x}+6 \mathrm{e}^{x}-y+3\right)}{\mathrm{e}^{x}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}+1
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=6 \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+3 \mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=6 \mathrm{e}^{2 R}+3 \mathrm{e}^{3 R}+3 \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 \mathrm{e}^{2 R}+3 \mathrm{e}^{R}+\mathrm{e}^{3 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\left(\mathrm{e}^{x}+1\right) y=\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
\left(\mathrm{e}^{x}+1\right) y=\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\mathrm{e}^{x}\left(3 \mathrm{e}^{2 x}+6 \mathrm{e}^{x}-y+3\right)}{\mathrm{e}^{x}+1}$		$\frac{d S}{d R}=6 \mathrm{e}^{2 R}+3 \mathrm{e}^{3 R}+3 \mathrm{e}^{R}$
$\rightarrow \rightarrow \rightarrow$ (${ }_{\text {¢ }} \rightarrow+\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		$\rightarrow \rightarrow \rightarrow$ ¢ ${ }_{\text {¢ }} \rightarrow$ ¢ $\uparrow \uparrow \uparrow \uparrow$
		$\rightarrow \rightarrow \rightarrow$ - ${ }_{\text {¢ }}+$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$S=\left(\mathrm{e}^{x}+1\right) y$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{\rightarrow \rightarrow-\infty}$	$S=\left(\mathrm{e}^{x}+1\right) y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		\rightarrow
		メ9 $9+1$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
4=\frac{7}{2}+\frac{c_{1}}{2}
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1}{\mathrm{e}^{x}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1}{\mathrm{e}^{x}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1}{\mathrm{e}^{x}+1}
$$

Verified OK.

5.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{x}+1\right) \mathrm{d} y & =\left(-\mathrm{e}^{x}\left(y-3\left(\mathrm{e}^{x}+1\right)^{2}\right)\right) \mathrm{d} x \\
\left(\mathrm{e}^{x}\left(y-3\left(\mathrm{e}^{x}+1\right)^{2}\right)\right) \mathrm{d} x+\left(\mathrm{e}^{x}+1\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\mathrm{e}^{x}\left(y-3\left(\mathrm{e}^{x}+1\right)^{2}\right) \\
N(x, y) & =\mathrm{e}^{x}+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{x}\left(y-3\left(\mathrm{e}^{x}+1\right)^{2}\right)\right) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{x}+1\right) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x}\left(y-3\left(\mathrm{e}^{x}+1\right)^{2}\right) \mathrm{d} x \\
\phi & =-3 \mathrm{e}^{2 x}-\mathrm{e}^{3 x}+(y-3) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+1$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}+1=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 \mathrm{e}^{2 x}-\mathrm{e}^{3 x}+(y-3) \mathrm{e}^{x}+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 \mathrm{e}^{2 x}-\mathrm{e}^{3 x}+(y-3) \mathrm{e}^{x}+y
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}+1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=\frac{7}{2}+\frac{c_{1}}{2} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1}{\mathrm{e}^{x}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1}{\mathrm{e}^{x}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1}{\mathrm{e}^{x}+1}
$$

Verified OK.

5.21.5 Maple step by step solution

Let's solve

$$
\left[\mathrm{e}^{x}\left(y-3\left(\mathrm{e}^{x}+1\right)^{2}\right)+\left(\mathrm{e}^{x}+1\right) y^{\prime}=0, y(0)=4\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{\mathrm{e}^{x} y}{\mathrm{e}^{x}+1}+3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{\mathrm{e}^{x} y}{\mathrm{e}^{x}+1}=3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+\frac{\mathrm{e}^{x} y}{\mathrm{e}^{x}+1}\right)=3 \mu(x) \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{\mathrm{e}^{x} y}{\mathrm{e}^{x}+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) \mathrm{e}^{x}}{\mathrm{e}^{x}+1}$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}+1$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 3 \mu(x) \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 3 \mu(x) \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(x) \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}+1$
$y=\frac{\int 3 \mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)^{2} d x+c_{1}}{\mathrm{e}^{x}+1}$
- Evaluate the integrals on the rhs
$y=\frac{\left(e^{x}+1\right)^{3}+c_{1}}{\mathrm{e}^{x}+1}$
- Simplify
$y=\frac{\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+c_{1}+1}{\mathrm{e}^{x}+1}$
- Use initial condition $y(0)=4$
$4=4+\frac{c_{1}}{2}$
- \quad Solve for c_{1}
$c_{1}=0$
- Substitute $c_{1}=0$ into general solution and simplify
$y=\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1$
- Solution to the IVP
$y=\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([exp(x)*(y(x)-3*(exp(x)+1)^2)+(exp(x)+1)*diff (y(x),x)=0,y(0)=4],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1
$$

\checkmark Solution by Mathematica
Time used: 0.104 (sec). Leaf size: 12
DSolve $\left[\left\{\operatorname{Exp}[x] *\left(y[x]-3 *(\operatorname{Exp}[x]+1)^{\wedge} 2\right)+(\operatorname{Exp}[x]+1) * y^{\prime}[x]==0,\{y[0]==4\}\right\}, y[x], x\right.$, IncludeSingularSo

$$
y(x) \rightarrow\left(e^{x}+1\right)^{2}
$$

5.22 problem 22

5.22.1 Existence and uniqueness analysis 1063
5.22.2 Solving as separable ode . 1064
5.22.3 Solving as linear ode . 1066
5.22.4 Solving as first order ode lie symmetry lookup ode 1067
5.22.5 Solving as exact ode . 1071
5.22.6 Maple step by step solution . 1075

Internal problem ID [11659]
Internal file name [OUTPUT/11668_Wednesday_April_10_2024_04_54_03_PM_15034228/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2(y+1) x-\left(x^{2}+1\right) y^{\prime}=0
$$

With initial conditions

$$
[y(1)=-5]
$$

5.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2 x}{x^{2}+1} \\
& q(x)=\frac{2 x}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 x y}{x^{2}+1}=\frac{2 x}{x^{2}+1}
$$

The domain of $p(x)=-\frac{2 x}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{2 x}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

5.22.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x(2 y+2)}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=\frac{x}{x^{2}+1}$ and $g(y)=2 y+2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{2 y+2} d y & =\frac{x}{x^{2}+1} d x \\
\int \frac{1}{2 y+2} d y & =\int \frac{x}{x^{2}+1} d x \\
\frac{\ln (y+1)}{2} & =\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{y+1}=\mathrm{e}^{\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}}
$$

Which simplifies to

$$
\sqrt{y+1}=c_{2} \sqrt{x^{2}+1}
$$

Which can be simplified to become

$$
y=c_{2}^{2}\left(x^{2}+1\right) \mathrm{e}^{2 c_{1}}-1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-5=-1+2 c_{2}^{2} \mathrm{e}^{2 c_{1}} \\
c_{1}=\frac{\ln \left(-\frac{2}{c_{2}^{2}}\right)}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x^{2}-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-3 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 x^{2}-3
$$

Verified OK.

5.22.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 x}{x^{2}+1} d x} \\
& =\frac{1}{x^{2}+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 x}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}+1}\right) & =\left(\frac{1}{x^{2}+1}\right)\left(\frac{2 x}{x^{2}+1}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}+1}\right) & =\left(\frac{2 x}{\left(x^{2}+1\right)^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x^{2}+1}=\int \frac{2 x}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x \\
& \frac{y}{x^{2}+1}=-\frac{1}{x^{2}+1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}+1}$ results in

$$
y=-1+c_{1}\left(x^{2}+1\right)
$$

which simplifies to

$$
y=c_{1} x^{2}+c_{1}-1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-5=2 c_{1}-1 \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x^{2}-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-3 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 x^{2}-3
$$

Verified OK.

5.22.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2(y+1) x}{x^{2}+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 171: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2}+1 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}+1} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2(y+1) x}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 y x}{\left(x^{2}+1\right)^{2}} \\
S_{y} & =\frac{1}{x^{2}+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2 x}{\left(x^{2}+1\right)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2 R}{\left(R^{2}+1\right)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R^{2}+1}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{2}+1}=-\frac{1}{x^{2}+1}+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}+1}=-\frac{1}{x^{2}+1}+c_{1}
$$

Which gives

$$
y=c_{1} x^{2}+c_{1}-1
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2(y+1) x}{x^{2}+1}$		$\frac{d S}{d R}=\frac{2 R}{\left(R^{2}+1\right)^{2}}$
+1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ \uparrow		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow} \mathrm{S}(\mathrm{R}$
1-150,		
	$R=x$	$\rightarrow \rightarrow \rightarrow+\infty$
	$S=y$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$S=\frac{}{x^{2}+1}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-1}$
		$\rightarrow \rightarrow+$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-5$ in the above solution gives an equation to solve for the constant of integration.

$$
-5=2 c_{1}-1
$$

$$
c_{1}=-2
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x^{2}-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-3 \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=-2 x^{2}-3
$$

Verified OK.

5.22.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y+2}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x+\left(\frac{1}{2 y+2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x}{x^{2}+1} \\
N(x, y) & =\frac{1}{2 y+2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y+2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y+2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y+2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y+2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y+2}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y+1)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{\ln (y+1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{\ln (y+1)}{2}
$$

The solution becomes

$$
y=x^{2} \mathrm{e}^{2 c_{1}}+\mathrm{e}^{2 c_{1}}-1
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -5=-1+2 \mathrm{e}^{2 c_{1}} \\
& c_{1}=\frac{\ln (2)}{2}+\frac{i \pi}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x^{2}-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2 x^{2}-3
$$

Verified OK.

5.22.6 Maple step by step solution

Let's solve
$\left[2(y+1) x-\left(x^{2}+1\right) y^{\prime}=0, y(1)=-5\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y+1}=\frac{2 x}{x^{2}+1}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y+1} d x=\int \frac{2 x}{x^{2}+1} d x+c_{1}$
- Evaluate integral
$\ln (y+1)=\ln \left(x^{2}+1\right)+c_{1}$
- \quad Solve for y
$y=x^{2} \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}-1$
- Use initial condition $y(1)=-5$

$$
-5=2 \mathrm{e}^{c_{1}}-1
$$

- \quad Solve for c_{1}

$$
c_{1}=\ln (2)+\mathrm{I} \pi
$$

- \quad Substitute $c_{1}=\ln (2)+\mathrm{I} \pi$ into general solution and simplify $y=-2 x^{2}-3$
- \quad Solution to the IVP

$$
y=-2 x^{2}-3
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

```
dsolve([2*x*(y(x)+1)-(x^2+1)*diff(y(x),x)=0,y(1) = -5],y(x), singsol=all)
```

$$
y(x)=-2 x^{2}-3
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 12
DSolve[\{2*x*(y[x]+1)-(x^2+1)*y'[x]==0,\{y[1]==-5\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-2 x^{2}-3
$$

5.23 problem 23

5.23.1 Existence and uniqueness analysis 1077
5.23.2 Solving as linear ode . 1078
5.23.3 Solving as first order ode lie symmetry lookup ode 1080
5.23.4 Solving as exact ode . 1085
5.23.5 Maple step by step solution . 1089

Internal problem ID [11660]
Internal file name [OUTPUT/11669_Wednesday_April_10_2024_04_54_04_PM_9334433/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
r^{\prime}+r \tan (t)=\cos (t)^{2}
$$

With initial conditions

$$
\left[r\left(\frac{\pi}{4}\right)=1\right]
$$

5.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
r^{\prime}+p(t) r=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\tan (t) \\
q(t) & =\cos (t)^{2}
\end{aligned}
$$

Hence the ode is

$$
r^{\prime}+r \tan (t)=\cos (t)^{2}
$$

The domain of $p(t)=\tan (t)$ is

$$
\left\{t<\frac{1}{2} \pi+\pi _Z 101 \vee \frac{1}{2} \pi+\pi _Z 101<t\right\}
$$

And the point $t_{0}=\frac{\pi}{4}$ is inside this domain. The domain of $q(t)=\cos (t)^{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=\frac{\pi}{4}$ is also inside this domain. Hence solution exists and is unique.

5.23.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \tan (t) d t} \\
& =\frac{1}{\cos (t)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sec (t)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu r) & =(\mu)\left(\cos (t)^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\sec (t) r) & =(\sec (t))\left(\cos (t)^{2}\right) \\
\mathrm{d}(\sec (t) r) & =\cos (t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sec (t) r=\int \cos (t) \mathrm{d} t \\
& \sec (t) r=\sin (t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sec (t)$ results in

$$
r=\cos (t) \sin (t)+c_{1} \cos (t)
$$

which simplifies to

$$
r=\cos (t)\left(\sin (t)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\frac{\pi}{4}$ and $r=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+\frac{\sqrt{2} c_{1}}{2} \\
c_{1}=\frac{\sqrt{2}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2}
$$

Verified OK.

5.23.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
r^{\prime} & =-r \tan (t)+\cos (t)^{2} \\
r^{\prime} & =\omega(t, r)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{r}-\xi_{t}\right)-\omega^{2} \xi_{r}-\omega_{t} \xi-\omega_{r} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 174: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, r)=0 \\
& \eta(t, r)=\cos (t) \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, r) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d r}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial r}\right) S(t, r)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\cos (t)} d y
\end{aligned}
$$

Which results in

$$
S=\frac{r}{\cos (t)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, r) S_{r}}{R_{t}+\omega(t, r) R_{r}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{r}, S_{t}, S_{r}$ are all partial derivatives and $\omega(t, r)$ is the right hand side of the original ode given by

$$
\omega(t, r)=-r \tan (t)+\cos (t)^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{r} & =0 \\
S_{t} & =\tan (t) \sec (t) r \\
S_{r} & =\sec (t)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, r in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, r coordinates. This results in

$$
\sec (t) r=\sin (t)+c_{1}
$$

Which simplifies to

$$
\sec (t) r=\sin (t)+c_{1}
$$

Which gives

$$
r=\frac{\sin (t)+c_{1}}{\sec (t)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, r coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d r}{d t}=-r \tan (t)+\cos (t)^{2}$		$\frac{d S}{d R}=\cos (R)$
		$\rightarrow \rightarrow+x^{2}$
		$\rightarrow \rightarrow x^{-\infty}$
		$\xrightarrow{\rightarrow-x_{1}} \rightarrow$
	$S=\sec (t) r$	$\rightarrow{ }_{\rightarrow 0} \rightarrow x^{\text {a }}$
		$\rightarrow \rightarrow+x^{\prime}$

Initial conditions are used to solve for c_{1}. Substituting $t=\frac{\pi}{4}$ and $r=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{1}{2}+\frac{\sqrt{2} c_{1}}{2}
$$

$$
c_{1}=\frac{\sqrt{2}}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2}
$$

Verified OK.

5.23.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, r) \mathrm{d} t+N(t, r) \mathrm{d} r=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} r & =\left(-r \tan (t)+\cos (t)^{2}\right) \mathrm{d} t \\
\left(r \tan (t)-\cos (t)^{2}\right) \mathrm{d} t+\mathrm{d} r & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, r) & =r \tan (t)-\cos (t)^{2} \\
N(t, r) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial r}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial r} & =\frac{\partial}{\partial r}\left(r \tan (t)-\cos (t)^{2}\right) \\
& =\tan (t)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial r} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial r}-\frac{\partial N}{\partial t}\right) \\
& =1((\tan (t))-(0)) \\
& =\tan (t)
\end{aligned}
$$

Since A does not depend on r, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \tan (t) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (\cos (t))} \\
& =\sec (t)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sec (t)\left(r \tan (t)-\cos (t)^{2}\right) \\
& =-\cos (t)+\tan (t) \sec (t) r
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sec (t)(1) \\
& =\sec (t)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} r}{\mathrm{~d} t} & =0 \\
(-\cos (t)+\tan (t) \sec (t) r)+(\sec (t)) \frac{\mathrm{d} r}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, r)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial r}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\cos (t)+\tan (t) \sec (t) r \mathrm{~d} t \\
\phi & =\sec (t) r-\sin (t)+f(r) \tag{3}
\end{align*}
$$

Where $f(r)$ is used for the constant of integration since ϕ is a function of both t and r. Taking derivative of equation (3) w.r.t r gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial r}=\sec (t)+f^{\prime}(r) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial r}=\sec (t)$. Therefore equation (4) becomes

$$
\begin{equation*}
\sec (t)=\sec (t)+f^{\prime}(r) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(r)$ gives

$$
f^{\prime}(r)=0
$$

Therefore

$$
f(r)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(r)$ into equation (3) gives ϕ

$$
\phi=\sec (t) r-\sin (t)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sec (t) r-\sin (t)
$$

The solution becomes

$$
r=\frac{\sin (t)+c_{1}}{\sec (t)}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\frac{\pi}{4}$ and $r=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+\frac{\sqrt{2} c_{1}}{2} \\
c_{1}=\frac{\sqrt{2}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
r=\cos (t) \sin (t)+\frac{\cos (t) \sqrt{2}}{2}
$$

Verified OK.

5.23.5 Maple step by step solution

Let's solve

$$
\left[r^{\prime}+r \tan (t)=\cos (t)^{2}, r\left(\frac{\pi}{4}\right)=1\right]
$$

- Highest derivative means the order of the ODE is 1
r^{\prime}
- Isolate the derivative
$r^{\prime}=-r \tan (t)+\cos (t)^{2}$
- Group terms with r on the lhs of the ODE and the rest on the rhs of the ODE
$r^{\prime}+r \tan (t)=\cos (t)^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(r^{\prime}+r \tan (t)\right)=\mu(t) \cos (t)^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) r)$
$\mu(t)\left(r^{\prime}+r \tan (t)\right)=\mu^{\prime}(t) r+\mu(t) r^{\prime}$
- \quad Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t) \tan (t)$
- \quad Solve to find the integrating factor
$\mu(t)=\frac{1}{\cos (t)}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) r)\right) d t=\int \mu(t) \cos (t)^{2} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) r=\int \mu(t) \cos (t)^{2} d t+c_{1}$
- \quad Solve for r
$r=\frac{\int \mu(t) \cos ()^{2} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{\cos (t)}$
$r=\cos (t)\left(\int \cos (t) d t+c_{1}\right)$
- Evaluate the integrals on the rhs
$r=\cos (t)\left(\sin (t)+c_{1}\right)$
- Use initial condition $r\left(\frac{\pi}{4}\right)=1$
$1=\frac{\sqrt{2}\left(\frac{\sqrt{2}}{2}+c_{1}\right)}{2}$
- \quad Solve for c_{1}
$c_{1}=\frac{\sqrt{2}}{2}$
- \quad Substitute $c_{1}=\frac{\sqrt{2}}{2}$ into general solution and simplify
$r=\frac{(2 \sin (t)+\sqrt{2}) \cos (t)}{2}$
- \quad Solution to the IVP
$r=\frac{(2 \sin (t)+\sqrt{2}) \cos (t)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(r(t),t)+r(t)*\operatorname{tan}(t)=\operatorname{cos}(t)~2,r(1/4*Pi) = 1],r(t), singsol=all)
```

$$
r(t)=\frac{(2 \sin (t)+\sqrt{2}) \cos (t)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 16
DSolve $\left[\left\{r^{\prime}[t]+r[t] * \operatorname{Tan}[t]==\operatorname{Cos}[t] \sim 2,\{r[P i / 4]==1\}\right\}, r[t], t\right.$, IncludeSingularSolutions $->$ True $]$

$$
r(t) \rightarrow\left(\sin (t)+\frac{1}{\sqrt{2}}\right) \cos (t)
$$

5.24 problem 24

5.24.1 Existence and uniqueness analysis 1092
5.24.2 Solving as linear ode . 1093
5.24.3 Solving as first order ode lie symmetry lookup ode 1095
5.24.4 Solving as exact ode . 1099
5.24.5 Maple step by step solution . 1103

Internal problem ID [11661]
Internal file name [OUTPUT/11670_Wednesday_April_10_2024_04_54_05_PM_5880669/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-x+x^{\prime}=\sin (2 t)
$$

With initial conditions

$$
[x(0)=0]
$$

5.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime}+p(t) x=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =\sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
-x+x^{\prime}=\sin (2 t)
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\sin (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.24.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu x) & =(\mu)(\sin (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} x\right) & =\left(\mathrm{e}^{-t}\right)(\sin (2 t)) \\
\mathrm{d}\left(\mathrm{e}^{-t} x\right) & =\left(\mathrm{e}^{-t} \sin (2 t)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t} x=\int \mathrm{e}^{-t} \sin (2 t) \mathrm{d} t \\
& \mathrm{e}^{-t} x=-\frac{2 \mathrm{e}^{-t} \cos (2 t)}{5}-\frac{\mathrm{e}^{-t} \sin (2 t)}{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t}$ results in

$$
x=\mathrm{e}^{t}\left(-\frac{2 \mathrm{e}^{-t} \cos (2 t)}{5}-\frac{\mathrm{e}^{-t} \sin (2 t)}{5}\right)+c_{1} \mathrm{e}^{t}
$$

which simplifies to

$$
x=c_{1} \mathrm{e}^{t}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}-\frac{2}{5} \\
c_{1}=\frac{2}{5}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}
$$

Verified OK.

5.24.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
x^{\prime} & =x+\sin (2 t) \\
x^{\prime} & =\omega(t, x)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{x}-\xi_{t}\right)-\omega^{2} \xi_{x}-\omega_{t} \xi-\omega_{x} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 177: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, x)=0 \\
& \eta(t, x)=\mathrm{e}^{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, x) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d x}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial x}\right) S(t, x)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t} x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, x) S_{x}}{R_{t}+\omega(t, x) R_{x}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{x}, S_{t}, S_{x}$ are all partial derivatives and $\omega(t, x)$ is the right hand side of the original ode given by

$$
\omega(t, x)=x+\sin (2 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{x} & =0 \\
S_{t} & =-\mathrm{e}^{-t} x \\
S_{x} & =\mathrm{e}^{-t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-t} \sin (2 t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, x in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R} \sin (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}-\frac{\mathrm{e}^{-R}(2 \cos (2 R)+\sin (2 R))}{5} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, x coordinates. This results in

$$
\mathrm{e}^{-t} x=-\frac{(\sin (2 t)+2 \cos (2 t)) \mathrm{e}^{-t}}{5}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-t} x=-\frac{(\sin (2 t)+2 \cos (2 t)) \mathrm{e}^{-t}}{5}+c_{1}
$$

Which gives

$$
x=-\frac{\mathrm{e}^{t}\left(\mathrm{e}^{-t} \sin (2 t)+2 \mathrm{e}^{-t} \cos (2 t)-5 c_{1}\right)}{5}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d x}{d t}=x+\sin (2 t)$		$\frac{d S}{d R}=\mathrm{e}^{-R} \sin (2 R)$
		${ }^{\uparrow}$
	$S=\mathrm{e}^{-t} x$	
16		
		1 $\uparrow+{ }_{\text {a }}$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}-\frac{2}{5} \\
c_{1}=\frac{2}{5}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}
$$

Verified OK.

5.24.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, x) \mathrm{d} t+N(t, x) \mathrm{d} x=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} x & =(x+\sin (2 t)) \mathrm{d} t \\
(-x-\sin (2 t)) \mathrm{d} t+\mathrm{d} x & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, x) & =-x-\sin (2 t) \\
N(t, x) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial x} & =\frac{\partial}{\partial x}(-x-\sin (2 t)) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial x}-\frac{\partial N}{\partial t}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on x, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-t}(-x-\sin (2 t)) \\
& =-\mathrm{e}^{-t}(x+\sin (2 t))
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-t}(1) \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} x}{\mathrm{~d} t} & =0 \\
\left(-\mathrm{e}^{-t}(x+\sin (2 t))\right)+\left(\mathrm{e}^{-t}\right) \frac{\mathrm{d} x}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, x)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial x}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{-t}(x+\sin (2 t)) \mathrm{d} t \\
\phi & =\frac{(5 x+2 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}}{5}+f(x) \tag{3}
\end{align*}
$$

Where $f(x)$ is used for the constant of integration since ϕ is a function of both t and x. Taking derivative of equation (3) w.r.t x gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=\mathrm{e}^{-t}+f^{\prime}(x) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial x}=\mathrm{e}^{-t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-t}=\mathrm{e}^{-t}+f^{\prime}(x) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(x)$ gives

$$
f^{\prime}(x)=0
$$

Therefore

$$
f(x)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(x)$ into equation (3) gives ϕ

$$
\phi=\frac{(5 x+2 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}}{5}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(5 x+2 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}}{5}
$$

The solution becomes

$$
x=-\frac{\mathrm{e}^{t}\left(\mathrm{e}^{-t} \sin (2 t)+2 \mathrm{e}^{-t} \cos (2 t)-5 c_{1}\right)}{5}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}-\frac{2}{5} \\
c_{1}=\frac{2}{5}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}
$$

Verified OK.

5.24.5 Maple step by step solution

Let's solve

$$
\left[-x+x^{\prime}=\sin (2 t), x(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1 x^{\prime}
- Isolate the derivative
$x^{\prime}=x+\sin (2 t)$
- Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE $-x+x^{\prime}=\sin (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-x+x^{\prime}\right)=\mu(t) \sin (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) x)$
$\mu(t)\left(-x+x^{\prime}\right)=\mu^{\prime}(t) x+\mu(t) x^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) x)\right) d t=\int \mu(t) \sin (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) x=\int \mu(t) \sin (2 t) d t+c_{1}$
- \quad Solve for x
$x=\frac{\int \mu(t) \sin (2 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$x=\frac{\int \mathrm{e}^{-t} \sin (2 t) d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$x=\frac{-\frac{\mathrm{e}^{-t} \sin (2 t)}{5}-\frac{2 \mathrm{e}^{-t} \cos (2 t)}{5}+c_{1}}{\mathrm{e}^{-t}}$
- Simplify
$x=c_{1} \mathrm{e}^{t}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}$
- Use initial condition $x(0)=0$
$0=c_{1}-\frac{2}{5}$
- \quad Solve for c_{1}
$c_{1}=\frac{2}{5}$
- \quad Substitute $c_{1}=\frac{2}{5}$ into general solution and simplify
$x=\frac{2 \mathrm{e}^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}$
- \quad Solution to the IVP

$$
x=\frac{2 e^{t}}{5}-\frac{\sin (2 t)}{5}-\frac{2 \cos (2 t)}{5}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

$$
\begin{aligned}
& \text { dsolve }([\operatorname{diff}(\mathrm{x}(\mathrm{t}), \mathrm{t})-\mathrm{x}(\mathrm{t})=\sin (2 * \mathrm{t}), \mathrm{x}(0)=0], \mathrm{x}(\mathrm{t}) \text {, singsol=all) } \\
& \qquad x(t)=-\frac{2 \cos (2 t)}{5}-\frac{\sin (2 t)}{5}+\frac{2 \mathrm{e}^{t}}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 27

```
DSolve[{x'[t]-x[t]==Sin[2*t],{x[0]==0}}, x[t],t,IncludeSingularSolutions -> True]
```

$$
x(t) \rightarrow \frac{1}{5}\left(2 e^{t}-\sin (2 t)-2 \cos (2 t)\right)
$$

5.25 problem 25

5.25.1 Existence and uniqueness analysis 1106
5.25.2 Solving as first order ode lie symmetry lookup ode 1107
5.25.3 Solving as bernoulli ode . 1111
5.25.4 Solving as exact ode . 1114

Internal problem ID [11662]
Internal file name [OUTPUT/11671_Wednesday_April_10_2024_04_54_06_PM_54278466/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
y^{\prime}+\frac{y}{2 x}-\frac{x}{y^{3}}=0
$$

With initial conditions

$$
[y(1)=2]
$$

5.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{y^{4}-2 x^{2}}{2 x y^{3}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y^{4}-2 x^{2}}{2 x y^{3}}\right) \\
& =-\frac{2}{x}+\frac{\frac{3 y^{4}}{2}-3 x^{2}}{x y^{4}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

5.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{4}-2 x^{2}}{2 x y^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 180: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{y^{3} x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{y^{3} x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{4} x^{2}}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{4}-2 x^{2}}{2 x y^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x y^{4}}{2} \\
S_{y} & =y^{3} x^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{3}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{4}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y^{4} x^{2}}{4}=\frac{x^{4}}{4}+c_{1}
$$

Which simplifies to

$$
\frac{y^{4} x^{2}}{4}=\frac{x^{4}}{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{4}-2 x^{2}}{2 x y^{3}}$		$\frac{d S}{d R}=R^{3}$
		ゆれれ中れ ${ }_{\text {d }}$
$\rightarrow \rightarrow \rightarrow- \pm$ 化另		
	$R=x$	
	－$y^{4} x^{2}$	
	$S=\frac{y^{4}}{4}$	${ }^{4}$ d ${ }_{\text {d }}$
$\operatorname{lom}_{\rightarrow \rightarrow \rightarrow-\infty} \chi_{1}$	4	$\xrightarrow{\rightarrow} \rightarrow+1$ ¢ 4 ＋
		¢ 4
		\uparrow

Initial conditions are used to solve for c_{1} ．Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration．

$$
4=\frac{1}{4}+c_{1}
$$

$$
c_{1}=\frac{15}{4}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{y^{4} x^{2}}{4}=\frac{x^{4}}{4}+\frac{15}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{4} x^{2}}{4}=\frac{x^{4}}{4}+\frac{15}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{y^{4} x^{2}}{4}=\frac{x^{4}}{4}+\frac{15}{4}
$$

Verified OK.

5.25.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{4}-2 x^{2}}{2 x y^{3}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{2 x} y+x \frac{1}{y^{3}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{2 x} \\
f_{1}(x) & =x \\
n & =-3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{3}}$ gives

$$
\begin{equation*}
y^{\prime} y^{3}=-\frac{y^{4}}{2 x}+x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{4} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=4 y^{3} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{4} & =-\frac{w(x)}{2 x}+x \\
w^{\prime} & =-\frac{2 w}{x}+4 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=4 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{2 w(x)}{x}=4 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(4 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} w\right) & =\left(x^{2}\right)(4 x) \\
\mathrm{d}\left(x^{2} w\right) & =\left(4 x^{3}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} w=\int 4 x^{3} \mathrm{~d} x \\
& x^{2} w=x^{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
w(x)=x^{2}+\frac{c_{1}}{x^{2}}
$$

Replacing w in the above by y^{4} using equation (5) gives the final solution.

$$
y^{4}=x^{2}+\frac{c_{1}}{x^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
16=1+c_{1} \\
c_{1}=15
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{4}=\frac{x^{4}+15}{x^{2}}
$$

The above simplifies to

$$
y^{4} x^{2}-x^{4}-15=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{4} x^{2}-x^{4}-15=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{4} x^{2}-x^{4}-15=0
$$

Verified OK.

5.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 x y^{3}\right) \mathrm{d} y & =\left(-y^{4}+2 x^{2}\right) \mathrm{d} x \\
\left(y^{4}-2 x^{2}\right) \mathrm{d} x+\left(2 x y^{3}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{4}-2 x^{2} \\
N(x, y) & =2 x y^{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{4}-2 x^{2}\right) \\
& =4 y^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 x y^{3}\right) \\
& =2 y^{3}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x y^{3}}\left(\left(4 y^{3}\right)-\left(2 y^{3}\right)\right) \\
& =\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x)} \\
& =x
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x\left(y^{4}-2 x^{2}\right) \\
& =x y^{4}-2 x^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x\left(2 x y^{3}\right) \\
& =2 y^{3} x^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(x y^{4}-2 x^{3}\right)+\left(2 y^{3} x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x y^{4}-2 x^{3} \mathrm{~d} x \\
\phi & =-\frac{\left(-y^{4}+2 x^{2}\right)^{2}}{8}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\left(-y^{4}+2 x^{2}\right) y^{3}+f^{\prime}(y) \tag{4}\\
& =-y^{7}+2 y^{3} x^{2}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y^{3} x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y^{3} x^{2}=-y^{7}+2 y^{3} x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{7}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{7}\right) \mathrm{d} y \\
f(y) & =\frac{y^{8}}{8}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\left(-y^{4}+2 x^{2}\right)^{2}}{8}+\frac{y^{8}}{8}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\left(-y^{4}+2 x^{2}\right)^{2}}{8}+\frac{y^{8}}{8}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{15}{2}=c_{1} \\
& c_{1}=\frac{15}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\left(-y^{4}+2 x^{2}\right)^{2}}{8}+\frac{y^{8}}{8}=\frac{15}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{4} x^{2}}{2}-\frac{x^{4}}{2}=\frac{15}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{y^{4} x^{2}}{2}-\frac{x^{4}}{2}=\frac{15}{2}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 17

```
dsolve([diff(y(x),x)+y(x)/(2*x)=x/y(x)^3,y(1) = 2],y(x), singsol=all)
```

$$
y(x)=\sqrt{\frac{\sqrt{x^{4}+15}}{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.277 (sec). Leaf size: 20
DSolve[\{y' $[x]+y[x] /(2 * x)==x / y[x] \sim 3,\{y[1]==2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\sqrt[4]{x^{4}+15}}{\sqrt{x}}
$$

5.26 problem 26

5.26.1 Existence and uniqueness analysis 1119
5.26.2 Solving as first order ode lie symmetry calculated ode 1120
5.26.3 Solving as exact ode . 1126

Internal problem ID [11663]
Internal file name [OUTPUT/11672_Wednesday_April_10_2024_04_54_07_PM_3027235/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
y^{\prime} x+y-(y x)^{\frac{3}{2}}=0
$$

With initial conditions

$$
[y(1)=4]
$$

5.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{-y+(x y)^{\frac{3}{2}}}{x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=4$ is

$$
\{0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=4$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-y+(x y)^{\frac{3}{2}}}{x}\right) \\
& =\frac{-1+\frac{3 x \sqrt{x y}}{2}}{x}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=4$ is

$$
\{0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=4$ is inside this domain. Therefore solution exists and is unique.

5.26.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y+(x y)^{\frac{3}{2}}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(-y+(x y)^{\frac{3}{2}}\right)\left(b_{3}-a_{2}\right)}{x}-\frac{\left(-y+(x y)^{\frac{3}{2}}\right)^{2} a_{3}}{x^{2}} \\
& -\left(\frac{3 \sqrt{x y} y}{2 x}-\frac{-y+(x y)^{\frac{3}{2}}}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(-1+\frac{3 x \sqrt{x y}}{2}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{-2 x^{3} y^{3} a_{3}+2(x y)^{\frac{3}{2}} x b_{3}+6(x y)^{\frac{3}{2}} y a_{3}-3 \sqrt{x y} x^{3} b_{2}-3 \sqrt{x y} x^{2} y a_{2}-3 \sqrt{x y} x^{2} y b_{3}-3 \sqrt{x y} x y^{2} a_{3}+2(x y)^{\frac{3}{2}}}{2 x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{3} y^{3} a_{3}+2(x y)^{\frac{3}{2}} x b_{3}+6(x y)^{\frac{3}{2}} y a_{3}-3 \sqrt{x y} x^{3} b_{2}-3 \sqrt{x y} x^{2} y a_{2} \tag{6E}\\
& \quad-3 \sqrt{x y} x^{2} y b_{3}-3 \sqrt{x y} x y^{2} a_{3}+2(x y)^{\frac{3}{2}} a_{1}-3 \sqrt{x y} x^{2} b_{1} \\
& -3 \sqrt{x y} x y a_{1}+4 b_{2} x^{2}-4 y^{2} a_{3}+2 x b_{1}-2 y a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -2 x^{3} y^{3} a_{3}-3 \sqrt{x y} x^{3} b_{2}-3 \sqrt{x y} x^{2} y a_{2}-\sqrt{x y} x^{2} y b_{3}+3 \sqrt{x y} x y^{2} a_{3} \\
& -3 \sqrt{x y} x^{2} b_{1}-\sqrt{x y} x y a_{1}+4 b_{2} x^{2}-4 y^{2} a_{3}+2 x b_{1}-2 y a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{x y}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{1}^{3} v_{2}^{3} a_{3}-3 v_{3} v_{1}^{2} v_{2} a_{2}+3 v_{3} v_{1} v_{2}^{2} a_{3}-3 v_{3} v_{1}^{3} b_{2}-v_{3} v_{1}^{2} v_{2} b_{3} \tag{7E}\\
& \quad-v_{3} v_{1} v_{2} a_{1}-3 v_{3} v_{1}^{2} b_{1}-4 v_{2}^{2} a_{3}+4 b_{2} v_{1}^{2}-2 v_{2} a_{1}+2 v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 v_{1}^{3} v_{2}^{3} a_{3}-3 v_{3} v_{1}^{3} b_{2}+\left(-3 a_{2}-b_{3}\right) v_{1}^{2} v_{2} v_{3}-3 v_{3} v_{1}^{2} b_{1}+4 b_{2} v_{1}^{2} \tag{8E}\\
& +3 v_{3} v_{1} v_{2}^{2} a_{3}-v_{3} v_{1} v_{2} a_{1}+2 v_{1} b_{1}-4 v_{2}^{2} a_{3}-2 v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
-a_{1} & =0 \\
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
3 a_{3} & =0 \\
-3 b_{1} & =0 \\
2 b_{1} & =0 \\
-3 b_{2} & =0 \\
4 b_{2} & =0 \\
-3 a_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-3 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-3 y-\left(\frac{-y+(x y)^{\frac{3}{2}}}{x}\right)(x) \\
& =-2 y-(x y)^{\frac{3}{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-2 y-(x y)^{\frac{3}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (x \sqrt{x y}+2)}{2}-\frac{\ln (x \sqrt{x y}-2)}{2}+\frac{\ln \left(y x^{3}-4\right)}{2}-\frac{\ln (y)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-y+(x y)^{\frac{3}{2}}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 x^{2} y-6 \sqrt{x} \sqrt{y}}{2 y x^{3}-8} \\
S_{y} & =-\frac{x^{\frac{3}{2}} y-2 \sqrt{y}}{y^{\frac{3}{2}}\left(y x^{3}-4\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3 x^{3} y^{\frac{3}{2}}-2 x^{\frac{5}{2}} \sqrt{x y} y+4 x \sqrt{x y} \sqrt{y}-4 x^{\frac{3}{2}} y-4 \sqrt{y}}{2 \sqrt{y}\left(y x^{3}-4\right) x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{2}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}+2\right)}{2}-\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}-2\right)}{2}+\frac{\ln \left(y x^{3}-4\right)}{2}-\frac{\ln (y)}{2}=-2 \ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}+2\right)}{2}-\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}-2\right)}{2}+\frac{\ln \left(y x^{3}-4\right)}{2}-\frac{\ln (y)}{2}=-2 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \ln (2)=c_{1} \\
& c_{1}=\ln (2)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}+2\right)}{2}-\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}-2\right)}{2}+\frac{\ln \left(y x^{3}-4\right)}{2}-\frac{\ln (y)}{2}=-2 \ln (x)+\ln (2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}+2\right)}{2}-\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}-2\right)}{2}+\frac{\ln \left(y x^{3}-4\right)}{2}-\frac{\ln (y)}{2}=-2 \ln (x)+\ln (2) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}+2\right)}{2}-\frac{\ln \left(\sqrt{y} x^{\frac{3}{2}}-2\right)}{2}+\frac{\ln \left(y x^{3}-4\right)}{2}-\frac{\ln (y)}{2}=-2 \ln (x)+\ln (2)
$$

Verified OK.

5.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-y+(x y)^{\frac{3}{2}}\right) \mathrm{d} x \\
\left(y-(x y)^{\frac{3}{2}}\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-(x y)^{\frac{3}{2}} \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-(x y)^{\frac{3}{2}}\right) \\
& =1-\frac{3 x \sqrt{x y}}{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}\left(\left(1-\frac{3 x \sqrt{x y}}{2}\right)-(1)\right) \\
& =-\frac{3 \sqrt{x y}}{2}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{y(x \sqrt{x y}-1)}\left((1)-\left(1-\frac{3 x \sqrt{x y}}{2}\right)\right) \\
& =-\frac{3 x \sqrt{x y}}{2 y(x \sqrt{x y}-1)}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(1)-\left(1-\frac{3 x \sqrt{x y}}{2}\right)}{x\left(y-(x y)^{\frac{3}{2}}\right)-y(x)} \\
& =-\frac{3}{2 x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{3}{2 t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{3}{2 t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{3 \ln (t)}{2}} \\
& =\frac{1}{t^{\frac{3}{2}}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{(x y)^{\frac{3}{2}}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{(x y)^{\frac{3}{2}}}\left(y-(x y)^{\frac{3}{2}}\right) \\
& =-\frac{x \sqrt{x y}-1}{x \sqrt{x y}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{(x y)^{\frac{3}{2}}}(x) \\
& =\frac{1}{y \sqrt{x y}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{x \sqrt{x y}-1}{x \sqrt{x y}}\right)+\left(\frac{1}{y \sqrt{x y}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x \sqrt{x y}-1}{x \sqrt{x y}} \mathrm{~d} x \\
\phi & =-x-\frac{2}{\sqrt{x y}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{(x y)^{\frac{3}{2}}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y \sqrt{x y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y \sqrt{x y}}=\frac{1}{y \sqrt{x y}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x-\frac{2}{\sqrt{x y}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x-\frac{2}{\sqrt{x y}}
$$

The solution becomes

$$
y=\frac{4}{x\left(c_{1}^{2}+2 c_{1} x+x^{2}\right)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=\frac{4}{c_{1}^{2}+2 c_{1}+1} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{4}{x\left(x^{2}-4 x+4\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4}{x\left(x^{2}-4 x+4\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{4}{x\left(x^{2}-4 x+4\right)}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`

Solution by Maple
Time used: 0.203 (sec). Leaf size: 9

```
dsolve([x*diff(y(x),x)+y(x)=(x*y(x))^(3/2),y(1) = 4],y(x), singsol=all)
```

$$
y(x)=\frac{4}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.258 (sec). Leaf size: 24
DSolve $\left[\left\{x * y y^{\prime}[x]+y[x]==(x * y[x])^{\wedge}(3 / 2),\{y[1]==4\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{4}{x^{3}} \\
& y(x) \rightarrow \frac{4}{(x-2)^{2} x}
\end{aligned}
$$

5.27 problem 27

5.27.1 Existence and uniqueness analysis 1133
5.27.2 Solving as linear ode . 1134
5.27.3 Solving as first order ode lie symmetry lookup ode 1137
5.27.4 Maple step by step solution . 1141

Internal problem ID [11664]
Internal file name [OUTPUT/11673_Wednesday_April_10_2024_04_54_24_PM_95791151/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
0 & 1 \leq x
\end{array}\right.
$$

With initial conditions

$$
[y(0)=0]
$$

5.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)= \begin{cases}0 & x<0 \\
2 & x<1 \\
0 & 1 \leq x\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y= \begin{cases}0 & x<0 \\ 2 & x<1 \\ 0 & 1 \leq x\end{cases}
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\left\{\begin{array}{ll}0 & x<0 \\ 2 & x<1 \\ 0 & 1 \leq x\end{array}\right.$ is

$$
\{0 \leq x \leq 1,1 \leq x \leq \infty,-\infty \leq x \leq 0\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.27.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\left\{\begin{array}{ll}
0 & x<0 \\
2 & x<1 \\
0 & 1 \leq x
\end{array}\right)\right. \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(\left\{\begin{array}{ll}
0 & x<0 \\
2 & x<1 \\
0 & 1 \leq x
\end{array}\right)\right. \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left\{\begin{array}{cl}
0 & x<0 \\
2 \mathrm{e}^{x} & x<1 \\
0 & 1 \leq x
\end{array}\right.
\end{aligned}
$$

Integrating gives

$$
\left.\begin{array}{l}
\mathrm{e}^{x} y=\int\left\{\begin{array}{cc}
0 & x<0 \\
2 \mathrm{e}^{x} & x<1 \\
0 & 1 \leq x
\end{array} \mathrm{~d} x\right.
\end{array}\right\} \begin{gathered}
\mathrm{e}^{x} y=\left\{\begin{array}{cc}
0 & x \leq 0 \\
2 \mathrm{e}^{x}-2 & x \leq 1 \\
2 \mathrm{e}-2 & 1<x
\end{array}\right.
\end{gathered}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
2 \mathrm{e}^{x}-2 & x \leq 1 \\
2 \mathrm{e}-2 & 1<x
\end{array}\right)+c_{1} \mathrm{e}^{-x}\right.
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(-2\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
1-\mathrm{e}^{x} & x \leq 1 \\
1-\mathrm{e} & 1<x
\end{array}\right)+c_{1}\right)\right.
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{1}
$$

$$
c_{1}=0
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
0 & x \leq 0 \\
2-2 \mathrm{e}^{-x} & x \leq 1 \\
2 \mathrm{e}^{1-x}-2 \mathrm{e}^{-x} & 1<x \\
0 & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
0 & x \leq 0 \tag{1}\\
2-2 \mathrm{e}^{-x} & x \leq 1 \\
2 \mathrm{e}^{1-x}-2 \mathrm{e}^{-x} & 1<x \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\left\{\begin{array}{cc}
0 & x \leq 0 \\
2-2 \mathrm{e}^{-x} & x \leq 1 \\
2 \mathrm{e}^{1-x}-2 \mathrm{e}^{-x} & 1<x \\
0 & \text { otherwise }
\end{array}\right.
$$

Verified OK.

5.27.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\left(\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
0 & 1 \leq x
\end{array}\right)\right. \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 182: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+\left(\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
0 & 1 \leq x
\end{array}\right)\right.
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=\left\{\begin{array}{cl}
0 & x<0 \tag{2~A}\\
2 \mathrm{e}^{x} & x<1 \\
0 & 1 \leq x
\end{array}\right.
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
0 & R<0 \\
2 \mathrm{e}^{R} & R<1 \\
0 & 1 \leq R
\end{array}\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
c_{1} & R<0 \tag{4}\\
c_{1}+2 \mathrm{e}^{R}-2 & R<1 \\
c_{1}+2 \mathrm{e}-2 & 1 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=\left\{\begin{array}{cc}
c_{1} & x<0 \\
c_{1}+2 \mathrm{e}^{x}-2 & x<1 \\
c_{1}+2 \mathrm{e}-2 & 1 \leq x
\end{array}\right.
$$

Which simplifies to

$$
y \mathrm{e}^{x}=\left\{\begin{array}{cc}
c_{1} & x<0 \\
c_{1}+2 \mathrm{e}^{x}-2 & x<1 \\
c_{1}+2 \mathrm{e}-2 & 1 \leq x
\end{array}\right.
$$

Which gives

$$
y=\left\{\begin{array}{cc}
{\left[c_{1} \mathrm{e}^{-x}\right]} & x<0 \\
{\left[2+\left(-2+c_{1}\right) \mathrm{e}^{-x}\right]} & x<1 \\
{\left[\mathrm{e}^{-x}\left(c_{1}+2 \mathrm{e}-2\right)\right]} & 1 \leq x
\end{array}\right.
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+\left(\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 0 & 1 \leq x\end{array}\right)\right.$		$\frac{d S}{d R}=\left\{\begin{array}{cc}0 & R<0 \\ 2 \mathrm{e}^{R} & R<1 \\ 0 & 1 \leq R\end{array}\right.$
	$\begin{aligned} R & =x \\ S & =\mathrm{e}^{x} y \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\left[c_{1}\right]
$$

Unable to solve for constant of integration. Verification of solutions N/A

5.27.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
0 & 1 \leq x
\end{array}, y(0)=0\right]\right.
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=-y+\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
0 & 1 \leq x
\end{array}\right.
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+y=\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 0 & 1 \leq x\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x)\left(\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 0 & 1 \leq x\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{x}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
0 & 1 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x)\left(\left\{\begin{array}{cc}
2 & 0 \leq x<1 \\
0 & 1 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- \quad Solve for y
$y=\frac{\int \mu(x)\left(\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 0 & 1 \leq x\end{array}\right) d x+c_{1}\right.}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int \mathrm{e}^{x}\left(\left\{\begin{array}{cc}2 & 0 \leq x<1 \\ 0 & 1 \leq x\end{array}\right) d x+c_{1}\right.}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\left\{\begin{array}{cl}
0 & x \leq 0 \\
2 \mathrm{e}^{x}-2 & x \leq 1+c_{1} \\
2 \mathrm{e}-2 & 1<x
\end{array}\right.}{\mathrm{e}^{x}}
$$

- Simplify

$$
y=\mathrm{e}^{-x}\left(-2\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
1-\mathrm{e}^{x} & x \leq 1 \\
1-\mathrm{e} & 1<x
\end{array}\right)+c_{1}\right)\right.
$$

- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=-2 \mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
1-\mathrm{e}^{x} & x \leq 1 \\
1-\mathrm{e} & 1<x
\end{array}\right)\right.
$$

- Solution to the IVP

$$
y=-2 \mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
1-\mathrm{e}^{x} & x \leq 1 \\
1-\mathrm{e} & 1<x
\end{array}\right)\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.328 (sec). Leaf size: 38
dsolve([diff $(y(x), x)+y(x)=$ piecewise $(0<=x$ and $x<1,2, x>=1,0), y(0)=0], y(x)$, singsol=all)

$$
y(x)=\left\{\begin{array}{cc}
0 & x<0 \\
2-2 \mathrm{e}^{-x} & x<1 \\
2 \mathrm{e}^{1-x}-2 \mathrm{e}^{-x} & 1 \leq x
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 38
DSolve $\left[\left\{y^{\prime}[x]+y[x]==\right.\right.$ Piecewise $\left.[\{\{2,0<=x<1\},\{0, x>=1\}\}],\{y[0]==0\}\right\}, y[x], x$, IncludeSingularSoluti

$$
y(x) \rightarrow\left\{\begin{array}{cc}
0 & x \leq 0 \\
2-2 e^{-x} & 0<x \leq 1 \\
2(-1+e) e^{-x} & \text { True }
\end{array}\right.
$$

5.28 problem 28

5.28.1 Existence and uniqueness analysis 1145
5.28.2 Solving as linear ode . 1146
5.28.3 Solving as first order ode lie symmetry lookup ode 1149
5.28.4 Maple step by step solution . 1153

Internal problem ID [11665]
Internal file name [OUTPUT/11674_Wednesday_April_10_2024_04_54_25_PM_60313912/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\left\{\begin{array}{cc}
5 & 0 \leq x<10 \\
1 & 10 \leq x
\end{array}\right.
$$

With initial conditions

$$
[y(0)=6]
$$

5.28.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)= \begin{cases}0 & x<0 \\
5 & x<10 \\
1 & 10 \leq x\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\left\{\begin{array}{cc}
0 & x<0 \\
5 & x<10 \\
1 & 10 \leq x
\end{array}\right.
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\left\{\begin{array}{ll}0 & x<0 \\ 5 & x<10 \\ 1 & 10 \leq x\end{array}\right.$ is

$$
\{0 \leq x \leq 10,10 \leq x \leq \infty,-\infty \leq x \leq 0\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.28.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\left\{\begin{array}{ll}
0 & x<0 \\
5 & x<10 \\
1 & 10 \leq x
\end{array}\right)\right. \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(\left\{\begin{array}{ll}
0 & x<0 \\
5 & x<10 \\
1 & 10 \leq x
\end{array}\right)\right. \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(\left(\left\{\begin{array}{ll}
0 & x<0 \\
5 & x<10 \\
1 & 10 \leq x
\end{array}\right) \mathrm{e}^{x}\right) \mathrm{d} x\right.
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int\left(\left\{\begin{array}{cc}
0 & x<0 \\
5 & x<10 \\
1 & 10 \leq x
\end{array}\right) \mathrm{e}^{x} \mathrm{~d} x\right. \\
& \mathrm{e}^{x} y=\left\{\begin{array}{cc}
0 & x \leq 0 \\
5 \mathrm{e}^{x}-5 & x \leq 10+c_{1} \\
\mathrm{e}^{x}+4 \mathrm{e}^{10}-5 & 10<x
\end{array}\right.
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
5 \mathrm{e}^{x}-5 & x \leq 10 \\
\mathrm{e}^{x}+4 \mathrm{e}^{10}-5 & 10<x
\end{array}\right)+c_{1} \mathrm{e}^{-x}\right.
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
5 \mathrm{e}^{x}-5 & x \leq 10 \\
\mathrm{e}^{x}+4 \mathrm{e}^{10}-5 & 10<x
\end{array}\right)+c_{1}\right)\right.
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=6$ in the above solution gives an equation to solve for the constant of integration.

$$
6=c_{1}
$$

$$
c_{1}=6
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
6 \mathrm{e}^{-x} & x \leq 0 \\
5+\mathrm{e}^{-x} & x \leq 10 \\
4 \mathrm{e}^{10-x}+1+\mathrm{e}^{-x} & 10<x \\
6 \mathrm{e}^{-x} & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
6 \mathrm{e}^{-x} & x \leq 0 \tag{1}\\
5+\mathrm{e}^{-x} & x \leq 10 \\
4 \mathrm{e}^{10-x}+1+\mathrm{e}^{-x} & 10<x \\
6 \mathrm{e}^{-x} & \text { otherwise }
\end{array}\right.
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\left\{\begin{array}{cc}
6 \mathrm{e}^{-x} & x \leq 0 \\
5+\mathrm{e}^{-x} & x \leq 10 \\
4 \mathrm{e}^{10-x}+1+\mathrm{e}^{-x} & 10<x \\
6 \mathrm{e}^{-x} & \text { otherwise }
\end{array}\right.
$$

Verified OK.

5.28.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\left(\left\{\begin{array}{cc}
5 & 0 \leq x<10 \\
1 & 10 \leq x
\end{array}\right)\right. \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 185: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+\left(\left\{\begin{array}{cc}
5 & 0 \leq x<10 \\
1 & 10 \leq x
\end{array}\right)\right.
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=\left(\left\{\begin{array}{cc}
0 & x<0 \tag{2~A}\\
5 & x<10 \\
1 & 10 \leq x
\end{array}\right) \mathrm{e}^{x}\right.
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(\left\{\begin{array}{cc}
0 & R<0 \\
5 & R<10 \\
1 & 10 \leq R
\end{array}\right) \mathrm{e}^{R}\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
c_{1} & R<0 \tag{4}\\
c_{1}+5 \mathrm{e}^{R}-5 & R<10 \\
c_{1}+\mathrm{e}^{R}+4 \mathrm{e}^{10}-5 & 10 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=\left\{\begin{array}{cc}
c_{1} & x<0 \\
c_{1}+5 \mathrm{e}^{x}-5 & x<10 \\
c_{1}+\mathrm{e}^{x}+4 \mathrm{e}^{10}-5 & 10 \leq x
\end{array}\right.
$$

Which simplifies to

$$
y \mathrm{e}^{x}=\left\{\begin{array}{cc}
c_{1} & x<0 \\
c_{1}+5 \mathrm{e}^{x}-5 & x<10 \\
c_{1}+\mathrm{e}^{x}+4 \mathrm{e}^{10}-5 & 10 \leq x
\end{array}\right.
$$

Which gives

$$
y=\left\{\begin{array}{cc}
{\left[c_{1} \mathrm{e}^{-x}\right]} & x<0 \\
{\left[5+\left(c_{1}-5\right) \mathrm{e}^{-x}\right]} & x<10 \\
{\left[4 \mathrm{e}^{10-x}+1+\left(c_{1}-5\right) \mathrm{e}^{-x}\right]} & 10 \leq x
\end{array}\right.
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+\left(\left\{\begin{array}{cc}5 & 0 \leq x<10 \\ 1 & 10 \leq x\end{array}\right)\right.$		$\frac{d S}{d R}=\left(\begin{array}{cc}0 & R<0 \\ 5 & R<10 \\ 1 & 10 \leq R\end{array}\right) \mathrm{e}^{R}$
d d	$\begin{aligned} & R=x \\ & S=\mathrm{e}^{x} y \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=6$ in the above solution gives an equation to solve for the constant of integration.

$$
6=\left[c_{1}\right]
$$

Unable to solve for constant of integration. Verification of solutions N/A

5.28.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=\left\{\begin{array}{cc}
5 & 0 \leq x<10 \\
1 & 10 \leq x
\end{array}, y(0)=6\right]\right.
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\left\{\begin{array}{cc}5 & 0 \leq x<10 \\ 1 & 10 \leq x\end{array}\right.$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+y=\left\{\begin{array}{cc}5 & 0 \leq x<10 \\ 1 & 10 \leq x\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x)\left(\left\{\begin{array}{cc}5 & 0 \leq x<10 \\ 1 & 10 \leq x\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{x}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(\left\{\begin{array}{cc}
5 & 0 \leq x<10 \\
1 & 10 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x)\left(\left\{\begin{array}{cc}
5 & 0 \leq x<10 \\
1 & 10 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- \quad Solve for y
$y=\frac{\int \mu(x)\left(\left\{\begin{array}{cc}5 & 0 \leq x<10 \\ 1 & 10 \leq x\end{array}\right) d x+c_{1}\right.}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$

$$
y=\frac{\int \mathrm{e}^{x}\left(\left\{\begin{array}{cc}
5 & 0 \leq x<10 \\
1 & 10 \leq x
\end{array}\right) d x+c_{1}\right.}{\mathrm{e}^{x}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{\left\{\begin{array}{cc}
0 & x \leq 0 \\
5 \mathrm{e}^{x}-5 & x \leq 10+c_{1} \\
\mathrm{e}^{x}+4 \mathrm{e}^{10}-5 & 10<x
\end{array} \mathrm{e}^{x}\right.}{}
$$

- Simplify
$y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}0 & x \leq 0 \\ 5 \mathrm{e}^{x}-5 & x \leq 10 \\ \mathrm{e}^{x}+4 \mathrm{e}^{10}-5 & 10<x\end{array}\right)\right.$
- Use initial condition $y(0)=6$
$6=c_{1}$
- \quad Solve for c_{1}
$c_{1}=6$
- \quad Substitute $c_{1}=6$ into general solution and simplify

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
6 & x \leq 0 \\
1+5 \mathrm{e}^{x} & x \leq 10 \\
1+\mathrm{e}^{x}+4 \mathrm{e}^{10} & 10<x
\end{array}\right)\right.
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
6 & x \leq 0 \\
1+5 \mathrm{e}^{x} & x \leq 10 \\
1+\mathrm{e}^{x}+4 \mathrm{e}^{10} & 10<x
\end{array}\right)\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 7.219 (sec). Leaf size: 40
dsolve([diff $(y(x), x)+y(x)=$ piecewise $(0<=x$ and $x<10,5, x>=10,1), y(0)=6], y(x)$, singsol=all)

$$
y(x)=\left\{\begin{array}{cc}
6 \mathrm{e}^{-x} & x<0 \\
\mathrm{e}^{-x}+5 & x<10 \\
\mathrm{e}^{-x}+1+4 \mathrm{e}^{10-x} & 10 \leq x
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 45
DSolve $[\{y '[x]+y[x]==$ Piecewise $[\{\{5,0<=x<10\},\{1, x>=10\}\}],\{y[0]==6\}\}, y[x], x$, IncludeSingularSolu

$$
y(x) \rightarrow\left\{\begin{array}{cc}
6 e^{-x} & x \leq 0 \\
e^{-x}\left(1+4 e^{10}+e^{x}\right) & x>10 \\
5+e^{-x} & \text { True }
\end{array}\right.
$$

5.29 problem 29

5.29.1 Existence and uniqueness analysis 1157
5.29.2 Solving as linear ode . 1158
5.29.3 Solving as first order ode lie symmetry lookup ode 1161
5.29.4 Maple step by step solution . 1165

Internal problem ID [11666]
Internal file name [OUTPUT/11675_Wednesday_April_10_2024_04_54_26_PM_30453963/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\left\{\begin{array}{cc}
\mathrm{e}^{-x} & 0 \leq x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right.
$$

With initial conditions

$$
[y(0)=1]
$$

5.29.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\mathrm{e}^{-x} & x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right.
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\left\{\begin{array}{cc}
0 & x<0 \\
\mathrm{e}^{-x} & x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right.
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\left\{\begin{array}{cl}0 & x<0 \\ \mathrm{e}^{-x} & x<2 \\ \mathrm{e}^{-2} & 2 \leq x\end{array}\right.$ is

$$
\{x<0 \vee 0<x\}
$$

But the point $x_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

5.29.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\left\{\begin{array}{cc}
0 & x<0 \\
\mathrm{e}^{-x} & x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right)\right. \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(\left\{\begin{array}{cc}
0 & x<0 \\
\mathrm{e}^{-x} & x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right)\right. \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left\{\begin{array}{cc}
0 & x<0 \\
1 & x<2 \\
\mathrm{e}^{x-2} & 2 \leq x
\end{array}\right.
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int\left\{\begin{array}{cc}
0 & x<0 \\
1 & x<2 \\
\mathrm{e}^{x-2} & 2 \leq x
\end{array}\right. \\
& \mathrm{e}^{x} y=\left\{\begin{array}{cc}
0 & x \leq 0 \\
x & x \leq 2 \\
\mathrm{e}^{x-2}+1 & 2<x
\end{array}\right.
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
x & x \leq 2 \\
\mathrm{e}^{x-2}+1 & 2<x
\end{array}\right)+c_{1} \mathrm{e}^{-x}\right.
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
x & x \leq 2 \\
\mathrm{e}^{x-2}+1 & 2<x
\end{array}\right)+c_{1}\right)\right.
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=c_{1}
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{-x} & x \leq 0 \\
x \mathrm{e}^{-x}+\mathrm{e}^{-x} & x \leq 2 \\
\mathrm{e}^{-2}+2 \mathrm{e}^{-x} & 2<x \\
\mathrm{e}^{-x} & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{-x} & x \leq 0 \tag{1}\\
x \mathrm{e}^{-x}+\mathrm{e}^{-x} & x \leq 2 \\
\mathrm{e}^{-2}+2 \mathrm{e}^{-x} & 2<x \\
\mathrm{e}^{-x} & \text { otherwise }
\end{array}\right.
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{-x} & x \leq 0 \\
x \mathrm{e}^{-x}+\mathrm{e}^{-x} & x \leq 2 \\
\mathrm{e}^{-2}+2 \mathrm{e}^{-x} & 2<x \\
\mathrm{e}^{-x} & \text { otherwise }
\end{array}\right.
$$

Verified OK.

5.29.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\left(\left\{\begin{array}{cc}
\mathrm{e}^{-x} & 0 \leq x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right)\right. \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 188: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+\left(\left\{\begin{array}{cc}
\mathrm{e}^{-x} & 0 \leq x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right)\right.
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
0 & x<0 \tag{2~A}\\
1 & x<2 \\
\mathrm{e}^{x-2} & 2 \leq x
\end{array}\right.
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
0 & R<0 \\
1 & R<2 \\
\mathrm{e}^{R-2} & 2 \leq R
\end{array}\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
c_{1} & R<0 \tag{4}\\
c_{1}+R & R<2 \\
c_{1}+\mathrm{e}^{R-2}+1 & 2 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=\left\{\begin{array}{cc}
c_{1} & x<0 \\
x+c_{1} & x<2 \\
c_{1}+\mathrm{e}^{x-2}+1 & 2 \leq x
\end{array}\right.
$$

Which simplifies to

$$
y \mathrm{e}^{x}=\left\{\begin{array}{cc}
c_{1} & x<0 \\
x+c_{1} & x<2 \\
c_{1}+\mathrm{e}^{x-2}+1 & 2 \leq x
\end{array}\right.
$$

Which gives

$$
y=\left\{\begin{array}{cc}
{\left[c_{1} \mathrm{e}^{-x}\right]} & x<0 \\
{\left[\mathrm{e}^{-x}\left(x+c_{1}\right)\right]} & x<2 \\
{\left[\mathrm{e}^{-x}\left(c_{1}+\mathrm{e}^{x-2}+1\right)\right]} & 2 \leq x
\end{array}\right.
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+\left(\left\{\begin{array}{cc}\mathrm{e}^{-x} & 0 \leq x<2 \\ \mathrm{e}^{-2} & 2 \leq x\end{array}\right)\right.$		$\frac{d S}{d R}=\left\{\begin{array}{cc}0 & R<0 \\ 1 & R<2 \\ \mathrm{e}^{R-2} & 2 \leq R\end{array}\right.$
	$\begin{aligned} R & =x \\ S & =\mathrm{e}^{x} y \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\left[c_{1}\right]
$$

Unable to solve for constant of integration. Verification of solutions N/A

5.29.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=\left\{\begin{array}{cc}
\mathrm{e}^{-x} & 0 \leq x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}, y(0)=1\right]\right.
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\left\{\begin{array}{cc}\mathrm{e}^{-x} & 0 \leq x<2 \\ \mathrm{e}^{-2} & 2 \leq x\end{array}\right.$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+y=\left\{\begin{array}{cc}\mathrm{e}^{-x} & 0 \leq x<2 \\ \mathrm{e}^{-2} & 2 \leq x\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x)\left(\left\{\begin{array}{cc}\mathrm{e}^{-x} & 0 \leq x<2 \\ \mathrm{e}^{-2} & 2 \leq x\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{x}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(\left\{\begin{array}{cc}
\mathrm{e}^{-x} & 0 \leq x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x)\left(\left\{\begin{array}{cc}
\mathrm{e}^{-x} & 0 \leq x<2 \\
\mathrm{e}^{-2} & 2 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- \quad Solve for y
$y=\frac{\int \mu(x)\left(\left\{\begin{array}{cc}\mathrm{e}^{-x} & 0 \leq x<2 \\ \mathrm{e}^{-2} & 2 \leq x\end{array}\right) d x+c_{1}\right.}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int \mathrm{e}^{x}\left(\left\{\begin{array}{cc}\mathrm{e}^{-x} & 0 \leq x<2 \\ \mathrm{e}^{-2} & 2 \leq x\end{array}\right) d x+c_{1}\right.}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\left\{\begin{array}{cl}
0 & x \leq 0 \\
x & x \leq 2+c_{1} \\
\mathrm{e}^{x-2}+1 & 2<x
\end{array} \mathrm{e}^{x}\right.}{}
$$

- Simplify
$y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cl}0 & x \leq 0 \\ x & x \leq 2 \\ \mathrm{e}^{x-2}+1 & 2<x\end{array}\right)\right.$
- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
x & x \leq 2 \\
\mathrm{e}^{x-2}+1 & 2<x
\end{array}\right)\right.
$$

- Solution to the IVP

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cl}
0 & x \leq 0 \\
x & x \leq 2 \\
\mathrm{e}^{x-2}+1 & 2<x
\end{array}\right)\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.359 (sec). Leaf size: 35
dsolve([diff $(y(x), x)+y(x)=$ piecewise $(0<=x$ and $x<2, \exp (-x), x>=2, \exp (-2)), y(0)=1], y(x)$, sings

$$
y(x)=\left\{\begin{array}{cc}
\mathrm{e}^{-x} & x<0 \\
\mathrm{e}^{-x}(1+x) & x<2 \\
2 \mathrm{e}^{-x}+\mathrm{e}^{-2} & 2 \leq x
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.103 (sec). Leaf size: 40
DSolve $\left[\left\{y^{\prime}[x]+y[x]==\right.\right.$ Piecewise $\left.[\{\{\operatorname{Exp}[-x], 0<=x<2\},\{\operatorname{Exp}[-2], x>=2\}\}],\{y[0]==1\}\right\}, y[x], x$, IncludeSi

$$
y(x) \rightarrow\left\{\begin{array}{cc}
e^{-x} & x \leq 0 \\
\frac{1}{e^{2}}+2 e^{-x} & x>2 \\
e^{-x}(x+1) & \text { True }
\end{array}\right.
$$

5.30 problem 30

5.30.1 Existence and uniqueness analysis 1169
5.30.2 Solving as linear ode . 1170
5.30.3 Solving as first order ode lie symmetry lookup ode 1173
5.30.4 Maple step by step solution . 1179

Internal problem ID [11667]
Internal file name [OUTPUT/11676_Wednesday_April_10_2024_04_54_27_PM_23925784/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 30 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
(x+2) y^{\prime}+y=\left\{\begin{array}{cc}
2 x & 0 \leq x<2 \\
4 & 2 \leq x
\end{array}\right.
$$

With initial conditions

$$
[y(0)=4]
$$

5.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x+2} \\
q(x) & =\frac{2\left(\left\{\begin{array}{ll}
0 & x<0 \\
x & x<2 \\
2 & 2 \leq x
\end{array}\right)\right.}{x+2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x+2}=\frac{2\left(\left\{\begin{array}{ll}
0 & x<0 \\
x & x<2 \\
2 & 2 \leq x
\end{array}\right)\right.}{x+2}
$$

The domain of $p(x)=\frac{1}{x+2}$ is

$$
\{x<-2 \vee-2<x\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{2\left(\left\{\begin{array}{cc}0 & x<0 \\ x & x<2 \\ 2 & 2 \leq x\end{array}\right)\right.}{x+2}$ is

$$
\{x<-2 \vee-2<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.30.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{x+2} d x} \\
=x+2
\end{gathered}
$$

The ode becomes

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y)=(\mu)\left(\frac{\left\{\begin{array}{ll}
0 & x<0 \\
x & x<2 \\
2 & 2 \leq x
\end{array}\right)}{x+2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}((x+2) y)=(x+2)\binom{2\left(\begin{array}{ll}
0 & x<0 \\
x & x<2 \\
2 & 2 \leq x
\end{array}\right)}{x+2} \\
\mathrm{~d}((x+2) y)=\left(2\left(\left\{\begin{array}{ll}
0 & x<0 \\
x & x<2 \\
2 & 2 \leq x
\end{array}\right)\right) \mathrm{d} x\right.
\end{gathered}
$$

Integrating gives

$$
\begin{aligned}
& (x+2) y=\int 2\left(\left\{\begin{array}{cc}
0 & x<0 \\
x & x<2 \\
2 & 2 \leq x
\end{array}\right) \mathrm{d} x\right. \\
& (x+2) y=2\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
\frac{x^{2}}{2} & x \leq 2 \\
2 x-2 & 2<x
\end{array}\right)+c_{1}\right.
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x+2$ results in

$$
y=\frac{2\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
\frac{x^{2}}{2} & x \leq 2 \\
2 x-2 & 2<x
\end{array}\right)\right.}{x+2}+\frac{c_{1}}{x+2}
$$

which simplifies to

$$
y=\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
x^{2} & x \leq 2 \\
4 x-4 & 2<x
\end{array}\right)+c_{1}\right.}{x+2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4=\frac{c_{1}}{2} \\
& c_{1}=8
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x \leq 0 \\
\frac{x^{2}+8}{x+2} & x \leq 2 \\
\frac{4+4 x}{x+2} & 2<x \\
\frac{8}{x+2} & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x \leq 0 \tag{1}\\
\frac{x^{2}+8}{x+2} & x \leq 2 \\
\frac{4+4 x}{x+2} & 2<x \\
\frac{8}{x+2} & \text { otherwise }
\end{array}\right.
$$

Verification of solutions

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x \leq 0 \\
\frac{x^{2}+8}{x+2} & x \leq 2 \\
\frac{4+4 x}{x+2} & 2<x \\
\frac{8}{x+2} & \text { otherwise }
\end{array}\right.
$$

Verified OK.

5.30.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y-\left(\left\{\begin{array}{cc}
2 x & 0 \leq x<2 \\
4 & 2 \leq x
\end{array}\right)\right.}{x+2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 191: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x+2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x+2}} d y
\end{aligned}
$$

Which results in

$$
S=(x+2) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y-\left(\left\{\begin{array}{cc}
2 x & 0 \leq x<2 \\
4 & 2 \leq x
\end{array}\right)\right.}{x+2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x+2
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=2\left(\left\{\begin{array}{cc}
0 & x<0 \tag{2~A}\\
x & x<2 \\
2 & 2 \leq x
\end{array}\right)\right.
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2\left(\left\{\begin{array}{cc}
0 & R<0 \\
R & R<2 \\
2 & 2 \leq R
\end{array}\right)\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
c_{1} & R<0 \tag{4}\\
R^{2}+c_{1} & R<2 \\
c_{1}-4+4 R & 2 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(x+2) y=\left\{\begin{array}{cc}
c_{1} & x<0 \\
x^{2}+c_{1} & x<2 \\
c_{1}+4 x-4 & 2 \leq x
\end{array}\right.
$$

Which simplifies to

$$
(x+2) y=\left\{\begin{array}{cc}
c_{1} & x<0 \\
x^{2}+c_{1} & x<2 \\
c_{1}+4 x-4 & 2 \leq x
\end{array}\right.
$$

Which gives

$$
y=\frac{\left\{\begin{array}{cc}
c_{1} & x<0 \\
x^{2}+c_{1} & x<2 \\
c_{1}+4 x-4 & 2 \leq x
\end{array}\right.}{x+2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{{ }_{y-}\left(\left\{\begin{array}{cc} 2 x & 0 \leq x<2 \\ 4 & 2 \leq x \end{array}\right)\right.}{x+2}$		$\frac{d S}{d R}=2\left(\begin{array}{cc}0 & R<0 \\ R & R<2 \\ 2 & 2 \leq R\end{array}\right)$
	$\begin{aligned} R & =x \\ S & =(x+2) y \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4=\frac{c_{1}}{2} \\
& c_{1}=8
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x<0 \\
\frac{x^{2}+8}{x+2} & x<2 \\
\frac{4+4 x}{x+2} & 2 \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Summary

The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x<0 \tag{1}\\
\frac{x^{2}+8}{x+2} & x<2 \\
\frac{4+4 x}{x+2} & 2 \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Solution plot

Verification of solutions

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x<0 \\
\frac{x^{2}+8}{x+2} & x<2 \\
\frac{4+4 x}{x+2} & 2 \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Verified OK.

5.30.4 Maple step by step solution

Let's solve
$\left[(x+2) y^{\prime}+y=\left\{\begin{array}{cc}2 x & 0 \leq x<2 \\ 4 & 2 \leq x\end{array}, y(0)=4\right]\right.$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x+2}+\frac{\left\{\begin{array}{cc}2 x & 0 \leq x<2 \\ 4 & 2 \leq x\end{array}\right.}{x+2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}+\frac{y}{x+2}=\frac{\left\{\begin{array}{cc}
2 x & 0 \leq x<2 \\
4 & 2 \leq x
\end{array}\right.}{x+2}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x+2}\right)=\frac{\mu(x)\left(\left\{\begin{array}{cc}2 x & 0 \leq x<2 \\ 4 & 2 \leq x\end{array}\right)\right.}{x+2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x+2}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x+2}$
- \quad Solve to find the integrating factor
$\mu(x)=x+2$
- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)\left(\left\{\begin{array}{cc}
2 x & 0 \leq x<2 \\
4 & 2 \leq x
\end{array}\right)\right.}{x+2} d x+c_{1}
$$

- Evaluate the integral on the lhs

$$
\mu(x) y=\int \frac{\mu(x)\left(\left\{\begin{array}{cc}
2 x & 0 \leq x<2 \\
4 & 2 \leq x
\end{array}\right)\right.}{x+2} d x+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\int \frac{\varliminf^{\mu(x)}\left\{\begin{array}{lc}
4 & 2 \leq x
\end{array}\right)_{d x+c_{1}}}{x+2}}{\mu(x)}
$$

- \quad Substitute $\mu(x)=x+2$
$y=\frac{\int\left(\left\{\begin{array}{cc}2 x & 0 \leq x<2 \\ 4 & 2 \leq x\end{array}\right) d x+c_{1}\right.}{x+2}$
- Evaluate the integrals on the rhs
$y=\frac{\left\{\begin{array}{cl}0 & x \leq 0 \\ x^{2} & x \leq 2 \\ 4 x-4 & 2\end{array}{ }^{2}<x\right.}{x+2}$
- Use initial condition $y(0)=4$
$4=\frac{c_{1}}{2}$
- \quad Solve for c_{1}
$c_{1}=8$
- \quad Substitute $c_{1}=8$ into general solution and simplify

$$
y=\frac{\left\{\begin{array}{cl}
0 & x \leq 0 \\
x^{2} & x \leq 2 \\
4 x-4 & 2<x
\end{array} x+8\right.}{x+2}
$$

- \quad Solution to the IVP
$y=\frac{\left\{\begin{array}{cl}0 & x \leq 0 \\ x^{2} & x \leq 2 \\ 4 x-4 & 2<x\end{array}\right.}{x+2}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.265 (sec). Leaf size: 31
dsolve $([(x+2) * \operatorname{diff}(y(x), x)+y(x)=$ piecewise $(0<=x$ and $x<2,2 * x, x>=2,4), y(0)=4], y(x)$, singsol $=a$

$$
y(x)=\frac{\left\{\begin{array}{cc}
8 & x<0 \\
x^{2}+8 & x<2 \\
4+4 x & 2 \leq x
\end{array}\right.}{x+2}
$$

\checkmark Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 43
DSolve $\left[\left\{(x+2) * y^{\prime}[x]+y[x]==\right.\right.$ Piecewise $\left.[\{\{2 * x, 0<=x<2\},\{4, x>=2\}\}],\{y[0]==4\}\right\}, y[x], x$, IncludeSingul

$$
y(x) \rightarrow\left\{\begin{array}{cc}
\frac{8}{x+2} & x \leq 0 \\
\frac{4(x+1)}{x+2} & x>2 \\
\frac{x^{2}+8}{x+2} & \text { True }
\end{array}\right.
$$

5.31 problem 31

5.31.1 Solving as linear ode . 1182
5.31.2 Solving as first order ode lie symmetry lookup ode 1184
5.31.3 Solving as exact ode . 1187
5.31.4 Maple step by step solution . 1191

Internal problem ID [11668]
Internal file name [OUTPUT/11677_Wednesday_April_10_2024_04_54_28_PM_25898883/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[[_linear, `class A`]]

$$
a y^{\prime}+y b=k \mathrm{e}^{-\lambda x}
$$

5.31.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{b}{a} \\
q(x) & =\frac{k \mathrm{e}^{-\lambda x}}{a}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{b y}{a}=\frac{k \mathrm{e}^{-\lambda x}}{a}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{b}{a} d x} \\
& =\mathrm{e}^{\frac{b x}{a}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{k \mathrm{e}^{-\lambda x}}{a}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{b x}{a}} y\right) & =\left(\mathrm{e}^{\frac{b x}{a}}\right)\left(\frac{k \mathrm{e}^{-\lambda x}}{a}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{b x}{a}} y\right) & =\left(\frac{k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}}{a}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{b x}{a}} y=\int \frac{k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}}{a} \mathrm{~d} x \\
& \mathrm{e}^{\frac{b x}{a}} y=-\frac{k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}}{a \lambda-b}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{b x}{a}}$ results in

$$
y=-\frac{\mathrm{e}^{-\frac{b x}{a}} k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}}{a \lambda-b}+c_{1} \mathrm{e}^{-\frac{b x}{a}}
$$

which simplifies to

$$
y=\frac{c_{1}(a \lambda-b) \mathrm{e}^{-\frac{b x}{a}}-k \mathrm{e}^{-\lambda x}}{a \lambda-b}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}(a \lambda-b) \mathrm{e}^{-\frac{b x}{a}}-k \mathrm{e}^{-\lambda x}}{a \lambda-b} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}(a \lambda-b) \mathrm{e}^{-\frac{b x}{a}}-k \mathrm{e}^{-\lambda x}}{a \lambda-b}
$$

Verified OK.

5.31.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{b y-k \mathrm{e}^{-\lambda x}}{a} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 194: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{b x}{a}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{b x}{a}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{b x}{a}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{b y-k \mathrm{e}^{-\lambda x}}{a}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{b \mathrm{e}^{\frac{b x}{a}} y}{a} \\
S_{y} & =\mathrm{e}^{\frac{b x}{a}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}}{a} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{k \mathrm{e}^{-\frac{R(a \lambda-b)}{a}}}{a}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{k \mathrm{e}^{-\frac{R(a \lambda-b)}{a}}}{a \lambda-b}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\frac{b x}{a}} y=-\frac{k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}}{a \lambda-b}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{b x}{a}} y=-\frac{k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}}{a \lambda-b}+c_{1}
$$

Which gives

$$
y=-\frac{\left(-\lambda c_{1} a+k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}+c_{1} b\right) \mathrm{e}^{-\frac{b x}{a}}}{a \lambda-b}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(-\lambda c_{1} a+k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}+c_{1} b\right) \mathrm{e}^{-\frac{b x}{a}}}{a \lambda-b} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(-\lambda c_{1} a+k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}+c_{1} b\right) \mathrm{e}^{-\frac{b x}{a}}}{a \lambda-b}
$$

Verified OK.

5.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(a) \mathrm{d} y & =\left(-b y+k \mathrm{e}^{-\lambda x}\right) \mathrm{d} x \\
\left(b y-k \mathrm{e}^{-\lambda x}\right) \mathrm{d} x+(a) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=b y-k \mathrm{e}^{-\lambda x} \\
& N(x, y)=a
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(b y-k \mathrm{e}^{-\lambda x}\right) \\
& =b
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(a) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{a}((b)-(0)) \\
& =\frac{b}{a}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{b}{a} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{b x}{a}} \\
& =\mathrm{e}^{\frac{b x}{a}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{b x}{a}}\left(b y-k \mathrm{e}^{-\lambda x}\right) \\
& =\mathrm{e}^{\frac{b x}{a}}\left(b y-k \mathrm{e}^{-\lambda x}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{b x}{a}}(a) \\
& =\mathrm{e}^{\frac{b x}{a}} a
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\mathrm{e}^{\frac{b x}{a}}\left(b y-k \mathrm{e}^{-\lambda x}\right)\right)+\left(\mathrm{e}^{\frac{b x}{a}} a\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{\frac{b x}{a}}\left(b y-k \mathrm{e}^{-\lambda x}\right) \mathrm{d} x \\
\phi & =\frac{\left(k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}+y(a \lambda-b) \mathrm{e}^{\frac{b x}{a}}\right) a}{a \lambda-b}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{b x}{a}} a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{b x}{a}} a$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\frac{b x}{a}} a=\mathrm{e}^{\frac{b x}{a}} a+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}+y(a \lambda-b) \mathrm{e}^{\frac{b x}{a}}\right) a}{a \lambda-b}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}+y(a \lambda-b) \mathrm{e}^{\frac{b x}{a}}\right) a}{a \lambda-b}
$$

The solution becomes

$$
y=-\frac{\left(k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}} a-\lambda c_{1} a+c_{1} b\right) \mathrm{e}^{-\frac{b x}{a}}}{a(a \lambda-b)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}} a-\lambda c_{1} a+c_{1} b\right) \mathrm{e}^{-\frac{b x}{a}}}{a(a \lambda-b)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}} a-\lambda c_{1} a+c_{1} b\right) \mathrm{e}^{-\frac{b x}{a}}}{a(a \lambda-b)}
$$

Verified OK.

5.31.4 Maple step by step solution

Let's solve

$$
a y^{\prime}+y b=k \mathrm{e}^{-\lambda x}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{b y}{a}+\frac{k \mathrm{e}^{-\lambda x}}{a}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{b y}{a}=\frac{k \mathrm{e}^{-\lambda x}}{a}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{b y}{a}\right)=\frac{\mu(x) k \mathrm{e}^{-\lambda x}}{a}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{b y}{a}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) b}{a}$
- Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{\frac{b x}{a}}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) k \mathrm{e}^{-\lambda x}}{a} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) k \mathrm{e}^{-\lambda x}}{a} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) k e^{-\lambda x}}{a} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\frac{b x}{a}}$

$$
y=\frac{\int \frac{k \mathrm{e}^{-\lambda x} \mathrm{e}^{\frac{b x}{a}}}{a} d x+c_{1}}{\mathrm{e}^{\frac{b x}{a}}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{-\frac{k \mathrm{e}^{-\lambda x+\frac{b x}{a}}}{a \lambda-b}+c_{1}}{\mathrm{e}^{\frac{b x}{a}}}
$$

- Simplify

$$
y=\frac{\mathrm{e}^{-\frac{b x}{a}}\left(-k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}+(a \lambda-b) c_{1}\right)}{a \lambda-b}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\int Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
dsolve(a*diff(y(x),x)+b*y(x)=k*exp(-lambda*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(-k \mathrm{e}^{-\frac{x(a \lambda-b)}{a}}+c_{1}(a \lambda-b)\right) \mathrm{e}^{-\frac{b x}{a}}}{a \lambda-b}
$$

$\sqrt{\int}$ Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 44
DSolve [a*y' $[\mathrm{x}]+\mathrm{b} * \mathrm{y}[\mathrm{x}]==\mathrm{k} * \operatorname{Exp}[\backslash[$ Lambda $] * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{-\frac{b x}{a}}\left(k e^{x\left(\frac{b}{a}+\lambda\right)}+c_{1}(a \lambda+b)\right)}{a \lambda+b}
$$

5.32 problem 35 (b)

5.32.1 Solving as linear ode . 1193
5.32.2 Solving as first order ode lie symmetry lookup ode 1195
5.32.3 Solving as exact ode . 1199
5.32.4 Maple step by step solution . 1203

Internal problem ID [11669]
Internal file name [OUTPUT/11678_Wednesday_April_10_2024_04_54_29_PM_13645783/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 35 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=2 \sin (x)+5 \sin (2 x)
$$

5.32.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=2 \sin (x)+5 \sin (2 x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=2 \sin (x)+5 \sin (2 x)
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(2 \sin (x)+5 \sin (2 x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)(2 \sin (x)+5 \sin (2 x)) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left((2 \sin (x)+5 \sin (2 x)) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int(2 \sin (x)+5 \sin (2 x)) \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=\mathrm{e}^{x}(\sin (2 x)-2 \cos (2 x))-\mathrm{e}^{x} \cos (x)+\mathrm{e}^{x} \sin (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(\mathrm{e}^{x}(\sin (2 x)-2 \cos (2 x))-\mathrm{e}^{x} \cos (x)+\mathrm{e}^{x} \sin (x)\right)+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{-x}-4 \cos (x)^{2}+(2 \sin (x)-1) \cos (x)+\sin (x)+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}-4 \cos (x)^{2}+(2 \sin (x)-1) \cos (x)+\sin (x)+2 \tag{1}
\end{equation*}
$$

Figure 231: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}-4 \cos (x)^{2}+(2 \sin (x)-1) \cos (x)+\sin (x)+2
$$

Verified OK.

5.32.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+2 \sin (x)+5 \sin (2 x) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 197: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+2 \sin (x)+5 \sin (2 x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(2 \sin (x)+5 \sin (2 x)) \mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(2 \sin (R)+5 \sin (2 R)) \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}-\mathrm{e}^{R}(\cos (R)+2 \cos (2 R)-\sin (R)-\sin (2 R)) \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=c_{1}-\mathrm{e}^{x}(-\sin (2 x)+2 \cos (2 x)+\cos (x)-\sin (x))
$$

Which simplifies to

$$
y \mathrm{e}^{x}=c_{1}-\mathrm{e}^{x}(-\sin (2 x)+2 \cos (2 x)+\cos (x)-\sin (x))
$$

Which gives

$$
y=\mathrm{e}^{-x}\left(\mathrm{e}^{x} \sin (2 x)+\mathrm{e}^{x} \sin (x)-\mathrm{e}^{x} \cos (x)-2 \mathrm{e}^{x} \cos (2 x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+2 \sin (x)+5 \sin (2 x)$		$\frac{d S}{d R}=(2 \sin (R)+5 \sin (2 R)) \mathrm{e}^{R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-5(N)}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$R=x$	\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow-4 \rightarrow \rightarrow-2 .}$
	$S=\mathrm{e}^{x} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{\rightarrow-\infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(\mathrm{e}^{x} \sin (2 x)+\mathrm{e}^{x} \sin (x)-\mathrm{e}^{x} \cos (x)-2 \mathrm{e}^{x} \cos (2 x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 232: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(\mathrm{e}^{x} \sin (2 x)+\mathrm{e}^{x} \sin (x)-\mathrm{e}^{x} \cos (x)-2 \mathrm{e}^{x} \cos (2 x)+c_{1}\right)
$$

Verified OK.

5.32.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-y+2 \sin (x)+5 \sin (2 x)) \mathrm{d} x \\
(y-2 \sin (x)-5 \sin (2 x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-2 \sin (x)-5 \sin (2 x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-2 \sin (x)-5 \sin (2 x)) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(y-2 \sin (x)-5 \sin (2 x)) \\
& =(y-2 \sin (x)-5 \sin (2 x)) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left((y-2 \sin (x)-5 \sin (2 x)) \mathrm{e}^{x}\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(y-2 \sin (x)-5 \sin (2 x)) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =\mathrm{e}^{x}(-\sin (2 x)+2 \cos (2 x)+\cos (x)-\sin (x)+y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x}(-\sin (2 x)+2 \cos (2 x)+\cos (x)-\sin (x)+y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x}(-\sin (2 x)+2 \cos (2 x)+\cos (x)-\sin (x)+y)
$$

The solution becomes

$$
y=\mathrm{e}^{-x}\left(\mathrm{e}^{x} \sin (2 x)+\mathrm{e}^{x} \sin (x)-\mathrm{e}^{x} \cos (x)-2 \mathrm{e}^{x} \cos (2 x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(\mathrm{e}^{x} \sin (2 x)+\mathrm{e}^{x} \sin (x)-\mathrm{e}^{x} \cos (x)-2 \mathrm{e}^{x} \cos (2 x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 233: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(\mathrm{e}^{x} \sin (2 x)+\mathrm{e}^{x} \sin (x)-\mathrm{e}^{x} \cos (x)-2 \mathrm{e}^{x} \cos (2 x)+c_{1}\right)
$$

Verified OK.

5.32.4 Maple step by step solution

Let's solve

$$
y^{\prime}+y=2 \sin (x)+5 \sin (2 x)
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+2 \sin (x)+5 \sin (2 x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=2 \sin (x)+5 \sin (2 x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x)(2 \sin (x)+5 \sin (2 x))$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{x}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)(2 \sin (x)+5 \sin (2 x)) d x+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)(2 \sin (x)+5 \sin (2 x)) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)(2 \sin (x)+5 \sin (2 x)) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int(2 \sin (x)+5 \sin (2 x)) \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{x}(\sin (2 x)-2 \cos (2 x))-\mathrm{e}^{x} \cos (x)+\mathrm{e}^{x} \sin (x)+c_{1}}{\mathrm{e}^{x}}$
- Simplify

$$
y=c_{1} \mathrm{e}^{-x}-4 \cos (x)^{2}+(2 \sin (x)-1) \cos (x)+\sin (x)+2
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve(diff $(y(x), x)+y(x)=2 * \sin (x)+5 * \sin (2 * x), y(x), \quad$ singsol=all)

$$
y(x)=-\cos (x)-2 \cos (2 x)+\sin (x)+\sin (2 x)+c_{1} \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 30
DSolve [y' $[x]+y[x]==2 * \operatorname{Sin}[x]+5 * \operatorname{Sin}[2 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \sin (x)+\sin (2 x)-\cos (x)-2 \cos (2 x)+c_{1} e^{-x}
$$

5.33 problem 37 (a)

5.33.1 Solving as exact ode

1206
Internal problem ID [11670]
Internal file name [OUTPUT/11679_Wednesday_April_10_2024_04_54_30_PM_22507291/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 37 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[`y=_G(x,y') 〕]

$$
\cos (y) y^{\prime}+\frac{\sin (y)}{x}=1
$$

5.33.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x \cos (y)) \mathrm{d} y & =(-\sin (y)+x) \mathrm{d} x \\
(\sin (y)-x) \mathrm{d} x+(x \cos (y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\sin (y)-x \\
N(x, y) & =x \cos (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\sin (y)-x) \\
& =\cos (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x \cos (y)) \\
& =\cos (y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \sin (y)-x \mathrm{~d} x \\
\phi & =-\frac{x(-2 \sin (y)+x)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \cos (y)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x \cos (y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x \cos (y)=x \cos (y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x(-2 \sin (y)+x)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x(-2 \sin (y)+x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x(-2 \sin (y)+x)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 234: Slope field plot

Verification of solutions

$$
-\frac{x(-2 \sin (y)+x)}{2}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve $(\cos (y(x)) * \operatorname{diff}(y(x), x)+1 / x * \sin (y(x))=1, y(x), \quad$ singsol=all)

$$
y(x)=-\arcsin \left(\frac{-x^{2}+2 c_{1}}{2 x}\right)
$$

\checkmark Solution by Mathematica
Time used: 8.67 (sec). Leaf size: 18
DSolve[Cos[y[x]]*y'[x]+1/x*Sin[y[x]]==1,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \arcsin \left(\frac{x}{2}+\frac{c_{1}}{x}\right)
$$

5.34 problem 37 (b)

5.34.1 Solving as separable ode . 1211
5.34.2 Solving as first order ode lie symmetry lookup ode 1213
5.34.3 Solving as exact ode . 1217
5.34.4 Maple step by step solution . 1221

Internal problem ID [11671]
Internal file name [OUTPUT/11680_Wednesday_April_10_2024_04_54_32_PM_51224347/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 37 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(y+1) y^{\prime}+x\left(y^{2}+2 y\right)=x
$$

5.34.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x\left(y^{2}+2 y-1\right)}{y+1}
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\frac{y^{2}+2 y-1}{y+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{2}+2 y-1}{y+1}} d y & =-x d x \\
\int \frac{1}{\frac{y^{2}+2 y-1}{y+1}} d y & =\int-x d x
\end{aligned}
$$

$$
\frac{\ln \left(y^{2}+2 y-1\right)}{2}=-\frac{x^{2}}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\sqrt{y^{2}+2 y-1}=\mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\sqrt{y^{2}+2 y-1}=c_{2} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

The solution is

$$
\sqrt{y^{2}+2 y-1}=c_{2} \mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y^{2}+2 y-1}=c_{2} \mathrm{e}^{-\frac{x^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 235: Slope field plot
Verification of solutions

$$
\sqrt{y^{2}+2 y-1}=c_{2} \mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}
$$

Verified OK.

5.34.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x\left(y^{2}+2 y-1\right)}{y+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 200: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x y^{n}}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x\left(y^{2}+2 y-1\right)}{y+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y+1}{y^{2}+2 y-1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R+1}{R^{2}+2 R-1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{2}+2 R-1\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{2}=\frac{\ln \left(y^{2}+2 y-1\right)}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{2}=\frac{\ln \left(y^{2}+2 y-1\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x\left(y^{2}+2 y-1\right)}{y+1}$		$\frac{d S}{d R}=\frac{R+1}{R^{2}+2 R-1}$
1414		
	$R=y$	
	$S=-\frac{x^{2}}{0}$	
		\cdots
		\rightarrow 为

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}=\frac{\ln \left(y^{2}+2 y-1\right)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 236: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}=\frac{\ln \left(y^{2}+2 y-1\right)}{2}+c_{1}
$$

Verified OK.

5.34.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y+1}{y^{2}+2 y-1}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{y+1}{y^{2}+2 y-1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{y+1}{y^{2}+2 y-1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y+1}{y^{2}+2 y-1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y+1}{y^{2}+2 y-1}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y+1}{y^{2}+2 y-1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y+1}{y^{2}+2 y-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{-y-1}{y^{2}+2 y-1}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln \left(y^{2}+2 y-1\right)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln \left(y^{2}+2 y-1\right)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln \left(y^{2}+2 y-1\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}-\frac{\ln \left(y^{2}+2 y-1\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 237: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}-\frac{\ln \left(y^{2}+2 y-1\right)}{2}=c_{1}
$$

Verified OK.

5.34.4 Maple step by step solution

Let's solve

$$
(y+1) y^{\prime}+x\left(y^{2}+2 y\right)=x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}(y+1)}{y^{2}+2 y-1}=-x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}(y+1)}{y^{2}+2 y-1} d x=\int-x d x+c_{1}$
- Evaluate integral

$$
\frac{\ln \left(y^{2}+2 y-1\right)}{2}=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-1-\sqrt{2+\mathrm{e}^{-x^{2}+2 c_{1}}}, y=-1+\sqrt{2+\mathrm{e}^{-x^{2}+2 c_{1}}}\right\}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`

Solution by Maple
Time used: 0.015 (sec). Leaf size: 37

```
dsolve((y(x)+1)*\operatorname{diff}(y(x),x)+x*(y(x)~2+2*y(x))=x,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-1-\sqrt{2+\mathrm{e}^{-x^{2}} c_{1}} \\
& y(x)=-1+\sqrt{2+\mathrm{e}^{-x^{2}} c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 29.843 (sec). Leaf size: 163
DSolve $\left[(y[x]+1) * y^{\prime}[x]+x *(y[x] \sim 2+2 * y[x])==x, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-1-e^{-x^{2}} \sqrt{e^{x^{2}}\left(2 e^{x^{2}}+e^{2 c_{1}}\right)} \\
& y(x) \rightarrow-1+e^{-x^{2}} \sqrt{e^{x^{2}}\left(2 e^{x^{2}}+e^{2 c_{1}}\right)} \\
& y(x) \rightarrow-1-\sqrt{2} \\
& y(x) \rightarrow \sqrt{2}-1 \\
& y(x) \rightarrow \sqrt{2} e^{-x^{2}} \sqrt{e^{2 x^{2}}}-1 \\
& y(x) \rightarrow-\sqrt{2} e^{-x^{2}} \sqrt{e^{2 x^{2}}}-1
\end{aligned}
$$

5.35 problem 39

5.35.1 Solving as first order ode lie symmetry calculated ode 1223
5.35.2 Solving as riccati ode . 1230

Internal problem ID [11672]
Internal file name [OUTPUT/11681_Wednesday_April_10_2024_04_54_33_PM_13637091/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-(1-x) y^{2}-(2 x-1) y=-x
$$

5.35.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-x y^{2}+2 x y+y^{2}-x-y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2} \\
& \quad+\left(-x y^{2}+2 x y+y^{2}-x-y\right)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right) \\
& \quad-\left(-x y^{2}+2 x y+y^{2}-x-y\right)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right) \tag{5E}\\
& \quad-\left(-y^{2}+2 y-1\right)\left(x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& \quad-(-2 x y+2 x+2 y-1)\left(x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -x^{3} y^{4} a_{5}-2 x^{2} y^{5} a_{6}+4 x^{3} y^{3} a_{5}-x^{2} y^{4} a_{3}+2 x^{2} y^{4} a_{5}+8 x^{2} y^{4} a_{6}+4 x y^{5} a_{6} \\
& -6 x^{3} y^{2} a_{5}+4 x^{2} y^{3} a_{3}-6 x^{2} y^{3} a_{5}-12 x^{2} y^{3} a_{6}+2 x y^{4} a_{3}-x y^{4} a_{5} \\
& -12 x y^{4} a_{6}-2 y^{5} a_{6}+4 x^{3} y a_{5}+2 x^{3} y b_{4}-6 x^{2} y^{2} a_{3}+3 x^{2} y^{2} a_{4}+6 x^{2} y^{2} a_{5} \\
& +8 x^{2} y^{2} a_{6}+x^{2} y^{2} b_{5}-6 x y^{3} a_{3}+4 x y^{3} a_{5}+12 x y^{3} a_{6}-y^{4} a_{3}+5 y^{4} a_{6} \\
& -x^{3} a_{5}-2 x^{3} b_{4}+4 x^{2} y a_{3}-6 x^{2} y a_{4}-2 x^{2} y a_{5}-2 x^{2} y a_{6}+2 x^{2} y b_{2}-2 x^{2} y b_{4} \\
& +2 x y^{2} a_{2}+6 x y^{2} a_{3}-2 x y^{2} a_{4}-5 x y^{2} a_{5}-4 x y^{2} a_{6}+x y^{2} b_{3}-x y^{2} b_{5} \\
& +2 x y^{2} b_{6}+3 y^{3} a_{3}-y^{3} a_{5}-4 y^{3} a_{6}-x^{2} a_{3}+3 x^{2} a_{4}-2 x^{2} b_{2}+x^{2} b_{4}-x^{2} b_{5} \\
& -4 x y a_{2}-2 x y a_{3}+2 x y a_{4}+2 x y a_{5}+2 x y b_{1}-2 x y b_{2}-2 x y b_{6}+y^{2} a_{1} \\
& -y^{2} a_{2}-3 y^{2} a_{3}+y^{2} a_{5}+y^{2} a_{6}-y^{2} b_{3}-y^{2} b_{6}+2 x a_{2}-2 x b_{1}+x b_{2} \\
& -x b_{3}+2 x b_{4}-2 y a_{1}+y a_{2}+y a_{3}-2 y b_{1}+y b_{5}+a_{1}+b_{1}+b_{2}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{3} y^{4} a_{5}-2 x^{2} y^{5} a_{6}+4 x^{3} y^{3} a_{5}-x^{2} y^{4} a_{3}+2 x^{2} y^{4} a_{5}+8 x^{2} y^{4} a_{6} \\
& +4 x y^{5} a_{6}-6 x^{3} y^{2} a_{5}+4 x^{2} y^{3} a_{3}-6 x^{2} y^{3} a_{5}-12 x^{2} y^{3} a_{6}+2 x y^{4} a_{3} \\
& -x y^{4} a_{5}-12 x y^{4} a_{6}-2 y^{5} a_{6}+4 x^{3} y a_{5}+2 x^{3} y b_{4}-6 x^{2} y^{2} a_{3} \\
& +3 x^{2} y^{2} a_{4}+6 x^{2} y^{2} a_{5}+8 x^{2} y^{2} a_{6}+x^{2} y^{2} b_{5}-6 x y^{3} a_{3}+4 x y^{3} a_{5} \\
& +12 x y^{3} a_{6}-y^{4} a_{3}+5 y^{4} a_{6}-x^{3} a_{5}-2 x^{3} b_{4}+4 x^{2} y a_{3}-6 x^{2} y a_{4} \tag{6E}\\
& -2 x^{2} y a_{5}-2 x^{2} y a_{6}+2 x^{2} y b_{2}-2 x^{2} y b_{4}+2 x y^{2} a_{2}+6 x y^{2} a_{3} \\
& -2 x y^{2} a_{4}-5 x y^{2} a_{5}-4 x y^{2} a_{6}+x y^{2} b_{3}-x y^{2} b_{5}+2 x y^{2} b_{6}+3 y^{3} a_{3} \\
& -y^{3} a_{5}-4 y^{3} a_{6}-x^{2} a_{3}+3 x^{2} a_{4}-2 x^{2} b_{2}+x^{2} b_{4}-x^{2} b_{5}-4 x y a_{2} \\
& -2 x y a_{3}+2 x y a_{4}+2 x y a_{5}+2 x y b_{1}-2 x y b_{2}-2 x y b_{6}+y^{2} a_{1}-y^{2} a_{2} \\
& -3 y^{2} a_{3}+y^{2} a_{5}+y^{2} a_{6}-y^{2} b_{3}-y^{2} b_{6}+2 x a_{2}-2 x b_{1}+x b_{2}-x b_{3} \\
& +2 x b_{4}-2 y a_{1}+y a_{2}+y a_{3}-2 y b_{1}+y b_{5}+a_{1}+b_{1}+b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{5} v_{1}^{3} v_{2}^{4}-2 a_{6} v_{1}^{2} v_{2}^{5}-a_{3} v_{1}^{2} v_{2}^{4}+4 a_{5} v_{1}^{3} v_{2}^{3}+2 a_{5} v_{1}^{2} v_{2}^{4}+8 a_{6} v_{1}^{2} v_{2}^{4} \\
& +4 a_{6} v_{1} v_{2}^{5}+4 a_{3} v_{1}^{2} v_{2}^{3}+2 a_{3} v_{1} v_{2}^{4}-6 a_{5} v_{1}^{3} v_{2}^{2}-6 a_{5} v_{1}^{2} v_{2}^{3}-a_{5} v_{1} v_{2}^{4} \\
& \quad-12 a_{6} v_{1}^{2} v_{2}^{3}-12 a_{6} v_{1} v_{2}^{4}-2 a_{6} v_{2}^{5}-6 a_{3} v_{1}^{2} v_{2}^{2}-6 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4} \\
& +3 a_{4} v_{1}^{2} v_{2}^{2}+4 a_{5} v_{1}^{3} v_{2}+6 a_{5} v_{1}^{2} v_{2}^{2}+4 a_{5} v_{1} v_{2}^{3}+8 a_{6} v_{1}^{2} v_{2}^{2}+12 a_{6} v_{1} v_{2}^{3} \\
& +5 a_{6} v_{2}^{4}+2 b_{4} v_{1}^{3} v_{2}+b_{5} v_{1}^{2} v_{2}^{2}+2 a_{2} v_{1} v_{2}^{2}+4 a_{3} v_{1}^{2} v_{2}+6 a_{3} v_{1} v_{2}^{2}+3 a_{3} v_{2}^{3} \tag{7E}\\
& -6 a_{4} v_{1}^{2} v_{2}-2 a_{4} v_{1} v_{2}^{2}-a_{5} v_{1}^{3}-2 a_{5} v_{1}^{2} v_{2}-5 a_{5} v_{1} v_{2}^{2}-a_{5} v_{2}^{3}-2 a_{6} v_{1}^{2} v_{2} \\
& -4 a_{6} v_{1} v_{2}^{2}-4 a_{6} v_{2}^{3}+2 b_{2} v_{1}^{2} v_{2}+b_{3} v_{1} v_{2}^{2}-2 b_{4} v_{1}^{3}-2 b_{4} v_{1}^{2} v_{2}-b_{5} v_{1} v_{2}^{2} \\
& +2 b_{6} v_{1} v_{2}^{2}+a_{1} v_{2}^{2}-4 a_{2} v_{1} v_{2}-a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}-3 a_{3} v_{2}^{2}+3 a_{4} v_{1}^{2} \\
& +2 a_{4} v_{1} v_{2}+2 a_{5} v_{1} v_{2}+a_{5} v_{2}^{2}+a_{6} v_{2}^{2}+2 b_{1} v_{1} v_{2}-2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2} \\
& \quad-b_{3} v_{2}^{2}+b_{4} v_{1}^{2}-b_{5} v_{1}^{2}-2 b_{6} v_{1} v_{2}-b_{6} v_{2}^{2}-2 a_{1} v_{2}+2 a_{2} v_{1}+a_{2} v_{2}+a_{3} v_{2} \\
& -2 b_{1} v_{1}-2 b_{1} v_{2}+b_{2} v_{1}-b_{3} v_{1}+2 b_{4} v_{1}+b_{5} v_{2}+a_{1}+b_{1}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(4 a_{5}+2 b_{4}\right) v_{1}^{3} v_{2}+\left(-a_{3}+2 a_{5}+8 a_{6}\right) v_{1}^{2} v_{2}^{4} \\
& \quad+\left(4 a_{3}-6 a_{5}-12 a_{6}\right) v_{1}^{2} v_{2}^{3}+\left(-6 a_{3}+3 a_{4}+6 a_{5}+8 a_{6}+b_{5}\right) v_{1}^{2} v_{2}^{2} \\
& +\left(4 a_{3}-6 a_{4}-2 a_{5}-2 a_{6}+2 b_{2}-2 b_{4}\right) v_{1}^{2} v_{2} \\
& +\left(2 a_{3}-a_{5}-12 a_{6}\right) v_{1} v_{2}^{4}+\left(-6 a_{3}+4 a_{5}+12 a_{6}\right) v_{1} v_{2}^{3} \\
& +\left(2 a_{2}+6 a_{3}-2 a_{4}-5 a_{5}-4 a_{6}+b_{3}-b_{5}+2 b_{6}\right) v_{1} v_{2}^{2} \tag{8E}\\
& +\left(-4 a_{2}-2 a_{3}+2 a_{4}+2 a_{5}+2 b_{1}-2 b_{2}-2 b_{6}\right) v_{1} v_{2}+a_{1}+b_{1} \\
& +b_{2}+\left(-a_{5}-2 b_{4}\right) v_{1}^{3}-2 a_{6} v_{2}^{5}+\left(-a_{3}+3 a_{4}-2 b_{2}+b_{4}-b_{5}\right) v_{1}^{2} \\
& \quad+\left(2 a_{2}-2 b_{1}+b_{2}-b_{3}+2 b_{4}\right) v_{1}+\left(-a_{3}+5 a_{6}\right) v_{2}^{4}+\left(3 a_{3}-a_{5}-4 a_{6}\right) v_{2}^{3} \\
& +\left(a_{1}-a_{2}-3 a_{3}+a_{5}+a_{6}-b_{3}-b_{6}\right) v_{2}^{2}+\left(-2 a_{1}+a_{2}+a_{3}-2 b_{1}+b_{5}\right) v_{2} \\
& \quad-a_{5} v_{1}^{3} v_{2}^{4}-2 a_{6} v_{1}^{2} v_{2}^{5}+4 a_{5} v_{1}^{3} v_{2}^{3}+4 a_{6} v_{1} v_{2}^{5}-6 a_{5} v_{1}^{3} v_{2}^{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-6 a_{5} & =0 \\
-a_{5} & =0 \\
4 a_{5} & =0 \\
-2 a_{6} & =0 \\
4 a_{6} & =0 \\
-a_{3}+5 a_{6} & =0 \\
-a_{5}-2 b_{4} & =0 \\
4 a_{5}+2 b_{4} & =0 \\
a_{1}+b_{1}+b_{2} & =0 \\
-6 a_{3}+4 a_{5}+12 a_{6} & =0 \\
-a_{3}+2 a_{5}+8 a_{6} & =0 \\
2 a_{3}-a_{5}-12 a_{6} & =0 \\
3 a_{3}-a_{5}-4 a_{6} & =0 \\
4 a_{3}-6 a_{5}-12 a_{6} & =0 \\
-2 a_{1}+a_{2}+a_{3}-2 b_{1}+b_{5} & =0 \\
2 a_{2}-2 b_{1}+b_{2}-b_{3}+2 b_{4} & =0 \\
-6 a_{3}+3 a_{4}+6 a_{5}+8 a_{6}+b_{5} & =0 \\
-a_{3}+3 a_{4}-2 b_{2}+b_{4}-b_{5} & =0 \\
-4 a_{2}-2 a_{3}+2 a_{4}+2 a_{5}+2 b_{1}-2 b_{2}-2 b_{6} & =0 \\
4 a_{3}+6 a_{3}-2 a_{4}-5 a_{5}-4 a_{6}+b_{3}-b_{5}+2 b_{6} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=-b_{6} \\
& a_{2}=0 \\
& a_{3}=0 \\
& a_{4}=0 \\
& a_{5}=0 \\
& a_{6}=0 \\
& b_{1}=b_{6} \\
& b_{2}=0 \\
& b_{3}=-2 b_{6} \\
& b_{4}=0 \\
& b_{5}=0 \\
& b_{6}=b_{6}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-1 \\
& \eta=y^{2}-2 y+1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y^{2}-2 y+1-\left(-x y^{2}+2 x y+y^{2}-x-y\right)(-1) \\
& =-x y^{2}+2 x y+2 y^{2}-x-3 y+1 \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-x y^{2}+2 x y+2 y^{2}-x-3 y+1} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y-1)+\frac{(-x+2) \ln (x y-x-2 y+1)}{x-2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-x y^{2}+2 x y+y^{2}-x-y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{-y+1}{(x-2) y+1-x} \\
S_{y} & =-\frac{1}{(y-1)((x-2) y+1-x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (y-1)-\ln ((y-1) x-2 y+1)=x+c_{1}
$$

Which simplifies to

$$
\ln (y-1)-\ln ((y-1) x-2 y+1)=x+c_{1}
$$

Which gives

$$
y=\frac{x \mathrm{e}^{x+c_{1}}-\mathrm{e}^{x+c_{1}}-1}{-1+x \mathrm{e}^{x+c_{1}}-2 \mathrm{e}^{x+c_{1}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \mathrm{e}^{x+c_{1}}-\mathrm{e}^{x+c_{1}}-1}{-1+x \mathrm{e}^{x+c_{1}}-2 \mathrm{e}^{x+c_{1}}} \tag{1}
\end{equation*}
$$

Figure 238: Slope field plot

Verification of solutions

$$
y=\frac{x \mathrm{e}^{x+c_{1}}-\mathrm{e}^{x+c_{1}}-1}{-1+x \mathrm{e}^{x+c_{1}}-2 \mathrm{e}^{x+c_{1}}}
$$

Verified OK.

5.35.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-x y^{2}+2 x y+y^{2}-x-y
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-x y^{2}+2 x y+y^{2}-x-y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-x, f_{1}(x)=2 x-1$ and $f_{2}(x)=1-x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{(1-x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-1 \\
f_{1} f_{2} & =(2 x-1)(1-x) \\
f_{2}^{2} f_{0} & =-(1-x)^{2} x
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
(1-x) u^{\prime \prime}(x)-(-1+(2 x-1)(1-x)) u^{\prime}(x)-(1-x)^{2} x u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{\frac{x(x-2)}{2}}+c_{2} \mathrm{e}^{\frac{x^{2}}{2}}(x-2)
$$

The above shows that

$$
u^{\prime}(x)=\left((x-1) c_{2} \mathrm{e}^{\frac{x^{2}}{2}}+c_{1} \mathrm{e}^{\frac{x(x-2)}{2}}\right)(x-1)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left((x-1) c_{2} \mathrm{e}^{\frac{x^{2}}{2}}+c_{1} \mathrm{e}^{\frac{x(x-2)}{2}}\right)(x-1)}{(1-x)\left(c_{1} \mathrm{e}^{\frac{x(x-2)}{2}}+c_{2} \mathrm{e}^{\frac{x^{2}}{2}}(x-2)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{(x-1) \mathrm{e}^{\frac{x^{2}}{2}}+c_{3} \mathrm{e}^{\frac{x(x-2)}{2}}}{c_{3} \mathrm{e}^{\frac{x(x-2)}{2}}+\mathrm{e}^{\frac{x^{2}}{2}}(x-2)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x-1) \mathrm{e}^{\frac{x^{2}}{2}}+c_{3} \mathrm{e}^{\frac{x(x-2)}{2}}}{c_{3} \mathrm{e}^{\frac{x(x-2)}{2}}+\mathrm{e}^{\frac{x^{2}}{2}}(x-2)} \tag{1}
\end{equation*}
$$

Figure 239: Slope field plot
Verification of solutions

$$
y=\frac{(x-1) \mathrm{e}^{\frac{x^{2}}{2}}+c_{3} \mathrm{e}^{\frac{x(x-2)}{2}}}{c_{3} \mathrm{e}^{\frac{x(x-2)}{2}}+\mathrm{e}^{\frac{x^{2}}{2}}(x-2)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular case Kamke (a) successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff (y(x),x)=(1-x)*y(x)~2+(2*x-1)*y(x)-x,y(x), singsol=all)
```

$$
y(x)=\frac{(2 x-2) \mathrm{e}^{x}-c_{1}}{(2 x-4) \mathrm{e}^{x}-c_{1}}
$$

Solution by Mathematica
Time used: 0.197 (sec). Leaf size: 28

```
DSolve[y'[x]==(1-x)*y[x] 2+(2*x-1)*y[x]-x,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow 1+\frac{e^{x}}{e^{x}(x-2)+c_{1}} \\
& y(x) \rightarrow 1
\end{aligned}
$$

5.36 problem 40

5.36.1 Solving as riccati ode

Internal problem ID [11673]
Internal file name [OUTPUT/11682_Wednesday_April_10_2024_04_54_35_PM_23538320/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+y^{2}-y x=1
$$

5.36.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x y-y^{2}+1
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x y-y^{2}+1
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=1, f_{1}(x)=x$ and $f_{2}(x)=-1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-x \\
f_{2}^{2} f_{0} & =1
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-u^{\prime \prime}(x)+x u^{\prime}(x)+u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{x^{2}}{2}}\left(c_{1} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{x \sqrt{\pi}\left(c_{1} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{2}\right) \mathrm{e}^{\frac{x^{2}}{2}}+\sqrt{2} c_{1}}{\sqrt{\pi}}
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(x \sqrt{\pi}\left(c_{1} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{2}\right) \mathrm{e}^{\frac{x^{2}}{2}}+\sqrt{2} c_{1}\right) \mathrm{e}^{-\frac{x^{2}}{2}}}{\sqrt{\pi}\left(c_{1} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\sqrt{2} c_{3} \mathrm{e}^{-\frac{x^{2}}{2}}+\sqrt{\pi} x\left(c_{3} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+1\right)}{\sqrt{\pi}\left(c_{3} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} c_{3} \mathrm{e}^{-\frac{x^{2}}{2}}+\sqrt{\pi} x\left(c_{3} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+1\right)}{\sqrt{\pi}\left(c_{3} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+1\right)} \tag{1}
\end{equation*}
$$

Figure 240: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{2} c_{3} \mathrm{e}^{-\frac{x^{2}}{2}}+\sqrt{\pi} x\left(c_{3} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+1\right)}{\sqrt{\pi}\left(c_{3} \operatorname{erf}\left(\frac{\sqrt{2} x}{2}\right)+1\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 53

```
dsolve(diff(y(x),x)=-y(x)^2+x*y(x)+1,y(x), singsol=all)
```

$$
y(x)=\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{x \sqrt{2}}{2}\right) x+2 c_{1} x+2 \mathrm{e}^{-\frac{x^{2}}{2}}}{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{x \sqrt{2}}{2}\right)+2 c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.154 (sec). Leaf size: 45

```
DSolve[y'[x]==-y[x]^2+x*y[x]+1,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow x+\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{\frac{\pi}{2}} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)+c_{1}} \\
& y(x) \rightarrow x
\end{aligned}
$$

5.37 problem 41

5.37.1 Solving as first order ode lie symmetry calculated ode 1238
5.37.2 Solving as riccati ode . 1247

Internal problem ID [11674]
Internal file name [OUTPUT/11683_Wednesday_April_10_2024_04_54_36_PM_3623463/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, section 2.3 (Linear equations). Exercises page 56
Problem number: 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

$$
\begin{gathered}
{\left[\left[_1 \text { st_order, }\right]^{\prime} \text { with_symmetry_ }[\mathrm{F}(\mathrm{x}), \mathrm{G}(\mathrm{x})] `\right], \quad \text { Riccati] }} \\
\qquad y^{\prime}+8 y^{2} x-4 x(4 x+1) y=-8 x^{3}-4 x^{2}+1
\end{gathered}
$$

5.37.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-8 x^{3}+16 x^{2} y-8 x y^{2}-4 x^{2}+4 x y+1 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{aligned}
& 2 x b_{4}+y b_{5}+b_{2} \\
& +\left(-8 x^{3}+16 x^{2} y-8 x y^{2}-4 x^{2}+4 x y+1\right)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right) \\
& \quad-\left(-8 x^{3}+16 x^{2} y-8 x y^{2}-4 x^{2}+4 x y+1\right)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right) \\
& \quad-\left(-24 x^{2}+32 x y-8 y^{2}-8 x+4 y\right)\left(x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& \quad-\left(16 x^{2}-16 x y+4 x\right)\left(x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -64 x^{7} a_{5}+256 x^{6} y a_{5}-128 x^{6} y a_{6}-384 x^{5} y^{2} a_{5}+512 x^{5} y^{2} a_{6} \\
& +256 x^{4} y^{3} a_{5}-768 x^{4} y^{3} a_{6}-64 x^{3} y^{4} a_{5}+512 x^{3} y^{4} a_{6}-128 x^{2} y^{5} a_{6} \\
& -64 x^{6} a_{3}-64 x^{6} a_{5}+256 x^{5} y a_{3}+192 x^{5} y a_{5}-128 x^{5} y a_{6}-384 x^{4} y^{2} a_{3} \\
& -192 x^{4} y^{2} a_{5}+384 x^{4} y^{2} a_{6}+256 x^{3} y^{3} a_{3}+64 x^{3} y^{3} a_{5}-384 x^{3} y^{3} a_{6} \\
& -64 x^{2} y^{4} a_{3}+128 x^{2} y^{4} a_{6}-64 x^{5} a_{3}-16 x^{5} a_{5}+192 x^{4} y a_{3}+32 x^{4} y a_{5} \\
& -32 x^{4} y a_{6}-192 x^{3} y^{2} a_{3}-16 x^{3} y^{2} a_{5}+64 x^{3} y^{2} a_{6}+64 x^{2} y^{3} a_{3} \\
& -32 x^{2} y^{3} a_{6}-16 x^{4} a_{3}+40 x^{4} a_{4}+16 x^{4} a_{5}-16 x^{4} b_{4}-8 x^{4} b_{5}+32 x^{3} y a_{3} \\
& -64 x^{3} y a_{4}+32 x^{3} y a_{6}+16 x^{3} y b_{4}-16 x^{3} y b_{6}-16 x^{2} y^{2} a_{3}+24 x^{2} y^{2} a_{4} \\
& -32 x^{2} y^{2} a_{5}-40 x^{2} y^{2} a_{6}+8 x^{2} y^{2} b_{5}+16 x^{2} y^{2} b_{6}+16 x y^{3} a_{5}+8 y^{4} a_{6} \\
& +32 x^{3} a_{2}+16 x^{3} a_{3}+16 x^{3} a_{4}+8 x^{3} a_{5}-16 x^{3} b_{2}-8 x^{3} b_{3}-4 x^{3} b_{4}-4 x^{3} b_{5} \\
& -48 x^{2} y a_{2}-8 x^{2} y a_{3}-12 x^{2} y a_{4}+4 x^{2} y a_{5}+16 x^{2} y a_{6}+16 x^{2} y b_{2}-8 x^{2} y b_{6} \\
& +16 x y^{2} a_{2}-16 x y^{2} a_{3}-8 x y^{2} a_{5}-8 x y^{2} a_{6}+8 x y^{2} b_{3}+4 x y^{2} b_{6}+8 y^{3} a_{3} \\
& -4 y^{3} a_{6}+24 x^{2} a_{1}+12 x^{2} a_{2}+8 x^{2} a_{3}-16 x^{2} b_{1}-4 x^{2} b_{2}-4 x^{2} b_{3}-32 x y a_{1} \\
& -8 x y a_{2}+16 x y b_{1}+8 y^{2} a_{1}-4 y^{2} a_{3}+8 x a_{1}-2 x a_{4}-x a_{5}-4 x b_{1} \\
& +2 x b_{4}+x b_{5}-4 y a_{1}-y a_{5}-2 y a_{6}+y b_{5}+2 y b_{6}-a_{2}-a_{3}+b_{2}+b_{3}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -64 x^{7} a_{5}+256 x^{6} y a_{5}-128 x^{6} y a_{6}-384 x^{5} y^{2} a_{5}+512 x^{5} y^{2} a_{6} \\
& +256 x^{4} y^{3} a_{5}-768 x^{4} y^{3} a_{6}-64 x^{3} y^{4} a_{5}+512 x^{3} y^{4} a_{6}-128 x^{2} y^{5} a_{6} \\
& -64 x^{6} a_{3}-64 x^{6} a_{5}+256 x^{5} y a_{3}+192 x^{5} y a_{5}-128 x^{5} y a_{6} \\
& -384 x^{4} y^{2} a_{3}-192 x^{4} y^{2} a_{5}+384 x^{4} y^{2} a_{6}+256 x^{3} y^{3} a_{3} \\
& +64 x^{3} y^{3} a_{5}-384 x^{3} y^{3} a_{6}-64 x^{2} y^{4} a_{3}+128 x^{2} y^{4} a_{6}-64 x^{5} a_{3} \\
& -16 x^{5} a_{5}+192 x^{4} y a_{3}+32 x^{4} y a_{5}-32 x^{4} y a_{6}-192 x^{3} y^{2} a_{3} \\
& -16 x^{3} y^{2} a_{5}+64 x^{3} y^{2} a_{6}+64 x^{2} y^{3} a_{3}-32 x^{2} y^{3} a_{6}-16 x^{4} a_{3} \\
& +40 x^{4} a_{4}+16 x^{4} a_{5}-16 x^{4} b_{4}-8 x^{4} b_{5}+32 x^{3} y a_{3}-64 x^{3} y a_{4} \tag{6E}\\
& +32 x^{3} y a_{6}+16 x^{3} y b_{4}-16 x^{3} y b_{6}-16 x^{2} y^{2} a_{3}+24 x^{2} y^{2} a_{4} \\
& -32 x^{2} y^{2} a_{5}-40 x^{2} y^{2} a_{6}+8 x^{2} y^{2} b_{5}+16 x^{2} y^{2} b_{6}+16 x y^{3} a_{5} \\
& +8 y^{4} a_{6}+32 x^{3} a_{2}+16 x^{3} a_{3}+16 x^{3} a_{4}+8 x^{3} a_{5}-16 x^{3} b_{2}-8 x^{3} b_{3} \\
& -4 x^{3} b_{4}-4 x^{3} b_{5}-48 x^{2} y a_{2}-8 x^{2} y a_{3}-12 x^{2} y a_{4}+4 x^{2} y a_{5} \\
& +16 x^{2} y a_{6}+16 x^{2} y b_{2}-8 x^{2} y b_{6}+16 x y^{2} a_{2}-16 x y^{2} a_{3}-8 x y^{2} a_{5} \\
& -8 x y^{2} a_{6}+8 x y^{2} b_{3}+4 x y^{2} b_{6}+8 y^{3} a_{3}-4 y^{3} a_{6}+24 x^{2} a_{1} \\
& +12 x^{2} a_{2}+8 x^{2} a_{3}-16 x^{2} b_{1}-4 x^{2} b_{2}-4 x^{2} b_{3}-32 x y a_{1}-8 x y a_{2} \\
& +16 x y b_{1}+8 y^{2} a_{1}-4 y^{2} a_{3}+8 x a_{1}-2 x a_{4}-x a_{5}-4 x b_{1}+2 x b_{4} \\
& +x b_{5}-4 y a_{1}-y a_{5}-2 y a_{6}+y b_{5}+2 y b_{6}-a_{2}-a_{3}+b_{2}+b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& -64 a_{5} v_{1}^{7}+256 a_{5} v_{1}^{6} v_{2}-384 a_{5} v_{1}^{5} v_{2}^{2}+256 a_{5} v_{1}^{4} v_{2}^{3}-64 a_{5} v_{1}^{3} v_{2}^{4} \\
& \quad-128 a_{6} v_{1}^{6} v_{2}+512 a_{6} v_{1}^{5} v_{2}^{2}-768 a_{6} v_{1}^{4} v_{2}^{3}+512 a_{6} v_{1}^{3} v_{2}^{4} \\
& -128 a_{6} v_{1}^{2} v_{2}^{5}-64 a_{3} v_{1}^{6}+256 a_{3} v_{1}^{5} v_{2}-384 a_{3} v_{1}^{4} v_{2}^{2}+256 a_{3} v_{1}^{3} v_{2}^{3} \\
& -64 a_{3} v_{1}^{2} v_{2}^{4}-64 a_{5} v_{1}^{6}+192 a_{5} v_{1}^{5} v_{2}-192 a_{5} v_{1}^{4} v_{2}^{2}+64 a_{5} v_{1}^{3} v_{2}^{3} \\
& -128 a_{6} v_{1}^{5} v_{2}+384 a_{6} v_{1}^{4} v_{2}^{2}-384 a_{6} v_{1}^{3} v_{2}^{3}+128 a_{6} v_{1}^{2} v_{2}^{4} \\
& -64 a_{3} v_{1}^{5}+192 a_{3} v_{1}^{4} v_{2}-192 a_{3} v_{1}^{3} v_{2}^{2}+64 a_{3} v_{1}^{2} v_{2}^{3}-16 a_{5} v_{1}^{5} \\
& +32 a_{5} v_{1}^{4} v_{2}-16 a_{5} v_{1}^{3} v_{2}^{2}-32 a_{6} v_{1}^{4} v_{2}+64 a_{6} v_{1}^{3} v_{2}^{2}-32 a_{6} v_{1}^{2} v_{2}^{3} \\
& -16 a_{3} v_{1}^{4}+32 a_{3} v_{1}^{3} v_{2}-16 a_{3} v_{1}^{2} v_{2}^{2}+40 a_{4} v_{1}^{4}-64 a_{4} v_{1}^{3} v_{2} \\
& +24 a_{4} v_{1}^{2} v_{2}^{2}+16 a_{5} v_{1}^{4}-32 a_{5} v_{1}^{2} v_{2}^{2}+16 a_{5} v_{1} v_{2}^{3}+32 a_{6} v_{1}^{3} v_{2} \\
& -40 a_{6} v_{1}^{2} v_{2}^{2}+8 a_{6} v_{2}^{4}-16 b_{4} v_{1}^{4}+16 b_{4} v_{1}^{3} v_{2}-8 b_{5} v_{1}^{4}+8 b_{5} v_{1}^{2} v_{2}^{2} \\
& -16 b_{6} v_{1}^{3} v_{2}+16 b_{6} v_{1}^{2} v_{2}^{2}+32 a_{2} v_{1}^{3}-48 a_{2} v_{1}^{2} v_{2}+16 a_{2} v_{1} v_{2}^{2} \\
& +16 a_{3} v_{1}^{3}-8 a_{3} v_{1}^{2} v_{2}-16 a_{3} v_{1} v_{2}^{2}+8 a_{3} v_{2}^{3}+16 a_{4} v_{1}^{3}-12 a_{4} v_{1}^{2} v_{2} \\
& +8 a_{5} v_{1}^{3}+4 a_{5} v_{1}^{2} v_{2}-8 a_{5} v_{1} v_{2}^{2}+16 a_{6} v_{1}^{2} v_{2}-8 a_{6} v_{1} v_{2}^{2}-4 a_{6} v_{2}^{3} \\
& -16 b_{2} v_{1}^{3}+16 b_{2} v_{1}^{2} v_{2}-8 b_{3} v_{1}^{3}+8 b_{3} v_{1} v_{2}^{2}-4 b_{4} v_{1}^{3}-4 b_{5} v_{1}^{3} \\
& -8 b_{6} v_{1}^{2} v_{2}+4 b_{6} v_{1} v_{2}^{2}+24 a_{1} v_{1}^{2}-32 a_{1} v_{1} v_{2}+8 a_{1} v_{2}^{2}+12 a_{2} v_{1}^{2} \\
& -8 a_{2} v_{1} v_{2}+8 a_{3} v_{1}^{2}-4 a_{3} v_{2}^{2}-16 b_{1} v_{1}^{2}+16 b_{1} v_{1} v_{2}-4 b_{2} v_{1}^{2} \\
& -4 b_{3} v_{1}^{2}+8 a_{1} v_{1}-4 a_{1} v_{2}-2 a_{4} v_{1}-a_{5} v_{1}-a_{5} v_{2}-2 a_{6} v_{2} \\
& -4 b_{1} v_{1}+2 b_{4} v_{1}+b_{5} v_{1}+b_{5} v_{2}+2 b_{6} v_{2}-a_{2}-a_{3}+b_{2}+b_{3}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -a_{2}-a_{3}+b_{2}+b_{3} \\
& +\left(-16 a_{3}+24 a_{4}-32 a_{5}-40 a_{6}+8 b_{5}+16 b_{6}\right) v_{1}^{2} v_{2}^{2} \\
& +\left(-48 a_{2}-8 a_{3}-12 a_{4}+4 a_{5}+16 a_{6}+16 b_{2}-8 b_{6}\right) v_{1}^{2} v_{2} \\
& +\left(16 a_{2}-16 a_{3}-8 a_{5}-8 a_{6}+8 b_{3}+4 b_{6}\right) v_{1} v_{2}^{2} \\
& +\left(-32 a_{1}-8 a_{2}+16 b_{1}\right) v_{1} v_{2}+\left(256 a_{5}-128 a_{6}\right) v_{1}^{6} v_{2} \\
& +\left(-384 a_{5}+512 a_{6}\right) v_{1}^{5} v_{2}^{2}+\left(256 a_{3}+192 a_{5}-128 a_{6}\right) v_{1}^{5} v_{2} \\
& +\left(256 a_{5}-768 a_{6}\right) v_{1}^{4} v_{2}^{3}+\left(-384 a_{3}-192 a_{5}+384 a_{6}\right) v_{1}^{4} v_{2}^{2} \\
& +\left(192 a_{3}+32 a_{5}-32 a_{6}\right) v_{1}^{4} v_{2}+\left(-64 a_{5}+512 a_{6}\right) v_{1}^{3} v_{2}^{4} \tag{8E}\\
& +\left(256 a_{3}+64 a_{5}-384 a_{6}\right) v_{1}^{3} v_{2}^{3}+\left(-192 a_{3}-16 a_{5}+64 a_{6}\right) v_{1}^{3} v_{2}^{2} \\
& +\left(32 a_{3}-64 a_{4}+32 a_{6}+16 b_{4}-16 b_{6}\right) v_{1}^{3} v_{2}+\left(-64 a_{3}+128 a_{6}\right) v_{1}^{2} v_{2}^{4} \\
& +\left(64 a_{3}-32 a_{6}\right) v_{1}^{2} v_{2}^{3}-128 a_{6} v_{1}^{2} v_{2}^{5}-64 a_{5} v_{1}^{7}+8 a_{6} v_{2}^{4} \\
& +16 a_{5} v_{1} v_{2}^{3}+\left(24 a_{1}+12 a_{2}+8 a_{3}-16 b_{1}-4 b_{2}-4 b_{3}\right) v_{1}^{2} \\
& +\left(8 a_{1}-2 a_{4}-a_{5}-4 b_{1}+2 b_{4}+b_{5}\right) v_{1}+\left(8 a_{3}-4 a_{6}\right) v_{2}^{3} \\
& +\left(8 a_{1}-4 a_{3}\right) v_{2}^{2}+\left(-4 a_{1}-a_{5}-2 a_{6}+b_{5}+2 b_{6}\right) v_{2} \\
& +\left(-64 a_{3}-64 a_{5}\right) v_{1}^{6}+\left(-64 a_{3}-16 a_{5}\right) v_{1}^{5} \\
& +\left(-16 a_{3}+40 a_{4}+16 a_{5}-16 b_{4}-8 b_{5}\right) v_{1}^{4} \\
& +\left(32 a_{2}+16 a_{3}+16 a_{4}+8 a_{5}-16 b_{2}-8 b_{3}-4 b_{4}-4 b_{5}\right) v_{1}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-64 a_{5} & =0 \\
16 a_{5} & =0 \\
-128 a_{6} & =0 \\
8 a_{6} & =0 \\
8 a_{1}-4 a_{3} & =0 \\
-64 a_{3}-64 a_{5} & =0 \\
-64 a_{3}-16 a_{5} & =0 \\
-64 a_{3}+128 a_{6} & =0 \\
8 a_{3}-4 a_{6} & =0 \\
64 a_{3}-32 a_{6} & =0 \\
-384 a_{5}+512 a_{6} & =0 \\
-64 a_{5}+512 a_{6} & =0 \\
256 a_{5}-768 a_{6} & =0 \\
256 a_{5}-128 a_{6} & =0 \\
-32 a_{1}-8 a_{2}+16 b_{1} & =0 \\
-384 a_{3}-192 a_{5}+384 a_{6} & =0 \\
-192 a_{3}-16 a_{5}+64 a_{6} & =0 \\
192 a_{3}+32 a_{5}-32 a_{6} & =0 \\
256 a_{3}+64 a_{5}-384 a_{6} & =0 \\
256 a_{3}+192 a_{5}-128 a_{6} & =0 \\
-a_{2}-a_{3}+b_{2}+b_{3} & =0 \\
-4 a_{1}-a_{5}-2 a_{6}+b_{5}+2 b_{6} & =0 \\
32 a_{2}+16 a_{3}+16 a_{4}+8 a_{5}-16 b_{2}-8 b_{3}-4 b_{4}-4 b_{5} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =0 \\
a_{4} & =0 \\
a_{5} & =0 \\
a_{6} & =0 \\
b_{1} & =0 \\
b_{2} & =\frac{b_{6}}{2} \\
b_{3} & =-\frac{b_{6}}{2} \\
b_{4} & =b_{6} \\
b_{5} & =-2 b_{6} \\
b_{6} & =b_{6}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=0 \\
& \eta=x^{2}-2 x y+y^{2}+\frac{1}{2} x-\frac{1}{2} y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}-2 x y+y^{2}+\frac{1}{2} x-\frac{1}{2} y} d y
\end{aligned}
$$

Which results in

$$
S=2 \ln (2 y-2 x-1)-2 \ln (y-x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-8 x^{3}+16 x^{2} y-8 x y^{2}-4 x^{2}+4 x y+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2}{(2 x-2 y+1)(-y+x)} \\
S_{y} & =\frac{2}{(2 x-2 y+1)(-y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-8 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-8 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-4 R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 \ln (2 y-2 x-1)-2 \ln (y-x)=-4 x^{2}+c_{1}
$$

Which simplifies to

$$
2 \ln (2 y-2 x-1)-2 \ln (y-x)=-4 x^{2}+c_{1}
$$

Which gives

$$
y=\frac{x \mathrm{e}^{-2 x^{2}+\frac{c_{1}}{2}}-2 x-1}{\mathrm{e}^{-2 x^{2}+\frac{c_{1}}{2}}-2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \mathrm{e}^{-2 x^{2}+\frac{c_{1}}{2}}-2 x-1}{\mathrm{e}^{-2 x^{2}+\frac{c_{1}}{2}}-2} \tag{1}
\end{equation*}
$$

Figure 241: Slope field plot

Verification of solutions

$$
y=\frac{x \mathrm{e}^{-2 x^{2}+\frac{c_{1}}{2}}-2 x-1}{\mathrm{e}^{-2 x^{2}+\frac{c_{1}}{2}}-2}
$$

Verified OK.

5.37.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-8 x^{3}+16 x^{2} y-8 x y^{2}-4 x^{2}+4 x y+1
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-8 x^{3}+16 x^{2} y-8 x y^{2}-4 x^{2}+4 x y+1
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-8 x^{3}-4 x^{2}+1, f_{1}(x)=16 x^{2}+4 x$ and $f_{2}(x)=-8 x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-8 x u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-8 \\
f_{1} f_{2} & =-8\left(16 x^{2}+4 x\right) x \\
f_{2}^{2} f_{0} & =64 x^{2}\left(-8 x^{3}-4 x^{2}+1\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-8 x u^{\prime \prime}(x)-\left(-8-8\left(16 x^{2}+4 x\right) x\right) u^{\prime}(x)+64 x^{2}\left(-8 x^{3}-4 x^{2}+1\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{\frac{8 x^{3}}{3}}+c_{2} \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}
$$

The above shows that

$$
u^{\prime}(x)=8 x\left(c_{2}\left(x+\frac{1}{2}\right) \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}+\mathrm{e}^{\frac{8 x^{3}}{3}} c_{1} x\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{2}\left(x+\frac{1}{2}\right) \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}+\mathrm{e}^{\frac{8 x^{3}}{3}} c_{1} x}{c_{1} \mathrm{e}^{\frac{8 x^{3}}{3}}+c_{2} \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{2 \mathrm{e}^{\frac{8 x^{3}}{3}} c_{3} x+2 \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}} x+\mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}}{2 c_{3} \mathrm{e}^{\frac{8 x^{3}}{3}}+2 \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \mathrm{e}^{\frac{8 x^{3}}{3}} c_{3} x+2 \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}} x+\mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}}{2 c_{3} \mathrm{e}^{\frac{8 x^{3}}{3}}+2 \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}} \tag{1}
\end{equation*}
$$

Figure 242: Slope field plot

Verification of solutions

$$
y=\frac{2 \mathrm{e}^{\frac{8 x^{3}}{3}} c_{3} x+2 \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}} x+\mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}}{2 c_{3} \mathrm{e}^{\frac{8 x^{3}}{3}}+2 \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (16*x^3+4*x^2+1)*(diff(y(x), x
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
        <- Kovacics algorithm successful
    <- Riccati to 2nd Order successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 60

```
dsolve(diff (y(x),x)=-8*x*y(x)^2+4*x*(4*x+1)*y(x)-(8*x^3+4*x^2-1),y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}(2 x+1) \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}+2 \mathrm{e}^{\frac{8 x^{3}}{3}} x}{2 c_{1} \mathrm{e}^{\frac{8}{3} x^{3}+2 x^{2}}+2 \mathrm{e}^{\frac{8 x^{3}}{3}}}
$$

\checkmark Solution by Mathematica
Time used: 0.196 (sec). Leaf size: 30
DSolve $\left[y\right.$ ' $[x]==-8 * x * y[x] \sim 2+4 * x *(4 * x+1) * y[x]-\left(8 * x^{\wedge} 3+4 * x^{\wedge} 2-1\right), y[x], x$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{4}\left(\tanh \left(x^{2}+i c_{1}\right)+4 x+1\right) \\
& y(x) \rightarrow \text { Indeterminate }
\end{aligned}
$$

6 Chapter 2, Miscellaneous Review. Exercises page 60
6.1 problem 1 1253
6.2 problem 2 1268
6.3 problem 3 1282
6.4 problem 4 1296
6.5 problem 5 1309
6.6 problem 6 1318
6.7 problem 7 1333
6.8 problem 8 1347
6.9 problem 9 1359
6.10 problem 10 1372
6.11 problem 11 1385
6.12 problem 12 1394
6.13 problem 13 1409
6.14 problem 14 1423
6.15 problem 15 1437
6.16 problem 16 1454
6.17 problem 17 1470
6.18 problem 18 1485
6.19 problem 19 1491
6.20 problem 20 1507
6.21 problem 21 1516
6.22 problem 22 1533
6.23 problem 23 1545
6.24 problem 24 1558

6.1 problem 1

6.1.1 Solving as separable ode . 1253
6.1.2 Solving as linear ode . 1255
6.1.3 Solving as homogeneousTypeD2 ode 1256
6.1.4 Solving as first order ode lie symmetry lookup ode 1258
6.1.5 Solving as exact ode . 1262
6.1.6 Maple step by step solution . 1266

Internal problem ID [11675]
Internal file name [OUTPUT/11684_Wednesday_April_10_2024_04_54_38_PM_81155065/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
6 x^{2} y-\left(x^{3}+1\right) y^{\prime}=0
$$

6.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{6 x^{2} y}{x^{3}+1}
\end{aligned}
$$

Where $f(x)=\frac{6 x^{2}}{x^{3}+1}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{6 x^{2}}{x^{3}+1} d x \\
\int \frac{1}{y} d y & =\int \frac{6 x^{2}}{x^{3}+1} d x \\
\ln (y) & =2 \ln \left(x^{3}+1\right)+c_{1} \\
y & =\mathrm{e}^{2 \ln \left(x^{3}+1\right)+c_{1}} \\
& =c_{1}\left(x^{3}+1\right)^{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(x^{3}+1\right)^{2} \tag{1}
\end{equation*}
$$

Figure 243: Slope field plot
Verification of solutions

$$
y=c_{1}\left(x^{3}+1\right)^{2}
$$

Verified OK.

6.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{6 x^{2}}{x^{3}+1} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{6 x^{2} y}{x^{3}+1}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{6 x^{2}}{x^{3}+1} d x} \\
& =\frac{1}{\left(x^{3}+1\right)^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{\left(x^{3}+1\right)^{2}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{\left(x^{3}+1\right)^{2}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\left(x^{3}+1\right)^{2}}$ results in

$$
y=c_{1}\left(x^{3}+1\right)^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(x^{3}+1\right)^{2} \tag{1}
\end{equation*}
$$

Figure 244: Slope field plot

Verification of solutions

$$
y=c_{1}\left(x^{3}+1\right)^{2}
$$

Verified OK.

6.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
6 x^{3} u(x)-\left(x^{3}+1\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(5 x^{3}-1\right)}{x\left(x^{3}+1\right)}
\end{aligned}
$$

Where $f(x)=\frac{5 x^{3}-1}{x\left(x^{3}+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{5 x^{3}-1}{x\left(x^{3}+1\right)} d x \\
\int \frac{1}{u} d u & =\int \frac{5 x^{3}-1}{x\left(x^{3}+1\right)} d x \\
\ln (u) & =2 \ln (1+x)-\ln (x)+2 \ln \left(x^{2}-x+1\right)+c_{2} \\
u & =\mathrm{e}^{2 \ln (1+x)-\ln (x)+2 \ln \left(x^{2}-x+1\right)+c_{2}} \\
& =c_{2} \mathrm{e}^{2 \ln (1+x)-\ln (x)+2 \ln \left(x^{2}-x+1\right)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{2}\left(x^{5}+2 x^{2}+\frac{1}{x}\right)
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x c_{2}\left(x^{5}+2 x^{2}+\frac{1}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x c_{2}\left(x^{5}+2 x^{2}+\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Figure 245: Slope field plot
Verification of solutions

$$
y=x c_{2}\left(x^{5}+2 x^{2}+\frac{1}{x}\right)
$$

Verified OK.

6.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{6 x^{2} y}{x^{3}+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 203: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\left(x^{3}+1\right)^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\left(x^{3}+1\right)^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\left(x^{3}+1\right)^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{6 x^{2} y}{x^{3}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{6 y x^{2}}{\left(x^{3}+1\right)^{3}} \\
S_{y} & =\frac{1}{\left(x^{3}+1\right)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{\left(x^{3}+1\right)^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{\left(x^{3}+1\right)^{2}}=c_{1}
$$

Which gives

$$
y=c_{1}\left(x^{3}+1\right)^{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{6 x^{2} y}{x^{3}+1}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	y	
	$S=\frac{}{\left(x^{3}+1\right)^{2}}$	
		$\xrightarrow{-2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(x^{3}+1\right)^{2} \tag{1}
\end{equation*}
$$

Figure 246: Slope field plot

Verification of solutions

$$
y=c_{1}\left(x^{3}+1\right)^{2}
$$

Verified OK.

6.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{6 y}\right) \mathrm{d} y & =\left(\frac{x^{2}}{x^{3}+1}\right) \mathrm{d} x \\
\left(-\frac{x^{2}}{x^{3}+1}\right) \mathrm{d} x+\left(\frac{1}{6 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x^{2}}{x^{3}+1} \\
& N(x, y)=\frac{1}{6 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x^{2}}{x^{3}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{6 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x^{2}}{x^{3}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{3}+1\right)}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{6 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{6 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{6 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{6 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y)}{6}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{3}+1\right)}{3}+\frac{\ln (y)}{6}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{3}+1\right)}{3}+\frac{\ln (y)}{6}
$$

The solution becomes

$$
y=\mathrm{e}^{6 c_{1}}\left(x^{3}+1\right)^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{6 c_{1}}\left(x^{3}+1\right)^{2} \tag{1}
\end{equation*}
$$

Figure 247: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{6 c_{1}}\left(x^{3}+1\right)^{2}
$$

Verified OK.

6.1.6 Maple step by step solution

Let's solve
$6 x^{2} y-\left(x^{3}+1\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{6 x^{2}}{x^{3}+1}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{6 x^{2}}{x^{3}+1} d x+c_{1}$
- Evaluate integral

$$
\ln (y)=2 \ln \left(x^{3}+1\right)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}}\left(x^{3}+1\right)^{2}
$$

Maple trace

```
'Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(6*x^2*y(x)-(x^3+1)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}\left(x^{3}+1\right)^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 20
DSolve[6*x^2*y[x]-(x^3+1)*y'[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1}\left(x^{3}+1\right)^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.2 problem 2

6.2.1 Solving as first order ode lie symmetry calculated ode 1268
6.2.2 Solving as exact ode . 1274
6.2.3 Maple step by step solution . 1277

Internal problem ID [11676]
Internal file name [OUTPUT/11685_Wednesday_April_10_2024_04_54_39_PM_80429987/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _exact, _rational]

$$
\left(3 x^{2} y^{2}-x\right) y^{\prime}+2 y^{3} x-y=0
$$

6.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(2 x y^{2}-1\right)}{x\left(3 x y^{2}-1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(2 x y^{2}-1\right)\left(b_{3}-a_{2}\right)}{x\left(3 x y^{2}-1\right)}-\frac{y^{2}\left(2 x y^{2}-1\right)^{2} a_{3}}{x^{2}\left(3 x y^{2}-1\right)^{2}} \\
& -\left(-\frac{2 y^{3}}{x\left(3 x y^{2}-1\right)}+\frac{y\left(2 x y^{2}-1\right)}{x^{2}\left(3 x y^{2}-1\right)}+\frac{3 y^{3}\left(2 x y^{2}-1\right)}{x\left(3 x y^{2}-1\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 x y^{2}-1}{x\left(3 x y^{2}-1\right)}-\frac{4 y^{2}}{3 x y^{2}-1}+\frac{6 y^{2}\left(2 x y^{2}-1\right)}{\left(3 x y^{2}-1\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{15 x^{4} y^{4} b_{2}-10 x^{2} y^{6} a_{3}+6 x^{3} y^{4} b_{1}-6 x^{2} y^{5} a_{1}-9 x^{3} y^{2} b_{2}+x^{2} y^{3} a_{2}+2 x^{2} y^{3} b_{3}+10 x y^{4} a_{3}-3 x^{2} y^{2} b_{1}+6 x y^{3} a_{1}}{x^{2}\left(3 x y^{2}-1\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 15 x^{4} y^{4} b_{2}-10 x^{2} y^{6} a_{3}+6 x^{3} y^{4} b_{1}-6 x^{2} y^{5} a_{1}-9 x^{3} y^{2} b_{2}+x^{2} y^{3} a_{2}+2 x^{2} y^{3} b_{3} \tag{6E}\\
& +10 x y^{4} a_{3}-3 x^{2} y^{2} b_{1}+6 x y^{3} a_{1}+2 b_{2} x^{2}-2 y^{2} a_{3}+x b_{1}-y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -10 a_{3} v_{1}^{2} v_{2}^{6}+15 b_{2} v_{1}^{4} v_{2}^{4}-6 a_{1} v_{1}^{2} v_{2}^{5}+6 b_{1} v_{1}^{3} v_{2}^{4}+a_{2} v_{1}^{2} v_{2}^{3}+10 a_{3} v_{1} v_{2}^{4}-9 b_{2} v_{1}^{3} v_{2}^{2} \tag{7E}\\
& +2 b_{3} v_{1}^{2} v_{2}^{3}+6 a_{1} v_{1} v_{2}^{3}-3 b_{1} v_{1}^{2} v_{2}^{2}-2 a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}-a_{1} v_{2}+b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 15 b_{2} v_{1}^{4} v_{2}^{4}+6 b_{1} v_{1}^{3} v_{2}^{4}-9 b_{2} v_{1}^{3} v_{2}^{2}-10 a_{3} v_{1}^{2} v_{2}^{6}-6 a_{1} v_{1}^{2} v_{2}^{5}+\left(a_{2}+2 b_{3}\right) v_{1}^{2} v_{2}^{3} \tag{8E}\\
& -3 b_{1} v_{1}^{2} v_{2}^{2}+2 b_{2} v_{1}^{2}+10 a_{3} v_{1} v_{2}^{4}+6 a_{1} v_{1} v_{2}^{3}+b_{1} v_{1}-2 a_{3} v_{2}^{2}-a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-6 a_{1} & =0 \\
-a_{1} & =0 \\
6 a_{1} & =0 \\
-10 a_{3} & =0 \\
-2 a_{3} & =0 \\
10 a_{3} & =0 \\
-3 b_{1} & =0 \\
6 b_{1} & =0 \\
-9 b_{2} & =0 \\
2 b_{2} & =0 \\
15 b_{2} & =0 \\
a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y\left(2 x y^{2}-1\right)}{x\left(3 x y^{2}-1\right)}\right)(-2 x) \\
& =\frac{-x y^{3}+y}{3 x y^{2}-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x y^{3}+y}{3 x y^{2}-1}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln \left(y\left(x y^{2}-1\right)\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(2 x y^{2}-1\right)}{x\left(3 x y^{2}-1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{2}}{x y^{2}-1} \\
S_{y} & =-\frac{1}{y}-\frac{2 x y}{x y^{2}-1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (y)-\ln \left(y^{2} x-1\right)=\ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln (y)-\ln \left(y^{2} x-1\right)=\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(2 x y^{2}-1\right)}{x\left(3 x y^{2}-1\right)}$		$\frac{d S}{d R}=\frac{1}{R}$
		\cdots
		$\triangle \mathrm{Na}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$R=x$	\rightarrow 込
	$S=-\ln (y)-\ln \left(x y^{2}\right.$	ribt 1
	$S=-\ln (y)-\ln \left(x y^{2}\right.$	
\rightarrow 为 \rightarrow 为		$\rightarrow \rightarrow \Delta x$ aremp
		\therefore 14
		$\rightarrow+\infty$

Summary

The solution（s）found are the following

$$
\begin{equation*}
-\ln (y)-\ln \left(y^{2} x-1\right)=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 248: Slope field plot

Verification of solutions

$$
-\ln (y)-\ln \left(y^{2} x-1\right)=\ln (x)+c_{1}
$$

Verified OK.

6.2.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 x^{2} y^{2}-x\right) \mathrm{d} y & =\left(-2 x y^{3}+y\right) \mathrm{d} x \\
\left(2 x y^{3}-y\right) \mathrm{d} x+\left(3 x^{2} y^{2}-x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y^{3}-y \\
N(x, y) & =3 x^{2} y^{2}-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y^{3}-y\right) \\
& =6 x y^{2}-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 x^{2} y^{2}-x\right) \\
& =6 x y^{2}-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y^{3}-y \mathrm{~d} x \\
\phi & =x y\left(x y^{2}-1\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x\left(x y^{2}-1\right)+2 x^{2} y^{2}+f^{\prime}(y) \tag{4}\\
& =3 x^{2} y^{2}-x+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 x^{2} y^{2}-x$. Therefore equation (4) becomes

$$
\begin{equation*}
3 x^{2} y^{2}-x=3 x^{2} y^{2}-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y\left(x y^{2}-1\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y\left(x y^{2}-1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y\left(y^{2} x-1\right) x=c_{1} \tag{1}
\end{equation*}
$$

Figure 249: Slope field plot

Verification of solutions

$$
y\left(y^{2} x-1\right) x=c_{1}
$$

Verified OK.

6.2.3 Maple step by step solution

Let's solve

$$
\left(3 x^{2} y^{2}-x\right) y^{\prime}+2 y^{3} x-y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
$\square \quad$ Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$6 x y^{2}-1=6 x y^{2}-1$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 x y^{3}-y\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=y\left(x^{2} y^{2}-x\right)+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$3 x^{2} y^{2}-x=3 x^{2} y^{2}-x+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=y\left(x^{2} y^{2}-x\right)$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$y\left(x^{2} y^{2}-x\right)=c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{\left(\left(12 \sqrt{3} \sqrt{27 c_{1}^{2}-4 x}+108 c_{1}\right) x\right)^{\frac{1}{3}}}{6 x}+\frac{2}{\left(\left(12 \sqrt{3} \sqrt{27 c_{1}^{2}-4 x}+108 c_{1}\right) x\right)^{\frac{1}{3}}}, y=-\frac{\left(\left(12 \sqrt{3} \sqrt{27 c_{1}^{2}-4 x}+108 c_{1}\right) x\right)^{\frac{1}{3}}}{12 x}-\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 1127
dsolve $\left(\left(3 * x^{\wedge} 2 * y(x) \wedge 2-x\right) * \operatorname{diff}(y(x), x)+(2 * x * y(x) \wedge 3-y(x))=0, y(x)\right.$, singsol=all)

$$
y(x)
$$

$$
=\frac{\sqrt{3} \sqrt{\left(-i\left(-2 x^{2} 2^{\frac{1}{3}}+2^{\frac{2}{3}}\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right)^{2} x^{4}\right)^{\frac{1}{3}}\right) \sqrt{3}-2 x^{2} 2^{\frac{1}{3}}+8 x\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}}\right.\right.\right.}}{6((3 \sqrt{3} \sqrt{27}}
$$

$$
\begin{aligned}
& y(x)= \\
& -\frac{\sqrt{3} \sqrt{2} \sqrt{\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right) x^{2}\right)^{\frac{1}{3}}\left(2 x^{2} 2^{\frac{1}{3}}+2^{\frac{2}{3}}\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right)\right.\right.}}{6\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right) x^{2}\right)^{\frac{1}{3}} x} \\
& y(x) \\
& =\frac{\sqrt{3} \sqrt{2} \sqrt{\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right) x^{2}\right)^{\frac{1}{3}}\left(2 x^{2} 2^{\frac{1}{3}}+2^{\frac{2}{3}}\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right)^{2} x\right.\right.}}{6\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right) x^{2}\right)^{\frac{1}{3}} x} \\
& y(x)= \\
& -\frac{\sqrt{3} \sqrt{\left(i\left(-2 x^{2} 2^{\frac{1}{3}}+2^{\frac{2}{3}}\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right)^{2} x^{4}\right)^{\frac{1}{3}}\right) \sqrt{3}-2 x^{2} 2^{\frac{1}{3}}+8 x((3 \sqrt{3} \sqrt{27 c}\right.}}{6((3 \sqrt{3} \sqrt{2}} \\
& y(x) \\
& =\frac{\sqrt{3} \sqrt{\left(i\left(-2 x^{2} 2^{\frac{1}{3}}+2^{\frac{2}{3}}\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right)^{2} x^{4}\right)^{\frac{1}{3}}\right) \sqrt{3}-2 x^{2} 2^{\frac{1}{3}}+8 x\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-}\right.\right.\right.}}{6((3 \sqrt{3} \sqrt{27 c}} \\
& y(x)= \\
& -\frac{\sqrt{3} \sqrt{\left(-i\left(-2 x^{2} 2^{\frac{1}{3}}+2^{\frac{2}{3}}\left(\left(3 \sqrt{3} \sqrt{27 c_{1}^{2}-4 c_{1} x}+27 c_{1}-2 x\right)^{2} x^{4}\right)^{\frac{1}{3}}\right) \sqrt{3}-2 x^{2} 2^{\frac{1}{3}}+8 x((3 \sqrt{3} \sqrt{27}\right.} 6((3 \sqrt{3} \sqrt{2}}{6}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 30.566 (sec). Leaf size: 356
DSolve $\left[\left(3 * x^{\wedge} 2 * y[x] \sim 2-x\right) * y{ }^{\prime}[x]+(2 * x * y[x] \wedge 3-y[x])==0, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2 \sqrt[3]{3} x^{3}+\sqrt[3]{2}\left(\sqrt{3} \sqrt{x^{8}\left(-4 x+27 c_{1}^{2}\right)}+9 c_{1} x^{4}\right)^{2 / 3}}{6^{2 / 3} x^{2} \sqrt[3]{\sqrt{3} \sqrt{x^{8}\left(-4 x+27 c_{1}^{2}\right)}+9 c_{1} x^{4}}} \\
& y(x) \rightarrow \frac{i \sqrt[3]{3}(\sqrt{3}+i)\left(2 \sqrt{3} \sqrt{x^{8}\left(-4 x+27 c_{1}^{2}\right)}+18 c_{1} x^{4}\right)^{2 / 3}-2 \sqrt[3]{2} \sqrt[6]{3}(\sqrt{3}+3 i) x^{3}}{12 x^{2} \sqrt[3]{\sqrt{3} \sqrt{x^{8}\left(-4 x+27 c_{1}^{2}\right)}+9 c_{1} x^{4}}} \\
& y(x) \rightarrow \frac{\sqrt[3]{3}(-1-i \sqrt{3})\left(2 \sqrt{3} \sqrt{x^{8}\left(-4 x+27 c_{1}^{2}\right)}+18 c_{1} x^{4}\right)^{2 / 3}-2 \sqrt[3]{2} \sqrt[6]{3}(\sqrt{3}-3 i) x^{3}}{12 x^{2} \sqrt[3]{\sqrt{3} \sqrt{x^{8}\left(-4 x+27 c_{1}^{2}\right)}+9 c_{1} x^{4}}}
\end{aligned}
$$

6.3 problem 3

6.3.1 Solving as separable ode . 1282
6.3.2 Solving as linear ode . 1284
6.3.3 Solving as first order ode lie symmetry lookup ode 1286
6.3.4 Solving as exact ode . 1290
6.3.5 Maple step by step solution . 1294

Internal problem ID [11677]
Internal file name [OUTPUT/11686_Wednesday_April_10_2024_04_54_41_PM_24706420/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y+x(1+x) y^{\prime}=1
$$

6.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{1-y}{x(1+x)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x(1+x)}$ and $g(y)=1-y$. Integrating both sides gives

$$
\frac{1}{1-y} d y=\frac{1}{x(1+x)} d x
$$

$$
\begin{aligned}
\int \frac{1}{1-y} d y & =\int \frac{1}{x(1+x)} d x \\
-\ln (y-1) & =-\ln (1+x)+\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y-1}=\mathrm{e}^{-\ln (1+x)+\ln (x)+c_{1}}
$$

Which simplifies to

$$
\frac{1}{y-1}=c_{2} \mathrm{e}^{-\ln (1+x)+\ln (x)}
$$

Which simplifies to

$$
y=\frac{\left(\frac{c_{2} e_{1} x}{1+x}+1\right)(1+x) \mathrm{e}^{-c_{1}}}{c_{2} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\frac{c_{2} e_{1} x}{1+x}+1\right)(1+x) \mathrm{e}^{-c_{1}}}{c_{2} x} \tag{1}
\end{equation*}
$$

Figure 250: Slope field plot

Verification of solutions

$$
y=\frac{\left(\frac{c_{2} c_{1} x}{1+x}+1\right)(1+x) \mathrm{e}^{-c_{1}}}{c_{2} x}
$$

Verified OK.

6.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x(1+x)} \\
q(x) & =\frac{1}{x(1+x)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x(1+x)}=\frac{1}{x(1+x)}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x(1+x)} d x} \\
& =\mathrm{e}^{-\ln (1+x)+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{x}{1+x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x(1+x)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x y}{1+x}\right) & =\left(\frac{x}{1+x}\right)\left(\frac{1}{x(1+x)}\right) \\
\mathrm{d}\left(\frac{x y}{1+x}\right) & =\frac{1}{(1+x)^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{x y}{1+x}=\int \frac{1}{(1+x)^{2}} \mathrm{~d} x \\
& \frac{x y}{1+x}=-\frac{1}{1+x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{x}{1+x}$ results in

$$
y=-\frac{1}{x}+\frac{c_{1}(1+x)}{x}
$$

which simplifies to

$$
y=\frac{c_{1} x+c_{1}-1}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+c_{1}-1}{x} \tag{1}
\end{equation*}
$$

Figure 251: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x+c_{1}-1}{x}
$$

Verified OK.

6.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y-1}{x(1+x)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 207: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\ln (1+x)-\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\ln (1+x)-\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x y}{1+x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y-1}{x(1+x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{(1+x)^{2}} \\
S_{y} & =\frac{x}{1+x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{(1+x)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{(1+R)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{1+R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x y}{1+x}=-\frac{1}{1+x}+c_{1}
$$

Which simplifies to

$$
\frac{x y}{1+x}=-\frac{1}{1+x}+c_{1}
$$

Which gives

$$
y=\frac{c_{1} x+c_{1}-1}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y-1}{x(1+x)}$		$\frac{d S}{d R}=\frac{1}{(1+R)^{2}}$
$\rightarrow \rightarrow$ 为		$\rightarrow \rightarrow+\infty$
$\rightarrow \rightarrow$（ \rightarrow（x）		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$	$R=x$	位 $+1+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-4}$	$x y$	
	$S=\frac{x y}{1+x}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		为 ${ }_{\text {a }}$
$\rightarrow \rightarrow \ggg \gg \rightarrow$ 为		1 $1+-x \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+c_{1}-1}{x} \tag{1}
\end{equation*}
$$

Figure 252: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x+c_{1}-1}{x}
$$

Verified OK.

6.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{1-y}\right) \mathrm{d} y & =\left(\frac{1}{x(1+x)}\right) \mathrm{d} x \\
\left(-\frac{1}{x(1+x)}\right) \mathrm{d} x+\left(\frac{1}{1-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{1}{x(1+x)} \\
N(x, y) & =\frac{1}{1-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x(1+x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{1-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x(1+x)} \mathrm{d} x \\
\phi & =\ln (1+x)-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{1-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{1-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y-1}\right) \mathrm{d} y \\
f(y) & =-\ln (y-1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (1+x)-\ln (x)-\ln (y-1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (1+x)-\ln (x)-\ln (y-1)
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{c_{1}} x+x+1\right) \mathrm{e}^{-c_{1}}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{c_{1}} x+x+1\right) \mathrm{e}^{-c_{1}}}{x} \tag{1}
\end{equation*}
$$

Figure 253: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{c_{1}} x+x+1\right) \mathrm{e}^{-c_{1}}}{x}
$$

Verified OK.

6.3.5 Maple step by step solution

Let's solve
$y+x(1+x) y^{\prime}=1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1-y}=\frac{1}{x(1+x)}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1-y} d x=\int \frac{1}{x(1+x)} d x+c_{1}$
- Evaluate integral
$-\ln (1-y)=-\ln (1+x)+\ln (x)+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{c_{1} x-x-1}}{\mathrm{e}^{c_{1} x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve((y(x)-1)+(x*(x+1))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x+c_{1}-1}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 22
DSolve[(y[x]-1)+(x*(x+1))*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{-1+c_{1}(x+1)}{x} \\
& y(x) \rightarrow 1
\end{aligned}
$$

6.4 problem 4

6.4.1 Solving as linear ode . 1296
6.4.2 Solving as first order ode lie symmetry lookup ode 1298
6.4.3 Solving as exact ode . 1302
6.4.4 Maple step by step solution . 1307

Internal problem ID [11678]
Internal file name [OUTPUT/11687_Wednesday_April_10_2024_04_54_41_PM_36212687/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-2 y+y^{\prime} x=-x^{2}
$$

6.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=-x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)(-x) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(-\frac{1}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int-\frac{1}{x} \mathrm{~d} x \\
\frac{y}{x^{2}} & =-\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=-x^{2} \ln (x)+c_{1} x^{2}
$$

which simplifies to

$$
y=x^{2}\left(-\ln (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(-\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 254: Slope field plot

Verification of solutions

$$
y=x^{2}\left(-\ln (x)+c_{1}\right)
$$

Verified OK.

6.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-x^{2}+2 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 210: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-x^{2}+2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{2 y}{x^{3}} \\
& S_{y}=\frac{1}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{2}}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}}=-\ln (x)+c_{1}
$$

Which gives

$$
y=-x^{2}\left(\ln (x)-c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-x^{2}+2 y}{x}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\xrightarrow{ \pm}$
		$\mathrm{m}_{\rightarrow+\infty}$
	$S=\frac{y}{x}$	
	$S=\frac{9}{x^{2}}$	
		$\rightarrow \pm \infty$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}\left(\ln (x)-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 255: Slope field plot
Verification of solutions

$$
y=-x^{2}\left(\ln (x)-c_{1}\right)
$$

Verified OK.

6.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-x^{2}+2 y\right) \mathrm{d} x \\
\left(x^{2}-2 y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}-2 y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}-2 y\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-2)-(1)) \\
& =-\frac{3}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{3}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (x)} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3}}\left(x^{2}-2 y\right) \\
& =\frac{x^{2}-2 y}{x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3}}(x) \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{2}-2 y}{x^{3}}\right)+\left(\frac{1}{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}-2 y}{x^{3}} \mathrm{~d} x \\
\phi & =\frac{y}{x^{2}}+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{2}}=\frac{1}{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y}{x^{2}}+\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y}{x^{2}}+\ln (x)
$$

The solution becomes

$$
y=-x^{2}\left(\ln (x)-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}\left(\ln (x)-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 256: Slope field plot

Verification of solutions

$$
y=-x^{2}\left(\ln (x)-c_{1}\right)
$$

Verified OK.

6.4.4 Maple step by step solution

Let's solve
$-2 y+y^{\prime} x=-x^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 y}{x}-x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{x}=-x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=-\mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{2 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-\mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-\mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-\mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{2}}$
$y=x^{2}\left(\int-\frac{1}{x} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x^{2}\left(-\ln (x)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve((x^2-2*y(x))+(x)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\left(-\ln (x)+c_{1}\right) x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 16
DSolve[($\left.x^{\wedge} 2-2 * y[x]\right)+(x) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(-\log (x)+c_{1}\right)
$$

6.5 problem 5

6.5.1 Solving as homogeneousTypeD2 ode 1309
6.5.2 Solving as first order ode lie symmetry calculated ode 1311

Internal problem ID [11679]
Internal file name [OUTPUT/11688_Wednesday_April_10_2024_04_54_42_PM_93828384/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
-5 y+(y+x) y^{\prime}=-3 x
$$

6.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-5 u(x) x+(u(x) x+x)\left(u^{\prime}(x) x+u(x)\right)=-3 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-4 u+3}{x(u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-4 u+3}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-4 u+3}{u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-4 u+3}{u+1}} d u & =\int-\frac{1}{x} d x \\
2 \ln (u-3)-\ln (u-1) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{2 \ln (u-3)-\ln (u-1)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{(u-3)^{2}}{u-1}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{(u(x)-3)^{2}}{u(x)-1}=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{\left(\frac{y}{x}-3\right)^{2}}{\frac{y}{x}-1} & =\frac{c_{3}}{x} \\
\frac{(-3 x+y)^{2}}{x(y-x)} & =\frac{c_{3}}{x}
\end{aligned}
$$

Which simplifies to

$$
-\frac{(3 x-y)^{2}}{-y+x}=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{(3 x-y)^{2}}{-y+x}=c_{3} \tag{1}
\end{equation*}
$$

Figure 257: Slope field plot

Verification of solutions

$$
-\frac{(3 x-y)^{2}}{-y+x}=c_{3}
$$

Verified OK.

6.5.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-3 x+5 y}{y+x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-3 x+5 y)\left(b_{3}-a_{2}\right)}{y+x}-\frac{(-3 x+5 y)^{2} a_{3}}{(y+x)^{2}} \\
& -\left(-\frac{3}{y+x}-\frac{-3 x+5 y}{(y+x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{5}{y+x}-\frac{-3 x+5 y}{(y+x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{3 x^{2} a_{2}-9 x^{2} a_{3}-7 x^{2} b_{2}-3 x^{2} b_{3}+6 x y a_{2}+30 x y a_{3}+2 x y b_{2}-6 x y b_{3}-5 y^{2} a_{2}-17 y^{2} a_{3}+y^{2} b_{2}+5 y^{2} b_{3}-8 x}{(y+x)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{2} a_{2}-9 x^{2} a_{3}-7 x^{2} b_{2}-3 x^{2} b_{3}+6 x y a_{2}+30 x y a_{3}+2 x y b_{2} \tag{6E}\\
& \quad-6 x y b_{3}-5 y^{2} a_{2}-17 y^{2} a_{3}+y^{2} b_{2}+5 y^{2} b_{3}-8 x b_{1}+8 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 3 a_{2} v_{1}^{2}+6 a_{2} v_{1} v_{2}-5 a_{2} v_{2}^{2}-9 a_{3} v_{1}^{2}+30 a_{3} v_{1} v_{2}-17 a_{3} v_{2}^{2}-7 b_{2} v_{1}^{2} \tag{7E}\\
& \quad+2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-3 b_{3} v_{1}^{2}-6 b_{3} v_{1} v_{2}+5 b_{3} v_{2}^{2}+8 a_{1} v_{2}-8 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(3 a_{2}-9 a_{3}-7 b_{2}-3 b_{3}\right) v_{1}^{2}+\left(6 a_{2}+30 a_{3}+2 b_{2}-6 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-8 b_{1} v_{1}+\left(-5 a_{2}-17 a_{3}+b_{2}+5 b_{3}\right) v_{2}^{2}+8 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
8 a_{1} & =0 \\
-8 b_{1} & =0 \\
-5 a_{2}-17 a_{3}+b_{2}+5 b_{3} & =0 \\
3 a_{2}-9 a_{3}-7 b_{2}-3 b_{3} & =0 \\
6 a_{2}+30 a_{3}+2 b_{2}-6 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-4 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =-3 a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{-3 x+5 y}{y+x}\right)(x) \\
& =\frac{3 x^{2}-4 x y+y^{2}}{y+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x^{2}-4 x y+y^{2}}{y+x}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (y-x)+2 \ln (-3 x+y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-3 x+5 y}{y+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y-x}-\frac{6}{-3 x+y} \\
S_{y} & =\frac{y+x}{(3 x-y)(-y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (y-x)+2 \ln (-3 x+y)=c_{1}
$$

Which simplifies to

$$
-\ln (y-x)+2 \ln (-3 x+y)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

Figure 258: Slope field plot

Verification of solutions

$$
-\ln (y-x)+2 \ln (-3 x+y)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 47
dsolve($(3 * x-5 * y(x))+(x+y(x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{6 c_{1} x-\sqrt{8 c_{1} x+1}+1}{2 c_{1}} \\
& y(x)=\frac{6 c_{1} x+1+\sqrt{8 c_{1} x+1}}{2 c_{1}}
\end{aligned}
$$

Solution by Mathematica
Time used: 1.033 (sec). Leaf size: 80
DSolve[(3*x-5*y[x])+(x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(6 x-e^{\frac{c_{1}}{2}} \sqrt{-8 x+e^{c_{1}}}-e^{c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(6 x+e^{\frac{c_{1}}{2}} \sqrt{-8 x+e^{c_{1}}}-e^{c_{1}}\right)
\end{aligned}
$$

6.6 problem 6

6.6.1 Solving as separable ode . 1318
6.6.2 Solving as linear ode . 1320
6.6.3 Solving as homogeneousTypeD2 ode 1321
6.6.4 Solving as first order ode lie symmetry lookup ode 1323
6.6.5 Solving as exact ode . 1327
6.6.6 Maple step by step solution . 1331

Internal problem ID [11680]
Internal file name [OUTPUT/11689_Wednesday_April_10_2024_04_54_44_PM_77178628/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\mathrm{e}^{2 x} y^{2}+\left(y \mathrm{e}^{2 x}-2 y\right) y^{\prime}=0
$$

6.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\mathrm{e}^{2 x} y}{\mathrm{e}^{2 x}-2}
\end{aligned}
$$

Where $f(x)=-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2} d x \\
\int \frac{1}{y} d y & =\int-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2} d x \\
\ln (y) & =-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}+c_{1} \\
y & =\mathrm{e}^{-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}+c_{1}} \\
& =\frac{c_{1}}{\sqrt{\mathrm{e}^{2 x}-2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 259: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}}{\sqrt{\mathrm{e}^{2 x}-2}}
$$

Verified OK.

6.6.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{\mathrm{e}^{2 x} y}{\mathrm{e}^{2 x}-2}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2} d x} \\
& =\sqrt{\mathrm{e}^{2 x}-2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\sqrt{\mathrm{e}^{2 x}-2} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\sqrt{\mathrm{e}^{2 x}-2} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{\mathrm{e}^{2 x}-2}$ results in

$$
y=\frac{c_{1}}{\sqrt{\mathrm{e}^{2 x}-2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\sqrt{\mathrm{e}^{2 x}-2}} \tag{1}
\end{equation*}
$$

Figure 260: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{\sqrt{\mathrm{e}^{2 x}-2}}
$$

Verified OK.

6.6.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\mathrm{e}^{2 x} u(x)^{2} x^{2}+\left(u(x) x \mathrm{e}^{2 x}-2 u(x) x\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(\mathrm{e}^{2 x} x+\mathrm{e}^{2 x}-2\right)}{x\left(\mathrm{e}^{2 x}-2\right)}
\end{aligned}
$$

Where $f(x)=-\frac{\mathrm{e}^{2 x} x+\mathrm{e}^{2 x}-2}{x\left(\mathrm{e}^{2 x}-2\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{\mathrm{e}^{2 x} x+\mathrm{e}^{2 x}-2}{x\left(\mathrm{e}^{2 x}-2\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{\mathrm{e}^{2 x} x+\mathrm{e}^{2 x}-2}{x\left(\mathrm{e}^{2 x}-2\right)} d x \\
\ln (u) & =-\ln (x)-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}+c_{2} \\
u & =\mathrm{e}^{-\ln (x)-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2}}{x \sqrt{\mathrm{e}^{2 x}-2}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{c_{2}}{\sqrt{\mathrm{e}^{2 x}-2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2}}{\sqrt{\mathrm{e}^{2 x}-2}} \tag{1}
\end{equation*}
$$

Figure 261: Slope field plot

Verification of solutions

$$
y=\frac{c_{2}}{\sqrt{\mathrm{e}^{2 x}-2}}
$$

Verified OK.

6.6.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{\mathrm{e}^{2 x} y}{\mathrm{e}^{2 x}-2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 213: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{\sqrt{\mathrm{e}^{2 x}-2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sqrt{\mathrm{e}^{2 x}-2}}} d y
\end{aligned}
$$

Which results in

$$
S=\sqrt{\mathrm{e}^{2 x}-2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\mathrm{e}^{2 x} y}{\mathrm{e}^{2 x}-2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y \mathrm{e}^{2 x}}{\sqrt{\mathrm{e}^{2 x}-2}} \\
S_{y} & =\sqrt{\mathrm{e}^{2 x}-2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \sqrt{\mathrm{e}^{2 x}-2}=c_{1}
$$

Which simplifies to

$$
y \sqrt{\mathrm{e}^{2 x}-2}=c_{1}
$$

Which gives

$$
y=\frac{c_{1}}{\sqrt{\mathrm{e}^{2 x}-2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\mathrm{e}^{2 x} y}{\mathrm{e}^{2 x}-2}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+1]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow+]{ }$ 2?
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$	$R=x$	
	$S=\sqrt{\mathrm{e}^{2 x}-2} y$	
		\rightarrow
		$\xrightarrow{\rightarrow}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\sqrt{\mathrm{e}^{2 x}-2}} \tag{1}
\end{equation*}
$$

Figure 262: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{\sqrt{\mathrm{e}^{2 x}-2}}
$$

Verified OK.

6.6.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2}\right) \mathrm{d} x \\
\left(-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2}\right) \mathrm{d} x+\left(-\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2} \\
& N(x, y)=-\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}-2} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}-\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}-c_{1}} \tag{1}
\end{equation*}
$$

Figure 263: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{\ln \left(\mathrm{e}^{2 x}-2\right)}{2}-c_{1}}
$$

Verified OK.

6.6.6 Maple step by step solution

Let's solve

$$
\mathrm{e}^{2 x} y^{2}+\left(y \mathrm{e}^{2 x}-2 y\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x
$\int\left(\mathrm{e}^{2 x} y^{2}+\left(y \mathrm{e}^{2 x}-2 y\right) y^{\prime}\right) d x=\int 0 d x+c_{1}$
- Evaluate integral

$$
\frac{\left(\mathrm{e}^{2 x}-2\right) y^{2}}{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{2} \sqrt{\left(\mathrm{e}^{2 x}-2\right) c_{1}}}{\mathrm{e}^{2 x}-2}, y=-\frac{\sqrt{2} \sqrt{\left(\mathrm{e}^{2 x}-2\right) c_{1}}}{\mathrm{e}^{2 x}-2}\right\}
$$

Maple trace

```
`Classification methods on request
Methods to be used are: [exact]
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 58
dsolve $((\exp (2 * x) * y(x) \sim 2)+(\exp (2 * x) * y(x)-2 * y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{\sqrt{2} \sqrt{-\left(\mathrm{e}^{2 x}-2\right) c_{1}}}{\mathrm{e}^{2 x}-2} \\
& y(x)=-\frac{\sqrt{2} \sqrt{-\left(\mathrm{e}^{2 x}-2\right) c_{1}}}{\mathrm{e}^{2 x}-2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 29

```
DSolve[(Exp[2*x]*y[x] 2)+(Exp[2*x]*y[x]-2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions ->
```

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow \frac{c_{1}}{\sqrt{e^{2 x}-2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.7 problem 7

6.7.1 Solving as separable ode . 1333
6.7.2 Solving as linear ode . 1335
6.7.3 Solving as first order ode lie symmetry lookup ode 1337
6.7.4 Solving as exact ode . 1341
6.7.5 Maple step by step solution . 1345

Internal problem ID [11681]
Internal file name [OUTPUT/11690_Wednesday_April_10_2024_04_54_45_PM_15215251/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
8 y x^{3}+\left(x^{4}+1\right) y^{\prime}=12 x^{3}
$$

6.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{3}(-8 y+12)}{x^{4}+1}
\end{aligned}
$$

Where $f(x)=\frac{x^{3}}{x^{4}+1}$ and $g(y)=-8 y+12$. Integrating both sides gives

$$
\frac{1}{-8 y+12} d y=\frac{x^{3}}{x^{4}+1} d x
$$

$$
\begin{aligned}
\int \frac{1}{-8 y+12} d y & =\int \frac{x^{3}}{x^{4}+1} d x \\
-\frac{\ln (-2 y+3)}{8} & =\frac{\ln \left(x^{4}+1\right)}{4}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(-2 y+3)^{\frac{1}{8}}}=\mathrm{e}^{\frac{\ln \left(x^{4}+1\right)}{4}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(-2 y+3)^{\frac{1}{8}}}=c_{2}\left(x^{4}+1\right)^{\frac{1}{4}}
$$

Which simplifies to

$$
y=\frac{\left(3 c_{2}^{8} \mathrm{e}^{8 c_{1}}\left(x^{4}+1\right)^{2}-1\right) \mathrm{e}^{-8 c_{1}}}{2 c_{2}^{8}\left(x^{4}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(3 c_{2}^{8} \mathrm{e}^{8 c_{1}}\left(x^{4}+1\right)^{2}-1\right) \mathrm{e}^{-8 c_{1}}}{2 c_{2}^{8}\left(x^{4}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 264: Slope field plot

Verification of solutions

$$
y=\frac{\left(3 c_{2}^{8} \mathrm{e}^{8 c_{1}}\left(x^{4}+1\right)^{2}-1\right) \mathrm{e}^{-8 c_{1}}}{2 c_{2}^{8}\left(x^{4}+1\right)^{2}}
$$

Verified OK.

6.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{8 x^{3}}{x^{4}+1} \\
& q(x)=\frac{12 x^{3}}{x^{4}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{8 x^{3} y}{x^{4}+1}=\frac{12 x^{3}}{x^{4}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{8 x^{3}}{x^{4}+1} d x} \\
& =\left(x^{4}+1\right)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{12 x^{3}}{x^{4}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{4}+1\right)^{2} y\right) & =\left(\left(x^{4}+1\right)^{2}\right)\left(\frac{12 x^{3}}{x^{4}+1}\right) \\
\mathrm{d}\left(\left(x^{4}+1\right)^{2} y\right) & =\left(12 x^{3}\left(x^{4}+1\right)\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{4}+1\right)^{2} y=\int 12 x^{3}\left(x^{4}+1\right) \mathrm{d} x \\
& \left(x^{4}+1\right)^{2} y=\frac{3\left(x^{4}+1\right)^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\left(x^{4}+1\right)^{2}$ results in

$$
y=\frac{3}{2}+\frac{c_{1}}{\left(x^{4}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3}{2}+\frac{c_{1}}{\left(x^{4}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 265: Slope field plot

Verification of solutions

$$
y=\frac{3}{2}+\frac{c_{1}}{\left(x^{4}+1\right)^{2}}
$$

Verified OK.

6.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{4 x^{3}(2 y-3)}{x^{4}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 216: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{\left(x^{4}+1\right)^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\left(x^{4}+1\right)^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\left(x^{4}+1\right)^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{4 x^{3}(2 y-3)}{x^{4}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =8\left(x^{4}+1\right) y x^{3} \\
S_{y} & =\left(x^{4}+1\right)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=12 x^{7}+12 x^{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=12 R^{7}+12 R^{3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3\left(R^{4}+1\right)^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\left(x^{4}+1\right)^{2} y=\frac{3\left(x^{4}+1\right)^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\left(x^{4}+1\right)^{2} y=\frac{3\left(x^{4}+1\right)^{2}}{2}+c_{1}
$$

Which gives

$$
y=\frac{3 x^{8}+6 x^{4}+2 c_{1}+3}{2\left(x^{4}+1\right)^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{4 x^{3}(2 y-3)}{x^{4}+1}$		$\frac{d S}{d R}=12 R^{7}+12 R^{3}$
		$\xrightarrow{2 \rightarrow \rightarrow+}$
	$R=x$	\rightarrow
	$S=\left(x^{4}+1\right)^{2} y$	
		\rightarrow
		$\rightarrow+1+1+1+$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{8}+6 x^{4}+2 c_{1}+3}{2\left(x^{4}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 266: Slope field plot
Verification of solutions

$$
y=\frac{3 x^{8}+6 x^{4}+2 c_{1}+3}{2\left(x^{4}+1\right)^{2}}
$$

Verified OK.

6.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-8 y+12}\right) \mathrm{d} y & =\left(\frac{x^{3}}{x^{4}+1}\right) \mathrm{d} x \\
\left(-\frac{x^{3}}{x^{4}+1}\right) \mathrm{d} x+\left(\frac{1}{-8 y+12}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x^{3}}{x^{4}+1} \\
& N(x, y)=\frac{1}{-8 y+12}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x^{3}}{x^{4}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-8 y+12}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x^{3}}{x^{4}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{4}+1\right)}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-8 y+12}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-8 y+12}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{4(2 y-3)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{8 y-12}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (2 y-3)}{8}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{4}+1\right)}{4}-\frac{\ln (2 y-3)}{8}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{4}+1\right)}{4}-\frac{\ln (2 y-3)}{8}
$$

The solution becomes

$$
y=\frac{3 x^{8}+6 x^{4}+\mathrm{e}^{-8 c_{1}}+3}{2 x^{8}+4 x^{4}+2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{8}+6 x^{4}+\mathrm{e}^{-8 c_{1}}+3}{2 x^{8}+4 x^{4}+2} \tag{1}
\end{equation*}
$$

Figure 267: Slope field plot
Verification of solutions

$$
y=\frac{3 x^{8}+6 x^{4}+\mathrm{e}^{-8 c_{1}}+3}{2 x^{8}+4 x^{4}+2}
$$

Verified OK.

6.7.5 Maple step by step solution

Let's solve

$$
8 y x^{3}+\left(x^{4}+1\right) y^{\prime}=12 x^{3}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{2 y-3}=-\frac{4 x^{3}}{x^{x}+1}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{2 y-3} d x=\int-\frac{4 x^{3}}{x^{4}+1} d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (2 y-3)}{2}=-\ln \left(x^{4}+1\right)+c_{1}
$$

- \quad Solve for y
$y=\frac{3 x^{8}+6 x^{4}+\mathrm{e}^{2 c}+3}{2\left(x^{8}+2 x^{4}+1\right)}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve((8*x^3*y(x)-12*x^3)+(1+x^4)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{3}{2}+\frac{c_{1}}{\left(x^{4}+1\right)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 38
DSolve[(8*x^3*y[x]-12*x^3)+(1+x^4)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{3 x^{8}+6 x^{4}+2 c_{1}}{2\left(x^{4}+1\right)^{2}} \\
& y(x) \rightarrow \frac{3}{2}
\end{aligned}
$$

6.8 problem 8

6.8.1 Solving as homogeneousTypeD2 ode 1347
6.8.2 Solving as first order ode lie symmetry calculated ode 1349
6.8.3 Solving as riccati ode . 1355

Internal problem ID [11682]
Internal file name [OUTPUT/11691_Wednesday_April_10_2024_04_54_46_PM_66245698/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Riccati]

$$
y x+y^{2}+2 x^{2} y^{\prime}=-2 x^{2}
$$

6.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x^{2}+u(x)^{2} x^{2}+2 x^{2}\left(u^{\prime}(x) x+u(x)\right)=-2 x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-\frac{1}{2} u^{2}-\frac{3}{2} u-1}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=-\frac{1}{2} u^{2}-\frac{3}{2} u-1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-\frac{1}{2} u^{2}-\frac{3}{2} u-1} d u & =\frac{1}{x} d x \\
\int \frac{1}{-\frac{1}{2} u^{2}-\frac{3}{2} u-1} d u & =\int \frac{1}{x} d x \\
-2 \ln (u+1)+2 \ln (u+2) & =\ln (x)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
(-2)(\ln (u+1)-\ln (u+2)) & =\ln (x)+2 c_{2} \\
\ln (u+1)-\ln (u+2) & =\left(-\frac{1}{2}\right)\left(\ln (x)+2 c_{2}\right) \\
& =-\frac{\ln (x)}{2}-c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u+1)-\ln (u+2)}=\mathrm{e}^{-\frac{\ln (x)}{2}-\frac{c_{2}}{2}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{u+1}{u+2} & =-\frac{c_{2}}{2 \sqrt{x}} \\
& =\frac{c_{3}}{\sqrt{x}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =-\frac{x\left(\sqrt{x}-2 c_{3}\right)}{\sqrt{x}-c_{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x\left(\sqrt{x}-2 c_{3}\right)}{\sqrt{x}-c_{3}} \tag{1}
\end{equation*}
$$

Figure 268: Slope field plot
Verification of solutions

$$
y=-\frac{x\left(\sqrt{x}-2 c_{3}\right)}{\sqrt{x}-c_{3}}
$$

Verified OK.

6.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 x^{2}+x y+y^{2}}{2 x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(2 x^{2}+x y+y^{2}\right)\left(b_{3}-a_{2}\right)}{2 x^{2}}-\frac{\left(2 x^{2}+x y+y^{2}\right)^{2} a_{3}}{4 x^{4}} \\
& -\left(-\frac{4 x+y}{2 x^{2}}+\frac{2 x^{2}+x y+y^{2}}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{(x+2 y)\left(x b_{2}+y b_{3}+b_{1}\right)}{2 x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{4 x^{4} a_{2}-4 x^{4} a_{3}+6 b_{2} x^{4}-4 x^{4} b_{3}-4 x^{3} y a_{3}+4 x^{3} y b_{2}-2 x^{2} y^{2} a_{2}-7 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{3}-6 x y^{3} a_{3}-y^{4} a_{3}+2 x}{4 x^{4}}$ $=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{4} a_{2}-4 x^{4} a_{3}+6 b_{2} x^{4}-4 x^{4} b_{3}-4 x^{3} y a_{3}+4 x^{3} y b_{2}-2 x^{2} y^{2} a_{2}-7 x^{2} y^{2} a_{3} \tag{6E}\\
& +2 x^{2} y^{2} b_{3}-6 x y^{3} a_{3}-y^{4} a_{3}+2 x^{3} b_{1}-2 x^{2} y a_{1}+4 x^{2} y b_{1}-4 x y^{2} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 a_{2} v_{1}^{4}-2 a_{2} v_{1}^{2} v_{2}^{2}-4 a_{3} v_{1}^{4}-4 a_{3} v_{1}^{3} v_{2}-7 a_{3} v_{1}^{2} v_{2}^{2}-6 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+6 b_{2} v_{1}^{4} \tag{7E}\\
& \quad+4 b_{2} v_{1}^{3} v_{2}-4 b_{3} v_{1}^{4}+2 b_{3} v_{1}^{2} v_{2}^{2}-2 a_{1} v_{1}^{2} v_{2}-4 a_{1} v_{1} v_{2}^{2}+2 b_{1} v_{1}^{3}+4 b_{1} v_{1}^{2} v_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(4 a_{2}-4 a_{3}+6 b_{2}-4 b_{3}\right) v_{1}^{4}+\left(-4 a_{3}+4 b_{2}\right) v_{1}^{3} v_{2}+2 b_{1} v_{1}^{3} \tag{8E}\\
& \quad+\left(-2 a_{2}-7 a_{3}+2 b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(-2 a_{1}+4 b_{1}\right) v_{1}^{2} v_{2}-6 a_{3} v_{1} v_{2}^{3}-4 a_{1} v_{1} v_{2}^{2}-a_{3} v_{2}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-4 a_{1} & =0 \\
-6 a_{3} & =0 \\
-a_{3} & =0 \\
2 b_{1} & =0 \\
-2 a_{1}+4 b_{1} & =0 \\
-4 a_{3}+4 b_{2} & =0 \\
-2 a_{2}-7 a_{3}+2 b_{3} & =0 \\
4 a_{2}-4 a_{3}+6 b_{2}-4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 x^{2}+x y+y^{2}}{2 x^{2}}\right)(x) \\
& =\frac{2 x^{2}+3 x y+y^{2}}{2 x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2}+3 x y+y^{2}}{2 x}} d y
\end{aligned}
$$

Which results in

$$
S=2 \ln (y+x)-2 \ln (2 x+y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x^{2}+x y+y^{2}}{2 x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 y}{(y+x)(2 x+y)} \\
S_{y} & =\frac{2 x}{(y+x)(2 x+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 \ln (y+x)-2 \ln (2 x+y)=-\ln (x)+c_{1}
$$

Which simplifies to

$$
2 \ln (y+x)-2 \ln (2 x+y)=-\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x^{2}+x y+y^{2}}{2 x^{2}}$		$\frac{d S}{d R}=-\frac{1}{R}$
		－
		$\rightarrow \rightarrow-\infty$－
ardydydy didydidy		$\rightarrow-\infty \times 1$
	$R=x$	$\rightarrow \rightarrow \rightarrow \infty \rightarrow \pm \times 1+$
	$S=2 \ln (y+x)-2 \ln$	
		－刀 刀 分召
		$\cdots \rightarrow+\infty$－
		他

Summary

The solution（s）found are the following

$$
\begin{equation*}
2 \ln (y+x)-2 \ln (2 x+y)=-\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 269: Slope field plot

Verification of solutions

$$
2 \ln (y+x)-2 \ln (2 x+y)=-\ln (x)+c_{1}
$$

Verified OK.

6.8.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{2 x^{2}+x y+y^{2}}{2 x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-1-\frac{y}{2 x}-\frac{y^{2}}{2 x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-1, f_{1}(x)=-\frac{1}{2 x}$ and $f_{2}(x)=-\frac{1}{2 x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{u}{2 x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{1}{x^{3}} \\
f_{1} f_{2} & =\frac{1}{4 x^{3}} \\
f_{2}^{2} f_{0} & =-\frac{1}{4 x^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{u^{\prime \prime}(x)}{2 x^{2}}-\frac{5 u^{\prime}(x)}{4 x^{3}}-\frac{u(x)}{4 x^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{1}}{\sqrt{x}}+\frac{c_{2}}{x}
$$

The above shows that

$$
u^{\prime}(x)=-\frac{c_{1}}{2 x^{\frac{3}{2}}}-\frac{c_{2}}{x^{2}}
$$

Using the above in (1) gives the solution

$$
y=\frac{2\left(-\frac{c_{1}}{2 x^{\frac{3}{2}}}-\frac{c_{2}}{x^{2}}\right) x^{2}}{\frac{c_{1}}{\sqrt{x}}+\frac{c_{2}}{x}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-c_{3} x-2 \sqrt{x}\right) x}{c_{3} x+\sqrt{x}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-c_{3} x-2 \sqrt{x}\right) x}{c_{3} x+\sqrt{x}} \tag{1}
\end{equation*}
$$

Figure 270: Slope field plot

Verification of solutions

$$
y=\frac{\left(-c_{3} x-2 \sqrt{x}\right) x}{c_{3} x+\sqrt{x}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 49

```
dsolve((2*x^2+x*y(x)+y(x)^2)+(2*x^2)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\left(c_{1} x-\sqrt{c_{1} x}-2\right) x}{c_{1} x-1} \\
& y(x)=-\frac{\left(c_{1} x+\sqrt{c_{1} x}-2\right) x}{c_{1} x-1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.203 (sec). Leaf size: 47
DSolve $\left[\left(2 * x^{\wedge} 2+x * y[x]+y[x] \sim 2\right)+\left(2 * x^{\wedge} 2\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{x\left(\sqrt{x}-2 e^{c_{1}}\right)}{-\sqrt{x}+e^{c_{1}}} \\
& y(x) \rightarrow-2 x \\
& y(x) \rightarrow-x
\end{aligned}
$$

6.9 problem 9

6.9.1 Solving as first order ode lie symmetry calculated ode 1359
6.9.2 Solving as exact ode . 1365

Internal problem ID [11683]
Internal file name [OUTPUT/11692_Wednesday_April_10_2024_04_54_48_PM_84959607/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 9 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y^{\prime}-\frac{4 y^{2} x^{3}-3 x^{2} y}{x^{3}-2 y x^{4}}=0
$$

6.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y(4 x y-3)}{x(2 x y-1)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y(4 x y-3)\left(b_{3}-a_{2}\right)}{x(2 x y-1)}-\frac{y^{2}(4 x y-3)^{2} a_{3}}{x^{2}(2 x y-1)^{2}} \\
& -\left(\frac{y(4 x y-3)}{x^{2}(2 x y-1)}-\frac{4 y^{2}}{x(2 x y-1)}+\frac{2 y^{2}(4 x y-3)}{x(2 x y-1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{4 x y-3}{x(2 x y-1)}-\frac{4 y}{2 x y-1}+\frac{2 y(4 x y-3)}{(2 x y-1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{12 x^{4} y^{2} b_{2}-24 x^{2} y^{4} a_{3}+8 x^{3} y^{2} b_{1}-8 x^{2} y^{3} a_{1}-12 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} b_{3}+36 x y^{3} a_{3}-8 x^{2} y b_{1}+12 x y^{2} a}{x^{2}(2 x y-1)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
12 x^{4} y^{2} b_{2}-24 x^{2} y^{4} a_{3}+8 x^{3} y^{2} b_{1}-8 x^{2} y^{3} a_{1}-12 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} b_{3} \tag{6E}\\
+36 x y^{3} a_{3}-8 x^{2} y b_{1}+12 x y^{2} a_{1}+4 b_{2} x^{2}-12 y^{2} a_{3}+3 x b_{1}-3 y a_{1}=0
\end{gather*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -24 a_{3} v_{1}^{2} v_{2}^{4}+12 b_{2} v_{1}^{4} v_{2}^{2}-8 a_{1} v_{1}^{2} v_{2}^{3}+8 b_{1} v_{1}^{3} v_{2}^{2}+2 a_{2} v_{1}^{2} v_{2}^{2}+36 a_{3} v_{1} v_{2}^{3}-12 b_{2} v_{1}^{3} v_{2} \tag{7E}\\
& +2 b_{3} v_{1}^{2} v_{2}^{2}+12 a_{1} v_{1} v_{2}^{2}-8 b_{1} v_{1}^{2} v_{2}-12 a_{3} v_{2}^{2}+4 b_{2} v_{1}^{2}-3 a_{1} v_{2}+3 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 12 b_{2} v_{1}^{4} v_{2}^{2}+8 b_{1} v_{1}^{3} v_{2}^{2}-12 b_{2} v_{1}^{3} v_{2}-24 a_{3} v_{1}^{2} v_{2}^{4}-8 a_{1} v_{1}^{2} v_{2}^{3}+\left(2 a_{2}+2 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad-8 b_{1} v_{1}^{2} v_{2}+4 b_{2} v_{1}^{2}+36 a_{3} v_{1} v_{2}^{3}+12 a_{1} v_{1} v_{2}^{2}+3 b_{1} v_{1}-12 a_{3} v_{2}^{2}-3 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-8 a_{1} & =0 \\
-3 a_{1} & =0 \\
12 a_{1} & =0 \\
-24 a_{3} & =0 \\
-12 a_{3} & =0 \\
36 a_{3} & =0 \\
-8 b_{1} & =0 \\
3 b_{1} & =0 \\
8 b_{1} & =0 \\
-12 b_{2} & =0 \\
4 b_{2} & =0 \\
12 b_{2} & =0 \\
2 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(4 x y-3)}{x(2 x y-1)}\right)(-x) \\
& =\frac{-2 x y^{2}+2 y}{2 x y-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x y^{2}+2 y}{2 x y-1}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y(x y-1))}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(4 x y-3)}{x(2 x y-1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{2 x y-2} \\
S_{y} & =\frac{-2 x y+1}{2 y(x y-1)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 \ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}-\frac{\ln (y x-1)}{2}=\frac{3 \ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}-\frac{\ln (y x-1)}{2}=\frac{3 \ln (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}-\frac{\ln (y x-1)}{2}=\frac{3 \ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 271: Slope field plot

Verification of solutions

$$
-\frac{\ln (y)}{2}-\frac{\ln (y x-1)}{2}=\frac{3 \ln (x)}{2}+c_{1}
$$

Verified OK.

6.9.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{4 y^{2} x^{3}-3 x^{2} y}{-2 x^{4} y+x^{3}}\right) \mathrm{d} x \\
\left(-\frac{4 y^{2} x^{3}-3 x^{2} y}{-2 x^{4} y+x^{3}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{4 y^{2} x^{3}-3 x^{2} y}{-2 x^{4} y+x^{3}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{4 y^{2} x^{3}-3 x^{2} y}{-2 x^{4} y+x^{3}}\right) \\
& =\frac{8 x^{2} y^{2}-8 x y+3}{x(2 x y-1)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{8 y x^{3}-3 x^{2}}{-2 x^{4} y+x^{3}}-\frac{2\left(4 y^{2} x^{3}-3 x^{2} y\right) x^{4}}{\left(-2 x^{4} y+x^{3}\right)^{2}}\right)-(0)\right) \\
& =\frac{8 x^{2} y^{2}-8 x y+3}{x(2 x y-1)^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{2 x^{2} y-x}{4 x y^{2}-3 y}\left((0)-\left(-\frac{8 y x^{3}-3 x^{2}}{-2 x^{4} y+x^{3}}-\frac{2\left(4 y^{2} x^{3}-3 x^{2} y\right) x^{4}}{\left(-2 x^{4} y+x^{3}\right)^{2}}\right)\right) \\
& =\frac{-8 x^{2} y^{2}+8 x y-3}{8 y^{3} x^{2}-10 x y^{2}+3 y}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(-\frac{8 y x^{3}-3 x^{2}}{-2 x^{4} y+x^{3}}-\frac{2\left(4 y^{2} x^{3}-3 x^{2} y\right) x^{4}}{\left(-2 x^{4} y+x^{3}\right)^{2}}\right)}{x\left(-\frac{4 y^{2} x^{3}-3 x^{2} y}{-2 x^{4} y+x^{3}}\right)-y(1)} \\
& =\frac{-8 x^{2} y^{2}+8 x y-3}{4 x(x y-1) y\left(x y-\frac{1}{2}\right)}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{-8 t^{2}+8 t-3}{4 t(t-1)\left(t-\frac{1}{2}\right)}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{-8 t^{2}+8 t-3}{4 t(t-1)\left(t-\frac{1}{2}\right)}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{3 \ln (t-1)}{2}-\frac{3 \ln (t)}{2}+\ln (2 t-1)} \\
& =\frac{2 t-1}{(t-1)^{\frac{3}{2}} t^{\frac{3}{2}}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{2 x y-1}{(x y-1)^{\frac{3}{2}}(x y)^{\frac{3}{2}}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{2 x y-1}{(x y-1)^{\frac{3}{2}}(x y)^{\frac{3}{2}}}\left(-\frac{4 y^{2} x^{3}-3 x^{2} y}{-2 x^{4} y+x^{3}}\right) \\
& =\frac{4 x y-3}{x^{2} \sqrt{x y}(x y-1)^{\frac{3}{2}}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{2 x y-1}{(x y-1)^{\frac{3}{2}}(x y)^{\frac{3}{2}}}(1) \\
& =\frac{2 x y-1}{(x y-1)^{\frac{3}{2}} x y \sqrt{x y}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{4 x y-3}{x^{2} \sqrt{x y}(x y-1)^{\frac{3}{2}}}\right)+\left(\frac{2 x y-1}{(x y-1)^{\frac{3}{2}} x y \sqrt{x y}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{4 x y-3}{x^{2} \sqrt{x y}(x y-1)^{\frac{3}{2}}} \mathrm{~d} x \\
\phi & =-\frac{2}{\sqrt{x y-1} x \sqrt{x y}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{1}{(x y-1)^{\frac{3}{2}} \sqrt{x y}}+\frac{1}{\sqrt{x y-1}(x y)^{\frac{3}{2}}}+f^{\prime}(y) \tag{4}\\
& =\frac{2 x y-1}{(x y-1)^{\frac{3}{2}} x y \sqrt{x y}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 x y-1}{(x y-1)^{\frac{3}{2}} x y \sqrt{x y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 x y-1}{(x y-1)^{\frac{3}{2}} x y \sqrt{x y}}=\frac{2 x y-1}{(x y-1)^{\frac{3}{2}} x y \sqrt{x y}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{2}{\sqrt{x y-1} x \sqrt{x y}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{2}{\sqrt{x y-1} x \sqrt{x y}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{2}{\sqrt{y x-1} x \sqrt{y x}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 272: Slope field plot

Verification of solutions

$$
-\frac{2}{\sqrt{y x-1} x \sqrt{y x}}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 41

```
dsolve(diff (y (x),x)=(4*x^3*y(x)^2-3*x^2*y(x))/(x^3-2*x^4*y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{x-\sqrt{x^{2}+4 c_{1}}}{2 x^{2}} \\
& y(x)=\frac{x+\sqrt{x^{2}+4 c_{1}}}{2 x^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.575 (sec). Leaf size: 78
DSolve $\left[y\right.$ ' $[x]==\left(4 * x^{\wedge} 3 * y[x] \sim 2-3 * x^{\wedge} 2 * y[x]\right) /\left(x^{\wedge} 3-2 * x \wedge 4 * y[x]\right), y[x], x$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& y(x) \rightarrow \frac{x^{3}-\sqrt{x^{2}} \sqrt{x^{4}+4 c_{1} x^{2}}}{2 x^{4}} \\
& y(x) \rightarrow \frac{x^{3}+\sqrt{x^{2}} \sqrt{x^{4}+4 c_{1} x^{2}}}{2 x^{4}}
\end{aligned}
$$

6.10 problem 10

6.10.1 Solving as linear ode . 1372
6.10.2 Solving as first order ode lie symmetry lookup ode 1374
6.10.3 Solving as exact ode . 1378
6.10.4 Maple step by step solution . 1383

Internal problem ID [11684]
Internal file name [OUTPUT/11693_Wednesday_April_10_2024_04_54_49_PM_86942080/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
(1+x) y^{\prime}+y x=\mathrm{e}^{-x}
$$

6.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x}{1+x} \\
q(x) & =\frac{\mathrm{e}^{-x}}{1+x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{x y}{1+x}=\frac{\mathrm{e}^{-x}}{1+x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{x}{1+x} d x} \\
& =\mathrm{e}^{x-\ln (1+x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\mathrm{e}^{x}}{1+x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\mathrm{e}^{-x}}{1+x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{e}^{x} y}{1+x}\right) & =\left(\frac{\mathrm{e}^{x}}{1+x}\right)\left(\frac{\mathrm{e}^{-x}}{1+x}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{x} y}{1+x}\right) & =\frac{1}{(1+x)^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{\mathrm{e}^{x} y}{1+x} & =\int \frac{1}{(1+x)^{2}} \mathrm{~d} x \\
\frac{\mathrm{e}^{x} y}{1+x} & =-\frac{1}{1+x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{\mathrm{e}^{x}}{1+x}$ results in

$$
y=-\mathrm{e}^{-x}+c_{1}(1+x) \mathrm{e}^{-x}
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right) \tag{1}
\end{equation*}
$$

Figure 273: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right)
$$

Verified OK.

6.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-x y+\mathrm{e}^{-x}}{1+x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 219: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x+\ln (1+x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x+\ln (1+x)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\mathrm{e}^{x} y}{1+x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-x y+\mathrm{e}^{-x}}{1+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\mathrm{e}^{x} y x}{(1+x)^{2}} \\
S_{y} & =\frac{\mathrm{e}^{x}}{1+x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{(1+x)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{(1+R)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{1+R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{x} y}{1+x}=-\frac{1}{1+x}+c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{x} y}{1+x}=-\frac{1}{1+x}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-x y+\mathrm{e}^{-x}}{1+x}$		$\frac{d S}{d R}=\frac{1}{(1+R)^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
		1 $1+3+0$
	$R=x$	
	$S=\frac{\mathrm{e}^{x} y}{1+x}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$
	$1+x$	¢ + + $2 \rightarrow 0$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right) \tag{1}
\end{equation*}
$$

Figure 274: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right)
$$

Verified OK.

6.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(1+x) \mathrm{d} y & =\left(-x y+\mathrm{e}^{-x}\right) \mathrm{d} x \\
\left(x y-\mathrm{e}^{-x}\right) \mathrm{d} x+(1+x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x y-\mathrm{e}^{-x} \\
N(x, y) & =1+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x y-\mathrm{e}^{-x}\right) \\
& =x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1+x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{1+x}((x)-(1)) \\
& =\frac{x-1}{1+x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{x-1}{1+x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x-2 \ln (1+x)} \\
& =\frac{\mathrm{e}^{x}}{(1+x)^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{x}}{(1+x)^{2}}\left(x y-\mathrm{e}^{-x}\right) \\
& =\frac{x \mathrm{e}^{x} y-1}{(1+x)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{x}}{(1+x)^{2}}(1+x) \\
& =\frac{\mathrm{e}^{x}}{1+x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x \mathrm{e}^{x} y-1}{(1+x)^{2}}\right)+\left(\frac{\mathrm{e}^{x}}{1+x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x \mathrm{e}^{x} y-1}{(1+x)^{2}} \mathrm{~d} x \\
\phi & =\frac{\mathrm{e}^{x} y+1}{1+x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{x}}{1+x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{x}}{1+x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{x}}{1+x}=\frac{\mathrm{e}^{x}}{1+x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\mathrm{e}^{x} y+1}{1+x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\mathrm{e}^{x} y+1}{1+x}
$$

The solution becomes

$$
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right) \tag{1}
\end{equation*}
$$

Figure 275: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right)
$$

Verified OK.

6.10.4 Maple step by step solution

Let's solve
$(1+x) y^{\prime}+y x=\mathrm{e}^{-x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{x y}{1+x}+\frac{\mathrm{e}^{-x}}{1+x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{x y}{1+x}=\frac{\mathrm{e}^{-x}}{1+x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{x y}{1+x}\right)=\frac{\mu(x) \mathrm{e}^{-x}}{1+x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{x y}{1+x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) x}{1+x}$
- Solve to find the integrating factor
$\mu(x)=\frac{\mathrm{e}^{x}}{1+x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \mathrm{e}^{-x}}{1+x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \mathrm{e}^{-x}}{1+x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) e^{-x}}{1+x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{\mathrm{e}^{x}}{1+x}$
$y=\frac{(1+x)\left(\int \frac{\mathrm{e}^{-x_{0} x}}{(1+x)^{2}} d x+c_{1}\right)}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{(1+x)\left(-\frac{1}{1+x}+c_{1}\right)}{\mathrm{e}^{x}}$
- Simplify

$$
y=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve((x+1)*diff(y(x),x)+x*y(x)=exp(-x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x}\left(c_{1} x+c_{1}-1\right)
$$

\checkmark Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 19
DSolve $\left[(x+1) * y{ }^{\prime}[x]+x * y[x]==\operatorname{Exp}[-x], y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow e^{-x}\left(-1+c_{1}(x+1)\right)
$$

6.11 problem 11

6.11.1 Solving as homogeneousTypeD2 ode 1385
6.11.2 Solving as first order ode lie symmetry calculated ode 1387

Internal problem ID [11685]
Internal file name [OUTPUT/11694_Wednesday_April_10_2024_04_54_50_PM_17922417/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
y^{\prime}-\frac{2 x-7 y}{3 y-8 x}=0
$$

6.11.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{2 x-7 u(x) x}{3 u(x) x-8 x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u^{2}-u-2}{x(3 u-8)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{3 u^{2}-u-2}{3 u-8}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{3 u^{2}-u-2}{3 u-8}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{3 u^{2}-u-2}{3 u-8}} d u & =\int-\frac{1}{x} d x \\
-\ln (u-1)+2 \ln (3 u+2) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u-1)+2 \ln (3 u+2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{(3 u+2)^{2}}{u-1}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{(3 u(x)+2)^{2}}{u(x)-1}=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{gathered}
\frac{\left(\frac{3 y}{x}+2\right)^{2}}{\frac{y}{x}-1}=\frac{c_{3}}{x} \\
\frac{(2 x+3 y)^{2}}{(y-x) x}=\frac{c_{3}}{x}
\end{gathered}
$$

Which simplifies to

$$
-\frac{(2 x+3 y)^{2}}{-y+x}=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{(2 x+3 y)^{2}}{-y+x}=c_{3} \tag{1}
\end{equation*}
$$

Figure 276: Slope field plot

Verification of solutions

$$
-\frac{(2 x+3 y)^{2}}{-y+x}=c_{3}
$$

Verified OK.

6.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-2 x+7 y}{3 y-8 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(-2 x+7 y)\left(b_{3}-a_{2}\right)}{3 y-8 x}-\frac{(-2 x+7 y)^{2} a_{3}}{(3 y-8 x)^{2}} \\
& -\left(\frac{2}{3 y-8 x}-\frac{8(-2 x+7 y)}{(3 y-8 x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{7}{3 y-8 x}+\frac{-6 x+21 y}{(3 y-8 x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{16 x^{2} a_{2}-4 x^{2} a_{3}+14 x^{2} b_{2}-16 x^{2} b_{3}-12 x y a_{2}+28 x y a_{3}-48 x y b_{2}+12 x y b_{3}+21 y^{2} a_{2}+y^{2} a_{3}+9 y^{2} b_{2}-21 y}{(-3 y+8 x)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 16 x^{2} a_{2}-4 x^{2} a_{3}+14 x^{2} b_{2}-16 x^{2} b_{3}-12 x y a_{2}+28 x y a_{3}-48 x y b_{2} \tag{6E}\\
& \quad+12 x y b_{3}+21 y^{2} a_{2}+y^{2} a_{3}+9 y^{2} b_{2}-21 y^{2} b_{3}-50 x b_{1}+50 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 16 a_{2} v_{1}^{2}-12 a_{2} v_{1} v_{2}+21 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}+28 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}+14 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-48 b_{2} v_{1} v_{2}+9 b_{2} v_{2}^{2}-16 b_{3} v_{1}^{2}+12 b_{3} v_{1} v_{2}-21 b_{3} v_{2}^{2}+50 a_{1} v_{2}-50 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(16 a_{2}-4 a_{3}+14 b_{2}-16 b_{3}\right) v_{1}^{2}+\left(-12 a_{2}+28 a_{3}-48 b_{2}+12 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-50 b_{1} v_{1}+\left(21 a_{2}+a_{3}+9 b_{2}-21 b_{3}\right) v_{2}^{2}+50 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
50 a_{1} & =0 \\
-50 b_{1} & =0 \\
-12 a_{2}+28 a_{3}-48 b_{2}+12 b_{3} & =0 \\
16 a_{2}-4 a_{3}+14 b_{2}-16 b_{3} & =0 \\
21 a_{2}+a_{3}+9 b_{2}-21 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=-3 a_{2}+3 b_{3} \\
& b_{1}=0 \\
& b_{2}=-2 a_{2}+2 b_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=3 y \\
& \eta=2 x+y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 x+y-\left(-\frac{-2 x+7 y}{3 y-8 x}\right)(3 y) \\
& =\frac{16 x^{2}+8 x y-24 y^{2}}{-3 y+8 x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{16 x^{2}+8 x y-24 y^{2}}{-3 y+8 x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (2 x+3 y)}{4}-\frac{\ln (y-x)}{8}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-2 x+7 y}{3 y-8 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x-7 y}{16 x^{2}+8 x y-24 y^{2}} \\
S_{y} & =\frac{-3 y+8 x}{16 x^{2}+8 x y-24 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (2 x+3 y)}{4}-\frac{\ln (y-x)}{8}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (2 x+3 y)}{4}-\frac{\ln (y-x)}{8}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (2 x+3 y)}{4}-\frac{\ln (y-x)}{8}=c_{1} \tag{1}
\end{equation*}
$$

Figure 277: Slope field plot

Verification of solutions

$$
\frac{\ln (2 x+3 y)}{4}-\frac{\ln (y-x)}{8}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 47
dsolve(diff $(y(x), x)=(2 * x-7 * y(x)) /(3 * y(x)-8 * x), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{-12 c_{1} x-\sqrt{-60 c_{1} x+1}+1}{18 c_{1}} \\
& y(x)=\frac{-12 c_{1} x+1+\sqrt{-60 c_{1} x+1}}{18 c_{1}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.969 (sec). Leaf size: 80
DSolve $[y$ ' $[x]==(2 * x-7 * y[x]) /(3 * y[x]-8 * x), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{18}\left(-12 x-e^{\frac{c_{1}}{2}} \sqrt{60 x+e^{c_{1}}}-e^{c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{18}\left(-12 x+e^{\frac{c_{1}}{2}} \sqrt{60 x+e^{c_{1}}}-e^{c_{1}}\right)
\end{aligned}
$$

6.12 problem 12

6.12.1 Solving as separable ode . 1394
6.12.2 Solving as first order ode lie symmetry lookup ode 1396
6.12.3 Solving as bernoulli ode . 1400
6.12.4 Solving as exact ode . 1404
6.12.5 Maple step by step solution . 1407

Internal problem ID [11686]
Internal file name [OUTPUT/11695_Wednesday_April_10_2024_04_54_52_PM_34915414/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{2} y^{\prime}+y x-y^{3} x=0
$$

6.12.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y^{3}-y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y^{3}-y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{3}-y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y^{3}-y} d y & =\int \frac{1}{x} d x
\end{aligned}
$$

$$
\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)=\ln (x)+c_{1}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)}=\mathrm{e}^{\ln (x)+c_{1}}
$$

Which simplifies to

$$
\frac{\sqrt{y-1} \sqrt{y+1}}{y}=c_{2} x
$$

The solution is

$$
\frac{\sqrt{y-1} \sqrt{y+1}}{y}=c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\sqrt{y-1} \sqrt{y+1}}{y}=c_{2} x \tag{1}
\end{equation*}
$$

Figure 278: Slope field plot

Verification of solutions

$$
\frac{\sqrt{y-1} \sqrt{y+1}}{y}=c_{2} x
$$

Verified OK.

6.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y\left(y^{2}-1\right)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 222: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(y^{2}-1\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{3}-y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{3}-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R-1)}{2}+\frac{\ln (R+1)}{2}-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)+c_{1}
$$

Which simplifies to

$$
\ln (x)=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(y^{2}-1\right)}{x}$		$\frac{d S}{d R}=\frac{1}{R^{3}-R}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow-\infty$	$R=y$	$\rightarrow \rightarrow+\uparrow \uparrow{ }_{\text {¢ }} \rightarrow$
+	$S=\ln (x)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ } \chi^{\text {a }}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }+\frac{1}{}$
1 $1+1+5$ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (x)=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)+c_{1} \tag{1}
\end{equation*}
$$

Figure 279: Slope field plot
Verification of solutions

$$
\ln (x)=\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)+c_{1}
$$

Verified OK.

6.12.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(y^{2}-1\right)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+\frac{1}{x} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =\frac{1}{x} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{1}{x y^{2}}+\frac{1}{x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{x}+\frac{1}{x} \\
w^{\prime} & =\frac{2 w}{x}-\frac{2}{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-\frac{2}{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=-\frac{2}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{2}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(-\frac{2}{x}\right) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =\left(-\frac{2}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{2}} & =\int-\frac{2}{x^{3}} \mathrm{~d} x \\
\frac{w}{x^{2}} & =\frac{1}{x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=c_{1} x^{2}+1
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=c_{1} x^{2}+1
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{c_{1} x^{2}+1}} \\
& y(x)=-\frac{1}{\sqrt{c_{1} x^{2}+1}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\sqrt{c_{1} x^{2}+1}} \tag{1}\\
& y=-\frac{1}{\sqrt{c_{1} x^{2}+1}} \tag{2}
\end{align*}
$$

Figure 280: Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{c_{1} x^{2}+1}}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{c_{1} x^{2}+1}}
$$

Verified OK.

6.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y\left(y^{2}-1\right)}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y\left(y^{2}-1\right)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y\left(y^{2}-1\right)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y\left(y^{2}-1\right)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y\left(y^{2}-1\right)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y\left(y^{2}-1\right)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{1}{y\left(y^{2}-1\right)} \\
& =\frac{1}{y^{3}-y}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{3}-y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (x)+\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 281: Slope field plot

Verification of solutions

$$
-\ln (x)+\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)=c_{1}
$$

Verified OK.

6.12.5 Maple step by step solution

Let's solve
$x^{2} y^{\prime}+y x-y^{3} x=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y(y-1)(y+1)}=\frac{1}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y(y-1)(y+1)} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral

$$
\frac{\ln (y-1)}{2}+\frac{\ln (y+1)}{2}-\ln (y)=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{\sqrt{-\left(\mathrm{e}_{1}^{c_{1}}\right)^{2} x^{2}+1}-1}{\sqrt{-\left(\mathrm{e}_{1}\right)^{2} x^{2}+1}}+1, y=-\frac{\sqrt{-\left(\mathrm{e}^{c_{1}}\right)^{2} x^{2}+1}+1}{\sqrt{-\left(\mathrm{e}_{1}\right)^{2} x^{2}+1}}+1\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

```
dsolve(x^2*diff(y(x),x)+x*y(x)=x*y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{c_{1} x^{2}+1}} \\
& y(x)=-\frac{1}{\sqrt{c_{1} x^{2}+1}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 58
DSolve $\left[x^{\wedge} 2 * y y^{\prime}[x]+x * y[x]==x * y[x] \wedge 3, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\sqrt{1+e^{2 c_{1}} x^{2}}} \\
& y(x) \rightarrow \frac{1}{\sqrt{1+e^{2 c_{1}} x^{2}}} \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 1
\end{aligned}
$$

6.13 problem 13

6.13.1 Solving as separable ode . 1409
6.13.2 Solving as linear ode . 1411
6.13.3 Solving as first order ode lie symmetry lookup ode 1413
6.13.4 Solving as exact ode . 1417
6.13.5 Maple step by step solution . 1421

Internal problem ID [11687]
Internal file name [OUTPUT/11696_Wednesday_April_10_2024_04_54_53_PM_72324803/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\left(x^{3}+1\right) y^{\prime}+6 x^{2} y=6 x^{2}
$$

6.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{2}(-6 y+6)}{x^{3}+1}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}}{x^{3}+1}$ and $g(y)=-6 y+6$. Integrating both sides gives

$$
\frac{1}{-6 y+6} d y=\frac{x^{2}}{x^{3}+1} d x
$$

$$
\begin{aligned}
\int \frac{1}{-6 y+6} d y & =\int \frac{x^{2}}{x^{3}+1} d x \\
-\frac{\ln (y-1)}{6} & =\frac{\ln \left(x^{3}+1\right)}{3}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(y-1)^{\frac{1}{6}}}=\mathrm{e}^{\frac{\ln \left(x^{3}+1\right)}{3}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(y-1)^{\frac{1}{6}}}=c_{2}\left(x^{3}+1\right)^{\frac{1}{3}}
$$

Which simplifies to

$$
y=\frac{\left(c_{2}^{6} \mathrm{e}^{6 c_{1}}\left(x^{3}+1\right)^{2}+1\right) \mathrm{e}^{-6 c_{1}}}{c_{2}^{6}\left(x^{3}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{2}^{6} \mathrm{e}^{6 c_{1}}\left(x^{3}+1\right)^{2}+1\right) \mathrm{e}^{-6 c_{1}}}{c_{2}^{6}\left(x^{3}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 282: Slope field plot

Verification of solutions

$$
y=\frac{\left(c_{2}^{6} \mathrm{e}^{6 c_{1}}\left(x^{3}+1\right)^{2}+1\right) \mathrm{e}^{-6 c_{1}}}{c_{2}^{6}\left(x^{3}+1\right)^{2}}
$$

Verified OK.

6.13.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{6 x^{2}}{x^{3}+1} \\
& q(x)=\frac{6 x^{2}}{x^{3}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{6 x^{2} y}{x^{3}+1}=\frac{6 x^{2}}{x^{3}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{6 x^{2}}{x^{3}+1} d x} \\
& =\left(x^{3}+1\right)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{6 x^{2}}{x^{3}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{3}+1\right)^{2} y\right) & =\left(\left(x^{3}+1\right)^{2}\right)\left(\frac{6 x^{2}}{x^{3}+1}\right) \\
\mathrm{d}\left(\left(x^{3}+1\right)^{2} y\right) & =\left(6 x^{5}+6 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{3}+1\right)^{2} y=\int 6 x^{5}+6 x^{2} \mathrm{~d} x \\
& \left(x^{3}+1\right)^{2} y=x^{6}+2 x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\left(x^{3}+1\right)^{2}$ results in

$$
y=\frac{x^{6}+2 x^{3}}{\left(x^{3}+1\right)^{2}}+\frac{c_{1}}{\left(x^{3}+1\right)^{2}}
$$

which simplifies to

$$
y=\frac{x^{6}+2 x^{3}+c_{1}}{\left(x^{3}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{6}+2 x^{3}+c_{1}}{\left(x^{3}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 283: Slope field plot

Verification of solutions

$$
y=\frac{x^{6}+2 x^{3}+c_{1}}{\left(x^{3}+1\right)^{2}}
$$

Verified OK.

6.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{6(y-1) x^{2}}{x^{3}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 225: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\left(x^{3}+1\right)^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\left(x^{3}+1\right)^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\left(x^{3}+1\right)^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{6(y-1) x^{2}}{x^{3}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =6 x^{5} y+6 x^{2} y \\
S_{y} & =\left(x^{3}+1\right)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=6 x^{5}+6 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=6 R^{5}+6 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{6}+2 R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\left(x^{3}+1\right)^{2} y=x^{6}+2 x^{3}+c_{1}
$$

Which simplifies to

$$
\left(x^{3}+1\right)^{2} y=x^{6}+2 x^{3}+c_{1}
$$

Which gives

$$
y=\frac{x^{6}+2 x^{3}+c_{1}}{\left(x^{3}+1\right)^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{6(y-1) x^{2}}{x^{3}+1}$		$\frac{d S}{d R}=6 R^{5}+6 R^{2}$
		$\operatorname{lt~}_{1} \rightarrow-1+$
		S S R R ¢ $\quad=-1$
		-1730-
$\rightarrow \rightarrow$ 为		$\cdots+1$
5^{-4}	$S=\left(x^{3}+1\right)^{2} y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{6}+2 x^{3}+c_{1}}{\left(x^{3}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 284: Slope field plot
Verification of solutions

$$
y=\frac{x^{6}+2 x^{3}+c_{1}}{\left(x^{3}+1\right)^{2}}
$$

Verified OK.

6.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-6 y+6}\right) \mathrm{d} y & =\left(\frac{x^{2}}{x^{3}+1}\right) \mathrm{d} x \\
\left(-\frac{x^{2}}{x^{3}+1}\right) \mathrm{d} x+\left(\frac{1}{-6 y+6}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x^{2}}{x^{3}+1} \\
N(x, y) & =\frac{1}{-6 y+6}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x^{2}}{x^{3}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-6 y+6}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x^{2}}{x^{3}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{3}+1\right)}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-6 y+6}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-6 y+6}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{6(y-1)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{6 y-6}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y-1)}{6}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{3}+1\right)}{3}-\frac{\ln (y-1)}{6}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{3}+1\right)}{3}-\frac{\ln (y-1)}{6}
$$

The solution becomes

$$
y=\frac{x^{6}+2 x^{3}+\mathrm{e}^{-6 c_{1}}+1}{x^{6}+2 x^{3}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{6}+2 x^{3}+\mathrm{e}^{-6 c_{1}}+1}{x^{6}+2 x^{3}+1} \tag{1}
\end{equation*}
$$

Figure 285: Slope field plot
Verification of solutions

$$
y=\frac{x^{6}+2 x^{3}+\mathrm{e}^{-6 c_{1}}+1}{x^{6}+2 x^{3}+1}
$$

Verified OK.

6.13.5 Maple step by step solution

Let's solve

$$
\left(x^{3}+1\right) y^{\prime}+6 x^{2} y=6 x^{2}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y-1}=-\frac{6 x^{2}}{(1+x)\left(x^{2}-x+1\right)}$
- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y-1} d x=\int-\frac{6 x^{2}}{(1+x)\left(x^{2}-x+1\right)} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y-1)=-2 \ln \left((1+x)\left(x^{2}-x+1\right)\right)+c_{1}
$$

- \quad Solve for y

$$
y=\frac{x^{6}+2 x^{3}+e^{c_{1}+1}}{x^{6}+2 x^{3}+1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve $\left(\left(x^{\wedge} 3+1\right) * \operatorname{diff}(y(x), x)+6 * x^{\wedge} 2 * y(x)=6 * x^{\wedge} 2, y(x)\right.$, singsol=all)

$$
y(x)=\frac{x^{6}+2 x^{3}+c_{1}}{\left(x^{3}+1\right)^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 29
DSolve $\left[\left(x^{\wedge} 3+1\right) * y\right.$ ' $[x]+6 * x^{\wedge} 2 * y[x]==6 * x^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow \frac{x^{6}+2 x^{3}+c_{1}}{\left(x^{3}+1\right)^{2}} \\
& y(x) \rightarrow 1
\end{aligned}
$$

6.14 problem 14

6.14.1 Solving as homogeneousTypeD2 ode 1423
6.14.2 Solving as first order ode lie symmetry calculated ode 1425
6.14.3 Solving as exact ode . 1431

Internal problem ID [11688]
Internal file name [OUTPUT/11697_Wednesday_April_10_2024_04_54_54_PM_9116467/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, class $\left.\mathrm{B}^{`}\right]$

$$
y^{\prime}-\frac{2 x^{2}+y^{2}}{2 y x-x^{2}}=0
$$

6.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{2 x^{2}+u(x)^{2} x^{2}}{2 u(x) x^{2}-x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-u-2}{x(2 u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-u-2}{2 u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-u-2}{2 u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-u-2}{2 u-1}} d u & =\int-\frac{1}{x} d x \\
\ln \left(u^{2}-u-2\right) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u^{2}-u-2=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
u^{2}-u-2=\frac{c_{3}}{x}
$$

Which simplifies to

$$
u(x)^{2}-u(x)-2=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
u(x)^{2}-u(x)-2=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-\frac{y}{x}-2=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
& \frac{y^{2}}{x^{2}}-\frac{y}{x}-2=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Which simplifies to

$$
\frac{y^{2}-y x-2 x^{2}}{x}=c_{3} \mathrm{e}^{c_{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}-y x-2 x^{2}}{x}=c_{3} \mathrm{e}^{c_{2}} \tag{1}
\end{equation*}
$$

Figure 286: Slope field plot

Verification of solutions

$$
\frac{y^{2}-y x-2 x^{2}}{x}=c_{3} \mathrm{e}^{c_{2}}
$$

Verified OK.

6.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 x^{2}+y^{2}}{x(-x+2 y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(2 x^{2}+y^{2}\right)\left(b_{3}-a_{2}\right)}{x(-x+2 y)}-\frac{\left(2 x^{2}+y^{2}\right)^{2} a_{3}}{x^{2}(-x+2 y)^{2}} \\
& -\left(\frac{4}{-x+2 y}-\frac{2 x^{2}+y^{2}}{x^{2}(-x+2 y)}+\frac{2 x^{2}+y^{2}}{x(-x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 y}{x(-x+2 y)}-\frac{2\left(2 x^{2}+y^{2}\right)}{x(-x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{2 x^{4} a_{2}-4 x^{4} a_{3}+5 x^{4} b_{2}-2 x^{4} b_{3}-8 x^{3} y a_{2}-2 x^{3} y b_{2}+8 x^{3} y b_{3}-x^{2} y^{2} a_{2}-8 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}+x^{2} y^{2} b_{3}-2 x}{(x-2 y)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{4} a_{2}-4 x^{4} a_{3}+5 x^{4} b_{2}-2 x^{4} b_{3}-8 x^{3} y a_{2}-2 x^{3} y b_{2}+8 x^{3} y b_{3} \tag{6E}\\
& \quad-x^{2} y^{2} a_{2}-8 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}+x^{2} y^{2} b_{3}-2 x y^{3} a_{3}+y^{4} a_{3} \\
& +4 x^{3} b_{1}-4 x^{2} y a_{1}+2 x^{2} y b_{1}-2 x y^{2} a_{1}-2 x y^{2} b_{1}+2 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{4}-8 a_{2} v_{1}^{3} v_{2}-a_{2} v_{1}^{2} v_{2}^{2}-4 a_{3} v_{1}^{4}-8 a_{3} v_{1}^{2} v_{2}^{2}-2 a_{3} v_{1} v_{2}^{3}+a_{3} v_{2}^{4} \tag{7E}\\
& \quad+5 b_{2} v_{1}^{4}-2 b_{2} v_{1}^{3} v_{2}+2 b_{2} v_{1}^{2} v_{2}^{2}-2 b_{3} v_{1}^{4}+8 b_{3} v_{1}^{3} v_{2}+b_{3} v_{1}^{2} v_{2}^{2} \\
& \quad-4 a_{1} v_{1}^{2} v_{2}-2 a_{1} v_{1} v_{2}^{2}+2 a_{1} v_{2}^{3}+4 b_{1} v_{1}^{3}+2 b_{1} v_{1}^{2} v_{2}-2 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{2}-4 a_{3}+5 b_{2}-2 b_{3}\right) v_{1}^{4}+\left(-8 a_{2}-2 b_{2}+8 b_{3}\right) v_{1}^{3} v_{2} \tag{8E}\\
& \quad+4 b_{1} v_{1}^{3}+\left(-a_{2}-8 a_{3}+2 b_{2}+b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(-4 a_{1}+2 b_{1}\right) v_{1}^{2} v_{2} \\
& \quad-2 a_{3} v_{1} v_{2}^{3}+\left(-2 a_{1}-2 b_{1}\right) v_{1} v_{2}^{2}+a_{3} v_{2}^{4}+2 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{3} & =0 \\
2 a_{1} & =0 \\
-2 a_{3} & =0 \\
4 b_{1} & =0 \\
-4 a_{1}+2 b_{1} & =0 \\
-2 a_{1}-2 b_{1} & =0 \\
-8 a_{2}-2 b_{2}+8 b_{3} & =0 \\
-a_{2}-8 a_{3}+2 b_{2}+b_{3} & =0 \\
2 a_{2}-4 a_{3}+5 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{2 x^{2}+y^{2}}{x(-x+2 y)}\right)(x) \\
& =\frac{2 x^{2}+x y-y^{2}}{x-2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2}+x y-y^{2}}{x-2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\ln \left(-2 x^{2}-x y+y^{2}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x^{2}+y^{2}}{x(-x+2 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4 x+y}{(y+x)(2 x-y)} \\
S_{y} & =\frac{x-2 y}{(y+x)(2 x-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (-y-x)+\ln (2 x-y)=\ln (x)+c_{1}
$$

Which simplifies to

$$
\ln (-y-x)+\ln (2 x-y)=\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x^{2}+y^{2}}{x(-x+2 y)}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\cdots \times 1 \times+\infty$
		$1{ }^{1} 4$
	$R=x$	
	$S=\ln (-y-x)+\ln (2 x$	
		就

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (-y-x)+\ln (2 x-y)=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 287: Slope field plot

Verification of solutions

$$
\ln (-y-x)+\ln (2 x-y)=\ln (x)+c_{1}
$$

Verified OK.

6.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x(-x+2 y)) \mathrm{d} y & =\left(2 x^{2}+y^{2}\right) \mathrm{d} x \\
\left(-2 x^{2}-y^{2}\right) \mathrm{d} x+(x(-x+2 y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 x^{2}-y^{2} \\
N(x, y) & =x(-x+2 y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 x^{2}-y^{2}\right) \\
& =-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x(-x+2 y)) \\
& =-2 x+2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x(x-2 y)}((-2 y)-(-2 x+2 y)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-2 x^{2}-y^{2}\right) \\
& =\frac{-2 x^{2}-y^{2}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(x(-x+2 y)) \\
& =\frac{-x+2 y}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-2 x^{2}-y^{2}}{x^{2}}\right)+\left(\frac{-x+2 y}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-2 x^{2}-y^{2}}{x^{2}} \mathrm{~d} x \\
\phi & =-2 x+\frac{y^{2}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{2 y}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x+2 y}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x+2 y}{x}=\frac{2 y}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-1) \mathrm{d} y \\
f(y) & =-y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 x+\frac{y^{2}}{x}-y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 x+\frac{y^{2}}{x}-y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2 x+\frac{y^{2}}{x}-y=c_{1} \tag{1}
\end{equation*}
$$

Figure 288: Slope field plot

Verification of solutions

$$
-2 x+\frac{y^{2}}{x}-y=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 57

```
dsolve(diff(y(x),x)=(2*x^2+y(x)^2)/(2*x*y(x)-x^2),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{c_{1} x-\sqrt{9 c_{1}^{2} x^{2}+4 c_{1} x}}{2 c_{1}} \\
& y(x)=\frac{c_{1} x+\sqrt{9 c_{1}^{2} x^{2}+4 c_{1} x}}{2 c_{1}}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 2.748 (sec). Leaf size: 93
DSolve[y'[x]==(2*x^2+y[x]~2)/(2*x*y[x]-x^2),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(x-\sqrt{x\left(9 x-4 e^{c_{1}}\right)}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(x+\sqrt{x\left(9 x-4 e^{c_{1}}\right)}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(x-3 \sqrt{x^{2}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(3 \sqrt{x^{2}}+x\right)
\end{aligned}
$$

6.15 problem 15

6.15.1 Existence and uniqueness analysis 1437
6.15.2 Solving as homogeneousTypeD2 ode 1438
6.15.3 Solving as first order ode lie symmetry lookup ode 1440
6.15.4 Solving as bernoulli ode . 1445
6.15.5 Solving as exact ode . 1448

Internal problem ID [11689]
Internal file name [OUTPUT/11698_Wednesday_April_10_2024_04_54_58_PM_46377333/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 15 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
y^{2}-2 x y y^{\prime}=-x^{2}
$$

With initial conditions

$$
[y(1)=2]
$$

6.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x^{2}+y^{2}}{2 y x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x^{2}+y^{2}}{2 y x}\right) \\
& =\frac{1}{x}-\frac{x^{2}+y^{2}}{2 y^{2} x}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

6.15.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x)^{2} x^{2}-2 x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)=-x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-1}{2 u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{2 x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\frac{\ln (x)}{2}+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\frac{\ln (x)}{2}+2 c_{2}\right) \\
& =-\ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-\ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{x} \\
& =\frac{c_{3}}{x}
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x} \\
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x}
\end{aligned}
$$

Substituting initial conditions and solving for c_{3} gives $c_{3}=3$. Hence the solution becomes Solving for y from the above gives

$$
y=\sqrt{x(x+3)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{x(x+3)} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=\sqrt{x(x+3)}
$$

Verified OK.

6.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+y^{2}}{2 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 228: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+y^{2}}{2 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{2}}{2 x^{2}} \\
S_{y} & =\frac{y}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 y x}$		$\frac{d S}{d R}=\frac{1}{2}$
		－＋
－－－－－－¢ 刀刀刀刀刀刀刀の		－
	$R=x$	ござい
		\bigcirc
	$S=\frac{y^{2}}{2 x}$	
	$2 x$	シーロッロップ
		＂
		－

Initial conditions are used to solve for c_{1} ．Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration．

$$
2=\frac{1}{2}+c_{1}
$$

$$
c_{1}=\frac{3}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+\frac{3}{2}
$$

The above simplifies to

$$
-x^{2}+y^{2}-3 x=0
$$

Solving for y from the above gives

$$
y=\sqrt{x(x+3)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{x(x+3)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{x(x+3)}
$$

Verified OK.

6.15.4 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+y^{2}}{2 y x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{2 x} y+\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{2 x} \\
f_{1}(x) & =\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{y^{2}}{2 x}+\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{2 x}+\frac{x}{2} \\
w^{\prime} & =\frac{w}{x}+x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)(x) \\
\mathrm{d}\left(\frac{w}{x}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int \mathrm{d} x \\
& \frac{w}{x}=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=c_{1} x+x^{2}
$$

which simplifies to

$$
w(x)=x\left(x+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=x\left(x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=1+c_{1} \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2}=x(x+3)
$$

Solving for y from the above gives

$$
y=\sqrt{x(x+3)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{x(x+3)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{x(x+3)}
$$

Verified OK.

6.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-2 x y) \mathrm{d} y & =\left(-x^{2}-y^{2}\right) \mathrm{d} x \\
\left(x^{2}+y^{2}\right) \mathrm{d} x+(-2 x y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+y^{2} \\
N(x, y) & =-2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-2 x y) \\
& =-2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{2 x y}((2 y)-(-2 y)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(x^{2}+y^{2}\right) \\
& =\frac{x^{2}+y^{2}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(-2 x y) \\
& =-\frac{2 y}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{2}+y^{2}}{x^{2}}\right)+\left(-\frac{2 y}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}+y^{2}}{x^{2}} \mathrm{~d} x \\
\phi & =x-\frac{y^{2}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{2 y}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 y}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 y}{x}=-\frac{2 y}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x-\frac{y^{2}}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x-\frac{y^{2}}{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -3=c_{1} \\
& c_{1}=-3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x-\frac{y^{2}}{x}=-3
$$

The above simplifies to

$$
x^{2}-y^{2}+3 x=0
$$

Solving for y from the above gives

$$
y=\sqrt{x(x+3)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{x(x+3)} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=\sqrt{x(x+3)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 13
dsolve $\left(\left[\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)-2 * x * y(x) * \operatorname{diff}(y(x), x)=0, y(1)=2\right], y(x)\right.$, singsol=all)

$$
y(x)=\sqrt{(x+3) x}
$$

\checkmark Solution by Mathematica
Time used: 0.175 (sec). Leaf size: 18
DSolve $\left[\left\{\left(x^{\wedge} 2+y[x] \sim 2\right)-2 * x * y[x] * y^{\prime}[x]==0,\{y[1]==2\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{x} \sqrt{x+3}
$$

6.16 problem 16

6.16.1 Existence and uniqueness analysis 1454
6.16.2 Solving as separable ode . 1455
6.16.3 Solving as first order ode lie symmetry lookup ode 1456
6.16.4 Solving as bernoulli ode . 1461
6.16.5 Solving as exact ode . 1464
6.16.6 Maple step by step solution . 1468

Internal problem ID [11690]
Internal file name [OUTPUT/11699_Wednesday_April_10_2024_04_55_03_PM_17615973/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[_separable]

$$
2 y^{2}+\left(-x^{2}+1\right) y y^{\prime}=-8
$$

With initial conditions

$$
[y(3)=0]
$$

6.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{2 y^{2}+8}{\left(x^{2}-1\right) y}
\end{aligned}
$$

$f(x, y)$ is not defined at $y=0$ therefore existence and uniqueness theorem do not apply.

6.16.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 y^{2}+8}{\left(x^{2}-1\right) y}
\end{aligned}
$$

Where $f(x)=\frac{2}{x^{2}-1}$ and $g(y)=\frac{y^{2}+4}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{2}+4}{y}} d y & =\frac{2}{x^{2}-1} d x \\
\int \frac{1}{\frac{y^{2}+4}{y}} d y & =\int \frac{2}{x^{2}-1} d x \\
\frac{\ln \left(y^{2}+4\right)}{2} & =-2 \operatorname{arctanh}(x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{y^{2}+4}=\mathrm{e}^{-2 \operatorname{arctanh}(x)+c_{1}}
$$

Which simplifies to

$$
\sqrt{y^{2}+4}=\frac{c_{2}\left(-x^{2}+1\right)}{(1+x)^{2}}
$$

The solution is

$$
\sqrt{y^{2}+4}=c_{2} \mathrm{e}^{-2 \operatorname{arctanh}(x)+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=3$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\frac{\mathrm{e}^{c_{1}} c_{2}}{2} \\
c_{1}=\ln \left(-\frac{4}{c_{2}}\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\sqrt{y^{2}+4}=\frac{4 x-4}{1+x}
$$

The above simplifies to

$$
\sqrt{y^{2}+4} x+\sqrt{y^{2}+4}-4 x+4=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y^{2}+4} x+\sqrt{y^{2}+4}-4 x+4=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{y^{2}+4} x+\sqrt{y^{2}+4}-4 x+4=0
$$

Verified OK.

6.16.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 y^{2}+8}{\left(x^{2}-1\right) y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 230: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x^{2}}{2}-\frac{1}{2} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{2}}{2}-\frac{1}{2}} d x
\end{aligned}
$$

Which results in

$$
S=-2 \operatorname{arctanh}(x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 y^{2}+8}{\left(x^{2}-1\right) y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{2}{x^{2}-1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{y^{2}+4} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R^{2}+4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{2}+4\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-2 \operatorname{arctanh}(x)=\frac{\ln \left(y^{2}+4\right)}{2}+c_{1}
$$

Which simplifies to

$$
-2 \operatorname{arctanh}(x)=\frac{\ln \left(y^{2}+4\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 y^{2}+8}{\left(x^{2}-1\right) y}$		$\frac{d S}{d R}=\frac{R}{R^{2}+4}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow+$ SRT, $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2 a_{0} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$
	$R=y$	
	$S=-2 \operatorname{arctanh}(x)$	边
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow \rightarrow-2$
		$\rightarrow \rightarrow$

Initial conditions are used to solve for c_{1}. Substituting $x=3$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
-2 \operatorname{arccoth}(3)+i \pi=\ln (2)+c_{1}
$$

$$
c_{1}=i \pi-\ln (2)-2 \operatorname{arccoth}(3)
$$

Substituting c_{1} found above in the general solution gives

$$
-2 \operatorname{arctanh}(x)=\frac{\ln \left(y^{2}+4\right)}{2}+i \pi-\ln (2)-2 \operatorname{arccoth}(3)
$$

Solving for y from the above gives

$$
\begin{aligned}
& y=2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}} \\
& y=-2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}} \tag{1}\\
& y=-2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}} \tag{2}
\end{align*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=2 \sqrt{-1+\mathrm{e}^{-4} \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}
$$

Verified OK. \{positive\}

$$
y=-2 \sqrt{-1+\mathrm{e}^{-4} \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}
$$

Verified OK. \{positive\}

6.16.4 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{2 y^{2}+8}{\left(x^{2}-1\right) y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{2}{x^{2}-1} y+\frac{8}{x^{2}-1} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{2}{x^{2}-1} \\
f_{1}(x) & =\frac{8}{x^{2}-1} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{2 y^{2}}{x^{2}-1}+\frac{8}{x^{2}-1} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{2 w(x)}{x^{2}-1}+\frac{8}{x^{2}-1} \\
w^{\prime} & =\frac{4 w}{x^{2}-1}+\frac{16}{x^{2}-1} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{4}{x^{2}-1} \\
& q(x)=\frac{16}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{4 w(x)}{x^{2}-1}=\frac{16}{x^{2}-1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{x^{2}-1} d x} \\
& =\frac{(1+x)^{4}}{\left(-x^{2}+1\right)^{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(1+x)^{2}}{(x-1)^{2}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{16}{x^{2}-1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(1+x)^{2} w}{(x-1)^{2}}\right) & =\left(\frac{(1+x)^{2}}{(x-1)^{2}}\right)\left(\frac{16}{x^{2}-1}\right) \\
\mathrm{d}\left(\frac{(1+x)^{2} w}{(x-1)^{2}}\right) & =\left(\frac{16+16 x}{(x-1)^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{(1+x)^{2} w}{(x-1)^{2}} & =\int \frac{16+16 x}{(x-1)^{3}} \mathrm{~d} x \\
\frac{(1+x)^{2} w}{(x-1)^{2}} & =-\frac{16}{x-1}-\frac{16}{(x-1)^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{(1+x)^{2}}{(x-1)^{2}}$ results in

$$
w(x)=\frac{(x-1)^{2}\left(-\frac{16}{x-1}-\frac{16}{(x-1)^{2}}\right)}{(1+x)^{2}}+\frac{c_{1}(x-1)^{2}}{(1+x)^{2}}
$$

which simplifies to

$$
w(x)=\frac{c_{1} x^{2}+\left(-2 c_{1}-16\right) x+c_{1}}{(1+x)^{2}}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=\frac{c_{1} x^{2}+\left(-2 c_{1}-16\right) x+c_{1}}{(1+x)^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=3$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{c_{1}}{4}-3 \\
c_{1}=12
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2}=\frac{12 x^{2}-40 x+12}{(1+x)^{2}}
$$

The above simplifies to

$$
x^{2} y^{2}+2 x y^{2}-12 x^{2}+y^{2}+40 x-12=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} y^{2}+2 y^{2} x-12 x^{2}+y^{2}+40 x-12=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x^{2} y^{2}+2 y^{2} x-12 x^{2}+y^{2}+40 x-12=0
$$

Verified OK.

6.16.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y}{2 y^{2}+8}\right) \mathrm{d} y & =\left(\frac{1}{x^{2}-1}\right) \mathrm{d} x \\
\left(-\frac{1}{x^{2}-1}\right) \mathrm{d} x+\left(\frac{y}{2 y^{2}+8}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x^{2}-1} \\
& N(x, y)=\frac{y}{2 y^{2}+8}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x^{2}-1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y}{2 y^{2}+8}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x^{2}-1} \mathrm{~d} x \\
\phi & =\operatorname{arctanh}(x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y}{2 y^{2}+8}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y}{2 y^{2}+8}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y}{2 y^{2}+8}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y}{2 y^{2}+8}\right) \mathrm{d} y \\
f(y) & =\frac{\ln \left(y^{2}+4\right)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\operatorname{arctanh}(x)+\frac{\ln \left(y^{2}+4\right)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\operatorname{arctanh}(x)+\frac{\ln \left(y^{2}+4\right)}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=3$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \operatorname{arccoth}(3)-\frac{i \pi}{2}+\frac{\ln (2)}{2}=c_{1} \\
& c_{1}=\operatorname{arccoth}(3)-\frac{i \pi}{2}+\frac{\ln (2)}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\operatorname{arctanh}(x)+\frac{\ln \left(y^{2}+4\right)}{4}=\operatorname{arccoth}(3)-\frac{i \pi}{2}+\frac{\ln (2)}{2}
$$

Solving for y from the above gives

$$
\begin{aligned}
& y=2 \sqrt{-1+\mathrm{e}^{-4} \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)} \\
& y=-2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=2 \sqrt{-1+\mathrm{e}^{-4} \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)} \tag{1}\\
& y=-2 \sqrt{-1+\mathrm{e}^{-4} \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)} \tag{2}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \sqrt{-1+\mathrm{e}^{-4} \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}
$$

Verified OK. \{positive\}

$$
y=-2 \sqrt{-1+\mathrm{e}^{-4} \operatorname{arctanh}(x)+4 \operatorname{arccoth}(3)}
$$

Verified OK. \{positive\}

6.16.6 Maple step by step solution

Let's solve
$\left[2 y^{2}+\left(-x^{2}+1\right) y y^{\prime}=-8, y(3)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime} y}{-2 y^{2}-8}=\frac{1}{-x^{2}+1}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime} y}{-2 y^{2}-8} d x=\int \frac{1}{-x^{2}+1} d x+c_{1}$
- Evaluate integral
$-\frac{\ln \left(y^{2}+4\right)}{4}=\operatorname{arctanh}(x)+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{-4+\mathrm{e}^{-4 \operatorname{arctanh}(x)-4 c_{1}}}, y=-\sqrt{-4+\mathrm{e}^{-4 \operatorname{arctanh}(x)-4 c_{1}}}\right\}$
- Use initial condition $y(3)=0$
$0=\sqrt{-4+\mathrm{e}^{-4 \operatorname{arctanh}\left(\frac{1}{3}\right)-4 c_{1}}}$
- \quad Solve for c_{1}
$c_{1}=-\operatorname{arctanh}\left(\frac{1}{3}\right)-\frac{\ln (2)}{2}$
- Substitute $c_{1}=-\operatorname{arctanh}\left(\frac{1}{3}\right)-\frac{\ln (2)}{2}$ into general solution and simplify
$y=2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arctanh}\left(\frac{1}{3}\right)}}$
- Use initial condition $y(3)=0$
$0=-\sqrt{-4+\mathrm{e}^{-4 \operatorname{arctanh}\left(\frac{1}{3}\right)-4 c_{1}}}$
- \quad Solve for c_{1}
$c_{1}=-\operatorname{arctanh}\left(\frac{1}{3}\right)-\frac{\ln (2)}{2}$
- Substitute $c_{1}=-\operatorname{arctanh}\left(\frac{1}{3}\right)-\frac{\ln (2)}{2}$ into general solution and simplify
$y=-2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arctanh}\left(\frac{1}{3}\right)}}$
- Solutions to the IVP
$\left\{y=-2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arctanh}\left(\frac{1}{3}\right)}}, y=2 \sqrt{-1+\mathrm{e}^{-4 \operatorname{arctanh}(x)+4 \operatorname{arctanh}\left(\frac{1}{3}\right)}}\right\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.046 (sec). Leaf size: 45

```
dsolve([2*(y(x)^2+4)+(1-x^2)*y(x)*diff (y(x),x)=0,y(3) = 0],y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{2 \sqrt{3 x^{2}-10 x+3}}{1+x} \\
& y(x)=\frac{2 \sqrt{3 x^{2}-10 x+3}}{1+x}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.886 (sec). Leaf size: 51
DSolve $\left[\left\{2 *(y[x] \sim 2+4)+\left(1-x^{\wedge} 2\right) * y[x] * y y^{\prime}[x]==0,\{y[3]==0\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
\begin{aligned}
& y(x) \rightarrow-\frac{2 \sqrt{3 x^{2}-10 x+3}}{x+1} \\
& y(x) \rightarrow \frac{2 \sqrt{3 x^{2}-10 x+3}}{x+1}
\end{aligned}
$$

6.17 problem 17

6.17.1 Existence and uniqueness analysis 1470
6.17.2 Solving as first order ode lie symmetry lookup ode 1471
6.17.3 Solving as bernoulli ode . 1476
6.17.4 Solving as exact ode . 1479
6.17.5 Maple step by step solution . 1482

Internal problem ID [11691]
Internal file name [OUTPUT/11700_Wednesday_April_10_2024_04_55_07_PM_1436126/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_exact, _Bernoulli]

$$
\mathrm{e}^{2 x} y^{2}+\mathrm{e}^{2 x} y y^{\prime}=2 x
$$

With initial conditions

$$
[y(0)=2]
$$

6.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \mathrm{e}^{-2 x}}{y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \mathrm{e}^{-2 x}}{y}\right) \\
& =-2+\frac{\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \mathrm{e}^{-2 x}}{y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

6.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \mathrm{e}^{-2 x}}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 233: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{\mathrm{e}^{-2 x}}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\mathrm{e}^{-2 x}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\mathrm{e}^{2 x} y^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \mathrm{e}^{-2 x}}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{2 x} y^{2} \\
S_{y} & =y \mathrm{e}^{2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{2 x} y^{2}}{2}=x^{2}+c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{2 x} y^{2}}{2}=x^{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \mathrm{e}^{-2 x}}{y}$		$\frac{d S}{d R}=2 R$
	$R=x$	
$\underline{+1}$		
	$S=\frac{\mathrm{e}^{2 x} y^{2}}{0}$	$\square \square^{-4}:{ }^{\text {a }}$
	2	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=c_{1}
$$

$$
c_{1}=2
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\mathrm{e}^{2 x} y^{2}}{2}=x^{2}+2
$$

Solving for y from the above gives

$$
y=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+2\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+2\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+2\right)}
$$

Verified OK.

6.17.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \mathrm{e}^{-2 x}}{y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-y+2 x \mathrm{e}^{-2 x} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-1 \\
f_{1}(x) & =2 x \mathrm{e}^{-2 x} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-y^{2}+2 x \mathrm{e}^{-2 x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-w(x)+2 x \mathrm{e}^{-2 x} \\
w^{\prime} & =-2 w+4 x \mathrm{e}^{-2 x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =4 x \mathrm{e}^{-2 x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+2 w(x)=4 x \mathrm{e}^{-2 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(4 x \mathrm{e}^{-2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 x} w\right) & =\left(\mathrm{e}^{2 x}\right)\left(4 x \mathrm{e}^{-2 x}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 x} w\right) & =(4 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 x} w=\int 4 x \mathrm{~d} x \\
& \mathrm{e}^{2 x} w=2 x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 x}$ results in

$$
w(x)=2 x^{2} \mathrm{e}^{-2 x}+c_{1} \mathrm{e}^{-2 x}
$$

which simplifies to

$$
w(x)=\mathrm{e}^{-2 x}\left(2 x^{2}+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=\mathrm{e}^{-2 x}\left(2 x^{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4=c_{1} \\
& c_{1}=4
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2}=2 \mathrm{e}^{-2 x}\left(x^{2}+2\right)
$$

Solving for y from the above gives

$$
y=\sqrt{2} \sqrt{\mathrm{e}^{-2 x}\left(x^{2}+2\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2} \sqrt{\mathrm{e}^{-2 x}\left(x^{2}+2\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{2} \sqrt{\mathrm{e}^{-2 x}\left(x^{2}+2\right)}
$$

Verified OK.

6.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y \mathrm{e}^{2 x}\right) \mathrm{d} y & =\left(-\mathrm{e}^{2 x} y^{2}+2 x\right) \mathrm{d} x \\
\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \mathrm{d} x+\left(y \mathrm{e}^{2 x}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\mathrm{e}^{2 x} y^{2}-2 x \\
N(x, y) & =y \mathrm{e}^{2 x}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{2 x} y^{2}-2 x\right) \\
& =2 y \mathrm{e}^{2 x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y \mathrm{e}^{2 x}\right) \\
& =2 y \mathrm{e}^{2 x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{2 x} y^{2}-2 x \mathrm{~d} x \\
\phi & =\frac{\mathrm{e}^{2 x} y^{2}}{2}-x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=y \mathrm{e}^{2 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y \mathrm{e}^{2 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
y \mathrm{e}^{2 x}=y \mathrm{e}^{2 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\mathrm{e}^{2 x} y^{2}}{2}-x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\mathrm{e}^{2 x} y^{2}}{2}-x^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\mathrm{e}^{2 x} y^{2}}{2}-x^{2}=2
$$

Solving for y from the above gives

$$
y=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+2\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+2\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+2\right)}
$$

Verified OK.

6.17.5 Maple step by step solution

Let's solve

$$
\left[\mathrm{e}^{2 x} y^{2}+\mathrm{e}^{2 x} y y^{\prime}=2 x, y(0)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$2 y \mathrm{e}^{2 x}=2 y \mathrm{e}^{2 x}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\mathrm{e}^{2 x} y^{2}-2 x\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\frac{\mathrm{e}^{2 x} y^{2}}{2}-x^{2}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$y \mathrm{e}^{2 x}=y \mathrm{e}^{2 x}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=0$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\frac{\mathrm{e}^{2 x} y^{2}}{2}-x^{2}$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{\mathrm{e}^{2 x} y^{2}}{2}-x^{2}=c_{1}$
- \quad Solve for y
$\left\{y=\frac{\sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+c_{1}\right)}}{\mathrm{e}^{2 x}}, y=-\frac{\sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+c_{1}\right)}}{\mathrm{e}^{2 x}}\right\}$
- Use initial condition $y(0)=2$

$$
2=\sqrt{c_{1}} \sqrt{2}
$$

- \quad Solve for c_{1}

$$
c_{1}=2
$$

- \quad Substitute $c_{1}=2$ into general solution and simplify
$y=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\left(\mathrm{e}^{x}\right)^{2}\left(x^{2}+2\right)}$
- Use initial condition $y(0)=2$
$2=-\sqrt{c_{1}} \sqrt{2}$
- Solution does not satisfy initial condition
- \quad Solution to the IVP

$$
y=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\left(\mathrm{e}^{x}\right)^{2}\left(x^{2}+2\right)}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 24
dsolve $\left(\left[\left(\exp (2 * x) * y(x)^{\wedge} 2-2 * x\right)+(\exp (2 * x) * y(x)) * \operatorname{diff}(y(x), x)=0, y(0)=2\right], y(x)\right.$, singsol=all)

$$
y(x)=\mathrm{e}^{-2 x} \sqrt{2} \sqrt{\mathrm{e}^{2 x}\left(x^{2}+2\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.337 (sec). Leaf size: 25
DSolve $\left[\left\{(\operatorname{Exp}[2 * x] * y[x] \sim 2-2 * x)+(\operatorname{Exp}[2 * x] * y[x]) * y{ }^{\prime}[x]==0,\{y[0]==2\}\right\}, y[x], x\right.$, IncludeSingularSolu

$$
y(x) \rightarrow \sqrt{2} e^{-x} \sqrt{x^{2}+2}
$$

6.18 problem 18

6.18.1 Existence and uniqueness analysis 1485
6.18.2 Solving as exact ode . 1486

Internal problem ID [11692]
Internal file name [OUTPUT/11701_Wednesday_April_10_2024_04_55_08_PM_24887235/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _rational]

$$
2 y^{2} x+\left(2 x^{2} y+6 y^{2}\right) y^{\prime}=-3 x^{2}
$$

With initial conditions

$$
[y(1)=2]
$$

6.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x\left(2 y^{2}+3 x\right)}{2 y\left(x^{2}+3 y\right)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\left\{-\infty \leq y<0,0<y<-\frac{1}{3},-\frac{1}{3}<y \leq \infty\right\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x\left(2 y^{2}+3 x\right)}{2 y\left(x^{2}+3 y\right)}\right) \\
& =-\frac{2 x}{x^{2}+3 y}+\frac{x\left(2 y^{2}+3 x\right)}{2 y^{2}\left(x^{2}+3 y\right)}+\frac{3 x\left(2 y^{2}+3 x\right)}{2 y\left(x^{2}+3 y\right)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\left\{-\infty \leq y<0,0<y<-\frac{1}{3},-\frac{1}{3}<y \leq \infty\right\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

6.18.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 x^{2} y+6 y^{2}\right) \mathrm{d} y & =\left(-2 x y^{2}-3 x^{2}\right) \mathrm{d} x \\
\left(2 x y^{2}+3 x^{2}\right) \mathrm{d} x+\left(2 x^{2} y+6 y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y^{2}+3 x^{2} \\
N(x, y) & =2 x^{2} y+6 y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y^{2}+3 x^{2}\right) \\
& =4 x y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 x^{2} y+6 y^{2}\right) \\
& =4 x y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y^{2}+3 x^{2} \mathrm{~d} x \\
\phi & =x^{2}\left(y^{2}+x\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x^{2} y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x^{2} y+6 y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x^{2} y+6 y^{2}=2 x^{2} y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=6 y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(6 y^{2}\right) \mathrm{d} y \\
f(y) & =2 y^{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2}\left(y^{2}+x\right)+2 y^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2}\left(y^{2}+x\right)+2 y^{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 21=c_{1} \\
& c_{1}=21
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x^{2}\left(y^{2}+x\right)+2 y^{3}=21
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} y^{2}+x^{3}+2 y^{3}=21 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x^{2} y^{2}+x^{3}+2 y^{3}=21
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 87
dsolve $\left(\left[\left(3 * x^{\wedge} 2+2 * x * y(x)^{\wedge} 2\right)+\left(2 * x^{\wedge} 2 * y(x)+6 * y(x)^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(1)=2\right], y(x)\right.$, singsol $\left.=a l l\right)$

$$
\begin{aligned}
y(x)= & \frac{\left(1134-54 x^{3}-x^{6}+6 \sqrt{3 x^{9}+18 x^{6}-3402 x^{3}+35721}\right)^{\frac{1}{3}}}{6} \\
& +\frac{x^{4}}{6\left(1134-54 x^{3}-x^{6}+6 \sqrt{3 x^{9}+18 x^{6}-3402 x^{3}+35721}\right)^{\frac{1}{3}}}-\frac{x^{2}}{6}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 4.797 (sec). Leaf size: 103
DSolve $\left[\left\{\left(3 * x^{\wedge} 2+2 * x * y[x] \sim 2\right)+\left(2 * x^{\wedge} 2 * y[x]+6 * y[x] \sim 2\right) * y\right.\right.$ ' $\left.[x]==0,\{y[1]==2\}\right\}, y[x], x$, IncludeSingulars

$$
\begin{aligned}
y(x) \rightarrow \frac{1}{6}\left(-x^{2}+\right. & \sqrt[3]{-x^{6}-54 x^{3}+6 \sqrt{3} \sqrt{x^{9}+6 x^{6}-1134 x^{3}+11907}+1134} \\
& \left.+\frac{x^{4}}{\sqrt[3]{-x^{6}-54 x^{3}+6 \sqrt{3} \sqrt{x^{9}+6 x^{6}-1134 x^{3}+11907}+1134}}\right)
\end{aligned}
$$

6.19 problem 19

6.19.1 Existence and uniqueness analysis 1491
6.19.2 Solving as separable ode . 1492
6.19.3 Solving as first order ode lie symmetry lookup ode 1494
6.19.4 Solving as bernoulli ode . 1498
6.19.5 Solving as exact ode . 1501
6.19.6 Maple step by step solution . 1504

Internal problem ID [11693]
Internal file name [OUTPUT/11702_Wednesday_April_10_2024_04_55_10_PM_49928285/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
4 x y y^{\prime}-y^{2}=1
$$

With initial conditions

$$
[y(2)=1]
$$

6.19.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y^{2}+1}{4 y x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $f(x, y)$ when $x=2$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y^{2}+1}{4 y x}\right) \\
& =\frac{1}{2 x}-\frac{y^{2}+1}{4 y^{2} x}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=2$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

6.19.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y^{2}+1}{4 y x}
\end{aligned}
$$

Where $f(x)=\frac{1}{4 x}$ and $g(y)=\frac{y^{2}+1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{2}+1}{y}} d y & =\frac{1}{4 x} d x \\
\int \frac{1}{\frac{y^{2}+1}{y}} d y & =\int \frac{1}{4 x} d x \\
\frac{\ln \left(y^{2}+1\right)}{2} & =\frac{\ln (x)}{4}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{y^{2}+1}=\mathrm{e}^{\frac{\ln (x)}{4}+c_{1}}
$$

Which simplifies to

$$
\sqrt{y^{2}+1}=c_{2} x^{\frac{1}{4}}
$$

Which can be simplified to become

$$
\sqrt{1+y^{2}}=c_{2} x^{\frac{1}{4}} \mathrm{e}^{c_{1}}
$$

The solution is

$$
\sqrt{1+y^{2}}=c_{2} x^{\frac{1}{4}} \mathrm{e}^{c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \sqrt{2}=2^{\frac{1}{4}} \mathrm{e}^{c_{1}} c_{2} \\
& c_{1}=\frac{\ln \left(\frac{2}{c_{2}^{4}}\right)}{4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\sqrt{y^{2}+1}=c_{2} x^{\frac{1}{4}} \sqrt{\sqrt{2} \sqrt{\frac{1}{c_{2}^{4}}}}
$$

Solving for y from the above gives

$$
y=\sqrt{\sqrt{x} \sqrt{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{\sqrt{x} \sqrt{2}-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{\sqrt{x} \sqrt{2}-1}
$$

Verified OK. \{positive\}

6.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2}+1}{4 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 236: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=4 x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{4 x} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (x)}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}+1}{4 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{4 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{y^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R^{2}+1}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{2}+1\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{\ln (x)}{4}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (x)}{4}=\frac{\ln \left(1+y^{2}\right)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}+1}{4 y x}$		$\frac{d S}{d R}=\frac{R}{R^{2}+1}$
＋${ }^{4}$		为
		－
$\rightarrow \rightarrow \rightarrow-\infty$	$R=y$	
	$\ln (x)$	边
$\xrightarrow{\rightarrow 0} 0 \times \pm$		0
嵒		为
		\rightarrow
\rightarrow－		\rightarrow

Initial conditions are used to solve for c_{1} ．Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration．

$$
\frac{\ln (2)}{4}=\frac{\ln (2)}{2}+c_{1}
$$

$$
c_{1}=-\frac{\ln (2)}{4}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln (x)}{4}=\frac{\ln \left(y^{2}+1\right)}{2}-\frac{\ln (2)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (x)}{4}=\frac{\ln \left(1+y^{2}\right)}{2}-\frac{\ln (2)}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (x)}{4}=\frac{\ln \left(1+y^{2}\right)}{2}-\frac{\ln (2)}{4}
$$

Verified OK.

6.19.4 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+1}{4 y x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{4 x} y+\frac{1}{4 x} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{4 x} \\
f_{1}(x) & =\frac{1}{4 x} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{y^{2}}{4 x}+\frac{1}{4 x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{4 x}+\frac{1}{4 x} \\
w^{\prime} & =\frac{w}{2 x}+\frac{1}{2 x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=\frac{1}{2 x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{2 x}=\frac{1}{2 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{1}{2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{\sqrt{x}}\right) & =\left(\frac{1}{\sqrt{x}}\right)\left(\frac{1}{2 x}\right) \\
\mathrm{d}\left(\frac{w}{\sqrt{x}}\right) & =\left(\frac{1}{2 x^{\frac{3}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{\sqrt{x}}=\int \frac{1}{2 x^{\frac{3}{2}}} \mathrm{~d} x \\
& \frac{w}{\sqrt{x}}=-\frac{1}{\sqrt{x}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
w(x)=-1+c_{1} \sqrt{x}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-1+c_{1} \sqrt{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-1+\sqrt{2} c_{1} \\
c_{1}=\sqrt{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2}=\sqrt{x} \sqrt{2}-1
$$

Solving for y from the above gives

$$
y=\sqrt{\sqrt{x} \sqrt{2}-1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{\sqrt{x} \sqrt{2}-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{\sqrt{x} \sqrt{2}-1}
$$

Verified OK. \{positive\}

6.19.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{4 y}{y^{2}+1}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{4 y}{y^{2}+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{1}{x} \\
N(x, y) & =\frac{4 y}{y^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{4 y}{y^{2}+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{4 y}{y^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{4 y}{y^{2}+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{4 y}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{4 y}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =2 \ln \left(y^{2}+1\right)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+2 \ln \left(y^{2}+1\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+2 \ln \left(y^{2}+1\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \ln (2)=c_{1} \\
& c_{1}=\ln (2)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\ln (x)+2 \ln \left(y^{2}+1\right)=\ln (2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (x)+2 \ln \left(1+y^{2}\right)=\ln (2) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\ln (x)+2 \ln \left(1+y^{2}\right)=\ln (2)
$$

Verified OK.

6.19.6 Maple step by step solution

Let's solve

$$
\left[4 x y y^{\prime}-y^{2}=1, y(2)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime} y}{1+y^{2}}=\frac{1}{4 x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime} y}{1+y^{2}} d x=\int \frac{1}{4 x} d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln \left(1+y^{2}\right)}{2}=\frac{\ln (x)}{4}+c_{1}
$$

- Use initial condition $y(2)=1$
$\frac{\ln (2)}{2}=\frac{\ln (2)}{4}+c_{1}$
- \quad Solve for c_{1}

$$
c_{1}=\frac{\ln (2)}{4}
$$

- Substitute $c_{1}=\frac{\ln (2)}{4}$ into general solution and simplify

$$
\frac{\ln \left(1+y^{2}\right)}{2}=\frac{\ln (x)}{4}+\frac{\ln (2)}{4}
$$

- \quad Solution to the IVP
$\frac{\ln \left(1+y^{2}\right)}{2}=\frac{\ln (x)}{4}+\frac{\ln (2)}{4}$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 15

```
dsolve([4*x*y(x)*diff(y(x),x)=y(x)~2+1,y(2) = 1],y(x), singsol=all)
```

$$
y(x)=\sqrt{\sqrt{2} \sqrt{x}-1}
$$

\checkmark Solution by Mathematica
Time used: 3.741 (sec). Leaf size: 22
DSolve $\left[\left\{4 * x * y[x] * y y^{\prime}[x]==y[x] \sim 2+1,\{y[2]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{\sqrt{2} \sqrt{x}-1}
$$

6.20 problem 20

6.20.1 Existence and uniqueness analysis 1507
6.20.2 Solving as homogeneousTypeD2 ode 1508
6.20.3 Solving as first order ode lie symmetry calculated ode 1510

Internal problem ID [11694]
Internal file name [OUTPUT/11703_Wednesday_April_10_2024_04_55_13_PM_71646592/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, ` class A`]]

$$
y^{\prime}-\frac{2 x+7 y}{-2 y+2 x}=0
$$

With initial conditions

$$
[y(1)=2]
$$

6.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{2 x+7 y}{2(y-x)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{x<2 \vee 2<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x+7 y}{2(y-x)}\right) \\
& =-\frac{7}{2(y-x)}+\frac{2 x+7 y}{2(y-x)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{x<2 \vee 2<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<1 \vee 1<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

6.20.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{2 x+7 u(x) x}{-2 u(x) x+2 x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u^{2}+5 u+2}{2 x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=\frac{2 u^{2}+5 u+2}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{2 u^{2}+5 u+2}{u-1}} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{\frac{2 u^{2}+5 u+2}{u-1}} d u & =\int-\frac{1}{2 x} d x \\
-\frac{\ln (2 u+1)}{2}+\ln (u+2) & =-\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln (2 u+1)}{2}+\ln (u+2)}=\mathrm{e}^{-\frac{\ln (x)}{2}+c_{2}}
$$

Which simplifies to

$$
\frac{u+2}{\sqrt{2 u+1}}=\frac{c_{3}}{\sqrt{x}}
$$

The solution is

$$
\frac{u(x)+2}{\sqrt{2 u(x)+1}}=\frac{c_{3}}{\sqrt{x}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\frac{y}{x}+2}{\sqrt{\frac{2 y}{x}+1}}=\frac{c_{3}}{\sqrt{x}} \\
& \frac{2 x+y}{\sqrt{\frac{x+2 y}{x}} x}=\frac{c_{3}}{\sqrt{x}}
\end{aligned}
$$

Which simplifies to

$$
\frac{2 x+y}{\sqrt{\frac{x+2 y}{x}} \sqrt{x}}=c_{3}
$$

Substituting initial conditions and solving for c_{3} gives $c_{3}=\frac{4 \sqrt{5}}{5}$. Hence the solution beSummary
The solution(s) found are the following
comes

$$
\begin{equation*}
\frac{2 x+y}{\sqrt{\frac{x+2 y}{x}} \sqrt{x}}=\frac{4 \sqrt{5}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{2 x+y}{\sqrt{\frac{x+2 y}{x}} \sqrt{x}}=\frac{4 \sqrt{5}}{5}
$$

Verified OK.

6.20.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 x+7 y}{2(y-x)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(2 x+7 y)\left(b_{3}-a_{2}\right)}{2(y-x)}-\frac{(2 x+7 y)^{2} a_{3}}{4(y-x)^{2}} \\
& -\left(-\frac{1}{y-x}-\frac{2 x+7 y}{2(y-x)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{7}{2(y-x)}+\frac{2 x+7 y}{2(y-x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{4 x^{2} a_{2}+4 x^{2} a_{3}+14 x^{2} b_{2}-4 x^{2} b_{3}-8 x y a_{2}+28 x y a_{3}+8 x y b_{2}+8 x y b_{3}-14 y^{2} a_{2}+31 y^{2} a_{3}-4 y^{2} b_{2}+14 y^{2}}{4(-y+x)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -4 x^{2} a_{2}-4 x^{2} a_{3}-14 x^{2} b_{2}+4 x^{2} b_{3}+8 x y a_{2}-28 x y a_{3}-8 x y b_{2} \tag{6E}\\
& \quad-8 x y b_{3}+14 y^{2} a_{2}-31 y^{2} a_{3}+4 y^{2} b_{2}-14 y^{2} b_{3}-18 x b_{1}+18 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -4 a_{2} v_{1}^{2}+8 a_{2} v_{1} v_{2}+14 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}-28 a_{3} v_{1} v_{2}-31 a_{3} v_{2}^{2}-14 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-8 b_{2} v_{1} v_{2}+4 b_{2} v_{2}^{2}+4 b_{3} v_{1}^{2}-8 b_{3} v_{1} v_{2}-14 b_{3} v_{2}^{2}+18 a_{1} v_{2}-18 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-4 a_{2}-4 a_{3}-14 b_{2}+4 b_{3}\right) v_{1}^{2}+\left(8 a_{2}-28 a_{3}-8 b_{2}-8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-18 b_{1} v_{1}+\left(14 a_{2}-31 a_{3}+4 b_{2}-14 b_{3}\right) v_{2}^{2}+18 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
18 a_{1} & =0 \\
-18 b_{1} & =0 \\
-4 a_{2}-4 a_{3}-14 b_{2}+4 b_{3} & =0 \\
8 a_{2}-28 a_{3}-8 b_{2}-8 b_{3} & =0 \\
14 a_{2}-31 a_{3}+4 b_{2}-14 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-\frac{5 b_{2}}{2}+b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 x+7 y}{2(y-x)}\right)(x) \\
& =\frac{-2 x^{2}-5 x y-2 y^{2}}{-2 y+2 x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x^{2}-5 x y-2 y^{2}}{-2 y+2 x}} d y
\end{aligned}
$$

Which results in

$$
S=2 \ln (2 x+y)-\ln (x+2 y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x+7 y}{2(y-x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4}{2 x+y}-\frac{1}{x+2 y} \\
S_{y} & =\frac{2 y-2 x}{(x+2 y)(2 x+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 \ln (2 x+y)-\ln (x+2 y)=c_{1}
$$

Which simplifies to

$$
2 \ln (2 x+y)-\ln (x+2 y)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x+7 y}{2(y-x)}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow$
-1.1.1. ${ }^{1}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+S(R)^{+}]{\rightarrow \rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow \rightarrow x^{\rightarrow} \rightarrow x^{*}$		$\rightarrow \rightarrow$
	$R=x$	
	$S=2 \ln (2 x+y)-\ln (x-$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+49 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
+1.1.1.babibuty		

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4 \ln (2)-\ln (5)=c_{1} \\
& c_{1}=4 \ln (2)-\ln (5)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
2 \ln (2 x+y)-\ln (x+2 y)=4 \ln (2)-\ln (5)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
2 \ln (2 x+y)-\ln (x+2 y)=4 \ln (2)-\ln (5) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
2 \ln (2 x+y)-\ln (x+2 y)=4 \ln (2)-\ln (5)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.203 (sec). Leaf size: 18

```
dsolve([diff (y(x),x)=(2*x+7*y(x))/(2*x-2*y(x)),y(1) = 2],y(x), singsol=all)
```

$$
y(x)=\frac{4 \sqrt{16-15 x}}{5}-2 x+\frac{16}{5}
$$

\checkmark Solution by Mathematica
Time used: 1.383 (sec). Leaf size: 25
DSolve $\left[\left\{y^{\prime}[x]==(2 * x+7 * y[x]) /(2 * x-2 * y[x]),\{y[1]==2\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{2}{5}(-5 x+2 \sqrt{16-15 x}+8)
$$

6.21 problem 21

6.21.1 Existence and uniqueness analysis 1517
6.21.2 Solving as separable ode . 1517
6.21.3 Solving as linear ode . 1519
6.21.4 Solving as homogeneousTypeD2 ode 1520
6.21.5 Solving as first order ode lie symmetry lookup ode 1522
6.21.6 Solving as exact ode . 1527
6.21.7 Maple step by step solution . 1530

Internal problem ID [11695]
Internal file name [OUTPUT/11704_Wednesday_April_10_2024_04_55_15_PM_67684932/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x y}{x^{2}+1}=0
$$

With initial conditions

$$
[y(\sqrt{15})=2]
$$

6.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{x}{x^{2}+1} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{x y}{x^{2}+1}=0
$$

The domain of $p(x)=-\frac{x}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\sqrt{15}$ is inside this domain. Hence solution exists and is unique.

6.21.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x y}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=\frac{x}{x^{2}+1}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{x}{x^{2}+1} d x \\
\int \frac{1}{y} d y & =\int \frac{x}{x^{2}+1} d x \\
\ln (y) & =\frac{\ln \left(x^{2}+1\right)}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}} \\
& =c_{1} \sqrt{x^{2}+1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\sqrt{15}$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=4 c_{1} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x^{2}+1}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Verified OK.

6.21.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{x}{x^{2}+1} d x} \\
& =\frac{1}{\sqrt{x^{2}+1}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x^{2}+1}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{\sqrt{x^{2}+1}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x^{2}+1}}$ results in

$$
y=c_{1} \sqrt{x^{2}+1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\sqrt{15}$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=4 c_{1} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x^{2}+1}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Verified OK.

6.21.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2} u(x)}{x^{2}+1}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x\left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x\left(x^{2}+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x\left(x^{2}+1\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x\left(x^{2}+1\right)} d x \\
\ln (u) & =-\ln (x)+\frac{\ln \left(x^{2}+1\right)}{2}+c_{2} \\
u & =\mathrm{e}^{-\ln (x)+\frac{\ln \left(x^{2}+1\right)}{2}+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)+\frac{\ln \left(x^{2}+1\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \sqrt{x^{2}+1}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \sqrt{x^{2}+1}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=\sqrt{15}$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=4 c_{2} \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x^{2}+1}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Verified OK.

6.21.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x y}{x^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 239: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sqrt{x^{2}+1} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x^{2}+1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sqrt{x^{2}+1}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x y}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y x}{\left(x^{2}+1\right)^{\frac{3}{2}}} \\
S_{y} & =\frac{1}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{\sqrt{x^{2}+1}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{\sqrt{x^{2}+1}}=c_{1}
$$

Which gives

$$
y=c_{1} \sqrt{x^{2}+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x y}{x^{2}+1}$		$\frac{d S}{d R}=0$
		\rightarrow
- invivx		
边	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow}$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow+\infty} \rightarrow$	$S=\frac{y}{\sqrt{x^{2}+1}}$	
	$=\frac{}{\sqrt{x^{2}+1}}$	$\xrightarrow{\longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow{\longrightarrow}$
		$\xrightarrow{\mu \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $x=\sqrt{15}$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=4 c_{1}
$$

$$
c_{1}=\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x^{2}+1}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Verified OK.

6.21.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x}{x^{2}+1} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+1\right)}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\sqrt{15}$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=4 \mathrm{e}^{c_{1}} \\
c_{1}=-\ln (2)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x^{2}+1}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Verified OK.

6.21.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{x y}{x^{2}+1}=0, y(\sqrt{15})=2\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{x}{x^{2}+1}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{x}{x^{2}+1} d x+c_{1}$
- Evaluate integral

$$
\ln (y)=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}}
$$

- Use initial condition $y(\sqrt{15})=2$

$$
2=\mathrm{e}^{2 \ln (2)+c_{1}}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\ln (2)
$$

- Substitute $c_{1}=-\ln (2)$ into general solution and simplify

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

- Solution to the IVP

$$
y=\frac{\sqrt{x^{2}+1}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 13

```
dsolve([diff (y(x),x)=(x*y(x))/(x^2+1),y(sqrt(15)) = 2],y(x), singsol=all)
```

$$
y(x)=\frac{\sqrt{x^{2}+1}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 18
DSolve $\left[\left\{y^{\prime}[x]==(x * y[x]) /\left(x^{\wedge} 2+1\right),\{y[\operatorname{Sqrt}[15]]==2\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\sqrt{x^{2}+1}}{2}
$$

6.22 problem 22

6.22.1 Existence and uniqueness analysis 1533
6.22.2 Solving as linear ode . 1534
6.22.3 Solving as first order ode lie symmetry lookup ode 1537
6.22.4 Maple step by step solution . 1541

Internal problem ID [11696]
Internal file name [OUTPUT/11705_Wednesday_April_10_2024_04_55_16_PM_71593933/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\left\{\begin{array}{cc}
1 & 0 \leq x<2 \\
0 & 0<x
\end{array}\right.
$$

With initial conditions

$$
[y(0)=0]
$$

6.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)= \begin{cases}0 & x<0 \\
1 & x<2 \\
0 & 2 \leq x\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y= \begin{cases}0 & x<0 \\ 1 & x<2 \\ 0 & 2 \leq x\end{cases}
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\left\{\begin{array}{ll}0 & x<0 \\ 1 & x<2 \\ 0 & 2 \leq x\end{array}\right.$ is

$$
\{0 \leq x \leq 2,2 \leq x \leq \infty,-\infty \leq x \leq 0\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.22.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\left\{\begin{array}{ll}
0 & x<0 \\
1 & x<2 \\
0 & 2 \leq x
\end{array}\right)\right. \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(\left\{\begin{array}{ll}
0 & x<0 \\
1 & x<2 \\
0 & 2 \leq x
\end{array}\right)\right. \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left\{\begin{array}{rl}
0 & x<0 \\
\mathrm{e}^{x} & x<2 \\
0 & 2 \leq x
\end{array}\right.
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int\left\{\begin{array}{cc}
0 & x<0 \\
\mathrm{e}^{x} & x<2 \\
0 & 2 \leq x
\end{array}\right. \\
& \mathrm{e}^{x} y=\left\{\begin{array}{cc}
0 & x \leq 0 \\
-1+\mathrm{e}^{x} & x \leq 2 \\
\mathrm{e}^{2}-1 & 2<x
\end{array}\right.
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
-1+\mathrm{e}^{x} & x \leq 2 \\
\mathrm{e}^{2}-1 & 2<x
\end{array}\right)+c_{1} \mathrm{e}^{-x}\right.
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
-1+\mathrm{e}^{x} & x \leq 2 \\
\mathrm{e}^{2}-1 & 2<x
\end{array}\right)+c_{1}\right)\right.
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{1}
$$

$$
c_{1}=0
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
0 & x \leq 0 \\
1-\mathrm{e}^{-x} & x \leq 2 \\
\mathrm{e}^{-x+2}-\mathrm{e}^{-x} & 2<x \\
0 & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
0 & x \leq 0 \tag{1}\\
1-\mathrm{e}^{-x} & x \leq 2 \\
\mathrm{e}^{-x+2}-\mathrm{e}^{-x} & 2<x \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\left\{\begin{array}{cc}
0 & x \leq 0 \\
1-\mathrm{e}^{-x} & x \leq 2 \\
\mathrm{e}^{-x+2}-\mathrm{e}^{-x} & 2<x \\
0 & \text { otherwise }
\end{array}\right.
$$

Verified OK.

6.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\left(\left\{\begin{array}{cc}
1 & 0 \leq x<2 \\
0 & 0<x
\end{array}\right)\right. \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 242: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+\left(\left\{\begin{array}{cc}
1 & 0 \leq x<2 \\
0 & 0<x
\end{array}\right)\right.
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
0 & x<0 \tag{2~A}\\
\mathrm{e}^{x} & x<2 \\
0 & 2 \leq x
\end{array}\right.
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
0 & R<0 \\
\mathrm{e}^{R} & R<2 \\
0 & 2 \leq R
\end{array}\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
c_{1} & R<0 \tag{4}\\
c_{1}+\mathrm{e}^{R}-1 & R<2 \\
c_{1}+\mathrm{e}^{2}-1 & 2 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x}=\left\{\begin{array}{cc}
c_{1} & x<0 \\
c_{1}-1+\mathrm{e}^{x} & x<2 \\
c_{1}+\mathrm{e}^{2}-1 & 2 \leq x
\end{array}\right.
$$

Which simplifies to

$$
y \mathrm{e}^{x}=\left\{\begin{array}{cc}
c_{1} & x<0 \\
c_{1}-1+\mathrm{e}^{x} & x<2 \\
c_{1}+\mathrm{e}^{2}-1 & 2 \leq x
\end{array}\right.
$$

Which gives

$$
y=\left\{\begin{array}{cc}
{\left[c_{1} \mathrm{e}^{-x}\right]} & x<0 \\
{\left[1+\left(-1+c_{1}\right) \mathrm{e}^{-x}\right]} & x<2 \\
{\left[\mathrm{e}^{-x}\left(c_{1}+\mathrm{e}^{2}-1\right)\right]} & 2 \leq x
\end{array}\right.
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+\left(\left\{\begin{array}{cc}1 & 0 \leq x<2 \\ 0 & 0<x\end{array}\right)\right.$		$\frac{d S}{d R}=\left\{\begin{array}{cc}0 & R<0 \\ \mathrm{e}^{R} & R<2 \\ 0 & 2 \leq R\end{array}\right.$
	$\begin{aligned} R & =x \\ S & =\mathrm{e}^{x} y \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\left[c_{1}\right]
$$

Unable to solve for constant of integration. Verification of solutions N/A

6.22.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=\left\{\begin{array}{cc}
1 & 0 \leq x<2 \\
0 & 0<x
\end{array}, y(0)=0\right]\right.
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative
$y^{\prime}=-y+\left\{\begin{array}{cc}1 & 0 \leq x<2 \\ 0 & 0<x\end{array}\right.$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+y=\left\{\begin{array}{cc}1 & 0 \leq x<2 \\ 0 & 0<x\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x)\left(\left\{\begin{array}{cc}1 & 0 \leq x<2 \\ 0 & 0<x\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{x}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(\left\{\begin{array}{cc}
1 & 0 \leq x<2 \\
0 & 0<x
\end{array}\right) d x+c_{1}\right.
$$

- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x)\left(\left\{\begin{array}{cc}
1 & 0 \leq x<2 \\
0 & 0<x
\end{array}\right) d x+c_{1}\right.
$$

- \quad Solve for y
$y=\frac{\int \mu(x)\left(\left\{\begin{array}{cc}1 & 0 \leq x<2 \\ 0 & 0<x\end{array}\right) d x+c_{1}\right.}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int \mathrm{e}^{x}\left(\left\{\begin{array}{cc}1 & 0 \leq x<2 \\ 0 & 0<x\end{array}\right) d x+c_{1}\right.}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\left\{\begin{array}{cl}
0 & x \leq 0 \\
-1+\mathrm{e}^{x} & x \leq 2+c_{1} \\
\mathrm{e}^{2}-1 & 2<x
\end{array}\right.}{\mathrm{e}^{x}}
$$

- Simplify

$$
y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cl}
0 & x \leq 0 \\
-1+\mathrm{e}^{x} & x \leq 2 \\
\mathrm{e}^{2}-1 & 2<x
\end{array}\right)\right.
$$

- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}0 & x \leq 0 \\ -1+\mathrm{e}^{x} & x \leq 2 \\ \mathrm{e}^{2}-1 & 2<x\end{array}\right)\right.$
- Solution to the IVP
$y=\mathrm{e}^{-x}\left(\left\{\begin{array}{cc}0 & x \leq 0 \\ -1+\mathrm{e}^{x} & x \leq 2 \\ \mathrm{e}^{2}-1 & 2<x\end{array}\right)\right.$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.313 (sec). Leaf size: 36
dsolve([diff $(y(x), x)+y(x)=$ piecewise $(0<=x$ and $x<2,1, x>0,0), y(0)=0], y(x)$, singsol=all)

$$
y(x)=\left\{\begin{array}{cc}
0 & x<0 \\
1-\mathrm{e}^{-x} & x<2 \\
\mathrm{e}^{2-x}-\mathrm{e}^{-x} & 2 \leq x
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 39
DSolve $\left[\left\{y^{\prime}[x]+y[x]==\right.\right.$ Piecewise $\left.[\{\{1,0<=x<2\},\{0, x>2\}\}],\{y[0]==0\}\right\}, y[x], x$, IncludeSingularSolutio

$$
y(x) \rightarrow\left\{\begin{array}{cc}
0 & x \leq 0 \\
1-e^{-x} & 0<x \leq 2 \\
e^{-x}\left(-1+e^{2}\right) & \text { True }
\end{array}\right.
$$

6.23 problem 23

6.23.1 Existence and uniqueness analysis 1545
6.23.2 Solving as linear ode . 1546
6.23.3 Solving as first order ode lie symmetry lookup ode 1549
6.23.4 Maple step by step solution . 1555

Internal problem ID [11697]
Internal file name [OUTPUT/11706_Wednesday_April_10_2024_04_55_17_PM_81399686/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
(x+2) y^{\prime}+y=\left\{\begin{array}{cc}
2 x & 0 \leq x \leq 2 \\
4 & 2<x
\end{array}\right.
$$

With initial conditions

$$
[y(0)=4]
$$

6.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x+2} \\
& 2\left(\left\{\begin{array}{ll}
0 & x<0 \\
x & x \leq 2 \\
2 & 2<x
\end{array}\right)\right. \\
& x+2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x+2}=\frac{2\left(\left\{\begin{array}{ll}
0 & x<0 \\
x & x \leq 2 \\
2 & 2<x
\end{array}\right)\right.}{x+2}
$$

The domain of $p(x)=\frac{1}{x+2}$ is

$$
\{x<-2 \vee-2<x\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{2\left(\left\{\begin{array}{cc}0 & x<0 \\ x & x \leq 2 \\ 2 & 2<x\end{array}\right)\right.}{x+2}$ is

$$
\{x<-2 \vee-2<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.23.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{x+2} d x} \\
=x+2
\end{gathered}
$$

The ode becomes

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y)=(\mu)\left(\frac{\left\{\begin{array}{ll}
0 & x<0 \\
x & x \leq 2 \\
2 & 2<x
\end{array}\right)}{x+2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}((x+2) y)=(x+2)\binom{2\left(\begin{array}{ll}
0 & x<0 \\
x & x \leq 2 \\
2 & 2<x
\end{array}\right)}{x+2} \\
\mathrm{~d}((x+2) y)=\left(2\left(\left\{\begin{array}{ll}
0 & x<0 \\
x & x \leq 2 \\
2 & 2<x
\end{array}\right)\right) \mathrm{d} x\right.
\end{gathered}
$$

Integrating gives

$$
\begin{aligned}
& (x+2) y=\int 2\left(\left\{\begin{array}{ll}
0 & x<0 \\
x & x \leq 2 \\
2 & 2<x
\end{array}\right) \mathrm{d} x\right. \\
& (x+2) y=2\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
\frac{x^{2}}{2} & x \leq 2 \\
2 x-2 & 2<x
\end{array}\right)+c_{1}\right.
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x+2$ results in

$$
y=\frac{2\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
\frac{x^{2}}{2} & x \leq 2 \\
2 x-2 & 2<x
\end{array}\right)\right.}{x+2}+\frac{c_{1}}{x+2}
$$

which simplifies to

$$
y=\frac{\left(\left\{\begin{array}{cc}
0 & x \leq 0 \\
x^{2} & x \leq 2 \\
4 x-4 & 2<x
\end{array}\right)+c_{1}\right.}{x+2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4=\frac{c_{1}}{2} \\
& c_{1}=8
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x \leq 0 \\
\frac{x^{2}+8}{x+2} & x \leq 2 \\
\frac{4+4 x}{x+2} & 2<x \\
\frac{8}{x+2} & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x \leq 0 \tag{1}\\
\frac{x^{2}+8}{x+2} & x \leq 2 \\
\frac{4+4 x}{x+2} & 2<x \\
\frac{8}{x+2} & \text { otherwise }
\end{array}\right.
$$

Verification of solutions

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x \leq 0 \\
\frac{x^{2}+8}{x+2} & x \leq 2 \\
\frac{4+4 x}{x+2} & 2<x \\
\frac{8}{x+2} & \text { otherwise }
\end{array}\right.
$$

Verified OK.

6.23.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y-\left(\left\{\begin{array}{cc}
2 x & 0 \leq x \leq 2 \\
4 & 2<x
\end{array}\right)\right.}{x+2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 245: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x+2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x+2}} d y
\end{aligned}
$$

Which results in

$$
S=(x+2) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y-\left(\left\{\begin{array}{cc}
2 x & 0 \leq x \leq 2 \\
4 & 2<x
\end{array}\right)\right.}{x+2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x+2
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=2\left(\left\{\begin{array}{cc}
0 & x<0 \tag{2~A}\\
x & x \leq 2 \\
2 & 2<x
\end{array}\right)\right.
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2\left(\left\{\begin{array}{cc}
0 & R<0 \\
R & R \leq 2 \\
2 & 2<R
\end{array}\right)\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
c_{1} & R<0 \tag{4}\\
R^{2}+c_{1} & R<2 \\
c_{1}-4+4 R & 2 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(x+2) y=\left\{\begin{array}{cc}
c_{1} & x<0 \\
x^{2}+c_{1} & x<2 \\
c_{1}+4 x-4 & 2 \leq x
\end{array}\right.
$$

Which simplifies to

$$
(x+2) y=\left\{\begin{array}{cc}
c_{1} & x<0 \\
x^{2}+c_{1} & x<2 \\
c_{1}+4 x-4 & 2 \leq x
\end{array}\right.
$$

Which gives

$$
y=\frac{\left\{\begin{array}{cc}
c_{1} & x<0 \\
x^{2}+c_{1} & x<2 \\
c_{1}+4 x-4 & 2 \leq x
\end{array}\right.}{x+2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y-\left(\left\{\begin{array}{cc} 2 x & 0 \leq x \leq 2 \\ 4 & 2<x \end{array}\right)\right.}{x+2}$		$\frac{d S}{d R}=2\left(\begin{array}{cc}0 & R<0 \\ R & R \leq 2 \\ 2 & 2<R\end{array}\right)$
	$\begin{aligned} R & =x \\ S & =(x+2) y \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4=\frac{c_{1}}{2} \\
& c_{1}=8
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x<0 \\
\frac{x^{2}+8}{x+2} & x<2 \\
\frac{4+4 x}{x+2} & 2 \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Summary

The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x<0 \tag{1}\\
\frac{x^{2}+8}{x+2} & x<2 \\
\frac{4+4 x}{x+2} & 2 \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Solution plot

Verification of solutions

$$
y=\left\{\begin{array}{cc}
\frac{8}{x+2} & x<0 \\
\frac{x^{2}+8}{x+2} & x<2 \\
\frac{4+4 x}{x+2} & 2 \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Verified OK.

6.23.4 Maple step by step solution

Let's solve
$\left[(x+2) y^{\prime}+y=\left\{\begin{array}{cc}2 x & 0 \leq x \leq 2 \\ 4 & 2<x\end{array}, y(0)=4\right]\right.$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x+2}+\frac{\left\{\begin{array}{cc}2 x & 0 \leq x \leq 2 \\ 4 & 2<x\end{array}\right.}{x+2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}+\frac{y}{x+2}=\frac{\left\{\begin{array}{cc}
2 x & 0 \leq x \leq 2 \\
4 & 2<x
\end{array}\right.}{x+2}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x+2}\right)=\frac{\mu(x)\left(\left\{\begin{array}{cc}2 x & 0 \leq x \leq 2 \\ 4 & 2<x\end{array}\right)\right.}{x+2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x+2}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x+2}$
- \quad Solve to find the integrating factor
$\mu(x)=x+2$
- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)\left(\left\{\begin{array}{cc}
2 x & 0 \leq x \leq 2 \\
4 & 2<x
\end{array}\right)\right.}{x+2} d x+c_{1}
$$

- Evaluate the integral on the lhs

$$
\mu(x) y=\int \frac{\mu(x)\left(\left\{\begin{array}{cc}
2 x & 0 \leq x \leq 2 \\
4 & 2<x
\end{array}\right)\right.}{x+2} d x+c_{1}
$$

- \quad Solve for y
- \quad Substitute $\mu(x)=x+2$
$y=\frac{\int\left(\left\{\begin{array}{cc}2 x & 0 \leq x \leq 2 \\ 4 & 2<x\end{array}\right) d x+c_{1}\right.}{x+2}$
- Evaluate the integrals on the rhs
$y=\frac{\left\{\begin{array}{cl}0 & x \leq 0 \\ x^{2} & x \leq 2 \\ 4 x-4 & 2\end{array}{ }^{2}<x\right.}{x+2}$
- Use initial condition $y(0)=4$
$4=\frac{c_{1}}{2}$
- \quad Solve for c_{1}
$c_{1}=8$
- \quad Substitute $c_{1}=8$ into general solution and simplify

$$
y=\frac{\left\{\begin{array}{cl}
0 & x \leq 0 \\
x^{2} & x \leq 2 \\
4 x-4 & 2<x
\end{array} x+8\right.}{x+2}
$$

- \quad Solution to the IVP
$y=\frac{\left\{\begin{array}{cl}0 & x \leq 0 \\ x^{2} & x \leq 2 \\ 4 x-4 & 2<x\end{array}\right.}{x+2}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 31
dsolve $([(x+2) * \operatorname{diff}(y(x), x)+y(x)=$ piecewise $(0<=x$ and $x<=2,2 * x, x>2,4), y(0)=4], y(x)$, singsol $=a$

$$
y(x)=\frac{\left\{\begin{array}{cc}
8 & x<0 \\
x^{2}+8 & x<2 \\
4+4 x & 2 \leq x
\end{array}\right.}{x+2}
$$

\checkmark Solution by Mathematica
Time used: 0.248 (sec). Leaf size: 43
DSolve $\left[\left\{(x+2) * y^{\prime}[x]+y[x]==\right.\right.$ Piecewise $\left.[\{\{2 * x, 0<=x<=2\},\{4, x>2\}\}],\{y[0]==4\}\right\}, y[x], x$, IncludeSingul

$$
y(x) \rightarrow\left\{\begin{array}{cc}
\frac{8}{x+2} & x \leq 0 \\
\frac{4(x+1)}{x+2} & x>2 \\
\frac{x^{2}+8}{x+2} & \text { True }
\end{array}\right.
$$

6.24 problem 24

6.24.1 Existence and uniqueness analysis 1558
6.24.2 Solving as homogeneousTypeD2 ode 1559
6.24.3 Solving as first order ode lie symmetry lookup ode 1561
6.24.4 Solving as bernoulli ode . 1565

Internal problem ID [11698]
Internal file name [OUTPUT/11707_Wednesday_April_10_2024_04_55_18_PM_22551060/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Miscellaneous Review. Exercises page 60
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
x^{2} y^{\prime}+y x-\frac{y^{3}}{x}=0
$$

With initial conditions

$$
[y(1)=1]
$$

6.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}}\right) \\
& =\frac{-x^{2}+y^{2}}{x^{3}}+\frac{2 y^{2}}{x^{3}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

6.24.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{2}\left(u^{\prime}(x) x+u(x)\right)+u(x) x^{2}-u(x)^{3} x^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(u^{2}-2\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u\left(u^{2}-2\right)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u\left(u^{2}-2\right)} d u & =\frac{1}{x} d x \\
\int \frac{1}{u\left(u^{2}-2\right)} d u & =\int \frac{1}{x} d x \\
-\frac{\ln (u)}{2}+\frac{\ln \left(u^{2}-2\right)}{4} & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln (u)}{2}+\frac{\ln \left(u^{2}-2\right)}{4}}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{\left(u^{2}-2\right)^{\frac{1}{4}}}{\sqrt{u}}=c_{3} x
$$

The solution is

$$
\frac{\left(u(x)^{2}-2\right)^{\frac{1}{4}}}{\sqrt{u(x)}}=c_{3} x
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\left(\frac{y^{2}}{x^{2}}-2\right)^{\frac{1}{4}}}{\sqrt{\frac{y}{x}}}=c_{3} x \\
& \frac{\left(\frac{y^{2}-2 x^{2}}{x^{2}}\right)^{\frac{1}{4}}}{\sqrt{\frac{y}{x}}}=c_{3} x
\end{aligned}
$$

Substituting initial conditions and solving for c_{3} gives $c_{3}=(-1)^{\frac{1}{4}}$. Hence the solution beSummary
The solution(s) found are the following
comes

$$
\begin{equation*}
\frac{\left(\frac{y^{2}-2 x^{2}}{x^{2}}\right)^{\frac{1}{4}}}{\sqrt{\frac{y}{x}}}=(-1)^{\frac{1}{4}} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\left(\frac{y^{2}-2 x^{2}}{x^{2}}\right)^{\frac{1}{4}}}{\sqrt{\frac{y}{x}}}=(-1)^{\frac{1}{4}} x
$$

Verified OK.

6.24.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 248: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{3} x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{3} x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{2 x^{2} y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x^{3} y^{2}} \\
S_{y} & =\frac{1}{y^{3} x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x^{5}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{5}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{4 R^{4}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{2 x^{2} y^{2}}=-\frac{1}{4 x^{4}}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{2 x^{2} y^{2}}=-\frac{1}{4 x^{4}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}}$		$\frac{d S}{d R}=\frac{1}{R^{5}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$\rightarrow \rightarrow \infty$		
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
	$R=x$	${ }_{\text {明 }}$
	1	
\cdots	$S=-\frac{1}{2 x^{2} y^{2}}$	
$\rightarrow \rightarrow \rightarrow \rightarrow$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		,

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-\frac{1}{2} & =c_{1}-\frac{1}{4} \\
c_{1} & =-\frac{1}{4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{1}{2 x^{2} y^{2}}=-\frac{x^{4}+1}{4 x^{4}}
$$

The above simplifies to

$$
x^{4} y^{2}-2 x^{2}+y^{2}=0
$$

Solving for y from the above gives

$$
y=\frac{2 x}{\sqrt{2 x^{4}+2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x}{\sqrt{2 x^{4}+2}} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=\frac{2 x}{\sqrt{2 x^{4}+2}}
$$

Verified OK.

6.24.4 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(-x^{2}+y^{2}\right)}{x^{3}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+\frac{1}{x^{3}} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =\frac{1}{x^{3}} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{1}{x y^{2}}+\frac{1}{x^{3}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{x}+\frac{1}{x^{3}} \\
w^{\prime} & =\frac{2 w}{x}-\frac{2}{x^{3}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-\frac{2}{x^{3}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=-\frac{2}{x^{3}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-\frac{2}{x^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(-\frac{2}{x^{3}}\right) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =\left(-\frac{2}{x^{5}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{2}} & =\int-\frac{2}{x^{5}} \mathrm{~d} x \\
\frac{w}{x^{2}} & =\frac{1}{2 x^{4}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=\frac{1}{2 x^{2}}+c_{1} x^{2}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\frac{1}{2 x^{2}}+c_{1} x^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{1}{2}+c_{1}
$$

$$
c_{1}=\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{1}{y^{2}}=\frac{x^{4}+1}{2 x^{2}}
$$

The above simplifies to

$$
-x^{4} y^{2}+2 x^{2}-y^{2}=0
$$

Solving for y from the above gives

$$
y=\frac{2 x}{\sqrt{2 x^{4}+2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x}{\sqrt{2 x^{4}+2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 x}{\sqrt{2 x^{4}+2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 16

```
dsolve([x^2*diff(y(x),x)+x*y(x)=y(x)^3/x,y(1) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{2 x}{\sqrt{2 x^{4}+2}}
$$

\checkmark Solution by Mathematica
Time used: 0.355 (sec). Leaf size: 21
DSolve $\left[\left\{x^{\wedge} 2 * y\right.\right.$ ' $\left.[x]+x * y[x]==y[x] \sim 3 / x,\{y[1]==1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\sqrt{2} x}{\sqrt{x^{4}+1}}
$$

7 Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
7.1 problem 1 1571
7.2 problem 2 1577
7.3 problem 3 1583
7.4 problem 4 1589
7.5 problem 5 1601
7.6 problem 6 1614
7.7 problem 7 1622
7.8 problem 8 1639
7.9 problem 9 1647
7.10 problem 10 1658
7.11 problem 11 1669
7.12 problem 12 1687
7.13 problem 13 1699
7.14 problem 14 1708

7.1 problem 1

$$
\text { 7.1.1 Solving as exact ode . } 1571
$$

Internal problem ID [11699]
Internal file name [OUTPUT/11708_Wednesday_April_10_2024_04_55_32_PM_43910952/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor" Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

$$
5 y x+4 y^{2}+\left(2 y x+x^{2}\right) y^{\prime}=-1
$$

7.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+2 x y\right) \mathrm{d} y & =\left(-5 x y-4 y^{2}-1\right) \mathrm{d} x \\
\left(5 x y+4 y^{2}+1\right) \mathrm{d} x+\left(x^{2}+2 x y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =5 x y+4 y^{2}+1 \\
N(x, y) & =x^{2}+2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(5 x y+4 y^{2}+1\right) \\
& =5 x+8 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+2 x y\right) \\
& =2 y+2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x(x+2 y)}((5 x+8 y)-(2 y+2 x)) \\
& =\frac{3}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{3}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 \ln (x)} \\
& =x^{3}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{3}\left(5 x y+4 y^{2}+1\right) \\
& =\left(5 x y+4 y^{2}+1\right) x^{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{3}\left(x^{2}+2 x y\right) \\
& =x^{4}(x+2 y)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(5 x y+4 y^{2}+1\right) x^{3}\right)+\left(x^{4}(x+2 y)\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(5 x y+4 y^{2}+1\right) x^{3} \mathrm{~d} x \\
\phi & =x^{5} y+x^{4} y^{2}+\frac{1}{4} x^{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x^{5}+2 x^{4} y+f^{\prime}(y) \tag{4}\\
& =x^{4}(x+2 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{4}(x+2 y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{4}(x+2 y)=x^{4}(x+2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{5} y+x^{4} y^{2}+\frac{1}{4} x^{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{5} y+x^{4} y^{2}+\frac{1}{4} x^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y x^{5}+y^{2} x^{4}+\frac{x^{4}}{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 310: Slope field plot
Verification of solutions

$$
y x^{5}+y^{2} x^{4}+\frac{x^{4}}{4}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 59
dsolve $\left((5 * x * y(x)+4 * y(x) \wedge 2+1)+\left(x^{\wedge} 2+2 * x * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{-x^{3}-\sqrt{x^{6}-x^{4}-4 c_{1}}}{2 x^{2}} \\
& y(x)=\frac{-x^{3}+\sqrt{x^{6}-x^{4}-4 c_{1}}}{2 x^{2}}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.558 (sec). Leaf size: 84
DSolve $\left[(5 * x * y[x]+4 * y[x] \sim 2+1)+\left(x^{\wedge} 2+2 * x * y[x]\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{5}+\sqrt{x^{3}} \sqrt{x^{7}-x^{5}+4 c_{1} x}}{2 x^{4}} \\
& y(x) \rightarrow-\frac{x}{2}+\frac{\sqrt{x^{3}} \sqrt{x^{7}-x^{5}+4 c_{1} x}}{2 x^{4}}
\end{aligned}
$$

7.2 problem 2

7.2.1 Solving as exact ode

1577
Internal problem ID [11700]
Internal file name [OUTPUT/11709_Thursday_April_11_2024_08_48_33_PM_19754612/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_1st_order, - with_symmetry_[F(x),G(x)]〕]

$$
\tan (y)+\left(x-x^{2} \tan (y)\right) y^{\prime}=-2 x
$$

7.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x-x^{2} \tan (y)\right) \mathrm{d} y & =(-2 x-\tan (y)) \mathrm{d} x \\
(2 x+\tan (y)) \mathrm{d} x+\left(x-x^{2} \tan (y)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=2 x+\tan (y) \\
& N(x, y)=x-x^{2} \tan (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x+\tan (y)) \\
& =\sec (y)^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x-x^{2} \tan (y)\right) \\
& =1-2 \tan (y) x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x(\tan (y) x-1)}\left(\left(1+\tan (y)^{2}\right)-(1-2 \tan (y) x)\right) \\
& =-\frac{(2 x+\tan (y)) \tan (y)}{x(\tan (y) x-1)}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 x+\tan (y)}\left((1-2 \tan (y) x)-\left(1+\tan (y)^{2}\right)\right) \\
& =-\tan (y)
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\tan (y) \mathrm{d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\cos (y))} \\
& =\cos (y)
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\cos (y)(2 x+\tan (y)) \\
& =2 x \cos (y)+\sin (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\cos (y)\left(x-x^{2} \tan (y)\right) \\
& =-x(\sin (y) x-\cos (y))
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(2 x \cos (y)+\sin (y))+(-x(\sin (y) x-\cos (y))) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x \cos (y)+\sin (y) \mathrm{d} x \\
\phi & =(x \cos (y)+\sin (y)) x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=(-\sin (y) x+\cos (y)) x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-x(\sin (y) x-\cos (y))$. Therefore equation (4) becomes

$$
\begin{equation*}
-x(\sin (y) x-\cos (y))=(-\sin (y) x+\cos (y)) x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(x \cos (y)+\sin (y)) x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(x \cos (y)+\sin (y)) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
(\cos (y) x+\sin (y)) x=c_{1} \tag{1}
\end{equation*}
$$

Figure 311: Slope field plot

Verification of solutions

$$
(\cos (y) x+\sin (y)) x=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 134

```
dsolve((2*x+tan(y(x)))+(x-x^2*tan(y(x)))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\arctan \left(\frac{-\sqrt{x^{4}-c_{1}^{2}+x^{2}} x-c_{1}}{\left(x^{2}+1\right) x}, \frac{-c_{1} x+\sqrt{x^{4}-c_{1}^{2}+x^{2}}}{\left(x^{2}+1\right) x}\right) \\
& y(x)=\arctan \left(\frac{\sqrt{x^{4}-c_{1}^{2}+x^{2}} x-c_{1}}{\left(x^{2}+1\right) x}, \frac{-c_{1} x-\sqrt{x^{4}-c_{1}^{2}+x^{2}}}{\left(x^{2}+1\right) x}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 38.283 (sec). Leaf size: 177
DSolve $\left[(2 * x+\operatorname{Tan}[y[x]])+\left(x-x^{\wedge} 2 * \operatorname{Tan}[y[x]]\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\arccos \left(-\frac{c_{1} x^{2}+\sqrt{x^{6}+x^{4}-c_{1}^{2} x^{2}}}{x^{4}+x^{2}}\right) \\
& y(x) \rightarrow \arccos \left(-\frac{c_{1} x^{2}+\sqrt{x^{6}+x^{4}-c_{1}^{2} x^{2}}}{x^{4}+x^{2}}\right) \\
& y(x) \rightarrow-\arccos \left(\frac{\sqrt{x^{6}+x^{4}-c_{1}^{2} x^{2}}-c_{1} x^{2}}{x^{4}+x^{2}}\right) \\
& y(x) \rightarrow \arccos \left(\frac{\sqrt{x^{6}+x^{4}-c_{1}^{2} x^{2}}-c_{1} x^{2}}{x^{4}+x^{2}}\right)
\end{aligned}
$$

7.3 problem 3

$$
\text { 7.3.1 Solving as exact ode . } 1583
$$

Internal problem ID [11701]
Internal file name [OUTPUT/11710_Thursday_April_11_2024_08_48_36_PM_81880701/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor" Maple gives the following as the ode type

```
[_rational, [_Abel, `2nd type`, `class B`]]
```

$$
(1+x) y^{2}+y+(2 y x+1) y^{\prime}=0
$$

7.3.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y+1) \mathrm{d} y & =\left(-(1+x) y^{2}-y\right) \mathrm{d} x \\
\left((1+x) y^{2}+y\right) \mathrm{d} x+(2 x y+1) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =(1+x) y^{2}+y \\
N(x, y) & =2 x y+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left((1+x) y^{2}+y\right) \\
& =1+(2+2 x) y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y+1) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x y+1}((2 y(1+x)+1)-(2 y)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left((1+x) y^{2}+y\right) \\
& =y(x y+y+1) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(2 x y+1) \\
& =(2 x y+1) \mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y(x y+y+1) \mathrm{e}^{x}\right)+\left((2 x y+1) \mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y(x y+y+1) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =(x y+1) y \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x \mathrm{e}^{x} y+(x y+1) \mathrm{e}^{x}+f^{\prime}(y) \tag{4}\\
& =(2 x y+1) \mathrm{e}^{x}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(2 x y+1) \mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
(2 x y+1) \mathrm{e}^{x}=(2 x y+1) \mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(x y+1) y \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(x y+1) y \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
(y x+1) y \mathrm{e}^{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 312: Slope field plot

Verification of solutions

$$
(y x+1) y \mathrm{e}^{x}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 56
dsolve $((y(x) \sim 2 *(x+1)+y(x))+(2 * x * y(x)+1) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{-1+\sqrt{\mathrm{e}^{x}\left(-4 c_{1} x+\mathrm{e}^{x}\right)} \mathrm{e}^{-x}}{2 x} \\
& y(x)=\frac{-\sqrt{\mathrm{e}^{x}\left(-4 c_{1} x+\mathrm{e}^{x}\right)} \mathrm{e}^{-x}-1}{2 x}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 2.638 (sec). Leaf size: 69
DSolve $[(y[x] \sim 2 *(x+1)+y[x])+(2 * x * y[x]+1) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1+\frac{\sqrt{e^{x}+4 c_{1} x}}{\sqrt{e^{x}}}}{2 x} \\
& y(x) \rightarrow \frac{-1+\frac{\sqrt{e^{x}+4 c_{1} x}}{\sqrt{e^{x}}}}{2 x}
\end{aligned}
$$

7.4 problem 4

7.4.1 Solving as first order ode lie symmetry calculated ode 1589
7.4.2 Solving as exact ode . 1595

Internal problem ID [11702]
Internal file name [OUTPUT/11711_Thursday_April_11_2024_08_48_37_PM_11428769/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[_rational]

$$
2 y^{2} x+y+\left(2 y^{3}-x\right) y^{\prime}=0
$$

7.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y(2 x y+1)}{2 y^{3}-x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{3} b_{7}+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{aligned}
& 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2} \\
& -\frac{y(2 x y+1)\left(-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+3 y^{2} b_{10}-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{2 y^{3}-x} \\
& -\frac{y^{2}(2 x y+1)^{2}\left(x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right)}{\left(2 y^{3}-x\right)^{2}} \\
& -\left(-\frac{2 y^{2}}{2 y^{3}-x}-\frac{y(2 x y+1)}{\left(2 y^{3}-x\right)^{2}}\right)\left(x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}\right. \\
& \left.+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right)-\left(-\frac{2 x y+1}{2 y^{3}-x}-\frac{2 y x}{2 y^{3}-x}+\frac{6 y^{3}(2 x y+1)}{\left(2 y^{3}-x\right)^{2}}\right)\left(x^{3} b_{7}\right. \\
& \left.+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives

$$
-2 x^{4} b_{7}-4 y^{8} b_{9}-2 y^{6} a_{9}+10 y^{6} b_{10}+2 y^{4} a_{10}-4 y^{8} a_{10}-12 x^{2} y^{6} b_{7}+16 x^{3} y^{3} b_{7}-8 x y^{7} b_{8}+14 x^{2} y^{4} b_{8}-2 x
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{aligned}
& 2 x^{4} b_{7}+4 y^{8} b_{9}+2 y^{6} a_{9}-10 y^{6} b_{10}-2 y^{4} a_{10}+4 y^{8} a_{10}+12 x^{2} y^{6} b_{7} \\
& \quad-16 x^{3} y^{3} b_{7}+8 x y^{7} b_{8}-14 x^{2} y^{4} b_{8}+2 x^{3} y b_{8}-12 x y^{5} b_{9}+2 x^{2} y^{2} b_{9} \\
& +16 x^{3} y^{5} a_{7}-8 x^{3} y^{5} b_{8}+12 x^{2} y^{6} a_{8}-12 x^{2} y^{6} b_{9}+8 x y^{7} a_{9} \\
& -16 x y^{7} b_{10}-6 x^{4} y^{2} a_{7}-2 x^{4} y^{2} b_{8}-8 x^{3} y^{3} a_{8}+6 x^{2} y^{4} a_{7}-10 x^{2} y^{4} a_{9} \\
& +2 x^{2} y^{4} b_{10}+4 x y^{5} a_{8}-4 x^{3} y^{4} a_{5}-4 x^{3} y^{4} b_{4}+12 x^{2} y^{5} a_{4}-8 x^{2} y^{5} a_{6} \\
& -8 x^{2} y^{5} b_{5}+8 x y^{6} a_{5}+8 x y^{6} b_{4}-12 x y^{6} b_{6}-4 x^{4} y b_{4}-4 x^{3} y^{2} a_{4} \\
& -2 x^{3} y^{2} b_{5}-6 x^{2} y^{3} a_{5}-12 x^{2} y^{3} b_{4}+4 x y^{4} a_{4}-8 x y^{4} a_{6}-10 x y^{4} b_{5} \\
& -x^{2} y a_{4}+x^{2} y b_{5}-x y^{2} a_{5}+x y^{2} b_{6}-4 x^{2} y^{4} a_{3}-4 x^{2} y^{4} b_{2}+8 x y^{5} a_{2} \\
& -8 x y^{5} b_{3}-4 x y^{4} b_{1}-4 x^{3} y b_{2}-2 x^{2} y^{2} a_{2}-2 x^{2} y^{2} b_{3}-4 x y^{3} a_{3} \\
& -8 x y^{3} b_{2} b_{1}+4 y^{6} a_{3}+4 y^{6} b_{2}+4 y^{5} a_{1}+2 y^{4} a_{2}-6 y^{4} b_{3} \\
& -4 y^{3} b_{1}-x b_{1}+y a_{1}+4 y^{7} a_{6}+4 y^{7} b_{5}+2 y^{5} a_{5}-8 y^{5} b_{6}+x^{3} b_{4} \\
& -y^{3} a_{6}-2 x^{3} y a_{7}-2 x^{2} y^{2} a_{8}-2 x y^{3} a_{9}+2 x y^{3} b_{10}-4 x^{4} y^{4} a_{8} \\
& -8 x^{3} y^{5} a_{9}-12 x^{2} y^{6} a_{10}-12 x y^{5} a_{10}-4 x^{4} y^{4} b_{7}-4 x^{5} y b_{7}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& 2 v_{1}^{4} b_{7}+4 v_{2}^{8} b_{9}+2 v_{2}^{6} a_{9}-10 v_{2}^{6} b_{10}-2 v_{2}^{4} a_{10}+4 v_{2}^{8} a_{10}+4 v_{2}^{6} a_{3} \\
& +4 v_{2}^{6} b_{2}+4 v_{2}^{5} a_{1}+2 v_{2}^{4} a_{2}-6 v_{2}^{4} b_{3}-4 v_{2}^{3} b_{1}-v_{1} b_{1}+v_{2} a_{1}+4 v_{2}^{7} a_{6} \\
& +4 v_{2}^{7} b_{5}+2 v_{2}^{5} a_{5}-8 v_{2}^{5} b_{6}+v_{1}^{3} b_{4}-v_{2}^{3} a_{6}+12 v_{1}^{2} v_{2}^{6} b_{7}-16 v_{1}^{3} v_{2}^{3} b_{7} \\
& +8 v_{1} v_{2}^{7} b_{8}-14 v_{1}^{2} v_{2}^{4} b_{8}+2 v_{1}^{3} v_{2} b_{8}-12 v_{1} v_{2}^{5} b_{9}+2 v_{1}^{2} v_{2}^{2} b_{9}+16 v_{1}^{3} v_{2}^{5} a_{7} \\
& -8 v_{1}^{3} v_{2}^{5} b_{8}+12 v_{1}^{2} v_{2}^{6} a_{8}-12 v_{1}^{2} v_{2}^{6} b_{9}+8 v_{1} v_{2}^{7} a_{9}-16 v_{1} v_{2}^{7} b_{10}-6 v_{1}^{4} v_{2}^{2} a_{7} \\
& -2 v_{1}^{4} v_{2}^{2} b_{8}-8 v_{1}^{3} v_{2}^{3} a_{8}+6 v_{1}^{2} v_{2}^{4} a_{7}-10 v_{1}^{2} v_{2}^{4} a_{9}+2 v_{1}^{2} v_{2}^{4} b_{10}+4 v_{1} v_{2}^{5} a_{8} \\
& -4 v_{1}^{3} v_{2}^{4} a_{5}-4 v_{1}^{3} v_{2}^{4} b_{4}+12 v_{1}^{2} v_{2}^{5} a_{4}-8 v_{1}^{2} v_{2}^{5} a_{6}-8 v_{1}^{2} v_{2}^{5} b_{5}+8 v_{1} v_{2}^{6} a_{5} \\
& +8 v_{1} v_{2}^{6} b_{4} 12 v_{1} v_{2}^{6} b_{6} 4 v_{1}^{4} v_{2} b_{4}-4 v_{1}^{3} v_{2}^{2} a_{4}-2 v_{1}^{3} v_{2}^{2} b_{5}-6 v_{1}^{3} v_{2}^{3} a_{5} \\
& -12 v_{1}^{2} v_{2}^{3} b_{4}+4 v_{1} v_{2}^{4} a_{4}-8 v_{1} v_{2}^{4} a_{6}-10 v_{1} v_{2}^{4} b_{5}-v_{1}^{2} v_{2} a_{4}+v_{1}^{2} v_{2} b_{5} \\
& -v_{1} v_{2}^{2} a_{5}+v_{1}^{2} v_{2}^{2} b_{6}-4 v_{2}^{4} v_{3}-4 v_{1}^{2} v_{2}^{4} b_{2}+8 v_{1} v_{2}^{5} a_{2}-8 v_{1} v_{2}^{5} b_{3} \\
& -4 v_{1} v_{2}^{4} b_{1}-4 v_{1}^{3} v_{2} b_{2}-2 v_{1}^{2} v_{2}^{2} a_{2}-2 v_{1}^{2} v_{2}^{2} b_{3}-4 v_{1} v_{2}^{3} a_{3}-8 v_{1} v_{2}^{3} b_{2} \\
& -4 v_{1}^{2} v_{2} b_{1}-2 v_{1}^{3} v_{2} a_{7}-2 v_{1}^{2} v_{2}^{2} a_{8}-2 v_{1} v_{2}^{3} a_{9}+2 v_{1} v_{2}^{3} b_{10}-4 v_{1}^{4} v_{2}^{4} a_{8} \\
& -8 v_{1}^{3} v_{2}^{5} a_{1}-12 v_{1} v_{2}^{5} a_{10}-4 v_{1}^{4} v_{2}^{4} b_{7}-4 v_{1}^{5} v_{2} b_{7}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{4} b_{7}-v_{1} b_{1}+v_{2} a_{1}+v_{1}^{3} b_{4}+\left(4 b_{9}+4 a_{10}\right) v_{2}^{8} \\
& \quad+\left(2 a_{9}-10 b_{10}+4 a_{3}+4 b_{2}\right) v_{2}^{6}+\left(-2 a_{10}+2 a_{2}-6 b_{3}\right) v_{2}^{4} \\
& +\left(4 a_{1}+2 a_{5}-8 b_{6}\right) v_{2}^{5}+\left(-a_{6}-4 b_{1}\right) v_{2}^{3}+\left(4 a_{6}+4 b_{5}\right) v_{2}^{7} \\
& +\left(-4 a_{8}-4 b_{7}\right) v_{2}^{4} v_{1}^{4}+\left(12 b_{7}+12 a_{8}-12 b_{9}-12 a_{10}\right) v_{2}^{6} v_{1}^{2} \\
& +\left(-16 b_{7}-8 a_{8}\right) v_{2}^{3} v_{1}^{3}+\left(8 b_{8}+8 a_{9}-16 b_{10}\right) v_{2}^{7} v_{1} \\
& +\left(-14 b_{8}+6 a_{7}-10 a_{9}+2 b_{10}-4 a_{3}-4 b_{2}\right) v_{2}^{4} v_{1}^{2} \tag{8E}\\
& +\left(2 b_{8}-4 b_{2}-2 a_{7}\right) v_{2} v_{1}^{3}+\left(-12 b_{9}+4 a_{8}+8 a_{2}-8 b_{3}-12 a_{10}\right) v_{2}^{5} v_{1} \\
& +\left(2 b_{9}-2 a_{2}-2 b_{3}-2 a_{8}\right) v_{2}^{2} v_{1}^{2}+\left(16 a_{7}-8 b_{8}-8 a_{9}\right) v_{2}^{5} v_{1}^{3} \\
& +\left(-6 a_{7}-2 b_{8}\right) v_{2}^{2} v_{1}^{4}+\left(-4 a_{5}-4 b_{4}\right) v_{2}^{4} v_{1}^{3}+\left(-6 a_{5}-12 b_{4}\right) v_{2}^{3} v_{1}^{2} \\
& +\left(4 a_{4}-8 a_{6}-4 b_{1}-10 b_{5}\right) v_{2}^{4} v_{1}+\left(-a_{4}-4 b_{1}+b_{5}\right) v_{2} v_{1}^{2} \\
& +\left(-a_{5}+b_{6}\right) v_{2}^{2} v_{1}+\left(-4 a_{3}-8 b_{2}-2 a_{9}+2 b_{10}\right) v_{2}^{3} v_{1} \\
& \quad-4 v_{1}^{4} v_{2} b_{4}+\left(12 a_{4}-8 a_{6}-8 b_{5}\right) v_{2}^{5} v_{1}^{2} \\
& +\left(8 a_{5}+8 b_{4}-12 b_{6}\right) v_{2}^{6} v_{1}+\left(-4 a_{4}-2 b_{5}\right) v_{2}^{2} v_{1}^{3}-4 v_{1}^{5} v_{2} b_{7}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{4} & =0 \\
-b_{1} & =0 \\
-4 b_{4} & =0 \\
-4 b_{7} & =0 \\
2 b_{7} & =0 \\
-4 a_{4}-2 b_{5} & =0 \\
-6 a_{5}-12 b_{4} & =0 \\
-4 a_{5}-4 b_{4} & =0 \\
-a_{5}+b_{6} & =0 \\
-a_{6}-4 b_{1} & =0 \\
4 a_{6}+4 b_{5} & =0 \\
-6 a_{7}-2 b_{8} & =0 \\
-4 a_{8}-4 b_{7} & =0 \\
-16 b_{7}-8 a_{8} & =0 \\
4 b_{9}+4 a_{10} & =0 \\
4 a_{1}+2 a_{5}-8 b_{6} & =0 \\
-a_{4}-4 b_{1}+b_{5} & =0 \\
12 a_{4}-8 a_{6}-8 b_{5} & =0 \\
8 a_{5}+8 b_{4}-12 b_{6} & =0 \\
16 a_{7}-8 b_{8}-8 a_{9} & =0 \\
-2 a_{10}+2 a_{2}-6 b_{3} & =0 \\
2 b_{8}-4 b_{2}-2 a_{7} & =0 \\
8 b_{8}+8 a_{9}-16 b_{10} & =0 \\
-14 b_{8}+6 a_{7}-10 a_{9}+2 b_{10}-4 a_{3}-4 b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{b_{9}}{2} \\
a_{3} & =2 b_{10} \\
a_{4} & =0 \\
a_{5} & =0 \\
a_{6} & =0 \\
a_{7} & =b_{10} \\
a_{8} & =0 \\
a_{9} & =5 b_{10} \\
a_{10} & =-b_{9} \\
b_{1} & =0 \\
b_{2} & =-2 b_{10} \\
b_{3} & =\frac{b_{9}}{2} \\
b_{4} & =0 \\
b_{5} & =0 \\
b_{6} & =0 \\
b_{7} & =0 \\
b_{8} & =-3 b_{10} \\
b_{9} & =b_{9} \\
b_{10} & =b_{10}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x^{3}+5 x y^{2}+2 y \\
& \eta=-3 x^{2} y+y^{3}-2 x
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

7.4.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 y^{3}-x\right) \mathrm{d} y & =\left(-2 x y^{2}-y\right) \mathrm{d} x \\
\left(2 x y^{2}+y\right) \mathrm{d} x+\left(2 y^{3}-x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y^{2}+y \\
N(x, y) & =2 y^{3}-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y^{2}+y\right) \\
& =4 x y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 y^{3}-x\right) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y^{3}-x}((4 x y+1)-(-1)) \\
& =\frac{-4 x y-2}{-2 y^{3}+x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 x y^{2}+y}((-1)-(4 x y+1)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}\left(2 x y^{2}+y\right) \\
& =\frac{2 x y+1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}\left(2 y^{3}-x\right) \\
& =\frac{2 y^{3}-x}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 x y+1}{y}\right)+\left(\frac{2 y^{3}-x}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x y+1}{y} \mathrm{~d} x \\
\phi & =\frac{x(x y+1)}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x^{2}}{y}-\frac{x(x y+1)}{y^{2}}+f^{\prime}(y) \tag{4}\\
& =-\frac{x}{y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 y^{3}-x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 y^{3}-x}{y^{2}}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(x y+1)}{y}+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(x y+1)}{y}+y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x(y x+1)}{y}+y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 313: Slope field plot

Verification of solutions

$$
\frac{x(y x+1)}{y}+y^{2}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 301
dsolve($(2 * x * y(x) \wedge 2+y(x))+(2 * y(x) \wedge 3-x) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
\left.\begin{array}{l}
y(x)=\frac{-12 x^{2}-12 c_{1}+\left(-108 x+12 \sqrt{12 x^{6}+36 x^{4} c_{1}+\left(36 c_{1}^{2}+81\right) x^{2}+12 c_{1}^{3}}\right)^{\frac{2}{3}}}{6\left(-108 x+12 \sqrt{12 x^{6}+36 x^{4} c_{1}+\left(36 c_{1}^{2}+81\right) x^{2}+12 c_{1}^{3}}\right)^{\frac{1}{3}}} \\
y(x)
\end{array}\right)=\begin{aligned}
& -\frac{\left(\frac{i \sqrt{3}}{12}+\frac{1}{12}\right)\left(-108 x+12 \sqrt{12 x^{6}+36 x^{4} c_{1}+\left(36 c_{1}^{2}+81\right) x^{2}+12 c_{1}^{3}}\right)^{\frac{2}{3}}+\left(x^{2}+c_{1}\right)(i \sqrt{3}-1)}{\left(-108 x+12 \sqrt{12 x^{6}+36 x^{4} c_{1}+\left(36 c_{1}^{2}+81\right) x^{2}+12 c_{1}^{3}}\right)^{\frac{1}{3}}} \\
& y(x)=\frac{\frac{(i \sqrt{3}-1)\left(-108 x+12 \sqrt{12 x^{6}+36 x^{4} c_{1}+\left(36 c_{1}^{2}+81\right) x^{2}+12 c_{1}^{3}}\right)^{\frac{2}{3}}}{12}+\left(x^{2}+c_{1}\right)(1+i \sqrt{3})}{\left(-108 x+12 \sqrt{12 x^{6}+36 x^{4} c_{1}+\left(36 c_{1}^{2}+81\right) x^{2}+12 c_{1}^{3}}\right)^{\frac{1}{3}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 6.163 (sec). Leaf size: 316

DSolve $[(2 * x * y[x] \sim 2+y[x])+(2 * y[x] \sim 3-x) * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
y(x) \rightarrow & \frac{2^{2 / 3}\left(-27 x+\sqrt{729 x^{2}+108\left(x^{2}-c_{1}\right)^{3}}\right)^{2 / 3}-6 \sqrt[3]{2}\left(x^{2}-c_{1}\right)}{6 \sqrt[3]{-27 x+\sqrt{729 x^{2}+108\left(x^{2}-c_{1}\right)^{3}}}} \\
y(x) \rightarrow & \frac{(1-i \sqrt{3})\left(x^{2}-c_{1}\right)}{2^{2 / 3} \sqrt[3]{-27 x+\sqrt{729 x^{2}+108\left(x^{2}-c_{1}\right)^{3}}}} \\
& -\frac{(1+i \sqrt{3}) \sqrt[3]{-27 x+\sqrt{729 x^{2}+108\left(x^{2}-c_{1}\right)^{3}}}}{6 \sqrt[3]{2}} \\
y(x) \rightarrow & \frac{(1+i \sqrt{3})\left(x^{2}-c_{1}\right)}{2^{2 / 3} \sqrt[3]{-27 x+\sqrt{729 x^{2}+108\left(x^{2}-c_{1}\right)^{3}}}} \\
& +\frac{(-1+i \sqrt{3}) \sqrt[3]{-27 x+\sqrt{729 x^{2}+108\left(x^{2}-c_{1}\right)^{3}}}}{6 \sqrt[3]{2}} \\
y(x) \rightarrow & 0
\end{aligned}
$$

7.5 problem 5

7.5.1 Solving as first order ode lie symmetry calculated ode 1601
7.5.2 Solving as exact ode . 1607

Internal problem ID [11703]
Internal file name [OUTPUT/11712_Thursday_April_11_2024_08_48_39_PM_50875666/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
4 y^{2} x+6 y+\left(5 x^{2} y+8 x\right) y^{\prime}=0
$$

7.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 y(2 x y+3)}{x(5 x y+8)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{2 y(2 x y+3)\left(b_{3}-a_{2}\right)}{x(5 x y+8)}-\frac{4 y^{2}(2 x y+3)^{2} a_{3}}{x^{2}(5 x y+8)^{2}} \\
& -\left(-\frac{4 y^{2}}{x(5 x y+8)}+\frac{2 y(2 x y+3)}{x^{2}(5 x y+8)}+\frac{10 y^{2}(2 x y+3)}{x(5 x y+8)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2(2 x y+3)}{x(5 x y+8)}-\frac{4 y}{5 x y+8}+\frac{10 y(2 x y+3)}{(5 x y+8)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{45 x^{4} y^{2} b_{2}-36 x^{2} y^{4} a_{3}+20 x^{3} y^{2} b_{1}-20 x^{2} y^{3} a_{1}+144 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} b_{3}-108 x y^{3} a_{3}+64 x^{2} y b_{1}-60}{x^{2}(5 x y+8)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 45 x^{4} y^{2} b_{2}-36 x^{2} y^{4} a_{3}+20 x^{3} y^{2} b_{1}-20 x^{2} y^{3} a_{1}+144 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} b_{3} \tag{6E}\\
& -108 x y^{3} a_{3}+64 x^{2} y b_{1}-60 x y^{2} a_{1}+112 b_{2} x^{2}-84 y^{2} a_{3}+48 x b_{1}-48 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -36 a_{3} v_{1}^{2} v_{2}^{4}+45 b_{2} v_{1}^{4} v_{2}^{2}-20 a_{1} v_{1}^{2} v_{2}^{3}+20 b_{1} v_{1}^{3} v_{2}^{2}+2 a_{2} v_{1}^{2} v_{2}^{2}-108 a_{3} v_{1} v_{2}^{3}+144 b_{2} v_{1}^{3} v_{2} \tag{7E}\\
& +2 b_{3} v_{1}^{2} v_{2}^{2}-60 a_{1} v_{1} v_{2}^{2}+64 b_{1} v_{1}^{2} v_{2}-84 a_{3} v_{2}^{2}+112 b_{2} v_{1}^{2}-48 a_{1} v_{2}+48 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 45 b_{2} v_{1}^{4} v_{2}^{2}+20 b_{1} v_{1}^{3} v_{2}^{2}+144 b_{2} v_{1}^{3} v_{2}-36 a_{3} v_{1}^{2} v_{2}^{4}-20 a_{1} v_{1}^{2} v_{2}^{3}+\left(2 a_{2}+2 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+64 b_{1} v_{1}^{2} v_{2}+112 b_{2} v_{1}^{2}-108 a_{3} v_{1} v_{2}^{3}-60 a_{1} v_{1} v_{2}^{2}+48 b_{1} v_{1}-84 a_{3} v_{2}^{2}-48 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-60 a_{1} & =0 \\
-48 a_{1} & =0 \\
-20 a_{1} & =0 \\
-108 a_{3} & =0 \\
-84 a_{3} & =0 \\
-36 a_{3} & =0 \\
20 b_{1} & =0 \\
48 b_{1} & =0 \\
64 b_{1} & =0 \\
45 b_{2} & =0 \\
112 b_{2} & =0 \\
144 b_{2} & =0 \\
2 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 y(2 x y+3)}{x(5 x y+8)}\right)(-x) \\
& =\frac{x y^{2}+2 y}{5 x y+8} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x y^{2}+2 y}{5 x y+8}} d y
\end{aligned}
$$

Which results in

$$
S=4 \ln (y)+\ln (x y+2)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y(2 x y+3)}{x(5 x y+8)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{x y+2} \\
S_{y} & =\frac{4}{y}+\frac{x}{x y+2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3}{x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-3 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
4 \ln (y)+\ln (y x+2)=-3 \ln (x)+c_{1}
$$

Which simplifies to

$$
4 \ln (y)+\ln (y x+2)=-3 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y(2 x y+3)}{x(5 x y+8)}$		$\frac{d S}{d R}=-\frac{3}{R}$
$\rightarrow \rightarrow \rightarrow \infty$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$R=x$	
$\rightarrow \rightarrow$ 为 ${ }_{\text {a }}$	$S=4 \ln (y)+\ln (x y+2)$	
$\rightarrow \rightarrow$ aravid		

Summary

The solution(s) found are the following

$$
\begin{equation*}
4 \ln (y)+\ln (y x+2)=-3 \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 314: Slope field plot

Verification of solutions

$$
4 \ln (y)+\ln (y x+2)=-3 \ln (x)+c_{1}
$$

Verified OK.

7.5.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(5 x^{2} y+8 x\right) \mathrm{d} y & =\left(-4 x y^{2}-6 y\right) \mathrm{d} x \\
\left(4 x y^{2}+6 y\right) \mathrm{d} x+\left(5 x^{2} y+8 x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =4 x y^{2}+6 y \\
N(x, y) & =5 x^{2} y+8 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(4 x y^{2}+6 y\right) \\
& =8 x y+6
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(5 x^{2} y+8 x\right) \\
& =10 x y+8
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{5 x^{2} y+8 x}((8 x y+6)-(10 x y+8)) \\
& =\frac{-2 x y-2}{5 x^{2} y+8 x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{4 x y^{2}+6 y}((10 x y+8)-(8 x y+6)) \\
& =\frac{x y+1}{2 x y^{2}+3 y}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(10 x y+8)-(8 x y+6)}{x\left(4 x y^{2}+6 y\right)-y\left(5 x^{2} y+8 x\right)} \\
& =\frac{-2 x y-2}{x y(x y+2)}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{-2 t-2}{t(t+2)}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{-2 t-2}{\bar{t}(t+2)}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (t(t+2))} \\
& =\frac{1}{t(t+2)}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x y(x y+2)}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x y(x y+2)}\left(4 x y^{2}+6 y\right) \\
& =\frac{4 x y+6}{(x y+2) x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x y(x y+2)}\left(5 x^{2} y+8 x\right) \\
& =\frac{5 x y+8}{y(x y+2)}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{4 x y+6}{(x y+2) x}\right)+\left(\frac{5 x y+8}{y(x y+2)}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{4 x y+6}{(x y+2) x} \mathrm{~d} x \\
\phi & =\ln (x y+2)+3 \ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{x y+2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{5 x y+8}{y(x y+2)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{5 x y+8}{y(x y+2)}=\frac{x}{x y+2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{4}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{4}{y}\right) \mathrm{d} y \\
f(y) & =4 \ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x y+2)+3 \ln (x)+4 \ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x y+2)+3 \ln (x)+4 \ln (y)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
4 \ln (y)+\ln (y x+2)+3 \ln (x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 315: Slope field plot

Verification of solutions

$$
4 \ln (y)+\ln (y x+2)+3 \ln (x)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 23
dsolve $\left(\left(4 * x * y(x)^{\wedge} 2+6 * y(x)\right)+\left(5 * x^{\wedge} 2 * y(x)+8 * x\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
y(x)=\frac{\operatorname{RootOf}\left(-\ln (x)+c_{1}+\ln \left(_Z+2\right)+4 \ln \left(_Z\right)\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 1.767 (sec). Leaf size: 156
DSolve $[(4 * x * y[x] \sim 2+6 * y[x])+(5 * x \wedge 2 * y[x]+8 * x) * y '[x]==0, y[x], x$, IncludeSingularSolutions $->$ True

$$
\begin{aligned}
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{5}-\frac{2 \# 1^{4}}{x}+\frac{e^{c_{1}}}{x^{4}} \&, 1\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{5}-\frac{2 \# 1^{4}}{x}+\frac{e^{c_{1}}}{x^{4}} \&, 2\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{5}-\frac{2 \# 1^{4}}{x}+\frac{e^{c_{1}}}{x^{4}} \&, 3\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{5}-\frac{2 \# 1^{4}}{x}+\frac{e^{c_{1}}}{x^{4}} \&, 4\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{5}-\frac{2 \# 1^{4}}{x}+\frac{e^{c_{1}}}{x^{4}} \&, 5\right]
\end{aligned}
$$

7.6 problem 6

7.6.1 Solving as first order ode lie symmetry calculated ode 1614

Internal problem ID [11704]
Internal file name [OUTPUT/11713_Thursday_April_11_2024_08_48_41_PM_99209226/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
        class B`]]
```

$$
8 y^{3} x^{2}-2 y^{4}+\left(5 y^{2} x^{3}-8 y^{3} x\right) y^{\prime}=0
$$

7.6.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y\left(-4 x^{2}+y\right)}{x\left(-5 x^{2}+8 y\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{2 y\left(-4 x^{2}+y\right)\left(b_{3}-a_{2}\right)}{x\left(-5 x^{2}+8 y\right)}-\frac{4 y^{2}\left(-4 x^{2}+y\right)^{2} a_{3}}{x^{2}\left(-5 x^{2}+8 y\right)^{2}} \\
& -\left(\frac{16 y}{-5 x^{2}+8 y}+\frac{2 y\left(-4 x^{2}+y\right)}{x^{2}\left(-5 x^{2}+8 y\right)}-\frac{20 y\left(-4 x^{2}+y\right)}{\left(-5 x^{2}+8 y\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2\left(-4 x^{2}+y\right)}{x\left(-5 x^{2}+8 y\right)}-\frac{2 y}{x\left(-5 x^{2}+8 y\right)}\right. \\
& \left.+\frac{16 y\left(-4 x^{2}+y\right)}{x\left(-5 x^{2}+8 y\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{65 x^{6} b_{2}-104 x^{4} y^{2} a_{3}+40 x^{5} b_{1}-40 x^{4} y a_{1}-100 x^{4} y b_{2}-108 x^{3} y^{2} a_{2}+54 x^{3} y^{2} b_{3}-2 x^{2} y^{3} a_{3}-20 x^{3} y b_{1}-34 x}{\left(5 x^{2}-8 y\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 65 x^{6} b_{2}-104 x^{4} y^{2} a_{3}+40 x^{5} b_{1}-40 x^{4} y a_{1}-100 x^{4} y b_{2}-108 x^{3} y^{2} a_{2}+54 x^{3} y^{2} b_{3} \tag{6E}\\
& \quad-2 x^{2} y^{3} a_{3}-20 x^{3} y b_{1}-34 x^{2} y^{2} a_{1}+80 x^{2} y^{2} b_{2}-20 y^{4} a_{3}+16 x y^{2} b_{1}-16 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -104 a_{3} v_{1}^{4} v_{2}^{2}+65 b_{2} v_{1}^{6}-40 a_{1} v_{1}^{4} v_{2}-108 a_{2} v_{1}^{3} v_{2}^{2}-2 a_{3} v_{1}^{2} v_{2}^{3}+40 b_{1} v_{1}^{5}-100 b_{2} v_{1}^{4} v_{2} \tag{7E}\\
& +54 b_{3} v_{1}^{3} v_{2}^{2}-34 a_{1} v_{1}^{2} v_{2}^{2}-20 a_{3} v_{2}^{4}-20 b_{1} v_{1}^{3} v_{2}+80 b_{2} v_{1}^{2} v_{2}^{2}-16 a_{1} v_{2}^{3}+16 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 65 b_{2} v_{1}^{6}+40 b_{1} v_{1}^{5}-104 a_{3} v_{1}^{4} v_{2}^{2}+\left(-40 a_{1}-100 b_{2}\right) v_{1}^{4} v_{2}+\left(-108 a_{2}+54 b_{3}\right) v_{1}^{3} v_{2}^{2} \tag{8E}\\
& \quad-20 b_{1} v_{1}^{3} v_{2}-2 a_{3} v_{1}^{2} v_{2}^{3}+\left(-34 a_{1}+80 b_{2}\right) v_{1}^{2} v_{2}^{2}+16 b_{1} v_{1} v_{2}^{2}-20 a_{3} v_{2}^{4}-16 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-16 a_{1} & =0 \\
-104 a_{3} & =0 \\
-20 a_{3} & =0 \\
-2 a_{3} & =0 \\
-20 b_{1} & =0 \\
16 b_{1} & =0 \\
40 b_{1} & =0 \\
65 b_{2} & =0 \\
-40 a_{1}-100 b_{2} & =0 \\
-34 a_{1}+80 b_{2} & =0 \\
-108 a_{2}+54 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 y-\left(-\frac{2 y\left(-4 x^{2}+y\right)}{x\left(-5 x^{2}+8 y\right)}\right)(x) \\
& =\frac{18 x^{2} y-18 y^{2}}{5 x^{2}-8 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{18 x^{2} y-18 y^{2}}{5 x^{2}-8 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-x^{2}+y\right)}{6}+\frac{5 \ln (y)}{18}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y\left(-4 x^{2}+y\right)}{x\left(-5 x^{2}+8 y\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{3 x^{2}-3 y} \\
S_{y} & =-\frac{1}{6 x^{2}-6 y}+\frac{5}{18 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{9 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{9 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{9}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(-x^{2}+y\right)}{6}+\frac{5 \ln (y)}{18}=-\frac{\ln (x)}{9}+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(-x^{2}+y\right)}{6}+\frac{5 \ln (y)}{18}=-\frac{\ln (x)}{9}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(-x^{2}+y\right)}{6}+\frac{5 \ln (y)}{18}=-\frac{\ln (x)}{9}+c_{1} \tag{1}
\end{equation*}
$$

Figure 316: Slope field plot

Verification of solutions

$$
\frac{\ln \left(-x^{2}+y\right)}{6}+\frac{5 \ln (y)}{18}=-\frac{\ln (x)}{9}+c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.703 (sec). Leaf size: 34
dsolve ($(8 * x \wedge 2 * y(x) \wedge 3-2 * y(x) \wedge 4)+\left(5 * x^{\wedge} 3 * y(x) \wedge 2-8 * x * y(x) \wedge 3\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol $\left.=a l l\right)$

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\operatorname{RootOf}\left(x^{6} _Z^{48}-x^{6} _Z^{30}-c_{1}\right)^{18} x^{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 3.924 (sec). Leaf size: 411
DSolve $\left[\left(8 * x^{\wedge} 2 * y[x] \wedge 3-2 * y[x] \sim 4\right)+\left(5 * x^{\wedge} 3 * y[x] \sim 2-8 * x * y[x] \sim 3\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolu

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{8}+3 \# 1^{7} x^{2}-3 \# 1^{6} x^{4}+\# 1^{5} x^{6}+\frac{e^{18 c_{1}}}{x^{2}} \&, 1\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{8}+3 \# 1^{7} x^{2}-3 \# 1^{6} x^{4}+\# 1^{5} x^{6}+\frac{e^{18 c_{1}}}{x^{2}} \&, 2\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{8}+3 \# 1^{7} x^{2}-3 \# 1^{6} x^{4}+\# 1^{5} x^{6}+\frac{e^{18 c_{1}}}{x^{2}} \&, 3\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{8}+3 \# 1^{7} x^{2}-3 \# 1^{6} x^{4}+\# 1^{5} x^{6}+\frac{e^{18 c_{1}}}{x^{2}} \&, 4\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{8}+3 \# 1^{7} x^{2}-3 \# 1^{6} x^{4}+\# 1^{5} x^{6}+\frac{e^{18 c_{1}}}{x^{2}} \&, 5\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{8}+3 \# 1^{7} x^{2}-3 \# 1^{6} x^{4}+\# 1^{5} x^{6}+\frac{e^{18 c_{1}}}{x^{2}} \&, 6\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{8}+3 \# 1^{7} x^{2}-3 \# 1^{6} x^{4}+\# 1^{5} x^{6}+\frac{e^{18 c_{1}}}{x^{2}} \&, 7\right] \\
& y(x) \rightarrow \operatorname{Root}\left[-\# 1^{8}+3 \# 1^{7} x^{2}-3 \# 1^{6} x^{4}+\# 1^{5} x^{6}+\frac{e^{18 c_{1}}}{x^{2}} \&, 8\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

7.7 problem 7

7.7.1 Solving as differentialType ode 1622
7.7.2 Solving as homogeneousTypeMapleC ode 1624
7.7.3 Solving as first order ode lie symmetry calculated ode 1627
7.7.4 Solving as exact ode . 1632
7.7.5 Maple step by step solution . 1636

Internal problem ID [11705]
Internal file name [OUTPUT/11714_Thursday_April_11_2024_08_48_42_PM_29529941/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
2 y+(2 x+y+1) y^{\prime}=-5 x-1
$$

7.7.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-5 x-2 y-1}{2 x+y+1} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y+1) d y=(-2 x) d y+(-5 x-2 y-1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-2 x) d y+(-5 x-2 y-1) d x=d\left(-\frac{5}{2} x^{2}-2 x y-x\right)
$$

Hence (2) becomes

$$
(y+1) d y=d\left(-\frac{5}{2} x^{2}-2 x y-x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-2 x-1+\sqrt{-x^{2}+2 c_{1}+2 x+1}+c_{1} \\
& y=-2 x-1-\sqrt{-x^{2}+2 c_{1}+2 x+1}+c_{1}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-2 x-1+\sqrt{-x^{2}+2 c_{1}+2 x+1}+c_{1} \tag{1}\\
& y=-2 x-1-\sqrt{-x^{2}+2 c_{1}+2 x+1}+c_{1} \tag{2}
\end{align*}
$$

Figure 317: Slope field plot

Verification of solutions

$$
y=-2 x-1+\sqrt{-x^{2}+2 c_{1}+2 x+1}+c_{1}
$$

Verified OK.

$$
y=-2 x-1-\sqrt{-x^{2}+2 c_{1}+2 x+1}+c_{1}
$$

Verified OK.

7.7.2 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{5 X+5 x_{0}+2 Y(X)+2 y_{0}+1}{2 X+2 x_{0}+Y(X)+y_{0}+1}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =1 \\
y_{0} & =-3
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{5 X+2 Y(X)}{2 X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{5 X+2 Y}{2 X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-5 X-2 Y$ and $N=2 X+Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-2 u-5}{u+2} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-2 u(X)-5}{u(X)+2}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-2 u(X)-5}{u(X)+2}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)+2\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+4 u(X)+5=0
$$

Or

$$
X(u(X)+2)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+4 u(X)+5=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+4 u+5}{X(u+2)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+4 u+5}{u+2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+4 u+5}{u+2}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+4 u+5}{u+2}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+4 u+5\right)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+4 u+5}=\mathrm{e}^{-\ln (X)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+4 u+5}=\frac{c_{3}}{X}
$$

Which simplifies to

$$
\sqrt{u(X)^{2}+4 u(X)+5}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

The solution is

$$
\sqrt{u(X)^{2}+4 u(X)+5}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\sqrt{\frac{Y(X)^{2}}{X^{2}}+\frac{4 Y(X)}{X}+5}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Using the solution for $Y(X)$

$$
\sqrt{\frac{Y(X)^{2}+4 Y(X) X+5 X^{2}}{X^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-3 \\
& X=1+x
\end{aligned}
$$

Then the solution in y becomes

$$
\sqrt{\frac{(y+3)^{2}+4(y+3)(x-1)+5(x-1)^{2}}{(x-1)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{(y+3)^{2}+4(y+3)(x-1)+5(x-1)^{2}}{(x-1)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x-1} \tag{1}
\end{equation*}
$$

Figure 318: Slope field plot

Verification of solutions

$$
\sqrt{\frac{(y+3)^{2}+4(y+3)(x-1)+5(x-1)^{2}}{(x-1)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x-1}
$$

Verified OK.

7.7.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{5 x+2 y+1}{2 x+y+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(5 x+2 y+1)\left(b_{3}-a_{2}\right)}{2 x+y+1}-\frac{(5 x+2 y+1)^{2} a_{3}}{(2 x+y+1)^{2}} \\
& -\left(-\frac{5}{2 x+y+1}+\frac{10 x+4 y+2}{(2 x+y+1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2}{2 x+y+1}+\frac{5 x+2 y+1}{(2 x+y+1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{10 x^{2} a_{2}-25 x^{2} a_{3}+3 x^{2} b_{2}-10 x^{2} b_{3}+10 x y a_{2}-20 x y a_{3}+4 x y b_{2}-10 x y b_{3}+2 y^{2} a_{2}-3 y^{2} a_{3}+y^{2} b_{2}-2 y^{2} b_{3}}{(2 x+y} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
10 x^{2} a_{2}-25 x^{2} a_{3}+3 x^{2} b_{2}-10 x^{2} b_{3}+10 x y a_{2}-20 x y a_{3}+4 x y b_{2}-10 x y b_{3} \tag{6E}\\
+2 y^{2} a_{2}-3 y^{2} a_{3}+y^{2} b_{2}-2 y^{2} b_{3}+10 x a_{2}-10 x a_{3}-x b_{1}+5 x b_{2}-7 x b_{3} \\
+y a_{1}+3 y a_{2}-y a_{3}+2 y b_{2}-2 y b_{3}+3 a_{1}+a_{2}-a_{3}+b_{1}+b_{2}-b_{3}=0
\end{gather*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 10 a_{2} v_{1}^{2}+10 a_{2} v_{1} v_{2}+2 a_{2} v_{2}^{2}-25 a_{3} v_{1}^{2}-20 a_{3} v_{1} v_{2}-3 a_{3} v_{2}^{2}+3 b_{2} v_{1}^{2}+4 b_{2} v_{1} v_{2} \tag{7E}\\
& +b_{2} v_{2}^{2}-10 b_{3} v_{1}^{2}-10 b_{3} v_{1} v_{2}-2 b_{3} v_{2}^{2}+a_{1} v_{2}+10 a_{2} v_{1}+3 a_{2} v_{2}-10 a_{3} v_{1}-a_{3} v_{2} \\
& \quad-b_{1} v_{1}+5 b_{2} v_{1}+2 b_{2} v_{2}-7 b_{3} v_{1}-2 b_{3} v_{2}+3 a_{1}+a_{2}-a_{3}+b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(10 a_{2}-25 a_{3}+3 b_{2}-10 b_{3}\right) v_{1}^{2}+\left(10 a_{2}-20 a_{3}+4 b_{2}-10 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(10 a_{2}-10 a_{3}-b_{1}+5 b_{2}-7 b_{3}\right) v_{1}+\left(2 a_{2}-3 a_{3}+b_{2}-2 b_{3}\right) v_{2}^{2} \\
& \quad+\left(a_{1}+3 a_{2}-a_{3}+2 b_{2}-2 b_{3}\right) v_{2}+3 a_{1}+a_{2}-a_{3}+b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
2 a_{2}-3 a_{3}+b_{2}-2 b_{3}=0 \\
10 a_{2}-25 a_{3}+3 b_{2}-10 b_{3}=0 \\
10 a_{2}-20 a_{3}+4 b_{2}-10 b_{3}=0 \\
a_{1}+3 a_{2}-a_{3}+2 b_{2}-2 b_{3}=0 \\
10 a_{2}-10 a_{3}-b_{1}+5 b_{2}-7 b_{3}=0 \\
3 a_{1}+a_{2}-a_{3}+b_{1}+b_{2}-b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-a_{3}-b_{3} \\
a_{2} & =4 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =5 a_{3}+3 b_{3} \\
b_{2} & =-5 a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x-1 \\
& \eta=3+y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =3+y-\left(-\frac{5 x+2 y+1}{2 x+y+1}\right)(x-1) \\
& =\frac{5 x^{2}+4 x y+y^{2}+2 x+2 y+2}{2 x+y+1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{5 x^{2}+4 x y+y^{2}+2 x+2 y+2}{2 x+y+1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(5 x^{2}+4 x y+y^{2}+2 x+2 y+2\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{5 x+2 y+1}{2 x+y+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{5 x+2 y+1}{5 x^{2}+(4 y+2) x+y^{2}+2 y+2} \\
S_{y} & =\frac{2 x+y+1}{y^{2}+(4 x+2) y+5 x^{2}+2 x+2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(5 x^{2}+(4 y+2) x+y^{2}+2 y+2\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(5 x^{2}+(4 y+2) x+y^{2}+2 y+2\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{5 x+2 y+1}{2 x+y+1}$		$\frac{d S}{d R}=0$
	$R=x$,
	$\ln \left(5 x^{2}+(4 y+2) x\right.$	
	$S=\frac{\log }{}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(5 x^{2}+(4 y+2) x+y^{2}+2 y+2\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 319: Slope field plot

Verification of solutions

$$
\frac{\ln \left(5 x^{2}+(4 y+2) x+y^{2}+2 y+2\right)}{2}=c_{1}
$$

Verified OK.

7.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x+y+1) \mathrm{d} y & =(-5 x-2 y-1) \mathrm{d} x \\
(5 x+2 y+1) \mathrm{d} x+(2 x+y+1) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =5 x+2 y+1 \\
N(x, y) & =2 x+y+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(5 x+2 y+1) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x+y+1) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 5 x+2 y+1 \mathrm{~d} x \\
\phi & =\frac{x(5 x+4 y+2)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x+y+1$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x+y+1=2 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y+1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y+1) \mathrm{d} y \\
f(y) & =\frac{1}{2} y^{2}+y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(5 x+4 y+2)}{2}+\frac{y^{2}}{2}+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(5 x+4 y+2)}{2}+\frac{y^{2}}{2}+y
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x(5 x+4 y+2)}{2}+\frac{y^{2}}{2}+y=c_{1} \tag{1}
\end{equation*}
$$

Figure 320: Slope field plot

Verification of solutions

$$
\frac{x(5 x+4 y+2)}{2}+\frac{y^{2}}{2}+y=c_{1}
$$

Verified OK.

7.7.5 Maple step by step solution

Let's solve

$$
2 y+(2 x+y+1) y^{\prime}=-5 x-1
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

$\square \quad$ Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
2=2
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(5 x+2 y+1) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\frac{5 x^{2}}{2}+2 x y+x+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$2 x+y+1=2 x+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=y+1$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\frac{1}{2} y^{2}+y$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{5}{2} x^{2}+2 x y+x+\frac{1}{2} y^{2}+y
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{5}{2} x^{2}+2 x y+x+\frac{1}{2} y^{2}+y=c_{1}
$$

- \quad Solve for y

$$
\left\{y=-2 x-1-\sqrt{-x^{2}+2 c_{1}+2 x+1}, y=-2 x-1+\sqrt{-x^{2}+2 c_{1}+2 x+1}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

Solution by Maple
Time used: 0.562 (sec). Leaf size: 32

```
dsolve((5*x+2*y(x)+1)+(2*x+y(x)+1)*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{-\sqrt{-(-1+x)^{2} c_{1}^{2}+1}+(-2 x-1) c_{1}}{c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 53
DSolve $[(5 * x+2 * y[x]+1)+(2 * x+y[x]+1) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x^{2}+2 x+1+c_{1}}-2 x-1 \\
& y(x) \rightarrow \sqrt{-x^{2}+2 x+1+c_{1}}-2 x-1
\end{aligned}
$$

7.8 problem 8

7.8.1 Solving as first order ode lie symmetry calculated ode 1639

Internal problem ID [11706]
Internal file name [OUTPUT/11715_Thursday_April_11_2024_08_48_44_PM_93206069/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order__ode__lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
-y-(6 x-2 y-3) y^{\prime}=-3 x-1
$$

7.8.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-3 x+y-1}{-6 x+2 y+3} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-3 x+y-1)\left(b_{3}-a_{2}\right)}{-6 x+2 y+3}-\frac{(-3 x+y-1)^{2} a_{3}}{(-6 x+2 y+3)^{2}} \\
& -\left(-\frac{3}{-6 x+2 y+3}+\frac{-18 x+6 y-6}{(-6 x+2 y+3)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{1}{-6 x+2 y+3}-\frac{2(-3 x+y-1)}{(-6 x+2 y+3)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{18 x^{2} a_{2}+9 x^{2} a_{3}-36 x^{2} b_{2}-18 x^{2} b_{3}-12 x y a_{2}-6 x y a_{3}+24 x y b_{2}+12 x y b_{3}+2 y^{2} a_{2}+y^{2} a_{3}-4 y^{2} b_{2}-2 y^{2}}{(6 x-2 y} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -18 x^{2} a_{2}-9 x^{2} a_{3}+36 x^{2} b_{2}+18 x^{2} b_{3}+12 x y a_{2}+6 x y a_{3}-24 x y b_{2}-12 x y b_{3} \tag{6E}\\
& -2 y^{2} a_{2}-y^{2} a_{3}+4 y^{2} b_{2}+2 y^{2} b_{3}+18 x a_{2}-6 x a_{3}-41 x b_{2}-3 x b_{3}-y a_{2} \\
& +17 y a_{3}+12 y b_{2}-4 y b_{3}+15 a_{1}+3 a_{2}-a_{3}-5 b_{1}+9 b_{2}-3 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -18 a_{2} v_{1}^{2}+12 a_{2} v_{1} v_{2}-2 a_{2} v_{2}^{2}-9 a_{3} v_{1}^{2}+6 a_{3} v_{1} v_{2}-a_{3} v_{2}^{2}+36 b_{2} v_{1}^{2}-24 b_{2} v_{1} v_{2} \tag{7E}\\
& +4 b_{2} v_{2}^{2}+18 b_{3} v_{1}^{2}-12 b_{3} v_{1} v_{2}+2 b_{3} v_{2}^{2}+18 a_{2} v_{1}-a_{2} v_{2}-6 a_{3} v_{1}+17 a_{3} v_{2} \\
& -41 b_{2} v_{1}+12 b_{2} v_{2}-3 b_{3} v_{1}-4 b_{3} v_{2}+15 a_{1}+3 a_{2}-a_{3}-5 b_{1}+9 b_{2}-3 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-18 a_{2}-9 a_{3}+36 b_{2}+18 b_{3}\right) v_{1}^{2}+\left(12 a_{2}+6 a_{3}-24 b_{2}-12 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(18 a_{2}-6 a_{3}-41 b_{2}-3 b_{3}\right) v_{1}+\left(-2 a_{2}-a_{3}+4 b_{2}+2 b_{3}\right) v_{2}^{2} \\
& \quad+\left(-a_{2}+17 a_{3}+12 b_{2}-4 b_{3}\right) v_{2}+15 a_{1}+3 a_{2}-a_{3}-5 b_{1}+9 b_{2}-3 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-18 a_{2}-9 a_{3}+36 b_{2}+18 b_{3} & =0 \\
-2 a_{2}-a_{3}+4 b_{2}+2 b_{3} & =0 \\
-a_{2}+17 a_{3}+12 b_{2}-4 b_{3} & =0 \\
12 a_{2}+6 a_{3}-24 b_{2}-12 b_{3} & =0 \\
18 a_{2}-6 a_{3}-41 b_{2}-3 b_{3} & =0 \\
15 a_{1}+3 a_{2}-a_{3}-5 b_{1}+9 b_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=a_{1} \\
& a_{2}=2 b_{2} \\
& a_{3}=-\frac{2 b_{2}}{3} \\
& b_{1}=3 a_{1}+\frac{10 b_{2}}{3} \\
& b_{2}=b_{2} \\
& b_{3}=-\frac{b_{2}}{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=3
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{align*}
\eta & =\eta-\omega(x, y) \xi \\
& =3-\left(\frac{-3 x+y-1}{-6 x+2 y+3}\right) \tag{1}\\
& =\frac{15 x-5 y-10}{6 x-2 y-3} \\
\xi & =0
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{15 x-5 y-10}{6 x-2 y-3}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{2 y}{5}-\frac{\ln (-3 x+y+2)}{5}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-3 x+y-1}{-6 x+2 y+3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3}{15 x-5 y-10} \\
S_{y} & =\frac{2}{5}+\frac{1}{15 x-5 y-10}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{5} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{5}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{5}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 y}{5}-\frac{\ln (-3 x+y+2)}{5}=\frac{x}{5}+c_{1}
$$

Which simplifies to

$$
\frac{2 y}{5}-\frac{\ln (-3 x+y+2)}{5}=\frac{x}{5}+c_{1}
$$

Which gives

$$
y=-\frac{\text { LambertW }\left(-2 \mathrm{e}^{5 x-4-5 c_{1}}\right)}{2}+3 x-2
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-3 x+y-1}{-6 x+2 y+3}$		$\frac{d S}{d R}=\frac{1}{5}$
		$\rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty$
		－
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 进
	$R=x$	
边	$2 y \quad \ln (-3 x+y$	边
－	$S=\frac{2}{5}-\frac{1}{5}$	
－$\rightarrow+\infty \rightarrow \infty \rightarrow \infty \rightarrow \infty$		両
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+\rightarrow \rightarrow \rightarrow+\rightarrow+\infty$
－		\rightarrow
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=-\frac{\text { LambertW }\left(-2 \mathrm{e}^{5 x-4-5 c_{1}}\right)}{2}+3 x-2 \tag{1}
\end{equation*}
$$

Figure 321: Slope field plot

Verification of solutions

$$
y=-\frac{\text { LambertW }\left(-2 \mathrm{e}^{5 x-4-5 c_{1}}\right)}{2}+3 x-2
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = 3, y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 23

```
dsolve((3*x-y(x)+1)-(6*x-2*y(x)-3)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\frac{\text { LambertW }\left(-2 \mathrm{e}^{5 x-4-5 c_{1}}\right)}{2}+3 x-2
$$

\checkmark Solution by Mathematica
Time used: 3.097 (sec). Leaf size: 35

```
DSolve[(3*x-y[x]+1)-(6*x-2*y[x]-3)*y'[x]==0,y[x],x,IncludeSingularSolutions ->> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{2} W\left(-e^{5 x-1+c_{1}}\right)+3 x-2 \\
& y(x) \rightarrow 3 x-2
\end{aligned}
$$

7.9 problem 9

7.9.1 Solving as homogeneousTypeMapleC ode 1647
7.9.2 Solving as first order ode lie symmetry calculated ode 1650

Internal problem ID [11707]
Internal file name [OUTPUT/11716_Thursday_April_11_2024_08_48_45_PM_49666120/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 9 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
-2 y+(2 x+y-1) y^{\prime}=-x+3
$$

7.9.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{-X-x_{0}+2 Y(X)+2 y_{0}+3}{2 X+2 x_{0}+Y(X)+y_{0}-1}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =1 \\
y_{0} & =-1
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{-X+2 Y(X)}{2 X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{-X+2 Y}{2 X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-X+2 Y$ and $N=2 X+Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{2 u-1}{u+2} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{2 u(X)-1}{u(X)+2}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{2 u(X)-1}{u(X)+2}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)+2\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+1=0
$$

Or

$$
X(u(X)+2)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+1}{X(u+2)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+1}{u+2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u+2}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+1}{u+2}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+1\right)}{2}+2 \arctan (u) & =-\ln (X)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(X)^{2}+1\right)}{2}+2 \arctan (u(X))+\ln (X)-c_{2}=0
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+1\right)}{2}+2 \arctan \left(\frac{Y(X)}{X}\right)+\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+1\right)}{2}+2 \arctan \left(\frac{Y(X)}{X}\right)+\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-1 \\
& X=1+x
\end{aligned}
$$

Then the solution in y becomes

$$
\frac{\ln \left(\frac{(y+1)^{2}}{(x-1)^{2}}+1\right)}{2}+2 \arctan \left(\frac{y+1}{x-1}\right)+\ln (x-1)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{(y+1)^{2}}{(x-1)^{2}}+1\right)}{2}+2 \arctan \left(\frac{y+1}{x-1}\right)+\ln (x-1)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 322: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{(y+1)^{2}}{(x-1)^{2}}+1\right)}{2}+2 \arctan \left(\frac{y+1}{x-1}\right)+\ln (x-1)-c_{2}=0
$$

Verified OK.

7.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-x+2 y+3}{2 x+y-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-x+2 y+3)\left(b_{3}-a_{2}\right)}{2 x+y-1}-\frac{(-x+2 y+3)^{2} a_{3}}{(2 x+y-1)^{2}} \\
& -\left(-\frac{1}{2 x+y-1}-\frac{2(-x+2 y+3)}{(2 x+y-1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2}{2 x+y-1}-\frac{-x+2 y+3}{(2 x+y-1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{2 x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}-2 x^{2} b_{3}+2 x y a_{2}+4 x y a_{3}+4 x y b_{2}-2 x y b_{3}-2 y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}+2 y^{2} b_{3}-2 x a_{2}+}{(2 x+y-}$ $=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}-2 x^{2} b_{3}+2 x y a_{2}+4 x y a_{3}+4 x y b_{2}-2 x y b_{3}-2 y^{2} a_{2} \tag{6E}\\
& +y^{2} a_{3}+y^{2} b_{2}+2 y^{2} b_{3}-2 x a_{2}+6 x a_{3}-5 x b_{1}+x b_{2}+7 x b_{3}+5 y a_{1} \\
& -y a_{2}-7 y a_{3}-2 y b_{2}+6 y b_{3}+5 a_{1}+3 a_{2}-9 a_{3}+5 b_{1}+b_{2}-3 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}-2 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}+4 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2}+4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& \quad-2 b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}+2 b_{3} v_{2}^{2}+5 a_{1} v_{2}-2 a_{2} v_{1}-a_{2} v_{2}+6 a_{3} v_{1}-7 a_{3} v_{2}-5 b_{1} v_{1} \\
& \quad+b_{2} v_{1}-2 b_{2} v_{2}+7 b_{3} v_{1}+6 b_{3} v_{2}+5 a_{1}+3 a_{2}-9 a_{3}+5 b_{1}+b_{2}-3 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(2 a_{2}-a_{3}-b_{2}-2 b_{3}\right) v_{1}^{2}+\left(2 a_{2}+4 a_{3}+4 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(-2 a_{2}+6 a_{3}-5 b_{1}+b_{2}+7 b_{3}\right) v_{1}+\left(-2 a_{2}+a_{3}+b_{2}+2 b_{3}\right) v_{2}^{2} \\
& \quad+\left(5 a_{1}-a_{2}-7 a_{3}-2 b_{2}+6 b_{3}\right) v_{2}+5 a_{1}+3 a_{2}-9 a_{3}+5 b_{1}+b_{2}-3 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{2}+a_{3}+b_{2}+2 b_{3} & =0 \\
2 a_{2}-a_{3}-b_{2}-2 b_{3} & =0 \\
2 a_{2}+4 a_{3}+4 b_{2}-2 b_{3} & =0 \\
5 a_{1}-a_{2}-7 a_{3}-2 b_{2}+6 b_{3} & =0 \\
-2 a_{2}+6 a_{3}-5 b_{1}+b_{2}+7 b_{3} & =0 \\
5 a_{1}+3 a_{2}-9 a_{3}+5 b_{1}+b_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-b_{2}-b_{3} \\
a_{2} & =b_{3} \\
a_{3} & =-b_{2} \\
b_{1} & =-b_{2}+b_{3} \\
b_{2} & =b_{2} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x-1 \\
& \eta=y+1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y+1-\left(\frac{-x+2 y+3}{2 x+y-1}\right)(x-1) \\
& =\frac{x^{2}+y^{2}-2 x+2 y+2}{2 x+y-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}+y^{2}-2 x+2 y+2}{2 x+y-1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+y^{2}-2 x+2 y+2\right)}{2}+2 \arctan \left(\frac{2 y+2}{2 x-2}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-x+2 y+3}{2 x+y-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x-2 y-3}{x^{2}+y^{2}-2 x+2 y+2} \\
S_{y} & =\frac{2 x+y-1}{x^{2}+y^{2}-2 x+2 y+2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}+x^{2}+2 y-2 x+2\right)}{2}+2 \arctan \left(\frac{y+1}{x-1}\right)=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+x^{2}+2 y-2 x+2\right)}{2}+2 \arctan \left(\frac{y+1}{x-1}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-x+2 y+3}{2 x+y-1}$		$\frac{d S}{d R}=0$
-1:		
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29 \rightarrow \rightarrow \rightarrow \rightarrow$
	$R=$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
	$S=\underline{\ln \left(x^{2}+y^{2}-2 x+2!\right.}$	$\xrightarrow{\rightarrow \rightarrow-4}$
$\cdots \rightarrow 0$	$S=\frac{2}{2}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2^{2} \rightarrow \rightarrow]{ }$
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+x^{2}+2 y-2 x+2\right)}{2}+2 \arctan \left(\frac{y+1}{x-1}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 323: Slope field plot

Verification of solutions

$$
\frac{\ln \left(y^{2}+x^{2}+2 y-2 x+2\right)}{2}+2 \arctan \left(\frac{y+1}{x-1}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 31

```
dsolve((x-2*y(x)-3)+(2*x+y(x)-1)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=-1-\tan \left(\operatorname{RootOf}\left(-4 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (-1+x)+2 c_{1}\right)\right)(-1+x)
$$

\checkmark Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 66

```
DSolve[(x-2*y[x]-3)+(2*x+y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

Solve $\left[32 \arctan \left(\frac{2 y(x)-x+3}{y(x)+2 x-1}\right)\right.$

$$
\left.+8 \log \left(\frac{x^{2}+y(x)^{2}+2 y(x)-2 x+2}{5(x-1)^{2}}\right)+16 \log (x-1)+5 c_{1}=0, y(x)\right]
$$

7.10 problem 10

7.10.1 Solving as homogeneousTypeMapleC ode 1658
7.10.2 Solving as first order ode lie symmetry calculated ode 1662

Internal problem ID [11708]
Internal file name [OUTPUT/11717_Thursday_April_11_2024_08_48_47_PM_9399003/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
-4 y-(x+5 y+3) y^{\prime}=-10 x-12
$$

7.10.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{2\left(2 Y(X)+2 y_{0}-5 X-5 x_{0}-6\right)}{X+x_{0}+5 Y(X)+5 y_{0}+3}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =-\frac{4}{3} \\
y_{0} & =-\frac{1}{3}
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{2(2 Y(X)-5 X)}{X+5 Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{2(2 Y-5 X)}{X+5 Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-4 Y+10 X$ and $N=X+5 Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-4 u+10}{5 u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-4 u(X)+10}{5 u(X)+1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-4 u(X)+10}{5 u(X)+1}-u(X)}{X}=0
$$

Or

$$
5\left(\frac{d}{d X} u(X)\right) X u(X)+\left(\frac{d}{d X} u(X)\right) X+5 u(X)^{2}+5 u(X)-10=0
$$

Or

$$
-10+(5 u(X)+1) X\left(\frac{d}{d X} u(X)\right)+5 u(X)^{2}+5 u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{5\left(u^{2}+u-2\right)}{(5 u+1) X}
\end{aligned}
$$

Where $f(X)=-\frac{5}{X}$ and $g(u)=\frac{u^{2}+u-2}{5 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+u-2}{5 u+1}} d u & =-\frac{5}{X} d X \\
\int \frac{1}{\frac{u^{2}+u-2}{5 u+1}} d u & =\int-\frac{5}{X} d X \\
2 \ln (u-1)+3 \ln (u+2) & =-5 \ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{2 \ln (u-1)+3 \ln (u+2)}=\mathrm{e}^{-5 \ln (X)+c_{2}}
$$

Which simplifies to

$$
(u-1)^{2}(u+2)^{3}=\frac{c_{3}}{X^{5}}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=\operatorname{RootOf}\left(8 X^{5}-4 X^{4} _Z-10 X^{3} _Z^{2}+X^{2} _Z^{3}+4 X _Z^{4}+_Z^{5}-c_{3}\right)
$$

Using the solution for $Y(X)$

$$
Y(X)=\operatorname{RootOf}\left(8 X^{5}-4 X^{4} _Z-10 X^{3} _Z^{2}+X^{2} _Z^{3}+4 X _Z^{4}+_Z^{5}-c_{3}\right)
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-\frac{1}{3} \\
& X=x-\frac{4}{3}
\end{aligned}
$$

Then the solution in y becomes

$$
y+\frac{1}{3}=\operatorname{RootOf}\left(243 _Z^{5}+(972 x+1296) _Z^{4}+\left(243 x^{2}+648 x+432\right) _Z^{3}+\left(-2430 x^{3}-9720 x^{2}-12\right.\right.
$$

Summary
The solution(s) found are the following

$$
\begin{array}{r}
y+\frac{1}{3}=\operatorname{RootOf}\left(243 _Z^{5}+(972 x+1296) _Z^{4}+\left(243 x^{2}+648 x+432\right) _Z^{3}\right. \\
\quad+\left(-2430 x^{3}-9720 x^{2}-12960 x-5760\right) _\left(Z^{2}\right) \\
+\left(-972 x^{4}-5184 x^{3}-10368 x^{2}-9216 x-3072\right) _Z+1944 x^{5}+12960 x^{4} \\
\left.+34560 x^{3}+46080 x^{2}-243 c_{3}+30720 x+8192\right)
\end{array}
$$

Figure 324: Slope field plot

Verification of solutions

$$
\begin{array}{r}
y+\frac{1}{3}=\operatorname{RootOf}\left(243 _Z^{5}+(972 x+1296) _Z^{4}+\left(243 x^{2}+648 x+432\right) _Z^{3}\right. \\
+\left(-2430 x^{3}-9720 x^{2}-12960 x-5760\right) _Z^{2} \\
+\left(-972 x^{4}-5184 x^{3}-10368 x^{2}-9216 x-3072\right) _Z+1944 x^{5}+12960 x^{4} \\
\left.+34560 x^{3}+46080 x^{2}-243 c_{3}+30720 x+8192\right)
\end{array}
$$

Verified OK.

7.10.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2(-5 x+2 y-6)}{x+5 y+3} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{2(-5 x+2 y-6)\left(b_{3}-a_{2}\right)}{x+5 y+3}-\frac{4(-5 x+2 y-6)^{2} a_{3}}{(x+5 y+3)^{2}} \\
& -\left(\frac{10}{x+5 y+3}+\frac{-10 x+4 y-12}{(x+5 y+3)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{4}{x+5 y+3}+\frac{-50 x+20 y-60}{(x+5 y+3)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -10 x^{2} a_{2}+100 x^{2} a_{3}-55 x^{2} b_{2}-10 x^{2} b_{3}+100 x y a_{2}-80 x y a_{3}-10 x y b_{2}-100 x y b_{3}-20 y^{2} a_{2}+70 y^{2} a_{3}-25 \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -10 x^{2} a_{2}-100 x^{2} a_{3}+55 x^{2} b_{2}+10 x^{2} b_{3}-100 x y a_{2}+80 x y a_{3} \\
& +10 x y b_{2}+100 x y b_{3}+20 y^{2} a_{2}-70 y^{2} a_{3}+25 y^{2} b_{2}-20 y^{2} b_{3}-60 x a_{2} \tag{6E}\\
& -240 x a_{3}+54 x b_{1}+78 x b_{2}+42 x b_{3}-54 y a_{1}-48 y a_{2}+78 y a_{3} \\
& +30 y b_{2}+120 y b_{3}-18 a_{1}-36 a_{2}-144 a_{3}+72 b_{1}+9 b_{2}+36 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -10 a_{2} v_{1}^{2}-100 a_{2} v_{1} v_{2}+20 a_{2} v_{2}^{2}-100 a_{3} v_{1}^{2}+80 a_{3} v_{1} v_{2}-70 a_{3} v_{2}^{2} \\
& +55 b_{2} v_{1}^{2}+10 b_{2} v_{1} v_{2}+25 b_{2} v_{2}^{2}+10 b_{3} v_{1}^{2}+100 b_{3} v_{1} v_{2}-20 b_{3} v_{2}^{2}-54 a_{1} v_{2} \tag{7E}\\
& -60 a_{2} v_{1}-48 a_{2} v_{2}-240 a_{3} v_{1}+78 a_{3} v_{2}+54 b_{1} v_{1}+78 b_{2} v_{1}+30 b_{2} v_{2} \\
& +42 b_{3} v_{1}+120 b_{3} v_{2}-18 a_{1}-36 a_{2}-144 a_{3}+72 b_{1}+9 b_{2}+36 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-10 a_{2}-100 a_{3}+55 b_{2}+10 b_{3}\right) v_{1}^{2}+\left(-100 a_{2}+80 a_{3}+10 b_{2}+100 b_{3}\right) v_{1} v_{2} \\
& \quad+\left(-60 a_{2}-240 a_{3}+54 b_{1}+78 b_{2}+42 b_{3}\right) v_{1}+\left(20 a_{2}-70 a_{3}+25 b_{2}-20 b_{3}\right) v_{2}^{2} \tag{8E}\\
& \quad+\left(-54 a_{1}-48 a_{2}+78 a_{3}+30 b_{2}+120 b_{3}\right) v_{2}-18 a_{1} \\
& \quad-36 a_{2}-144 a_{3}+72 b_{1}+9 b_{2}+36 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
-100 a_{2}+80 a_{3}+10 b_{2}+100 b_{3}=0 \\
-10 a_{2}-100 a_{3}+55 b_{2}+10 b_{3}=0 \\
20 a_{2}-70 a_{3}+25 b_{2}-20 b_{3}=0 \\
-54 a_{1}-48 a_{2}+78 a_{3}+30 b_{2}+120 b_{3}=0 \\
-60 a_{2}-240 a_{3}+54 b_{1}+78 b_{2}+42 b_{3}=0 \\
-18 a_{1}-36 a_{2}-144 a_{3}+72 b_{1}+9 b_{2}+36 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=-9 a_{3}+4 b_{1} \\
& a_{2}=-7 a_{3}+3 b_{1} \\
& a_{3}=a_{3} \\
& b_{1}=b_{1} \\
& b_{2}=2 a_{3} \\
& b_{3}=-8 a_{3}+3 b_{1}
\end{aligned}
$$

Substituting the above solution in the anstaz ($1 \mathrm{E}, 2 \mathrm{E}$) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=4+3 x \\
& \eta=3 y+1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =3 y+1-\left(-\frac{2(-5 x+2 y-6)}{x+5 y+3}\right)(4+3 x) \\
& =\frac{-30 x^{2}+15 x y+15 y^{2}-75 x+30 y-45}{x+5 y+3} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-30 x^{2}+15 x y+15 y^{2}-75 x+30 y-45}{x+5 y+3}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (2 x+y+3)}{5}+\frac{2 \ln (y-1-x)}{15}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2(-5 x+2 y-6)}{x+5 y+3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{10 x+5 y+15}+\frac{2}{15 x-15 y+15} \\
S_{y} & =\frac{-x-5 y-3}{15(2 x+y+3)(-y+1+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (2 x+y+3)}{5}+\frac{2 \ln (y-1-x)}{15}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (2 x+y+3)}{5}+\frac{2 \ln (y-1-x)}{15}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2(-5 x+2 y-6)}{x+5 y+3}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+S(R)]{ }$
		\rightarrow
	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$\ln (2 x+y+3)$	
	$S=\frac{\ln (2 x+y+3)}{5}+$	$\xrightarrow[\rightarrow \rightarrow \rightarrow]{\text { P }}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (2 x+y+3)}{5}+\frac{2 \ln (y-1-x)}{15}=c_{1} \tag{1}
\end{equation*}
$$

Figure 325: Slope field plot

Verification of solutions

$$
\frac{\ln (2 x+y+3)}{5}+\frac{2 \ln (y-1-x)}{15}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.859 (sec). Leaf size: 129

```
dsolve((10*x-4*y(x)+12)-(x+5*y(x)+3)*diff (y (x),x)=0,y(x), singsol=all)
```

$y(x)$
$=\frac{(-3 x-4) \operatorname{RootOf}\left(-1+\left(243 c_{1} x^{5}+1620 x^{4} c_{1}+4320 c_{1} x^{3}+5760 c_{1} x^{2}+3840 c_{1} x+1024 c_{1}\right) _Z^{25}+(14\right.}{\text { (14 }}$
$-2 x-3$
\checkmark Solution by Mathematica
Time used: 60.443 (sec). Leaf size: 3061
DSolve[(10*x-4*y[x]+12)-(x+5*y[x]+3)*y'[x]==0,y[x],x,IncludeSingularSolutions True]
Too large to display

7.11 problem 11

7.11.1 Existence and uniqueness analysis 1670
7.11.2 Solving as differentialType ode 1670
7.11.3 Solving as homogeneousTypeMapleC ode 1672
7.11.4 Solving as first order ode lie symmetry calculated ode 1676
7.11.5 Solving as exact ode . 1681
7.11.6 Maple step by step solution . 1684

Internal problem ID [11709]
Internal file name [OUTPUT/11718_Thursday_April_11_2024_08_48_50_PM_63010928/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
4 y+(4 x+2 y+2) y^{\prime}=-6 x-1
$$

With initial conditions

$$
\left[y\left(\frac{1}{2}\right)=3\right]
$$

7.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{6 x+4 y+1}{2(2 x+y+1)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=3$ is

$$
\{x<-2 \vee-2<x\}
$$

And the point $x_{0}=\frac{1}{2}$ is inside this domain. The y domain of $f(x, y)$ when $x=\frac{1}{2}$ is

$$
\{y<-2 \vee-2<y\}
$$

And the point $y_{0}=3$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{6 x+4 y+1}{2(2 x+y+1)}\right) \\
& =-\frac{2}{2 x+y+1}+\frac{6 x+4 y+1}{2(2 x+y+1)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=3$ is

$$
\{x<-2 \vee-2<x\}
$$

And the point $x_{0}=\frac{1}{2}$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=\frac{1}{2}$ is

$$
\{y<-2 \vee-2<y\}
$$

And the point $y_{0}=3$ is inside this domain. Therefore solution exists and is unique.

7.11.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-6 x-4 y-1}{4 x+2 y+2} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y+2) d y=(-4 x) d y+(-6 x-4 y-1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-4 x) d y+(-6 x-4 y-1) d x=d\left(-3 x^{2}-4 x y-x\right)
$$

Hence (2) becomes

$$
(2 y+2) d y=d\left(-3 x^{2}-4 x y-x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-2 x-1+\sqrt{x^{2}+c_{1}+3 x+1}+c_{1} \\
& y=-2 x-1-\sqrt{x^{2}+c_{1}+3 x+1}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{1}{2}$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=-2-\frac{\sqrt{11+4 c_{1}}}{2}+c_{1} \\
c_{1}=\frac{11}{2}+2 \sqrt{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x+\frac{9}{2}-\frac{\sqrt{4 x^{2}+26+8 \sqrt{2}+12 x}}{2}+2 \sqrt{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{1}{2}$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=-2+\frac{\sqrt{11+4 c_{1}}}{2}+c_{1} \\
c_{1}=\frac{11}{2}-2 \sqrt{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 x+\frac{9}{2}+\frac{\sqrt{4 x^{2}+26-8 \sqrt{2}+12 x}}{2}-2 \sqrt{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-2 x+\frac{9}{2}+\frac{\sqrt{4 x^{2}+26-8 \sqrt{2}+12 x}}{2}-2 \sqrt{2} \tag{1}\\
& y=-2 x+\frac{9}{2}-\frac{\sqrt{4 x^{2}+26+8 \sqrt{2}+12 x}}{2}+2 \sqrt{2} \tag{2}
\end{align*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-2 x+\frac{9}{2}+\frac{\sqrt{4 x^{2}+26-8 \sqrt{2}+12 x}}{2}-2 \sqrt{2}
$$

Verified OK.

$$
y=-2 x+\frac{9}{2}-\frac{\sqrt{4 x^{2}+26+8 \sqrt{2}+12 x}}{2}+2 \sqrt{2}
$$

Verified OK.

7.11.3 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{6 X+6 x_{0}+4 Y(X)+4 y_{0}+1}{2\left(2 X+2 x_{0}+Y(X)+y_{0}+1\right)}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=-\frac{3}{2} \\
& y_{0}=2
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{6 X+4 Y(X)}{2(2 X+Y(X))}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{3 X+2 Y}{2 X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-3 X-2 Y$ and $N=2 X+Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-2 u-3}{u+2} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-2 u(X)-3}{u(X)+2}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-2 u(X)-3}{u(X)+2}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)+2\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+4 u(X)+3=0
$$

Or

$$
X(u(X)+2)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+4 u(X)+3=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+4 u+3}{X(u+2)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+4 u+3}{u+2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+4 u+3}{u+2}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+4 u+3}{u+2}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+4 u+3\right)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+4 u+3}=\mathrm{e}^{-\ln (X)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+4 u+3}=\frac{c_{3}}{X}
$$

Which simplifies to

$$
\sqrt{u(X)^{2}+4 u(X)+3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

The solution is

$$
\sqrt{u(X)^{2}+4 u(X)+3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\sqrt{\frac{Y(X)^{2}}{X^{2}}+\frac{4 Y(X)}{X}+3}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Which simplifies to

$$
\sqrt{\frac{(Y(X)+3 X)(Y(X)+X)}{X^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Using the solution for $Y(X)$

$$
\sqrt{\frac{(Y(X)+3 X)(Y(X)+X)}{X^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y+2 \\
& X=x-\frac{3}{2}
\end{aligned}
$$

Then the solution in y becomes

$$
\sqrt{\frac{\left(y+\frac{5}{2}+3 x\right)\left(y-\frac{1}{2}+x\right)}{\left(x+\frac{3}{2}\right)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x+\frac{3}{2}}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=\frac{1}{2}$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{\sqrt{21}}{2}=\frac{c_{3} \mathrm{e}^{c_{2}}}{2} \\
& c_{2}=\frac{\ln \left(\frac{21}{c_{3}^{2}}\right)}{2}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\sqrt{\frac{\left(y+\frac{5}{2}+3 x\right)\left(x+y-\frac{1}{2}\right)}{\left(x+\frac{3}{2}\right)^{2}}}=\frac{2 c_{3} \sqrt{21} \sqrt{\frac{1}{c_{3}^{2}}}}{3+2 x}
$$

The above simplifies to
$-2 c_{3} \sqrt{21} \sqrt{\frac{1}{c_{3}^{2}}}+2 \sqrt{\frac{(2 y+5+6 x)(2 x+2 y-1)}{(3+2 x)^{2}}} x+3 \sqrt{\frac{(2 y+5+6 x)(2 x+2 y-1)}{(3+2 x)^{2}}}=0$
Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{(2 y+5+6 x)(2 x+2 y-1)}{(3+2 x)^{2}}}(3+2 x)-2 \sqrt{21} \operatorname{csgn}\left(\frac{1}{c_{3}}\right)=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{\frac{(2 y+5+6 x)(2 x+2 y-1)}{(3+2 x)^{2}}}(3+2 x)-2 \sqrt{21} \operatorname{csgn}\left(\frac{1}{c_{3}}\right)=0
$$

Verified OK.

7.11.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{6 x+4 y+1}{2(2 x+y+1)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(6 x+4 y+1)\left(b_{3}-a_{2}\right)}{2(2 x+y+1)}-\frac{(6 x+4 y+1)^{2} a_{3}}{4(2 x+y+1)^{2}} \\
& -\left(-\frac{3}{2 x+y+1}+\frac{6 x+4 y+1}{(2 x+y+1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2}{2 x+y+1}+\frac{6 x+4 y+1}{2(2 x+y+1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{24 x^{2} a_{2}-36 x^{2} a_{3}+20 x^{2} b_{2}-24 x^{2} b_{3}+24 x y a_{2}-48 x y a_{3}+16 x y b_{2}-24 x y b_{3}+8 y^{2} a_{2}-20 y^{2} a_{3}+4 y^{2} b_{2}-8}{4(2}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 24 x^{2} a_{2}-36 x^{2} a_{3}+20 x^{2} b_{2}-24 x^{2} b_{3}+24 x y a_{2}-48 x y a_{3}+16 x y b_{2}-24 x y b_{3} \tag{6E}\\
& +8 y^{2} a_{2}-20 y^{2} a_{3}+4 y^{2} b_{2}-8 y^{2} b_{3}+24 x a_{2}-12 x a_{3}+4 x b_{1}+22 x b_{2}-16 x b_{3} \\
& \quad-4 y a_{1}+10 y a_{2}+8 y b_{2}-4 y b_{3}+8 a_{1}+2 a_{2}-a_{3}+6 b_{1}+4 b_{2}-2 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 24 a_{2} v_{1}^{2}+24 a_{2} v_{1} v_{2}+8 a_{2} v_{2}^{2}-36 a_{3} v_{1}^{2}-48 a_{3} v_{1} v_{2}-20 a_{3} v_{2}^{2}+20 b_{2} v_{1}^{2}+16 b_{2} v_{1} v_{2} \tag{7E}\\
& \quad+4 b_{2} v_{2}^{2}-24 b_{3} v_{1}^{2}-24 b_{3} v_{1} v_{2}-8 b_{3} v_{2}^{2}-4 a_{1} v_{2}+24 a_{2} v_{1}+10 a_{2} v_{2}-12 a_{3} v_{1}+4 b_{1} v_{1} \\
& \quad+22 b_{2} v_{1}+8 b_{2} v_{2}-16 b_{3} v_{1}-4 b_{3} v_{2}+8 a_{1}+2 a_{2}-a_{3}+6 b_{1}+4 b_{2}-2 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(24 a_{2}-36 a_{3}+20 b_{2}-24 b_{3}\right) v_{1}^{2}+\left(24 a_{2}-48 a_{3}+16 b_{2}-24 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(24 a_{2}-12 a_{3}+4 b_{1}+22 b_{2}-16 b_{3}\right) v_{1}+\left(8 a_{2}-20 a_{3}+4 b_{2}-8 b_{3}\right) v_{2}^{2} \\
& \quad+\left(-4 a_{1}+10 a_{2}+8 b_{2}-4 b_{3}\right) v_{2}+8 a_{1}+2 a_{2}-a_{3}+6 b_{1}+4 b_{2}-2 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
-4 a_{1}+10 a_{2}+8 b_{2}-4 b_{3}=0 \\
8 a_{2}-20 a_{3}+4 b_{2}-8 b_{3}=0 \\
24 a_{2}-48 a_{3}+16 b_{2}-24 b_{3}=0 \\
24 a_{2}-36 a_{3}+20 b_{2}-24 b_{3}=0 \\
24 a_{2}-12 a_{3}+4 b_{1}+22 b_{2}-16 b_{3}=0 \\
8 a_{1}+2 a_{2}-a_{3}+6 b_{1}+4 b_{2}-2 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =4 a_{3}+\frac{3 b_{3}}{2} \\
a_{2} & =4 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =-\frac{9 a_{3}}{2}-2 b_{3} \\
b_{2} & =-3 a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x+\frac{3}{2} \\
& \eta=y-2
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-2-\left(-\frac{6 x+4 y+1}{2(2 x+y+1)}\right)\left(x+\frac{3}{2}\right) \\
& =\frac{12 x^{2}+16 x y+4 y^{2}+4 x+8 y-5}{8 x+4 y+4} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{12 x^{2}+16 x y+4 y^{2}+4 x+8 y-5}{8 x+4 y+4}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(12 x^{2}+16 x y+4 y^{2}+4 x+8 y-5\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{6 x+4 y+1}{2(2 x+y+1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3}{2 y+5+6 x}+\frac{1}{2 x+2 y-1} \\
S_{y} & =\frac{1}{2 y+5+6 x}+\frac{1}{2 x+2 y-1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (2 y+5+6 x)}{2}+\frac{\ln (2 x+2 y-1)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (2 y+5+6 x)}{2}+\frac{\ln (2 x+2 y-1)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{6 x+4 y+1}{2(2 x+y+1)}$		$d S$ $d R$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{1}{2}$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \ln (2)+\frac{\ln (7)}{2}+\frac{\ln (3)}{2}=c_{1} \\
& c_{1}=\ln (2)+\frac{\ln (7)}{2}+\frac{\ln (3)}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln (2 y+5+6 x)}{2}+\frac{\ln (2 x+2 y-1)}{2}=\ln (2)+\frac{\ln (7)}{2}+\frac{\ln (3)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (2 y+5+6 x)}{2}+\frac{\ln (2 x+2 y-1)}{2}=\ln (2)+\frac{\ln (7)}{2}+\frac{\ln (3)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (2 y+5+6 x)}{2}+\frac{\ln (2 x+2 y-1)}{2}=\ln (2)+\frac{\ln (7)}{2}+\frac{\ln (3)}{2}
$$

Verified OK.

7.11.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(4 x+2 y+2) \mathrm{d} y & =(-6 x-4 y-1) \mathrm{d} x \\
(6 x+4 y+1) \mathrm{d} x+(4 x+2 y+2) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=6 x+4 y+1 \\
& N(x, y)=4 x+2 y+2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(6 x+4 y+1) \\
& =4
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(4 x+2 y+2) \\
& =4
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 6 x+4 y+1 \mathrm{~d} x \\
\phi & =x(3 x+4 y+1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=4 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=4 x+2 y+2$. Therefore equation (4) becomes

$$
\begin{equation*}
4 x+2 y+2=4 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y+2
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y+2) \mathrm{d} y \\
f(y) & =y^{2}+2 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x(3 x+4 y+1)+y^{2}+2 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x(3 x+4 y+1)+y^{2}+2 y
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{1}{2}$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{89}{4}=c_{1} \\
& c_{1}=\frac{89}{4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x(3 x+4 y+1)+y^{2}+2 y=\frac{89}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2}+(4 x+2) y+3 x^{2}+x=\frac{89}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{2}+(4 x+2) y+3 x^{2}+x=\frac{89}{4}
$$

Verified OK.

7.11.6 Maple step by step solution

Let's solve

$$
\left[4 y+(4 x+2 y+2) y^{\prime}=-6 x-1, y\left(\frac{1}{2}\right)=3\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
4=4
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(6 x+4 y+1) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=3 x^{2}+4 x y+x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$4 x+2 y+2=4 x+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=2 y+2
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=y^{2}+2 y
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=3 x^{2}+4 x y+y^{2}+x+2 y$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$3 x^{2}+4 x y+y^{2}+x+2 y=c_{1}$
- \quad Solve for y

$$
\left\{y=-2 x-1-\sqrt{x^{2}+c_{1}+3 x+1}, y=-2 x-1+\sqrt{x^{2}+c_{1}+3 x+1}\right\}
$$

- Use initial condition $y\left(\frac{1}{2}\right)=3$

$$
3=-2-\sqrt{\frac{11}{4}+c_{1}}
$$

- Solution does not satisfy initial condition
- Use initial condition $y\left(\frac{1}{2}\right)=3$

$$
3=-2+\sqrt{\frac{11}{4}+c_{1}}
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{89}{4}
$$

- \quad Substitute $c_{1}=\frac{89}{4}$ into general solution and simplify

$$
y=-2 x-1+\frac{\sqrt{4 x^{2}+12 x+93}}{2}
$$

- \quad Solution to the IVP
$y=-2 x-1+\frac{\sqrt{4 x^{2}+12 x+93}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.297 (sec). Leaf size: 23
dsolve $([(6 * x+4 * y(x)+1)+(4 * x+2 * y(x)+2) * \operatorname{diff}(y(x), x)=0, y(1 / 2)=3], y(x)$, singsol=all)

$$
y(x)=-2 x-1+\frac{\sqrt{4 x^{2}+12 x+93}}{2}
$$

Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 28
DSolve $[\{(6 * x+4 * y[x]+1)+(4 * x+2 * y[x]+2) * y$ ' $[x]==0,\{y[1 / 2]==3\}\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{2}\left(\sqrt{4 x^{2}+12 x+93}-4 x-2\right)
$$

7.12 problem 12

7.12.1 Existence and uniqueness analysis 1687
7.12.2 Solving as homogeneousTypeMapleC ode 1688
7.12.3 Solving as first order ode lie symmetry calculated ode 1691

Internal problem ID [11710]
Internal file name [OUTPUT/11719_Thursday_April_11_2024_08_48_53_PM_62273029/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,
    class A`]]
```

$$
-y+(x+y+2) y^{\prime}=-3 x+6
$$

With initial conditions

$$
[y(2)=-2]
$$

7.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{-3 x+y+6}{x+y+2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-2$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $f(x, y)$ when $x=2$ is

$$
\{y<-4 \vee-4<y\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-3 x+y+6}{x+y+2}\right) \\
& =\frac{1}{x+y+2}-\frac{-3 x+y+6}{(x+y+2)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-2$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=2$ is

$$
\{y<-4 \vee-4<y\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

7.12.2 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{-3 X-3 x_{0}+Y(X)+y_{0}+6}{X+x_{0}+Y(X)+y_{0}+2}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =1 \\
y_{0} & =-3
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{-3 X+Y(X)}{X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{-3 X+Y}{X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-3 X+Y$ and $N=X+Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{u-3}{u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{u(X)-3}{u(X)+1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{u(X)-3}{u(X)+1}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)+\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+3=0
$$

Or

$$
X(u(X)+1)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+3=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+3}{X(u+1)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+3}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+3}{u+1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+3}{u+1}} d u & =\int-\frac{1}{X} d X
\end{aligned}
$$

$$
\frac{\ln \left(u^{2}+3\right)}{2}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} u}{3}\right)}{3}=-\ln (X)+c_{2}
$$

The solution is

$$
\frac{\ln \left(u(X)^{2}+3\right)}{2}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} u(X)}{3}\right)}{3}+\ln (X)-c_{2}=0
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+3\right)}{2}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} Y(X)}{3 X}\right)}{3}+\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+3\right)}{2}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} Y(X)}{3 X}\right)}{3}+\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-3 \\
& X=1+x
\end{aligned}
$$

Then the solution in y becomes

$$
\frac{\ln \left(\frac{(y+3)^{2}}{(x-1)^{2}}+3\right)}{2}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(y+3)}{-3+3 x}\right)}{3}+\ln (x-1)-c_{2}=0
$$

Initial conditions are used to solve for c_{2}. Substituting $x=2$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\ln (2)+\frac{\pi \sqrt{3}}{18}-c_{2}=0 \\
c_{2}=\ln (2)+\frac{\pi \sqrt{3}}{18}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
\frac{\ln \left(\frac{3 x^{2}+y^{2}-6 x+6 y+12}{(x-1)^{2}}\right)}{2}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(3+y)}{-3+3 x}\right)}{3}+\ln (x-1)-\ln (2)-\frac{\pi \sqrt{3}}{18}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{3 x^{2}+y^{2}-6 x+6 y+12}{(x-1)^{2}}\right)}{2}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(y+3)}{-3+3 x}\right)}{3}+\ln (x-1)-\ln (2)-\frac{\pi \sqrt{3}}{18}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(\frac{3 x^{2}+y^{2}-6 x+6 y+12}{(x-1)^{2}}\right)}{2}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(y+3)}{-3+3 x}\right)}{3}+\ln (x-1)-\ln (2)-\frac{\pi \sqrt{3}}{18}=0
$$

Verified OK.

7.12.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-3 x+y+6}{x+y+2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-3 x+y+6)\left(b_{3}-a_{2}\right)}{x+y+2}-\frac{(-3 x+y+6)^{2} a_{3}}{(x+y+2)^{2}} \\
& -\left(-\frac{3}{x+y+2}-\frac{-3 x+y+6}{(x+y+2)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{1}{x+y+2}-\frac{-3 x+y+6}{(x+y+2)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{3 x^{2} a_{2}-9 x^{2} a_{3}-3 x^{2} b_{2}-3 x^{2} b_{3}+6 x y a_{2}+6 x y a_{3}+2 x y b_{2}-6 x y b_{3}-y^{2} a_{2}+3 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+12 x a_{2}}{(x+y+2)} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{2} a_{2}-9 x^{2} a_{3}-3 x^{2} b_{2}-3 x^{2} b_{3}+6 x y a_{2}+6 x y a_{3}+2 x y b_{2}-6 x y b_{3} \tag{6E}\\
& \quad-y^{2} a_{2}+3 y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+12 x a_{2}+36 x a_{3}-4 x b_{1}+8 x b_{2}+4 y a_{1} \\
& \quad-8 y a_{2}+4 y b_{2}+12 y b_{3}+12 a_{1}-12 a_{2}-36 a_{3}+4 b_{1}+4 b_{2}+12 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 3 a_{2} v_{1}^{2}+6 a_{2} v_{1} v_{2}-a_{2} v_{2}^{2}-9 a_{3} v_{1}^{2}+6 a_{3} v_{1} v_{2}+3 a_{3} v_{2}^{2}-3 b_{2} v_{1}^{2}+2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& \quad-3 b_{3} v_{1}^{2}-6 b_{3} v_{1} v_{2}+b_{3} v_{2}^{2}+4 a_{1} v_{2}+12 a_{2} v_{1}-8 a_{2} v_{2}+36 a_{3} v_{1}-4 b_{1} v_{1} \\
& +8 b_{2} v_{1}+4 b_{2} v_{2}+12 b_{3} v_{2}+12 a_{1}-12 a_{2}-36 a_{3}+4 b_{1}+4 b_{2}+12 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(3 a_{2}-9 a_{3}-3 b_{2}-3 b_{3}\right) v_{1}^{2}+\left(6 a_{2}+6 a_{3}+2 b_{2}-6 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(12 a_{2}+36 a_{3}-4 b_{1}+8 b_{2}\right) v_{1}+\left(-a_{2}+3 a_{3}+b_{2}+b_{3}\right) v_{2}^{2} \\
& \quad+\left(4 a_{1}-8 a_{2}+4 b_{2}+12 b_{3}\right) v_{2}+12 a_{1}-12 a_{2}-36 a_{3}+4 b_{1}+4 b_{2}+12 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
4 a_{1}-8 a_{2}+4 b_{2}+12 b_{3} & =0 \\
-a_{2}+3 a_{3}+b_{2}+b_{3} & =0 \\
3 a_{2}-9 a_{3}-3 b_{2}-3 b_{3} & =0 \\
6 a_{2}+6 a_{3}+2 b_{2}-6 b_{3}= & 0 \\
12 a_{2}+36 a_{3}-4 b_{1}+8 b_{2}= & 0 \\
12 a_{1}-12 a_{2}-36 a_{3}+4 b_{1}+4 b_{2}+12 b_{3}= & 0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=-b_{3}+3 a_{3} \\
& a_{2}=b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=3 a_{3}+3 b_{3} \\
& b_{2}=-3 a_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=3+y \\
& \eta=-3 x+3
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-3 x+3-\left(\frac{-3 x+y+6}{x+y+2}\right)(3+y) \\
& =\frac{-3 x^{2}-y^{2}+6 x-6 y-12}{x+y+2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-3 x^{2}-y^{2}+6 x-6 y-12}{x+y+2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(3 x^{2}+y^{2}-6 x+6 y+12\right)}{2}+\frac{(1-x) \sqrt{3} \arctan \left(\frac{(2 y+6) \sqrt{3}}{6 x-6}\right)}{-3+3 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-3 x+y+6}{x+y+2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{-3 x+y+6}{3 x^{2}+y^{2}-6 x+6 y+12} \\
S_{y} & =\frac{-x-y-2}{3 x^{2}+y^{2}-6 x+6 y+12}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln \left(3 x^{2}+y^{2}-6 x+6 y+12\right)}{2}-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(y+3)}{-3+3 x}\right)}{3}=c_{1}
$$

Which simplifies to

$$
-\frac{\ln \left(3 x^{2}+y^{2}-6 x+6 y+12\right)}{2}-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(y+3)}{-3+3 x}\right)}{3}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\ln (2)-\frac{\pi \sqrt{3}}{18}=c_{1} \\
& c_{1}=-\ln (2)-\frac{\pi \sqrt{3}}{18}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\ln \left(3 x^{2}+y^{2}-6 x+6 y+12\right)}{2}-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(3+y)}{-3+3 x}\right)}{3}=-\ln (2)-\frac{\pi \sqrt{3}}{18}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(3 x^{2}+y^{2}-6 x+6 y+12\right)}{2}-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(y+3)}{-3+3 x}\right)}{3}=-\ln (2)-\frac{\pi \sqrt{3}}{18} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln \left(3 x^{2}+y^{2}-6 x+6 y+12\right)}{2}-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}(y+3)}{-3+3 x}\right)}{3}=-\ln (2)-\frac{\pi \sqrt{3}}{18}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 9.453 (sec). Leaf size: 120
dsolve $([(3 * x-y(x)-6)+(x+y(x)+2) * \operatorname{diff}(y(x), x)=0, y(2)=-2], y(x)$, singsol=all)

$$
\begin{aligned}
y(x)=-3-\sqrt{3} \tan & (\operatorname{RootOf}(-3 \sqrt{3} \ln (3)+6 \sqrt{3} \ln (2) \\
& \left.\left.-3 \sqrt{3} \ln \left(\sec \left(_Z\right)^{2}(-1+x)^{2}\right)+\pi+6 _Z\right)\right)(-1+x)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.141 (sec). Leaf size: 90
DSolve $\left[\left\{(3 * x-y[x]-6)+(x+y[x]+2) * y y^{\prime}[x]==0,\{y[2]==-2\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
& \text { Solve }\left[\frac{\arctan \left(\frac{-y(x)+3 x-6}{\sqrt{3}(y(x)+x+2)}\right)}{\sqrt{3}}+\log (2)=\frac{1}{2} \log \left(\frac{3 x^{2}+y(x)^{2}+6 y(x)-6 x+12}{(x-1)^{2}}\right)\right. \\
& \left.+\log (x-1)+\frac{1}{18}(\sqrt{3} \pi+18 \log (2)-9 \log (4)), y(x)\right]
\end{aligned}
$$

7.13 problem 13

7.13.1 Existence and uniqueness analysis 1699
7.13.2 Solving as first order ode lie symmetry calculated ode 1700

Internal problem ID [11711]
Internal file name [OUTPUT/11720_Thursday_April_11_2024_08_48_58_PM_23035239/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, ` class A`]]

$$
3 y+(4 x+6 y+1) y^{\prime}=-2 x-1
$$

With initial conditions

$$
[y(-2)=2]
$$

7.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{2 x+3 y+1}{4 x+6 y+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\left\{x<-\frac{13}{4} \vee-\frac{13}{4}<x\right\}
$$

And the point $x_{0}=-2$ is inside this domain. The y domain of $f(x, y)$ when $x=-2$ is

$$
\left\{y<\frac{7}{6} \vee \frac{7}{6}<y\right\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x+3 y+1}{4 x+6 y+1}\right) \\
& =-\frac{3}{4 x+6 y+1}+\frac{12 x+18 y+6}{(4 x+6 y+1)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\left\{x<-\frac{13}{4} \vee-\frac{13}{4}<x\right\}
$$

And the point $x_{0}=-2$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-2$ is

$$
\left\{y<\frac{7}{6} \vee \frac{7}{6}<y\right\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

7.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 x+3 y+1}{4 x+6 y+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(2 x+3 y+1)\left(b_{3}-a_{2}\right)}{4 x+6 y+1}-\frac{(2 x+3 y+1)^{2} a_{3}}{(4 x+6 y+1)^{2}} \\
& -\left(-\frac{2}{4 x+6 y+1}+\frac{8 x+12 y+4}{(4 x+6 y+1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3}{4 x+6 y+1}+\frac{12 x+18 y+6}{(4 x+6 y+1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{8 x^{2} a_{2}-4 x^{2} a_{3}+16 x^{2} b_{2}-8 x^{2} b_{3}+24 x y a_{2}-12 x y a_{3}+48 x y b_{2}-24 x y b_{3}+18 y^{2} a_{2}-9 y^{2} a_{3}+36 y^{2} b_{2}-18 y}{(4 x+6 y+} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 8 x^{2} a_{2}-4 x^{2} a_{3}+16 x^{2} b_{2}-8 x^{2} b_{3}+24 x y a_{2}-12 x y a_{3}+48 x y b_{2}-24 x y b_{3} \tag{6E}\\
& +18 y^{2} a_{2}-9 y^{2} a_{3}+36 y^{2} b_{2}-18 y^{2} b_{3}+4 x a_{2}-4 x a_{3}+5 x b_{2}-6 x b_{3} \\
& +9 y a_{2}-8 y a_{3}+12 y b_{2}-12 y b_{3}-2 a_{1}+a_{2}-a_{3}-3 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 a_{2} v_{1}^{2}+24 a_{2} v_{1} v_{2}+18 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}-12 a_{3} v_{1} v_{2}-9 a_{3} v_{2}^{2}+16 b_{2} v_{1}^{2}+48 b_{2} v_{1} v_{2} \tag{7E}\\
& +36 b_{2} v_{2}^{2}-8 b_{3} v_{1}^{2}-24 b_{3} v_{1} v_{2}-18 b_{3} v_{2}^{2}+4 a_{2} v_{1}+9 a_{2} v_{2}-4 a_{3} v_{1}-8 a_{3} v_{2} \\
& +5 b_{2} v_{1}+12 b_{2} v_{2}-6 b_{3} v_{1}-12 b_{3} v_{2}-2 a_{1}+a_{2}-a_{3}-3 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(8 a_{2}-4 a_{3}+16 b_{2}-8 b_{3}\right) v_{1}^{2}+\left(24 a_{2}-12 a_{3}+48 b_{2}-24 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(4 a_{2}-4 a_{3}+5 b_{2}-6 b_{3}\right) v_{1}+\left(18 a_{2}-9 a_{3}+36 b_{2}-18 b_{3}\right) v_{2}^{2} \\
& \quad+\left(9 a_{2}-8 a_{3}+12 b_{2}-12 b_{3}\right) v_{2}-2 a_{1}+a_{2}-a_{3}-3 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
4 a_{2}-4 a_{3}+5 b_{2}-6 b_{3}= & 0 \\
8 a_{2}-4 a_{3}+16 b_{2}-8 b_{3}= & 0 \\
9 a_{2}-8 a_{3}+12 b_{2}-12 b_{3}= & 0 \\
18 a_{2}-9 a_{3}+36 b_{2}-18 b_{3}= & 0 \\
24 a_{2}-12 a_{3}+48 b_{2}-24 b_{3}= & 0 \\
-2 a_{1}+a_{2}-a_{3}-3 b_{1}+b_{2}-b_{3}= & 0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=a_{1} \\
& a_{2}=-8 a_{1}-12 b_{1} \\
& a_{3}=-12 a_{1}-18 b_{1} \\
& b_{1}=b_{1} \\
& b_{2}=4 a_{1}+6 b_{1} \\
& b_{3}=6 a_{1}+9 b_{1}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-12 x-18 y \\
& \eta=6 x+9 y+1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =6 x+9 y+1-\left(-\frac{2 x+3 y+1}{4 x+6 y+1}\right)(-12 x-18 y) \\
& =\frac{-2 x-3 y+1}{4 x+6 y+1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x-3 y+1}{4 x+6 y+1}} d y
\end{aligned}
$$

Which results in

$$
S=-2 y-\ln (2 x+3 y-1)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x+3 y+1}{4 x+6 y+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2}{2 x+3 y-1} \\
S_{y} & =-2-\frac{3}{2 x+3 y-1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-2 y-\ln (2 x+3 y-1)=x+c_{1}
$$

Which simplifies to

$$
-2 y-\ln (2 x+3 y-1)=x+c_{1}
$$

Which gives

$$
y=-\frac{2 x}{3}+\frac{\text { LambertW }\left(\frac{2 \mathrm{e}^{\frac{x}{3}-\frac{2}{3}-c_{1}}}{3}\right)}{2}+\frac{1}{3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x+3 y+1}{4 x+6 y+1}$	$\begin{aligned} R & =x \\ S & =-2 y-\ln (2 x \end{aligned}$	$\frac{d S}{d R}=1$
)		
$x x^{2} x_{0}$		
\rightarrow ardaravaray		
$\rightarrow \rightarrow$		

Initial conditions are used to solve for c_{1}. Substituting $x=-2$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\frac{5}{3}+\frac{\text { LambertW }\left(\frac{2 \mathrm{e}^{-\frac{4}{3}-c_{1}}}{3}\right)}{2} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2 x}{3}+\frac{\text { LambertW }\left(\frac{2 \mathrm{e}^{\frac{x}{3}+\frac{4}{3}}}{3}\right)}{2}+\frac{1}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 x}{3}+\frac{\text { LambertW }\left(\frac{2 \mathrm{e}^{\frac{x}{3}+\frac{4}{3}}}{3}\right)}{2}+\frac{1}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{2 x}{3}+\frac{\text { LambertW }\left(\frac{2 \mathrm{e}^{\frac{x}{3}+\frac{4}{3}}}{3}\right)}{2}+\frac{1}{3}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 20
dsolve $([(2 * x+3 * y(x)+1)+(4 * x+6 * y(x)+1) * \operatorname{diff}(y(x), x)=0, y(-2)=2], y(x)$, singsol $=a \ln)$

$$
y(x)=\frac{1}{3}-\frac{2 x}{3}+\frac{\text { LambertW }\left(\frac{2 \mathrm{e}^{\frac{4}{3}+\frac{x}{3}}}{3}\right)}{2}
$$

\checkmark Solution by Mathematica
Time used: 4.146 (sec). Leaf size: 30
DSolve $\left[\left\{(2 * x+3 * y[x]+1)+(4 * x+6 * y[x]+1) * y^{\prime}[x]==0,\{y[-2]==2\}\right\}, y[x], x\right.$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{6}\left(3 W\left(\frac{2}{3} e^{\frac{x+4}{3}}\right)-4 x+2\right)
$$

7.14 problem 14

7.14.1 Existence and uniqueness analysis 1708
7.14.2 Solving as homogeneousTypeMapleC ode 1709
7.14.3 Solving as first order ode lie symmetry calculated ode 1712

Internal problem ID [11712]
Internal file name [OUTPUT/11721_Thursday_April_11_2024_08_49_00_PM_57163841/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 2, Section 2.4. Special integrating factors and transformations. Exercises page 67
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,
    class A`]]
```

$$
3 y+(x+y+1) y^{\prime}=-4 x-1
$$

With initial conditions

$$
[y(3)=-4]
$$

7.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{4 x+3 y+1}{x+y+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-4$ is

$$
\{x<3 \vee 3<x\}
$$

But the point $x_{0}=3$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

7.14.2 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{4 X+4 x_{0}+3 Y(X)+3 y_{0}+1}{X+x_{0}+Y(X)+y_{0}+1}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =2 \\
y_{0} & =-3
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{4 X+3 Y(X)}{X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{4 X+3 Y}{X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-4 X-3 Y$ and $N=X+Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-3 u-4}{u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-3 u(X)-4}{u(X)+1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-3 u(X)-4}{u(X)+1}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)+\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+4 u(X)+4=0
$$

Or

$$
X(u(X)+1)\left(\frac{d}{d X} u(X)\right)+(u(X)+2)^{2}=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{(u+2)^{2}}{X(u+1)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{(u+2)^{2}}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{(u+2)^{2}}{u+1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{(u+2)^{2}}{u+1}} d u & =\int-\frac{1}{X} d X \\
\ln (u+2)+\frac{1}{u+2} & =-\ln (X)+c_{2}
\end{aligned}
$$

The solution is

$$
\ln (u(X)+2)+\frac{1}{u(X)+2}+\ln (X)-c_{2}=0
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\ln \left(\frac{Y(X)}{X}+2\right)+\frac{1}{\frac{Y(X)}{X}+2}+\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
\ln \left(\frac{Y(X)+2 X}{X}\right)+\frac{X}{Y(X)+2 X}+\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-3 \\
& X=x+2
\end{aligned}
$$

Then the solution in y becomes

$$
\ln \left(\frac{2 x+y-1}{x-2}\right)+\frac{x-2}{2 x+y-1}+\ln (x-2)-c_{2}=0
$$

Initial conditions are used to solve for c_{2}. Substituting $x=3$ and $y=-4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-c_{2}+1=0 \\
c_{2}=1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
\frac{2 \ln \left(\frac{2 x+y-1}{x-2}\right) x+\ln \left(\frac{2 x+y-1}{x-2}\right) y+2 \ln (x-2) x+\ln (x-2) y-\ln \left(\frac{2 x+y-1}{x-2}\right)-\ln (x-2)-x-y-1}{2 x+y-1}=0
$$

The above simplifies to
$2 \ln \left(\frac{2 x+y-1}{x-2}\right) x+\ln \left(\frac{2 x+y-1}{x-2}\right) y+2 \ln (x-2) x+\ln (x-2) y-\ln \left(\frac{2 x+y-1}{x-2}\right)-\ln (x-2)$
Summary
The solution(s) found are the following

$$
\begin{equation*}
(2 x+y-1) \ln \left(\frac{2 x+y-1}{x-2}\right)+(2 x+y-1) \ln (x-2)-x-y-1=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
(2 x+y-1) \ln \left(\frac{2 x+y-1}{x-2}\right)+(2 x+y-1) \ln (x-2)-x-y-1=0
$$

Verified OK.

7.14.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{4 x+3 y+1}{x+y+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(4 x+3 y+1)\left(b_{3}-a_{2}\right)}{x+y+1}-\frac{(4 x+3 y+1)^{2} a_{3}}{(x+y+1)^{2}} \\
& -\left(-\frac{4}{x+y+1}+\frac{4 x+3 y+1}{(x+y+1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3}{x+y+1}+\frac{4 x+3 y+1}{(x+y+1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{4 x^{2} a_{2}-16 x^{2} a_{3}-4 x^{2} b_{3}+8 x y a_{2}-24 x y a_{3}+2 x y b_{2}-8 x y b_{3}+3 y^{2} a_{2}-8 y^{2} a_{3}+y^{2} b_{2}-3 y^{2} b_{3}+8 x a_{2}-8 x}{(x+y+1)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{2} a_{2}-16 x^{2} a_{3}-4 x^{2} b_{3}+8 x y a_{2}-24 x y a_{3}+2 x y b_{2}-8 x y b_{3}+3 y^{2} a_{2} \tag{6E}\\
& -8 y^{2} a_{3}+y^{2} b_{2}-3 y^{2} b_{3}+8 x a_{2}-8 x a_{3}-x b_{1}+4 x b_{2}-5 x b_{3}+y a_{1} \\
& +4 y a_{2}-3 y a_{3}+2 y b_{2}-2 y b_{3}+3 a_{1}+a_{2}-a_{3}+2 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 a_{2} v_{1}^{2}+8 a_{2} v_{1} v_{2}+3 a_{2} v_{2}^{2}-16 a_{3} v_{1}^{2}-24 a_{3} v_{1} v_{2}-8 a_{3} v_{2}^{2}+2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& \quad-4 b_{3} v_{1}^{2}-8 b_{3} v_{1} v_{2}-3 b_{3} v_{2}^{2}+a_{1} v_{2}+8 a_{2} v_{1}+4 a_{2} v_{2}-8 a_{3} v_{1}-3 a_{3} v_{2}-b_{1} v_{1} \\
& +4 b_{2} v_{1}+2 b_{2} v_{2}-5 b_{3} v_{1}-2 b_{3} v_{2}+3 a_{1}+a_{2}-a_{3}+2 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(4 a_{2}-16 a_{3}-4 b_{3}\right) v_{1}^{2}+\left(8 a_{2}-24 a_{3}+2 b_{2}-8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(8 a_{2}-8 a_{3}-b_{1}+4 b_{2}-5 b_{3}\right) v_{1}+\left(3 a_{2}-8 a_{3}+b_{2}-3 b_{3}\right) v_{2}^{2} \\
& \quad+\left(a_{1}+4 a_{2}-3 a_{3}+2 b_{2}-2 b_{3}\right) v_{2}+3 a_{1}+a_{2}-a_{3}+2 b_{1}+b_{2}-b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
4 a_{2}-16 a_{3}-4 b_{3}=0 \\
3 a_{2}-8 a_{3}+b_{2}-3 b_{3}=0 \\
8 a_{2}-24 a_{3}+2 b_{2}-8 b_{3}=0 \\
a_{1}+4 a_{2}-3 a_{3}+2 b_{2}-2 b_{3}=0 \\
8 a_{2}-8 a_{3}-b_{1}+4 b_{2}-5 b_{3}=0 \\
3 a_{1}+a_{2}-a_{3}+2 b_{1}+b_{2}-b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-5 a_{3}-2 b_{3} \\
a_{2} & =4 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =8 a_{3}+3 b_{3} \\
b_{2} & =-4 a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x-2 \\
& \eta=3+y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =3+y-\left(-\frac{4 x+3 y+1}{x+y+1}\right)(x-2) \\
& =\frac{4 x^{2}+4 x y+y^{2}-4 x-2 y+1}{x+y+1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 x^{2}+4 x y+y^{2}-4 x-2 y+1}{x+y+1}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{-x+2}{2 x+y-1}+\ln (2 x+y-1)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{4 x+3 y+1}{x+y+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4 x+3 y+1}{(2 x+y-1)^{2}} \\
S_{y} & =\frac{x+y+1}{(2 x+y-1)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{(2 x+y-1) \ln (2 x+y-1)+x-2}{2 x+y-1}=c_{1}
$$

Which simplifies to

$$
\frac{(2 x+y-1) \ln (2 x+y-1)+x-2}{2 x+y-1}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-(x-2) \mathrm{e}^{-c_{1}}\right)+c_{1}}-2 x+1
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{4 x+3 y+1}{x+y+1}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{\text { a }}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow \rightarrow \rightarrow$ 为 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 遇
$1.10{ }^{+1}+1+1+1$	$R=x$	$\xrightarrow{\text { a }}$ 他 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$S=\frac{(2 x+y-1) \ln (2 x+}{2 x+}$	
	$S=\frac{2 x+y}{}$	
		$\xrightarrow[-2]{+2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow-\mathrm{L}+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Initial conditions are used to solve for c_{1} ．Substituting $x=3$ and $y=-4$ in the above solution gives an equation to solve for the constant of integration．

$$
-4=\frac{-1-5 \text { LambertW }\left(-\mathrm{e}^{-c_{1}}\right)}{\operatorname{LambertW}\left(-\mathrm{e}^{-c_{1}}\right)}
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-2 x \text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)+\text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)-x+2}{\text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)}
$$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{-2 x \text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)+\text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)-x+2}{\text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{-2 x \text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)+\operatorname{LambertW}\left(-(x-2) \mathrm{e}^{-1}\right)-x+2}{\text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.265 (sec). Leaf size: 39
dsolve $([(4 * x+3 * y(x)+1)+(x+y(x)+1) * \operatorname{diff}(y(x), x)=0, y(3)=-4], y(x)$, singsol=all)

$$
y(x)=\frac{-2 x \operatorname{LambertW}\left(-(x-2) \mathrm{e}^{-1}\right)+\operatorname{LambertW}\left(-(x-2) \mathrm{e}^{-1}\right)-x+2}{\text { LambertW }\left(-(x-2) \mathrm{e}^{-1}\right)}
$$

\checkmark Solution by Mathematica
Time used: 65.902 (sec). Leaf size: 197
DSolve $\left[\left\{(4 * x+3 * y[x]+1)+(x+y[x]+1) * y y^{\prime}[x]==0,\{y[-2]==2\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tr

Solve $\left[\frac{(-2)^{2 / 3}\left(-2 x \log \left(\frac{3(-2)^{2 / 3}(y(x)+2 x-1)}{y(x)+x+1}\right)+(2 x-1) \log \left(-\frac{3(-2)^{2 / 3}(x-2)}{y(x)+x+1}\right)+\log \left(\frac{3(-2)^{2 / 3}(y(x)+2 x-1)}{y(x)+x+1}\right)+?\right.}{9(y(x)+2 x-1)}\right.$
8 Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
8.1 problem 1 (a) 1720
8.2 problem 1 (b) 1734
8.3 problem 2 1747
8.4 problem 4 (a) 1751
8.5 problem 8 1759
8.6 problem 9 1771
8.7 problem 10 1800
8.8 problem 11 1823
8.9 problem 12 1831
8.10 problem 13 1836

8.1 problem 1 (a)

8.1.1 Existence and uniqueness analysis 1720
8.1.2 Solving as second order linear constant coeff ode 1721
8.1.3 Solving using Kovacic algorithm 1725
8.1.4 Maple step by step solution . 1731

Internal problem ID [11713]
Internal file name [OUTPUT/11722_Thursday_April_11_2024_08_49_05_PM_81323681/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 1 (a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+5 y^{\prime}+6 y=\mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=5, y^{\prime}(0)=7\right]
$$

8.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =5 \\
q(x) & =6 \\
F & =\mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+6 y=\mathrm{e}^{x}
$$

The domain of $p(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.1.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=5, C=6, f(x)=\mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(6)} \\
& =-\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{12}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}\right)+\left(\frac{\mathrm{e}^{x}}{12}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+\frac{\mathrm{e}^{x}}{12} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2}+\frac{1}{12} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}-3 c_{2} \mathrm{e}^{-3 x}+\frac{\mathrm{e}^{x}}{12}
$$

substituting $y^{\prime}=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=-2 c_{1}-3 c_{2}+\frac{1}{12} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{65}{3} \\
& c_{2}=-\frac{67}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{65 \mathrm{e}^{-2 x}}{3}-\frac{67 \mathrm{e}^{-3 x}}{4}+\frac{\mathrm{e}^{x}}{12}
$$

Which simplifies to

$$
y=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12}
$$

Verified OK.

8.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 252: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x} \\
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{12}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\frac{\mathrm{e}^{x}}{12}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2}+\frac{1}{12} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}-2 c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12}
$$

substituting $y^{\prime}=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=-3 c_{1}-2 c_{2}+\frac{1}{12} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{67}{4} \\
& c_{2}=\frac{65}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{65 \mathrm{e}^{-2 x}}{3}-\frac{67 \mathrm{e}^{-3 x}}{4}+\frac{\mathrm{e}^{x}}{12}
$$

Which simplifies to

$$
y=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12}
$$

Verified OK.

8.1.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+5 y^{\prime}+6 y=\mathrm{e}^{x}, y(0)=5,\left.y^{\prime}\right|_{\{x=0\}}=7\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+5 r+6=0$
- Factor the characteristic polynomial
$(r+3)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-3,-2)$
- \quad 1st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{x}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & \mathrm{e}^{-2 x} \\
-3 \mathrm{e}^{-3 x} & -2 \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-5 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-3 x}\left(\int \mathrm{e}^{4 x} d x\right)+\mathrm{e}^{-2 x}\left(\int \mathrm{e}^{3 x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{x}}{12}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12}$

- Use initial condition $y(0)=5$
$5=c_{1}+c_{2}+\frac{1}{12}$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}-2 c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=7$

$$
7=-3 c_{1}-2 c_{2}+\frac{1}{12}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{67}{4}, c_{2}=\frac{65}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 20
dsolve $([\operatorname{diff}(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)+6 * y(x)=\exp (x), y(0)=5, D(y)(0)=7], y(x)$, singsol=all

$$
y(x)=\frac{\left(\mathrm{e}^{4 x}+260 \mathrm{e}^{x}-201\right) \mathrm{e}^{-3 x}}{12}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+5 * y\right.\right.$ ' $\left.[x]+6 * y[x]==\operatorname{Exp}[x],\left\{y[0]==5, y^{\prime}[0]==7\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{1}{12} e^{-3 x}\left(260 e^{x}+e^{4 x}-201\right)
$$

8.2 problem 1 (b)

8.2.1 Solving as second order linear constant coeff ode
8.2.2 Solving using Kovacic algorithm 1738
8.2.3 Maple step by step solution 1744

Internal problem ID [11714]
Internal file name [OUTPUT/11723_Thursday_April_11_2024_08_49_06_PM_48965104/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 1 (b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+5 y^{\prime}+6 y=\mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=5, y^{\prime}(1)=7\right]
$$

8.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=5, C=6, f(x)=\mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(6)} \\
& =-\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-3
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{12}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}\right)+\left(\frac{\mathrm{e}^{x}}{12}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+\frac{\mathrm{e}^{x}}{12} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2}+\frac{1}{12} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}-3 c_{2} \mathrm{e}^{-3 x}+\frac{\mathrm{e}^{x}}{12}
$$

substituting $y^{\prime}=7$ and $x=1$ in the above gives

$$
\begin{equation*}
7=\frac{\left(\mathrm{e}^{4}-24 \mathrm{e} c_{1}-36 c_{2}\right) \mathrm{e}^{-3}}{12} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{\mathrm{e}^{4}-84 \mathrm{e}^{3}-177}{24 \mathrm{e}-36} \\
& c_{2}=\frac{\left(-\mathrm{e}^{3}+84 \mathrm{e}^{2}+118\right) \mathrm{e}}{24 \mathrm{e}-36}
\end{aligned}
$$

Substituting these values back in above solution results in
$y=\frac{171 \mathrm{e}^{4-3 x}-252 \mathrm{e}^{3-3 x}-2 \mathrm{e}^{-3 x+5}+236 \mathrm{e}^{-3 x+2}+2 \mathrm{e}^{-2 x+5}-171 \mathrm{e}^{-2 x+4}+4 \mathrm{e}^{x+2}-354 \mathrm{e}^{-2 x+1}-354 \mathrm{e}^{-}}{48 \mathrm{e}^{2}-144 \mathrm{e}+108}$
Which simplifies to
$y=$

$$
-\frac{\left(354 \mathrm{e}^{1-x}+171 \mathrm{e}^{4}-252 \mathrm{e}^{3}+12 \mathrm{e}^{3 x+1}-9 \mathrm{e}^{3 x}-171 \mathrm{e}^{4-x}+252 \mathrm{e}^{-x+3}+2 \mathrm{e}^{-x+5}-236 \mathrm{e}^{-x+2}-2 \mathrm{e}^{5}-\right.}{48 \mathrm{e}^{2}-144 \mathrm{e}+108}
$$

Summary

The solution(s) found are the following
$y=$
$-\frac{\left(354 \mathrm{e}^{1-x}+171 \mathrm{e}^{4}-252 \mathrm{e}^{3}+12 \mathrm{e}^{3 x+1}-9 \mathrm{e}^{3 x}-171 \mathrm{e}^{4-x}+252 \mathrm{e}^{-x+3}+2 \mathrm{e}^{-x+5}-236 \mathrm{e}^{-x+2}-2 \mathrm{e}^{5}-\right.}{48 \mathrm{e}^{2}-144 \mathrm{e}+108}$

Figure 331: Solution plot

Verification of solutions
$y=$

$$
-\frac{\left(354 \mathrm{e}^{1-x}+171 \mathrm{e}^{4}-252 \mathrm{e}^{3}+12 \mathrm{e}^{3 x+1}-9 \mathrm{e}^{3 x}-171 \mathrm{e}^{4-x}+252 \mathrm{e}^{-x+3}+2 \mathrm{e}^{-x+5}-236 \mathrm{e}^{-x+2}-2 \mathrm{e}^{5}-\right.}{48 \mathrm{e}^{2}-144 \mathrm{e}+108}
$$

Verified OK.

8.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 254: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x} \\
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{12}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\frac{\mathrm{e}^{x}}{12}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2}+\frac{1}{12} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}-2 c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12}
$$

substituting $y^{\prime}=7$ and $x=1$ in the above gives

$$
\begin{equation*}
7=\frac{\left(\mathrm{e}^{4}-24 c_{2} \mathrm{e}-36 c_{1}\right) \mathrm{e}^{-3}}{12} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{\left(-\mathrm{e}^{3}+84 \mathrm{e}^{2}+118\right) \mathrm{e}}{24 \mathrm{e}-36} \\
& c_{2}=\frac{\mathrm{e}^{4}-84 \mathrm{e}^{3}-177}{24 \mathrm{e}-36}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{171 \mathrm{e}^{4-3 x}-252 \mathrm{e}^{3-3 x}-2 \mathrm{e}^{-3 x+5}+236 \mathrm{e}^{-3 x+2}+2 \mathrm{e}^{-2 x+5}-171 \mathrm{e}^{-2 x+4}+4 \mathrm{e}^{x+2}-354 \mathrm{e}^{-2 x+1}-354 \mathrm{e}^{-}}{48 \mathrm{e}^{2}-144 \mathrm{e}+108}
$$

Which simplifies to

$$
\begin{aligned}
& y=-\frac{\left(354 \mathrm{e}^{1-x}+171 \mathrm{e}^{4}-252 \mathrm{e}^{3}+12 \mathrm{e}^{3 x+1}-9 \mathrm{e}^{3 x}-171 \mathrm{e}^{4-x}+252 \mathrm{e}^{-x+3}+2 \mathrm{e}^{-x+5}-236 \mathrm{e}^{-x+2}-2 \mathrm{e}^{5}-\right.}{48 \mathrm{e}^{2}-144 \mathrm{e}+108}
\end{aligned}
$$

Summary

The solution(s) found are the following
$y=$

$$
-\frac{\left(354 \mathrm{e}^{1-x}+171 \mathrm{e}^{4}-252 \mathrm{e}^{3}+12 \mathrm{e}^{3 x+1}-9 \mathrm{e}^{3 x}-171 \mathrm{e}^{4-x}+252 \mathrm{e}^{-x+3}+2 \mathrm{e}^{-x+5}-236 \mathrm{e}^{-x+2}-2 \mathrm{e}^{5}-\right.}{48 \mathrm{e}^{2}-144 \mathrm{e}+108}
$$

Figure 332: Solution plot

Verification of solutions

$y=$

$$
-\frac{\left(354 \mathrm{e}^{1-x}+171 \mathrm{e}^{4}-252 \mathrm{e}^{3}+12 \mathrm{e}^{3 x+1}-9 \mathrm{e}^{3 x}-171 \mathrm{e}^{4-x}+252 \mathrm{e}^{-x+3}+2 \mathrm{e}^{-x+5}-236 \mathrm{e}^{-x+2}-2 \mathrm{e}^{5}-\right.}{48 \mathrm{e}^{2}-144 \mathrm{e}+108}
$$

Verified OK.

8.2.3 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+5 y^{\prime}+6 y=\mathrm{e}^{x}, y(0)=5,\left.y^{\prime}\right|_{\{x=1\}}=7\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+5 r+6=0$
- Factor the characteristic polynomial
$(r+3)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-3,-2)$
- \quad 1st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{x}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & \mathrm{e}^{-2 x} \\
-3 \mathrm{e}^{-3 x} & -2 \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-5 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-3 x}\left(\int \mathrm{e}^{4 x} d x\right)+\mathrm{e}^{-2 x}\left(\int \mathrm{e}^{3 x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{x}}{12}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12}$

- Use initial condition $y(0)=5$
$5=c_{1}+c_{2}+\frac{1}{12}$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}-2 c_{2} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{x}}{12}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=7$

$$
7=-3 c_{1} \mathrm{e}^{-3}-2 c_{2} \mathrm{e}^{-2}+\frac{\mathrm{e}}{12}
$$

- \quad Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{118 \mathrm{e}^{-2}-\mathrm{e}+84}{12\left(2 \mathrm{e}^{-2}-3 \mathrm{e}^{-3}\right)}, c_{2}=-\frac{-\mathrm{e}+177 \mathrm{e}^{-3}+84}{12\left(2 \mathrm{e}^{-2}-3 \mathrm{e}^{-3}\right)}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(\mathrm{e}^{x+4}+2 \mathrm{e}^{4 x+1}-\mathrm{e}^{4}-84 \mathrm{e}^{x+3}-3 \mathrm{e}^{4 x}+84 \mathrm{e}^{3}+118 \mathrm{e}-177 \mathrm{e}^{x}\right) \mathrm{e}^{-3 x}}{24 \mathrm{e}-36}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(\mathrm{e}^{x+4}+2 \mathrm{e}^{4 x+1}-\mathrm{e}^{4}-84 \mathrm{e}^{x+3}-3 \mathrm{e}^{4 x}+84 \mathrm{e}^{3}+118 \mathrm{e}-177 \mathrm{e}^{x}\right) \mathrm{e}^{-3 x}}{24 \mathrm{e}-36}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 55
dsolve $([\operatorname{diff}(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)+6 * y(x)=\exp (x), y(0)=5, D(y)(1)=7], y(x)$, singsol=all

$$
y(x)=\frac{\left(-\mathrm{e}^{4-x}+84 \mathrm{e}^{3-x}+\mathrm{e}^{4}+2 \mathrm{e}^{3 x+1}-84 \mathrm{e}^{3}+118 \mathrm{e}^{1-x}-3 \mathrm{e}^{3 x}-177\right) \mathrm{e}^{-2 x}}{24 \mathrm{e}-36}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 68
DSolve[\{y' ' $[x]+5 * y$ ' $\left.[x]+6 * y[x]==\operatorname{Exp}[x],\left\{y[0]==5, y^{\prime}[1]==7\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{e^{-3 x}\left(-177 e^{x}-3 e^{4 x}-84 e^{x+3}+e^{x+4}+2 e^{4 x+1}+118 e+84 e^{3}-e^{4}\right)}{12(2 e-3)}
$$

8.3 problem 2

8.3.1 Existence and uniqueness analysis 1747
8.3.2 Maple step by step solution . 1748

Internal problem ID [11715]
Internal file name [OUTPUT/11724_Thursday_April_11_2024_08_49_07_PM_26398801/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
y^{\prime \prime}+y^{\prime} x+x^{2} y=0
$$

With initial conditions

$$
\left[y(1)=0, y^{\prime}(1)=0\right]
$$

8.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x \\
q(x) & =x^{2} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime} x+x^{2} y=0
$$

The domain of $p(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

8.3.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime} x+x^{2} y=0, y(1)=0,\left.y^{\prime}\right|_{\{x=1\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$Rewrite ODE with series expansions
- Convert $x^{2} \cdot y$ to series expansion
$x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+2}$
- Shift index using $k->k-2$
$x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- \quad Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
2 a_{2}+\left(6 a_{3}+a_{1}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k} k+a_{k-2}\right) x^{k}\right)=0
$$

- The coefficients of each power of x must be 0
$\left[2 a_{2}=0,6 a_{3}+a_{1}=0\right]$
- \quad Solve for the dependent coefficient(s)
$\left\{a_{2}=0, a_{3}=-\frac{a_{1}}{6}\right\}$
- Each term in the series must be 0, giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}+a_{k} k+a_{k-2}=0
$$

- \quad Shift index using $k->k+2$
$\left((k+2)^{2}+3 k+8\right) a_{k+4}+a_{k+2}(k+2)+a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{k a_{k+2}+a_{k}+2 a_{k+2}}{k^{2}+7 k+12}, a_{2}=0, a_{3}=-\frac{a_{1}}{6}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.641 (sec). Leaf size: 5

```
dsolve([diff (y (x),x$2)+x*diff (y(x),x)+x^2*y(x)=0,y(1) = 0, D(y)(1) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 6
DSolve $\left[\left\{y^{\prime \prime}[x]+x * y\right.\right.$ ' $\left.[x]+x^{\wedge} 2 * y[x]==0,\left\{y[1]==0, y^{\prime}[1]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(x) \rightarrow 0
$$

8.4 problem 4 (a)

8.4.1 Solving as second order linear constant coeff ode 1751
8.4.2 Solving using Kovacic algorithm 1753
8.4.3 Maple step by step solution . 1757

Internal problem ID [11716]
Internal file name [OUTPUT/11725_Thursday_April_11_2024_08_49_08_PM_4293718/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 4 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-4 y^{\prime}+3 y=0
$$

8.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(3)} \\
& =2 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=2+1 \\
& \lambda_{2}=2-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 333: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}
$$

Verified OK.

8.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 257: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1-4}{2} \frac{4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\frac{\mathrm{e}^{3 x} c_{2}}{2} \tag{1}
\end{equation*}
$$

Figure 334: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+\frac{\mathrm{e}^{3 x} c_{2}}{2}
$$

Verified OK.

8.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-4 r+3=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-3)=0
$$

- Roots of the characteristic polynomial
$r=(1,3)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{3 x} c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve(diff $(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+3 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 20
DSolve [y' ${ }^{\prime}[x]-4 * y^{\prime}[x]+3 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x}\left(c_{2} e^{2 x}+c_{1}\right)
$$

8.5 problem 8

8.5.1 Existence and uniqueness analysis 1760
8.5.2 Solving as second order linear constant coeff ode 1760
8.5.3 Solving as linear second order ode solved by an integrating factor ode . 1762
8.5.4 Solving using Kovacic algorithm 1764
8.5.5 Maple step by step solution . 1768

Internal problem ID [11717]
Internal file name [OUTPUT/11726_Thursday_April_11_2024_08_49_08_PM_4170906/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 8 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=4\right]
$$

8.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.5.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathbf{e}^{x}+c_{2} x \mathbf{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x}
$$

Verified OK.

8.5.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x}
$$

Verified OK.

8.5.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 259: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=3 x \mathrm{e}^{x}+\mathrm{e}^{x}
$$

Verified OK.

8.5.5 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-2 y^{\prime}+y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=4\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}$
Check validity of solution $y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution
$y^{\prime}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=4$
$4=c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{x}(3 x+1)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{x}(3 x+1)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12
dsolve([diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+y(x)=0, y(0)=1, D(y)(0)=4], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{x}(3 x+1)
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 14
DSolve[\{y''[x]-2*y'[x]+y[x]==0,\{y[0]==1,y'[0]==4\}\},y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{x}(3 x+1)
$$

8.6 problem 9

8.6.1 Existence and uniqueness analysis 1772
8.6.2 Solving as second order euler ode ode 1772
8.6.3 Solving as linear second order ode solved by an integrating factor
ode . 1774$]$
8.6.4 Solving as second order change of variable on x method 2 ode . 1776
8.6.5 Solving as second order change of variable on x method 1 ode . 1780
8.6.6 Solving as second order change of variable on y method 1 ode . 1784
8.6.7 Solving as second order change of variable on y method 2 ode . 1786
8.6.8 Solving as second order ode non constant coeff transformation
on B ode . 1790
8.6.9 Solving using Kovacic algorithm 1793
8.6.10 Maple step by step solution . 1797

Internal problem ID [11718]
Internal file name [OUTPUT/11727_Thursday_April_11_2024_08_49_09_PM_74917571/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_1", "second_order_change_of_cvariable_on_y_method_2", "linear_second_order__ode_solved__by__an_integrating_factor", "second_order__ode_non_constant_coeff__transformation_on_B"

Maple gives the following as the ode type
$\left[\begin{array}{l}\text { Emden, } \\ \mathrm{x}) \mathrm{f}]\end{array}\right]$

$$
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0
$$

With initial conditions

$$
\left[y(1)=3, y^{\prime}(1)=2\right]
$$

8.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{2}{x} \\
q(x) & =\frac{2}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{2 y^{\prime}}{x}+\frac{2 y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{2}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

8.6.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-2 x r x^{r-1}+2 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-2 r x^{r}+2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-2 r+2=0
$$

Or

$$
\begin{equation*}
r^{2}-3 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{2}+c_{1} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{2} x+c_{1}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=2 c_{2}+c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}+4 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}+4 x \tag{1}
\end{equation*}
$$

Figure 338: Solution plot

Verification of solutions

$$
y=-x^{2}+4 x
$$

Verified OK.

8.6.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{2}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x}}
$$

Or

$$
y=c_{1} x^{2}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} x+c_{2}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}+4 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}+4 x \tag{1}
\end{equation*}
$$

Figure 339: Solution plot

Verification of solutions

$$
y=-x^{2}+4 x
$$

Verified OK.

8.6.4 Solving as second order change of variable on x method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{2}{x} d x\right)} d x \\
& =\int e^{2 \ln (x)} d x \\
& =\int x^{2} d x \\
& =\frac{x^{3}}{3} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{x^{2}}}{x^{4}} \\
& =\frac{2}{x^{6}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{x^{6}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{2}{x^{6}}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=\frac{3^{\frac{1}{3}}\left(c_{1} 3^{\frac{1}{3}}+c_{2}\right)}{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} 3^{\frac{2}{3}} x^{2}}{3\left(x^{3}\right)^{\frac{2}{3}}}+\frac{2 c_{2} 3^{\frac{1}{3}} x^{2}}{3\left(x^{3}\right)^{\frac{1}{3}}}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=\frac{3^{\frac{1}{3}}\left(c_{1} 3^{\frac{1}{3}}+2 c_{2}\right)}{3} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=43^{\frac{1}{3}} \\
& c_{2}=-3^{\frac{2}{3}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\left(x^{3}\right)^{\frac{2}{3}}+4\left(x^{3}\right)^{\frac{1}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(x^{3}\right)^{\frac{2}{3}}+4\left(x^{3}\right)^{\frac{1}{3}} \tag{1}
\end{equation*}
$$

Figure 340: Solution plot

Verification of solutions

$$
y=-\left(x^{3}\right)^{\frac{2}{3}}+4\left(x^{3}\right)^{\frac{1}{3}}
$$

Verified OK.

8.6.5 Solving as second order change of variable on x method 1 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{2}{x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{3 \sqrt{x}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{3}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=\frac{3 c_{1}}{2}+\frac{i c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=5 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5 x^{\frac{3}{2}} \sinh \left(\frac{\ln (x)}{2}\right)+3 \cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{3}{2}}
$$

Which simplifies to

$$
y=\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+3 \cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+3 \cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Figure 341: Solution plot

Verification of solutions

$$
y=\left(-5 \sinh \left(\frac{\ln (x)}{2}\right)+3 \cosh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{3}{2}}
$$

Verified OK.

8.6.6 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(-\frac{2}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{2}{x}\right)^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(\frac{2}{x^{2}}\right)}{2}-\frac{\left(\frac{4}{x^{2}}\right)}{4} \\
& =\frac{2}{x^{2}}-\left(\frac{1}{x^{2}}\right)-\frac{1}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-2}{x}} \\
& =x \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{3} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} x+c_{2}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x(-4+x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x(-4+x) \tag{1}
\end{equation*}
$$

Figure 342: Solution plot

Verification of solutions

$$
y=-x(-4+x)
$$

Verified OK.

8.6.7 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{2 n}{x^{2}}+\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2} \\
& =\left(c_{2} x-c_{1}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=-c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+2\left(-\frac{c_{1}}{x}+c_{2}\right) x
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=-c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-4 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x(-4+x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x(-4+x) \tag{1}
\end{equation*}
$$

Figure 343: Solution plot

Verification of solutions

$$
y=-x(-4+x)
$$

Verified OK.

8.6.8 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=-2 x \\
& C=2 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(-2 x)(-2)+(2)(-2 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-2 x^{3} v^{\prime \prime}+(0) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-2 x^{3} u^{\prime}(x)=0
$$

Which is now solved for u. Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int c_{1} \mathrm{~d} x \\
& =c_{1} x+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(-2 x)\left(c_{1} x+c_{2}\right) \\
& =-2\left(c_{1} x+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-2\left(c_{1} x+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=-2 c_{1}-2 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} x-2 c_{2}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=-4 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x(-4+x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x(-4+x) \tag{1}
\end{equation*}
$$

Figure 344: Solution plot
Verification of solutions

$$
y=-x(-4+x)
$$

Verified OK.

8.6.9 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-2 y^{\prime} x+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-2 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 261: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x}{x^{2}} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\ln (x)} \\
& =z_{1}(x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}(x(x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=1$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{2} x+c_{1}
$$

substituting $y^{\prime}=2$ and $x=1$ in the above gives

$$
\begin{equation*}
2=2 c_{2}+c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x^{2}+4 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x^{2}+4 x \tag{1}
\end{equation*}
$$

Figure 345: Solution plot

Verification of solutions

$$
y=-x^{2}+4 x
$$

Verified OK.

8.6.10 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}-2 y^{\prime} x+2 y=0, y(1)=3,\left.y^{\prime}\right|_{\{x=1\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 y^{\prime}}{x}-\frac{2 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{2 y^{\prime}}{x}+\frac{2 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-2 y^{\prime} x+2 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-2 \frac{d}{d t} y(t)+2 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-3 \frac{d}{d t} y(t)+2 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(1,2)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}$
- Change variables back using $t=\ln (x)$
$y=c_{2} x^{2}+c_{1} x$
- Simplify
$y=x\left(c_{2} x+c_{1}\right)$
Check validity of solution $y=x\left(c_{2} x+c_{1}\right)$
- Use initial condition $y(1)=3$

$$
3=c_{1}+c_{2}
$$

- Compute derivative of the solution
$y^{\prime}=2 c_{2} x+c_{1}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=2$
$2=2 c_{2}+c_{1}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=4, c_{2}=-1\right\}$
- Substitute constant values into general solution and simplify
$y=-x(-4+x)$
- \quad Solution to the IVP

$$
y=-x(-4+x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

```
dsolve([x^2*diff (y(x),x$2)-2*x*diff (y(x),x)+2*y(x)=0,y(1) = 3, D(y)(1) = 2],y(x), singsol=al
```

$$
y(x)=-x^{2}+4 x
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 11
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}{ }^{\prime}[x]-2 * x * y\right.\right.$ ' $\left.[x]+2 * y[x]==0,\left\{y[1]==3, y^{\prime}[1]==2\right\}\right\}, y[x], x$, IncludeSingularSolutions -

$$
y(x) \rightarrow-((x-4) x)
$$

8.7 problem 10

8.7.1 Existence and uniqueness analysis 1801
8.7.2 Solving as second order euler ode ode 1801
8.7.3 Solving as second order change of variable on x method 2 ode . 1803
8.7.4 Solving as second order change of variable on x method 1 ode . 1807
8.7.5 Solving as second order change of variable on y method 2 ode . 1810
8.7.6 Solving using Kovacic algorithm 1813
8.7.7 Maple step by step solution . 1820

Internal problem ID [11719]
Internal file name [OUTPUT/11728_Thursday_April_11_2024_08_49_11_PM_90841023/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_oorder_change__of_variable_on_x_method_2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type
$\left[\left[_E m d e n, ~-F o w l e r\right], ~\left[_2 n d _o r d e r, ~ _l i n e a r, ~ `\right.\right.$ _with_symmetry_[0,F(
x)]`]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x-4 y=0
$$

With initial conditions

$$
\left[y(2)=3, y^{\prime}(2)=-1\right]
$$

8.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =-\frac{4}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{4 y}{x^{2}}=0
$$

The domain of $p(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=-\frac{4}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

8.7.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-4=0
$$

Or

$$
\begin{equation*}
r^{2}-4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=2$ in the above gives

$$
\begin{equation*}
3=\frac{c_{1}}{4}+4 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 c_{1}}{x^{3}}+2 c_{2} x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=-\frac{c_{1}}{4}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=8 \\
& c_{2}=\frac{1}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{4}+32}{4 x^{2}} \tag{1}
\end{equation*}
$$

Figure 346: Solution plot
Verification of solutions

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Verified OK.

8.7.3 Solving as second order change of variable on x method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=2$ in the above gives

$$
\begin{equation*}
3=4 c_{1}+\frac{c_{2}}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=4 c_{1} x-\frac{2\left(c_{1} x^{4}+c_{2}\right)}{x^{3}}
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=4 c_{1}-\frac{c_{2}}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{4} \\
& c_{2}=8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{4}+32}{4 x^{2}} \tag{1}
\end{equation*}
$$

Figure 347: Solution plot

Verification of solutions

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Verified OK.

8.7.4 Solving as second order change of variable on x method 1 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{2}{c \sqrt{-\frac{1}{x^{2}}}} x^{3}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{c \sqrt{-\frac{1}{x^{2}} x^{3}}}+\frac{1}{x} \frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x)) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=2$ in the above gives

$$
\begin{equation*}
3=\frac{15 i c_{2}}{8}+\frac{17 c_{1}}{8} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} \sinh (2 \ln (x))}{x}+\frac{2 i c_{2} \cosh (2 \ln (x))}{x}
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=\frac{17 i c_{2}}{8}+\frac{15 c_{1}}{8} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{33}{4} \\
& c_{2}=\frac{31 i}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{33 \cosh (2 \ln (x))}{4}-\frac{31 \sinh (2 \ln (x))}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{33 \cosh (2 \ln (x))}{4}-\frac{31 \sinh (2 \ln (x))}{4} \tag{1}
\end{equation*}
$$

Figure 348: Solution plot

Verification of solutions

$$
y=\frac{33 \cosh (2 \ln (x))}{4}-\frac{31 \sinh (2 \ln (x))}{4}
$$

Verified OK.

8.7.5 Solving as second order change of variable on y method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{x} d x \\
\ln (u) & =-5 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{5}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{4 x^{4}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \\
& =\frac{4 c_{2} x^{4}-c_{1}}{4 x^{2}}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=2$ in the above gives

$$
\begin{equation*}
3=-\frac{c_{1}}{16}+4 c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{x^{3}}+2\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=\frac{c_{1}}{16}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-32 \\
& c_{2}=\frac{1}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{4}+32}{4 x^{2}} \tag{1}
\end{equation*}
$$

Figure 349: Solution plot

Verification of solutions

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Verified OK.

8.7.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{15}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=15 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 263: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{15}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{15}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{15}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+(-)(0) \\
& =-\frac{3}{2 x} \\
& =-\frac{3}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(-\frac{3}{2 x}\right)^{2}-\left(\frac{15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{4}}{4}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=2$ in the above gives

$$
\begin{equation*}
3=\frac{c_{1}}{4}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 c_{1}}{x^{3}}+\frac{c_{2} x}{2}
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=-\frac{c_{1}}{4}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=8 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{4}+32}{4 x^{2}} \tag{1}
\end{equation*}
$$

Figure 350: Solution plot

Verification of solutions

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Verified OK.

8.7.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0, y(2)=3,\left.y^{\prime}\right|_{\{x=2\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{4 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{4 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0
$$

- Make a change of variables
$t=\ln (x)$
$\square \quad$ Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+\frac{d}{d t} y(t)-4 y(t)=0
$$

- Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

- Simplify

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Check validity of solution $y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}$

- Use initial condition $y(2)=3$

$$
3=\frac{c_{1}}{4}+4 c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{2 c_{1}}{x^{3}}+2 c_{2} x
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=-1$ $-1=-\frac{c_{1}}{4}+4 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=8, c_{2}=\frac{1}{4}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

- \quad Solution to the IVP

$$
y=\frac{x^{4}+32}{4 x^{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([x^2*diff (y(x),x$2)+x*diff (y(x),x)-4*y(x)=0,y(2) = 3, D(y)(2) = -1],y(x), singsol=all
```

$$
y(x)=\frac{x^{4}+32}{4 x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 17
DSolve $\left[\left\{x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+x * y\right.\right.$ ' $\left.[x]-4 * y[x]==0,\left\{y[2]==3, y^{\prime}[2]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow

$$
y(x) \rightarrow \frac{x^{4}+32}{4 x^{2}}
$$

8.8 problem 11

8.8.1 Solving as second order linear constant coeff ode 1823
8.8.2 Solving using Kovacic algorithm 1825
8.8.3 Maple step by step solution . 1829

Internal problem ID [11720]
Internal file name [OUTPUT/11729_Thursday_April_11_2024_08_49_12_PM_60684601/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

8.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-5, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-5 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(4)} \\
& =\frac{5}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{5}{2}+\frac{3}{2} \\
\lambda_{2} & =\frac{5}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 351: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{x}
$$

Verified OK.

8.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 265: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d x} \\
& =z_{1} e^{\frac{5 x}{2}} \\
& =z_{1}\left(e^{\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\frac{c_{2} \mathrm{e}^{4 x}}{3} \tag{1}
\end{equation*}
$$

Figure 352: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+\frac{c_{2} \mathrm{e}^{4 x}}{3}
$$

Verified OK.

8.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-5 r+4=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-4)=0
$$

- Roots of the characteristic polynomial
$r=(1,4)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{4 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(x), x \$ 2)-5 * \operatorname{diff}(y(x), x)+4 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 20
DSolve[y''[x]-5*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} e^{3 x}+c_{1}\right)
$$

8.9 problem 12

8.9.1 Maple step by step solution . 1832

Internal problem ID [11721]
Internal file name [OUTPUT/11730_Thursday_April_11_2024_08_49_13_PM_89762227/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 12.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+5 y^{\prime}+12 y=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+5 \lambda+12=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =4 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{3 x} \\
& y_{3}=\mathrm{e}^{4 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3}
$$

Verified OK.

8.9.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+5 y^{\prime}+12 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=6 y_{3}(x)-5 y_{2}(x)-12 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=6 y_{3}(x)-5 y_{2}(x)-12 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & -5 & 6
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & -5 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{4} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\mathrm{e}^{3 x} c_{2} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\mathrm{e}^{4 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{3 x} c_{2}}{9}+\frac{\mathrm{e}^{4 x} c_{3}}{16}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(y(x), x \$ 3)-6 * \operatorname{diff}(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)+12 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 29
DSolve[y'''[x]-6*y''[x]+5*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(e^{4 x}\left(c_{3} e^{x}+c_{2}\right)+c_{1}\right)
$$

8.10 problem 13

8.10.1 Maple step by step solution . 1838

Internal problem ID [11722]
Internal file name [OUTPUT/11731_Thursday_April_11_2024_08_49_13_PM_65327505/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 13.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
x^{3} y^{\prime \prime \prime}-4 x^{2} y^{\prime \prime}+8 y^{\prime} x-8 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-4 x^{2} y^{\prime \prime}+8 y^{\prime} x-8 y=0
$$

gives

$$
8 x \lambda x^{\lambda-1}-4 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-8 x^{\lambda}=0
$$

Which simplifies to

$$
8 \lambda x^{\lambda}-4 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-8 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
8 \lambda-4 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-8=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-7 \lambda^{2}+14 \lambda-8=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=4
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
1	1	real root
2	1	real root
4	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{3} x^{4}+c_{2} x^{2}+c_{1} x
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2} \\
& y_{3}=x^{4}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{4}+c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{4}+c_{2} x^{2}+c_{1} x
$$

Verified OK.

8.10.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}-4 y^{\prime \prime} x^{2}+8 y^{\prime} x-8 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative
$y^{\prime \prime \prime}=\frac{8 y}{x^{3}}+\frac{4\left(y^{\prime \prime} x-2 y^{\prime}\right)}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}-\frac{4 y^{\prime \prime}}{x}+\frac{8 y^{\prime}}{x^{2}}-\frac{8 y}{x^{3}}=0$
- Multiply by denominators of the ODE
$x^{3} y^{\prime \prime \prime}-4 y^{\prime \prime} x^{2}+8 y^{\prime} x-8 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{d^{3}}{d t^{3}} y(t)-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)-4\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+8 \frac{d}{d t} y(t)-8 y(t)=0
$$

- Simplify

$$
\frac{d^{3}}{d t^{3}} y(t)-7 \frac{d^{2}}{d t^{2}} y(t)+14 \frac{d}{d t} y(t)-8 y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=7 y_{3}(t)-14 y_{2}(t)+8 y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=7 y_{3}(t)-14 y_{2}(t)+8 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- \quad System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -14 & 7
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -14 & 7
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[1,\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right],\left[4,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{4} \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y(t)=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{2 t}}{4}+\frac{c_{3} \mathrm{e}^{t t}}{16}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=c_{1} x+\frac{1}{4} c_{2} x^{2}+\frac{1}{16} c_{3} x^{4}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16
dsolve $\left(x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)-4 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+8 * x * \operatorname{diff}(y(x), x)-8 * y(x)=0, y(x)\right.$, singsol=all)

$$
y(x)=x\left(c_{1} x^{3}+c_{3} x+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 20
DSolve $\left[x^{\wedge} 3 * y\right.$ ' ' ' $[x]-4 * x^{\wedge} 2 * y$ ' ' $[x]+8 * x * y$ ' $[x]-8 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x\left(c_{3} x^{3}+c_{2} x+c_{1}\right)
$$

9 Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124

9.1 problem 1 . 1844
9.2 problem 2 . 1849
9.3 problem 3 . 1854
9.4 problem 4 . 1859
9.5 problem 5 . 1864
9.6 problem 6 . 1869
9.7 problem 8 . 1874
9.8 problem 9 . 1884

9.1 problem 1

9.1.1 Maple step by step solution . 1846

Internal problem ID [11723]
Internal file name [OUTPUT/11732_Thursday_April_11_2024_08_49_13_PM_10371206/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_culer_ode", "second_order_change__of_cvariable_on_x_method_1", "second_order_change_of_cvariable_on__x_method_2", "second__order_change_of_cvariable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{4}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{x^{4}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int x^{2} d x\right) \\
& y_{2}(x)=\frac{x^{4}}{3}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+\frac{1}{3} c_{2} x^{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+\frac{1}{3} c_{2} x^{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{1}{3} c_{2} x^{4}
$$

Verified OK.

9.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-4 y^{\prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{4 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}-4 y^{\prime} x+4 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), x^{2}-4 \frac{d}{d t} y(t)+4 y(t)=0\right.
$$

- Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+4 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-5 r+4=0$
- Factor the characteristic polynomial

$$
(r-1)(r-4)=0
$$

- Roots of the characteristic polynomial

$$
r=(1,4)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{4 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{4 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=c_{2} x^{4}+c_{1} x
$$

- \quad Simplify

$$
y=x\left(c_{2} x^{3}+c_{1}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+4*y(x)=0,x], singsol=all)
```

$$
y(x)=x\left(c_{1} x^{3}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16
DSolve $[\mathrm{x} \sim 2 * \mathrm{y}$ ' ' $[\mathrm{x}]-4 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+4 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x\left(c_{2} x^{3}+c_{1}\right)
$$

9.2 problem 2

9.2.1 Maple step by step solution . 1850

Internal problem ID [11724]
Internal file name [OUTPUT/11733_Thursday_April_11_2024_08_49_14_PM_11953513/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change__of_variable_on_x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(1+x)^{2} y^{\prime \prime}-3(1+x) y^{\prime}+3 y=0
$$

Given that one solution of the ode is

$$
y_{1}=1+x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{-3 x-3}{x^{2}+2 x+1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=(1+x)\left(\int \frac{\mathrm{e}^{-\left(\int \frac{-3 x-3}{x^{2}+2 x+1} d x\right)}}{(1+x)^{2}} d x\right) \\
& y_{2}(x)=1+x \int \frac{(1+x)^{3}}{(1+x)^{2}}, d x \\
& y_{2}(x)=(1+x)\left(\int(1+x) d x\right) \\
& y_{2}(x)=(1+x)\left(x+\frac{1}{2} x^{2}\right)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =(1+x) c_{1}+c_{2}(1+x)\left(x+\frac{1}{2} x^{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=(1+x) c_{1}+c_{2}(1+x)\left(x+\frac{1}{2} x^{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(1+x) c_{1}+c_{2}(1+x)\left(x+\frac{1}{2} x^{2}\right)
$$

Verified OK.

9.2.1 Maple step by step solution

Let's solve

$$
(1+x)^{2} y^{\prime \prime}+(-3 x-3) y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{3 y^{\prime}}{1+x}-\frac{3 y}{(1+x)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{1+x}+\frac{3 y}{(1+x)^{2}}=0$
Check to see if $x_{0}=-1$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{3}{1+x}, P_{3}(x)=\frac{3}{(1+x)^{2}}\right]
$$

- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=-3$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=3
$$

- $x=-1$ is a regular singular point

Check to see if $x_{0}=-1$ is a regular singular point $x_{0}=-1$

- Multiply by denominators
$(1+x)^{2} y^{\prime \prime}+(-3 x-3) y^{\prime}+3 y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$u^{2}\left(\frac{d^{2}}{d u^{2}} y(u)\right)-3 u\left(\frac{d}{d u} y(u)\right)+3 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite DE with series expansions
- Convert $u \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion

$$
u \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r}
$$

- Convert $u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion

$$
u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r}
$$

Rewrite DE with series expansions
$\sum_{k=0}^{\infty} a_{k}(k+r-1)(k+r-3) u^{k+r}=0$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
r=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
a_{k}(k-1)(k-3)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k}=0
$$

- Recursion relation for $r=0$

$$
a_{k}=0
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k}=0\right]
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve([(x+1)^2*diff(y(x),x$2)-3*(x+1)*diff(y(x),x)+3*y(x)=0,x+1], singsol=all)
```

$$
y(x)=(1+x)\left(c_{1}+c_{2}(1+x)^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 20
DSolve $\left[(x+1) \wedge 2 * y^{\prime \prime}[x]-3 *(x+1) * y\right.$ ' $[x]+3 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2}(x+1)^{3}+c_{1}(x+1)
$$

9.3 problem 3

9.3.1 Maple step by step solution . 1855

Internal problem ID [11725]
Internal file name [OUTPUT/11734_Thursday_April_11_2024_08_49_14_PM_67310780/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(x^{2}-1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{2 x}{x^{2}-1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{2 x}{x^{2}-1} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{\ln (x-1)+\ln (1+x)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{x^{2}-1}{x^{2}} d x\right) \\
& y_{2}(x)=x\left(x+\frac{1}{x}\right)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x\left(x+\frac{1}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} x\left(x+\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} x\left(x+\frac{1}{x}\right)
$$

Verified OK.

9.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}\left(x^{2}-1\right)-2 y^{\prime} x+2 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=-\frac{2 x}{x^{2}-1}, P_{3}(x)=\frac{2}{x^{2}-1}\right]
$$

○ $\quad(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=-1
$$

- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $\quad x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=-1
$$

- Multiply by denominators
$y^{\prime \prime}\left(x^{2}-1\right)-2 y^{\prime} x+2 y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-2 u+2)\left(\frac{d}{d u} y(u)\right)+2 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$-2 a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)(k+r-1)+a_{k}(k+r-1)(k+r-2)\right) u^{k+r}\right)$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+r-1)\left((-2 k-2 r-2) a_{k+1}+a_{k}(k+r-2)\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r-2)}{2(k+1+r)}$
- Recursion relation for $r=0$; series terminates at $k=2$
$a_{k+1}=\frac{a_{k}(k-2)}{2(k+1)}$
- Apply recursion relation for $k=0$
$a_{1}=-a_{0}$
- Apply recursion relation for $k=1$
$a_{2}=-\frac{a_{1}}{4}$
- Express in terms of a_{0}
$a_{2}=\frac{a_{0}}{4}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li $y(u)=a_{0} \cdot\left(1-u+\frac{1}{4} u^{2}\right)$
- Revert the change of variables $u=1+x$
$\left[y=\frac{a_{0}(x-1)^{2}}{4}\right]$
- \quad Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k} k}{2(k+3)}
$$

- \quad Solution for $r=2$
$\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{a_{k} k}{2(k+3)}\right]$
- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+2}, a_{k+1}=\frac{a_{k} k}{2(k+3)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\frac{a_{0}(x-1)^{2}}{4}+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+2}\right), b_{1+k}=\frac{b_{k} k}{2(k+3)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([(x^2-1)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,x],singsol=all)
```

$$
y(x)=c_{2} x^{2}+c_{1} x+c_{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 39
DSolve[($\left.x^{\wedge} 2-1\right) * y^{\prime}$ ' $[x]-2 * x * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\sqrt{x^{2}-1}\left(c_{1}(x-1)^{2}+c_{2} x\right)}{\sqrt{1-x^{2}}}
$$

9.4 problem 4

9.4.1 Maple step by step solution . 1860

Internal problem ID [11726]
Internal file name [OUTPUT/11735_Thursday_April_11_2024_08_49_14_PM_91859302/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}-x+1\right) y^{\prime \prime}-\left(x^{2}+x\right) y^{\prime}+y(1+x)=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{-x^{2}-x}{x^{2}-x+1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int \frac{-x^{2}-x}{x^{2}-x+1} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{x+\ln \left(x^{2}-x+1\right)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{x}\left(x^{2}-x+1\right)}{x^{2}} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x}(x-1)
\end{aligned}
$$

Hence the solution is

$$
\begin{array}{r}
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
=c_{1} x+c_{2} \mathrm{e}^{x}(x-1)
\end{array}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \mathrm{e}^{x}(x-1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} \mathrm{e}^{x}(x-1)
$$

Verified OK.

9.4.1 Maple step by step solution

Let's solve

$$
\left(x^{2}-x+1\right) y^{\prime \prime}+\left(-x^{2}-x\right) y^{\prime}+y(1+x)=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(1+x) y}{x^{2}-x+1}+\frac{x(1+x) y^{\prime}}{x^{2}-x+1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{x(1+x) y^{\prime}}{x^{2}-x+1}+\frac{(1+x) y}{x^{2}-x+1}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{(1+x) x}{x^{2}-x+1}, P_{3}(x)=\frac{1+x}{x^{2}-x+1}\right]
$$

- $\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \cdot P_{2}(x)$ is analytic at $x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left.\left(\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}=0
$$

- $\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} \cdot P_{3}(x)$ is analytic at $x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left.\left(\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}=0
$$

- $\quad x=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}
$$

- Multiply by denominators
$\left(x^{2}-x+1\right) y^{\prime \prime}-x(1+x) y^{\prime}+y(1+x)=0$
- Change variables using $x=u+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$ so that the regular singular point is at $u=0$

$$
\left(u^{2}-\mathrm{I} u \sqrt{3}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(-2 u-u^{2}+\mathrm{I} u \sqrt{3}+\mathrm{I} \sqrt{3}\right)\left(\frac{d}{d u} y(u)\right)+\left(\frac{3}{2}+u-\frac{\mathrm{I} \sqrt{3}}{2}\right) y(u)=0
$$

- \quad Assume series solution for $y(u)$

$$
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
$$

Rewrite ODE with series expansions

- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}$
- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-\mathrm{I} \sqrt{3} r(r-2) a_{0} u^{r-1}+\left(-\mathrm{I} \sqrt{3}(1+r)(r-1) a_{1}+\frac{\left(3+2 \mathrm{I} r \sqrt{3}-\mathrm{I} \sqrt{3}+2 r^{2}-6 r\right) a_{0}}{2}\right) u^{r}+\left(\sum_{k=1}^{\infty}(-\mathrm{I} \sqrt{3}(\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-\mathrm{I} \sqrt{3} r(r-2)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term must be 0
$-\mathrm{I} \sqrt{3}(1+r)(r-1) a_{1}+\frac{\left(3+2 \mathrm{I} r \sqrt{3}-\mathrm{I} \sqrt{3}+2 r^{2}-6 r\right) a_{0}}{2}=0$
- Each term in the series must be 0, giving the recursion relation
$\frac{\mathrm{I}\left((2 k+2 r-1) a_{k}-2(k+1+r) a_{k+1}(k+r-1)\right) \sqrt{3}}{2}+\frac{\left(3+2 k^{2}+2(-3+2 r) k+2 r^{2}-6 r\right) a_{k}}{2}-a_{k-1}(k-2+r)=0$
- \quad Shift index using $k->k+1$
$\frac{\mathrm{I}\left((2 k+1+2 r) a_{k+1}-2(k+2+r) a_{k+2}(k+r)\right) \sqrt{3}}{2}+\frac{\left(3+2(k+1)^{2}+2(-3+2 r)(k+1)+2 r^{2}-6 r\right) a_{k+1}}{2}-a_{k}(k+r-1)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=\frac{-\frac{1}{6}\left(2 \mathrm{I} \sqrt{3} r a_{k+1}+\mathrm{I} \sqrt{3} a_{k+1}+2 \mathrm{I} \sqrt{3} k a_{k+1}+2 k^{2} a_{k+1}+4 k r a_{k+1}+2 r^{2} a_{k+1}-2 k a_{k}-2 a_{k+1} k-2 r a_{k}-2 a_{k+1} r+2 a_{k}-a_{k+1}\right) \sqrt{3}}{k^{2}+2 k r+r^{2}+2 k+2 r}
$$

- Recursion relation for $r=0$

$$
a_{k+2}=\frac{-\frac{\mathrm{I}}{6}\left(\mathrm{I} \sqrt{3} a_{k+1}+2 \mathrm{I} \sqrt{3} k a_{k+1}+2 k^{2} a_{k+1}-2 k a_{k}-2 a_{k+1} k+2 a_{k}-a_{k+1}\right) \sqrt{3}}{k^{2}+2 k}
$$

- \quad Series not valid for $r=0$, division by 0 in the recursion relation at $k=0$
$a_{k+2}=\frac{-\frac{\mathrm{I}}{6}\left(\mathrm{I} \sqrt{3} a_{k+1}+2 \mathrm{I} \sqrt{3} k a_{k+1}+2 k^{2} a_{k+1}-2 k a_{k}-2 a_{k+1} k+2 a_{k}-a_{k+1}\right) \sqrt{3}}{k^{2}+2 k}$
- \quad Recursion relation for $r=2$

$$
a_{k+2}=\frac{-\frac{\mathrm{I}}{6}\left(5 \mathrm{I} \sqrt{3} a_{k+1}+2 \mathrm{I} \sqrt{3} k a_{k+1}+2 k^{2} a_{k+1}+6 a_{k+1} k+3 a_{k+1}-2 k a_{k}-2 a_{k}\right) \sqrt{3}}{k^{2}+6 k+8}
$$

- \quad Solution for $r=2$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+2}=\frac{-\frac{\mathrm{I}}{6}\left(5 \mathrm{I} \sqrt{3} a_{k+1}+2 \mathrm{I} \sqrt{3} k a_{k+1}+2 k^{2} a_{k+1}+6 a_{k+1} k+3 a_{k+1}-2 k a_{k}-2 a_{k}\right) \sqrt{3}}{k^{2}+6 k+8},-3 \mathrm{I} \sqrt{3} a_{1}+\right.
$$

- \quad Revert the change of variables $u=x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{k+2}, a_{k+2}=\frac{-\frac{\mathrm{I}}{6}\left(5 \mathrm{I} \sqrt{3} a_{k+1}+2 \mathrm{I} \sqrt{3} k a_{k+1}+2 k^{2} a_{k+1}+6 a_{k+1} k+3 a_{k+1}-2 k a_{k}-2 a_{k}\right) \sqrt{3}}{k^{2}+6 k+8},-\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([(x^2-x+1)*diff (y (x), x$2)-(x^2+x)*diff (y (x),x)+(x+1)*y(x)=0,x], singsol=all)
```

$$
y(x)=c_{1} x+c_{2} \mathrm{e}^{x}(-1+x)
$$

\checkmark Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 19
DSolve $\left[\left(x^{\wedge} 2-x+1\right) * y^{\prime} '[x]-\left(x^{\wedge} 2+x\right) * y '[x]+(x+1) * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} x+c_{2} e^{x}(x-1)
$$

9.5 problem 5

9.5.1 Maple step by step solution . 1865

Internal problem ID [11727]
Internal file name [OUTPUT/11736_Thursday_April_11_2024_08_49_15_PM_62434432/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__ode_non_constant_coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(2 x+1) y^{\prime \prime}-4(1+x) y^{\prime}+4 y=0
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{2 x}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{-4 x-4}{2 x+1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-\left(\int \frac{-4 x-4}{2 x+1} d x\right)} \mathrm{e}^{-4 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{2 x} \int \frac{\mathrm{e}^{2 x+\ln (2 x+1)}}{\mathrm{e}^{4 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{2 x}\left(\int(2 x+1) \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=-\mathrm{e}^{2 x}(1+x) \mathrm{e}^{-2 x}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{2 x}-c_{2} \mathrm{e}^{2 x}(1+x) \mathrm{e}^{-2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}-c_{2} \mathrm{e}^{2 x}(1+x) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}-c_{2} \mathrm{e}^{2 x}(1+x) \mathrm{e}^{-2 x}
$$

Verified OK.

9.5.1 Maple step by step solution

Let's solve

$$
(2 x+1) y^{\prime \prime}+(-4 x-4) y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate $2 n d$ derivative

$$
y^{\prime \prime}=-\frac{4 y}{2 x+1}+\frac{4(1+x) y^{\prime}}{2 x+1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{4(1+x) y^{\prime}}{2 x+1}+\frac{4 y}{2 x+1}=0$Check to see if $x_{0}=-\frac{1}{2}$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{4(1+x)}{2 x+1}, P_{3}(x)=\frac{4}{2 x+1}\right]
$$

- $\left(x+\frac{1}{2}\right) \cdot P_{2}(x)$ is analytic at $x=-\frac{1}{2}$

$$
\left.\left(\left(x+\frac{1}{2}\right) \cdot P_{2}(x)\right)\right|_{x=-\frac{1}{2}}=-1
$$

- $\left(x+\frac{1}{2}\right)^{2} \cdot P_{3}(x)$ is analytic at $x=-\frac{1}{2}$

$$
\left.\left(\left(x+\frac{1}{2}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=-\frac{1}{2}}=0
$$

- $x=-\frac{1}{2}$ is a regular singular point

Check to see if $x_{0}=-\frac{1}{2}$ is a regular singular point

$$
x_{0}=-\frac{1}{2}
$$

- Multiply by denominators

$$
(2 x+1) y^{\prime \prime}+(-4 x-4) y^{\prime}+4 y=0
$$

- \quad Change variables using $x=u-\frac{1}{2}$ so that the regular singular point is at $u=0$
$2 u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-4 u-2)\left(\frac{d}{d u} y(u)\right)+4 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion

$$
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
$$

- Shift index using $k->k+1$
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}$
Rewrite ODE with series expansions

$$
2 a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(2 a_{k+1}(k+1+r)(k+r-1)-4 a_{k}(k+r-1)\right) u^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
2 r(-2+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{0,2\}
$$

- Each term in the series must be 0 , giving the recursion relation

$$
2\left(a_{k+1}(k+1+r)-2 a_{k}\right)(k+r-1)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{2 a_{k}}{k+1+r}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{2 a_{k}}{k+1}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{2 a_{k}}{k+1}\right]
$$

- \quad Revert the change of variables $u=x+\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{1}{2}\right)^{k}, a_{k+1}=\frac{2 a_{k}}{k+1}\right]$
- \quad Recursion relation for $r=2$
$a_{k+1}=\frac{2 a_{k}}{k+3}$
- \quad Solution for $r=2$
$\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{2 a_{k}}{k+3}\right]$
- \quad Revert the change of variables $u=x+\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{1}{2}\right)^{k+2}, a_{k+1}=\frac{2 a_{k}}{k+3}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}\left(x+\frac{1}{2}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}\left(x+\frac{1}{2}\right)^{k+2}\right), a_{1+k}=\frac{2 a_{k}}{1+k}, b_{1+k}=\frac{2 b_{k}}{k+3}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([(2*x+1)*diff (y (x),x$2)-4*(x+1)*diff (y(x),x)+4*y(x)=0,exp(2*x)],singsol=all)
```

$$
y(x)=c_{2} \mathrm{e}^{2 x}+c_{1} x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 23
DSolve $[(2 * x+1) * y$ ' $\quad[x]-4 *(x+1) * y$ ' $[x]+4 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{2 x+1}-c_{2}(x+1)
$$

9.6 problem 6

9.6.1 Maple step by step solution . 1870

Internal problem ID [11728]
Internal file name [OUTPUT/11737_Thursday_April_11_2024_08_49_15_PM_96516632/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{3}-x^{2}\right) y^{\prime \prime}-\left(x^{3}+2 x^{2}-2 x\right) y^{\prime}+\left(2 x^{2}+2 x-2\right) y=0
$$

Given that one solution of the ode is

$$
y_{1}=x^{2}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{-x^{3}-2 x^{2}+2 x}{x^{3}-x^{2}}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x^{2}\left(\int \frac{\mathrm{e}^{-\left(\int \frac{-x^{3}-2 x^{2}+2 x}{x^{3}-x^{2}} d x\right)}}{x^{4}} d x\right) \\
& y_{2}(x)=x^{2} \int \frac{\mathrm{e}^{x+\ln (x-1)+2 \ln (x)}}{x^{4}}, d x \\
& y_{2}(x)=x^{2}\left(\int \frac{(x-1) \mathrm{e}^{x}}{x^{2}} d x\right) \\
& y_{2}(x)=x \mathrm{e}^{x}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}+c_{2} x \mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x \mathrm{e}^{x}
$$

Verified OK.

9.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}(x-1)+\left(-x^{3}-2 x^{2}+2 x\right) y^{\prime}+\left(2 x^{2}+2 x-2\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2\left(x^{2}+x-1\right) y}{x^{2}(x-1)}+\frac{\left(x^{2}+2 x-2\right) y^{\prime}}{x(x-1)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{\left(x^{2}+2 x-2\right) y^{\prime}}{x(x-1)}+\frac{2\left(x^{2}+x-1\right) y}{x^{2}(x-1)}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{x^{2}+2 x-2}{x(x-1)}, P_{3}(x)=\frac{2\left(x^{2}+x-1\right)}{x^{2}(x-1)}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2
$$

- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}(x-1)-x\left(x^{2}+2 x-2\right) y^{\prime}+\left(2 x^{2}+2 x-2\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .3$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=2 . .3$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}$
Rewrite ODE with series expansions
$-a_{0}(-1+r)(-2+r) x^{r}+\left(-a_{1} r(-1+r)+a_{0}(-1+r)(-2+r)\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(-a_{k}(k+r-1)\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-(-1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{1,2\}$
- \quad Each term must be 0
$-a_{1} r(-1+r)+a_{0}(-1+r)(-2+r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=\frac{a_{0}(-2+r)}{r}$
- Each term in the series must be 0 , giving the recursion relation
$-a_{k}(k+r-1)(k+r-2)+a_{k-1}(k+r-2)(k-3+r)-a_{k-2}(k-4+r)=0$
- \quad Shift index using $k->k+2$
$-a_{k+2}(k+1+r)(k+r)+a_{k+1}(k+r)(k+r-1)-a_{k}(k+r-2)=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{k^{2} a_{k+1}+2 k r a_{k+1}+r^{2} a_{k+1}-k a_{k}-k a_{k+1}-r a_{k}-r a_{k+1}+2 a_{k}}{(k+1+r)(k+r)}$
- Recursion relation for $r=1$
$a_{k+2}=\frac{k^{2} a_{k+1}-k a_{k}+k a_{k+1}+a_{k}}{(k+2)(k+1)}$
- \quad Solution for $r=1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+2}=\frac{k^{2} a_{k+1}-k a_{k}+k a_{k+1}+a_{k}}{(k+2)(k+1)}, a_{1}=-a_{0}\right]$
- \quad Recursion relation for $r=2$
$a_{k+2}=\frac{k^{2} a_{k+1}-k a_{k}+3 k a_{k+1}+2 a_{k+1}}{(k+3)(k+2)}$
- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=\frac{k^{2} a_{k+1}-k a_{k}+3 k a_{k+1}+2 a_{k+1}}{(k+3)(k+2)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{1+k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), a_{k+2}=\frac{k^{2} a_{1+k}-k a_{k}+k a_{1+k}+a_{k}}{(k+2)(1+k)}, a_{1}=-a_{0}, b_{k+2}=\frac{k^{2} b_{1+k}-k b_{k}+3 k b_{1}}{(k+3)(k+}\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

```
dsolve([(x^3-x^2)*diff (y(x),x$2)-(x^3+2*x^2-2*x)*\operatorname{diff}(y(x),x)+(2*\mp@subsup{x}{}{\wedge}2+2*x-2)*y (x)=0, x^2], sing
```

$$
y(x)=x\left(c_{2} \mathrm{e}^{x}+c_{1} x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 36
DSolve $\left[\left(x^{\wedge} 3-x^{\wedge} 2\right) * y\right.$ ' $[x]-\left(x^{\wedge} 3+2 * x^{\wedge} 2-2 * x\right) * y$ ' $[x]+\left(2 * x^{\wedge} 2+2 * x-2\right) * y[x]==0, y[x], x$, IncludeSingularSo

$$
y(x) \rightarrow-\frac{\sqrt{1-x} x\left(c_{2} x-c_{1} e^{x}\right)}{\sqrt{x-1}}
$$

9.7 problem 8

9.7.1 Solving as second order linear constant coeff ode 1874
9.7.2 Solving using Kovacic algorithm 1877
9.7.3 Maple step by step solution . 1882

Internal problem ID [11729]
Internal file name [OUTPUT/11738_Thursday_April_11_2024_08_49_16_PM_36339295/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number: 8 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 x^{2}
$$

9.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-3, C=2, f(x)=4 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{3} x^{2}+2 A_{2} x-6 x A_{3}+2 A_{1}-3 A_{2}+2 A_{3}=4 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=7, A_{2}=6, A_{3}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 x^{2}+6 x+7
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}\right)+\left(2 x^{2}+6 x+7\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+2 x^{2}+6 x+7 \tag{1}
\end{equation*}
$$

Figure 353: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+2 x^{2}+6 x+7
$$

Verified OK.

9.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 275: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{3} x^{2}+2 A_{2} x-6 x A_{3}+2 A_{1}-3 A_{2}+2 A_{3}=4 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=7, A_{2}=6, A_{3}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 x^{2}+6 x+7
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}\right)+\left(2 x^{2}+6 x+7\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 354: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+2 x^{2}+6 x+7
$$

Verified OK.

9.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 x^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-3 r+2=0$
- Factor the characteristic polynomial
$(r-1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(1,2)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 x^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{2 x} \\
\mathrm{e}^{x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{x}\left(\int x^{2} \mathrm{e}^{-x} d x\right)+4 \mathrm{e}^{2 x}\left(\int x^{2} \mathrm{e}^{-2 x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=2 x^{2}+6 x+7
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+2 x^{2}+6 x+7
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff (y (x),x$2)-3*\operatorname{diff}(y(x),x)+2*y(x)=4*x^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{x}+2 x^{2}+6 x+7
$$

Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 29

```
DSolve[y''[x]-3*y'[x]+2*y[x]==4*x^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 2 x^{2}+6 x+c_{1} e^{x}+c_{2} e^{2 x}+7
$$

9.8 problem 9

9.8.1 Solving as second order linear constant coeff ode 1884
9.8.2 Solving using Kovacic algorithm 1887
9.8.3 Maple step by step solution . 1892

Internal problem ID [11730]
Internal file name [OUTPUT/11739_Thursday_April_11_2024_08_49_16_PM_66646944/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2-12 x+6 \mathrm{e}^{x}
$$

9.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-5, C=6, f(x)=2-12 x+6 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-5, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-5 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(6)} \\
& =\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2-12 x+6 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\{1, x\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x}, \mathrm{e}^{3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2}+A_{3} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}-5 A_{3}+6 A_{2}+6 A_{3} x=2-12 x+6 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=-\frac{4}{3}, A_{3}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{x}-\frac{4}{3}-2 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}\right)+\left(3 \mathrm{e}^{x}-\frac{4}{3}-2 x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}-\frac{4}{3}-2 x \tag{1}
\end{equation*}
$$

Figure 355: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}-\frac{4}{3}-2 x
$$

Verified OK.

9.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 277: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d x} \\
& =z_{1} e^{\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2-12 x+6 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\{1, x\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x}, \mathrm{e}^{3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2}+A_{3} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}-5 A_{3}+6 A_{2}+6 A_{3} x=2-12 x+6 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=-\frac{4}{3}, A_{3}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{x}-\frac{4}{3}-2 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}\right)+\left(3 \mathrm{e}^{x}-\frac{4}{3}-2 x\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+3 \mathrm{e}^{x}-\frac{4}{3}-2 x \tag{1}
\end{equation*}
$$

Figure 356: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+3 \mathrm{e}^{x}-\frac{4}{3}-2 x
$$

Verified OK.

9.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2-12 x+6 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{2 x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2-12 x+6 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{2 x} & \mathrm{e}^{3 x} \\ 2 \mathrm{e}^{2 x} & 3 \mathrm{e}^{3 x}\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{5 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \mathrm{e}^{2 x}\left(\int\left(1-6 x+3 \mathrm{e}^{x}\right) \mathrm{e}^{-2 x} d x\right)+2 \mathrm{e}^{3 x}\left(\int\left(1-6 x+3 \mathrm{e}^{x}\right) \mathrm{e}^{-3 x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=3 \mathrm{e}^{x}-\frac{4}{3}-2 x
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+3 \mathrm{e}^{x}-\frac{4}{3}-2 x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)-5*diff (y (x),x)+6*y(x)=2-12*x+6*exp(x),y(x), singsol=all)
```

$$
y(x)=c_{2} \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{3 x}+3 \mathrm{e}^{x}-2 x-\frac{4}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 33
DSolve[y'' $[x]-5 * y$ ' $[x]+6 * y[x]==2-12 * x+6 * \operatorname{Exp}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-2 x+3 e^{x}+c_{1} e^{2 x}+c_{2} e^{3 x}-\frac{4}{3}
$$

10 Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135

10.1 problem 1189610.2 problem 2 1904
10.3 problem 3 1912
10.4 problem 4 1920
10.5 problem 5 1928
10.6 problem 6 1933
10.7 problem 7 1938
10.8 problem 8 1947
10.9 problem 9 1956
10.10problem 10 1964
10.11problem 11 1972
10.12problem 12 1982
10.13problem 13 1993
10.14problem 14 1998
10.15problem 15 2004
10.16problem 16 2006
10.17problem 17 2011
10.18problem 18 2016
10.19problem 19 2018
10.20problem 20 2026
10.21 problem 21 2033
10.22problem 22 2039
10.23problem 23 2046
10.24problem 24 2053
10.25problem 25 2060
10.26problem 26 2070
10.27problem 27 2080
10.28problem 28 2090
10.29problem 29 2100
10.30problem 30 2112
10.31 problem 31 2124
10.32problem 32 2136
10.33problem 33 2148
10.34problem 34 2158
10.35problem 35 2168
10.36problem 36 2178
10.37problem 37 2188
10.38 problem 38 2199
10.39problem 39 2209
10.40problem 40 2216
10.41 problem 41 2223
10.42problem 42 2231
10.43problem 45 2237
10.44problem 46 2243

10.1 problem 1

10.1.1 Solving as second order linear constant coeff ode 1896
10.1.2 Solving using Kovacic algorithm 1898
10.1.3 Maple step by step solution . 1902

Internal problem ID [11731]
Internal file name [OUTPUT/11740_Thursday_April_11_2024_08_49_17_PM_75053001/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

10.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-5, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-5 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(6)} \\
& =\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=3 \\
\lambda_{2}=2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 357: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}
$$

Verified OK.

10.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 279: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d x} \\
& =z_{1} e^{\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2} \tag{1}
\end{equation*}
$$

Figure 358: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}
$$

Verified OK.

10.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-5 r+6=0$
- Factor the characteristic polynomial
$(r-2)(r-3)=0$
- Roots of the characteristic polynomial
$r=(2,3)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{2 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)-5 * \operatorname{diff}(y(x), x)+6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[y''[x]-5*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{2 x}\left(c_{2} e^{x}+c_{1}\right)
$$

10.2 problem 2

10.2.1 Solving as second order linear constant coeff ode 1904
10.2.2 Solving using Kovacic algorithm 1906
10.2.3 Maple step by step solution . 1910

Internal problem ID [11732]
Internal file name [OUTPUT/11741_Thursday_April_11_2024_08_49_17_PM_36620420/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

10.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-3)} \\
& =1 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+2 \\
& \lambda_{2}=1-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 359: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

10.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 281: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{3 x} c_{2}}{4} \tag{1}
\end{equation*}
$$

Figure 360: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{3 x} c_{2}}{4}
$$

Verified OK.

10.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-2 r-3=0$
- Factor the characteristic polynomial

$$
(r+1)(r-3)=0
$$

- Roots of the characteristic polynomial
$r=(-1,3)$
- \quad 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{3 x} c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)-3 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 22
DSolve[y''[x]-2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(c_{2} e^{4 x}+c_{1}\right)
$$

10.3 problem 3

10.3.1 Solving as second order linear constant coeff ode 1912
10.3.2 Solving using Kovacic algorithm 1914
10.3.3 Maple step by step solution . 1918

Internal problem ID [11733]
Internal file name [OUTPUT/11742_Thursday_April_11_2024_08_49_18_PM_66750643/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
4 y^{\prime \prime}-12 y^{\prime}+5 y=0
$$

10.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=-12, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-12 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}-12 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=-12, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{12}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{-12^{2}-(4)(4)(5)} \\
& =\frac{3}{2} \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+1 \\
& \lambda_{2}=\frac{3}{2}-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{5}{2} \\
\lambda_{2} & =\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{5}{2}\right) x}+c_{2} e^{\left(\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{5 x}{2}}+\mathrm{e}^{\frac{x}{2}} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{5 x}{2}}+\mathrm{e}^{\frac{x}{2}} c_{2} \tag{1}
\end{equation*}
$$

Figure 361: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{5 x}{2}}+\mathrm{e}^{\frac{x}{2}} c_{2}
$$

Verified OK.

10.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-12 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=-12 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 283: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-12}{4} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-12}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{x}{2}}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+\frac{c_{2} \mathrm{e}^{\frac{5 x}{2}}}{2} \tag{1}
\end{equation*}
$$

Figure 362: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+\frac{c_{2} \mathrm{e}^{\frac{5 x}{2}}}{2}
$$

Verified OK.

10.3.3 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}-12 y^{\prime}+5 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=3 y^{\prime}-\frac{5 y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-3 y^{\prime}+\frac{5 y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}-3 r+\frac{5}{4}=0
$$

- Factor the characteristic polynomial
$\frac{(2 r-1)(2 r-5)}{4}=0$
- Roots of the characteristic polynomial
$r=\left(\frac{1}{2}, \frac{5}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\frac{x}{2}}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{5 x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{5 x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(4*diff(y(x),x$2)-12*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{5 x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 24
DSolve[4*y''[x]-12*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{x / 2}\left(c_{2} e^{2 x}+c_{1}\right)
$$

10.4 problem 4

10.4.1 Solving as second order linear constant coeff ode 1920
10.4.2 Solving using Kovacic algorithm 1922
10.4.3 Maple step by step solution . 1926

Internal problem ID [11734]
Internal file name [OUTPUT/11743_Thursday_April_11_2024_08_49_18_PM_78335090/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
3 y^{\prime \prime}-14 y^{\prime}-5 y=0
$$

10.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=3, B=-14, C=-5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
3 \lambda^{2} \mathrm{e}^{\lambda x}-14 \lambda \mathrm{e}^{\lambda x}-5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
3 \lambda^{2}-14 \lambda-5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=3, B=-14, C=-5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{14}{(2)(3)} \pm \frac{1}{(2)(3)} \sqrt{-14^{2}-(4)(3)(-5)} \\
& =\frac{7}{3} \pm \frac{8}{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{7}{3}+\frac{8}{3} \\
& \lambda_{2}=\frac{7}{3}-\frac{8}{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=-\frac{1}{3}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(5) x}+c_{2} e^{\left(-\frac{1}{3}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-\frac{x}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

Figure 363: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

10.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
3 y^{\prime \prime}-14 y^{\prime}-5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=3 \\
& B=-14 \tag{3}\\
& C=-5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{64}{9} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=64 \\
& t=9
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{64 z(x)}{9} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 285: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{64}{9}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{8 x}{3}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-14}{3} d x} \\
& =z_{1} e^{\frac{7 x}{3}} \\
& =z_{1}\left(\mathrm{e}^{\frac{7 x}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-14}{3} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{14 x}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{3 \mathrm{e}^{\frac{16 x}{3}}}{16}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{3}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{3}}\left(\frac{3 \mathrm{e}^{\frac{16 x}{3}}}{16}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+\frac{3 c_{2} \mathrm{e}^{5 x}}{16} \tag{1}
\end{equation*}
$$

Figure 364: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+\frac{3 c_{2} \mathrm{e}^{5 x}}{16}
$$

Verified OK.

10.4.3 Maple step by step solution

Let's solve
$3 y^{\prime \prime}-14 y^{\prime}-5 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{14 y^{\prime}}{3}+\frac{5 y}{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{14 y^{\prime}}{3}-\frac{5 y}{3}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{14}{3} r-\frac{5}{3}=0
$$

- Factor the characteristic polynomial
$\frac{(3 r+1)(r-5)}{3}=0$
- Roots of the characteristic polynomial
$r=\left(5,-\frac{1}{3}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{5 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{3}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-\frac{x}{3}}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve(3*diff(y(x),x$2)-14*diff(y(x),x)-5*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-\frac{x}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 24
DSolve[3*y''[x]-14*y'[x]-5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{-x / 3}+c_{2} e^{5 x}
$$

10.5 problem 5

10.5.1 Maple step by step solution

1929
Internal problem ID [11735]
Internal file name [OUTPUT/11744_Thursday_April_11_2024_08_49_19_PM_4021622/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 5.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}-\lambda+3=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}
$$

Verified OK.

10.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=3 y_{3}(x)+y_{2}(x)-3 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 y_{3}(x)+y_{2}(x)-3 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & 1 & 3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & 1 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{c_{3} 3^{3 x}}{9}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(diff $(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)+3 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28
DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{3 x}
$$

10.6 problem 6

10.6.1 Maple step by step solution

1934
Internal problem ID [11736]
Internal file name [OUTPUT/11745_Thursday_April_11_2024_08_49_19_PM_28454319/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 6.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+5 y^{\prime}+12 y=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+5 \lambda+12=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =4 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{3 x} \\
& y_{3}=\mathrm{e}^{4 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{4 x} c_{3}
$$

Verified OK.

10.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+5 y^{\prime}+12 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=6 y_{3}(x)-5 y_{2}(x)-12 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=6 y_{3}(x)-5 y_{2}(x)-12 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & -5 & 6
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & -5 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{4} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\mathrm{e}^{3 x} c_{2} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\mathrm{e}^{4 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{3 x} c_{2}}{9}+\frac{\mathrm{e}^{4 x} c_{3}}{16}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(y(x), x \$ 3)-6 * \operatorname{diff}(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)+12 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 29
DSolve[y'''[x]-6*y''[x]+5*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(e^{4 x}\left(c_{3} e^{x}+c_{2}\right)+c_{1}\right)
$$

10.7 problem 7

10.7.1 Solving as second order linear constant coeff ode 1938
10.7.2 Solving as linear second order ode solved by an integrating factor
ode . 1940
10.7.3 Solving using Kovacic algorithm 1941
10.7.4 Maple step by step solution . 1945

Internal problem ID [11737]
Internal file name [OUTPUT/11746_Thursday_April_11_2024_08_49_19_PM_20027788/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-8 y^{\prime}+16 y=0
$$

10.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-8, C=16$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-8 \lambda \mathrm{e}^{\lambda x}+16 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-8 \lambda+16=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-8, C=16$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-8)^{2}-(4)(1)(16)} \\
& =4
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-4$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} x \mathrm{e}^{4 x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

Figure 365: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} x \mathrm{e}^{4 x}
$$

Verified OK.

10.7.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-8$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-8 d x} \\
& =\mathrm{e}^{-4 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-4 x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-4 x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-4 x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-4 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{4 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{4 x} \tag{1}
\end{equation*}
$$

Figure 366: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{4 x}
$$

Verified OK.

10.7.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-8 y^{\prime}+16 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-8 \tag{3}\\
& C=16
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 289: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d x} \\
& =z_{1} e^{4 x} \\
& =z_{1}\left(\mathrm{e}^{4 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{4 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-8}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{8 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{4 x}\right)+c_{2}\left(\mathrm{e}^{4 x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} x \mathrm{e}^{4 x} \tag{1}
\end{equation*}
$$

Figure 367: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} x \mathrm{e}^{4 x}
$$

Verified OK.

10.7.4 Maple step by step solution

Let's solve
$y^{\prime \prime}-8 y^{\prime}+16 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-8 r+16=0$
- Factor the characteristic polynomial
$(r-4)^{2}=0$
- Root of the characteristic polynomial

$$
r=4
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{4 x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} x \mathrm{e}^{4 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve($\operatorname{diff}(y(x), x \$ 2)-8 * \operatorname{diff}(y(x), x)+16 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{4 x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18
DSolve[y'' $[x]-8 * y$ ' $[x]+16 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{4 x}\left(c_{2} x+c_{1}\right)
$$

10.8 problem 8

$$
\text { 10.8.1 Solving as second order linear constant coeff ode } 1947
$$

10.8.2 Solving as linear second order ode solved by an integrating factor ode 1949
10.8.3 Solving using Kovacic algorithm 1950
10.8.4 Maple step by step solution 1954

Internal problem ID [11738]
Internal file name [OUTPUT/11747_Thursday_April_11_2024_08_49_20_PM_5835726/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.

Exercises page 135

Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0
$$

10.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=4, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+4 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=4, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(4)^{2}-(4)(4)(1)} \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=\frac{1}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 368: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

10.8.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=1$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 1 d x} \\
& =\mathrm{e}^{\frac{x}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{\frac{x}{2}} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{\frac{x}{2}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{\frac{x}{2}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{x}{2}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 369: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

10.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}+4 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =4 \\
B & =4 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 291: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{4} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 370: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

10.8.4 Maple step by step solution

Let's solve
$4 y^{\prime \prime}+4 y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-y^{\prime}-\frac{y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}+\frac{y}{4}=0$
- Characteristic polynomial of ODE
$r^{2}+r+\frac{1}{4}=0$
- Factor the characteristic polynomial
$\frac{(2 r+1)^{2}}{4}=0$
- Root of the characteristic polynomial
$r=-\frac{1}{2}$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-\frac{x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} x \mathrm{e}^{-\frac{x}{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(4*diff (y (x),x$2)+4*diff (y (x),x)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{2}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20
DSolve[4*y''[x]+4*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-x / 2}\left(c_{2} x+c_{1}\right)
$$

10.9 problem 9

10.9.1 Solving as second order linear constant coeff ode 1956
10.9.2 Solving using Kovacic algorithm 1958
10.9.3 Maple step by step solution . 1962

Internal problem ID [11739]
Internal file name [OUTPUT/11748_Thursday_April_11_2024_08_49_20_PM_31209479/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

10.9.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(13)} \\
& =2 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=2+3 i \\
& \lambda_{2}=2-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2+3 i \\
& \lambda_{2}=2-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=2$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right) \tag{1}
\end{equation*}
$$

Figure 371: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Verified OK.

10.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-4 y^{\prime}+13 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 293: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x} \cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x} \cos (3 x)\right)+c_{2}\left(\mathrm{e}^{2 x} \cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x} \cos (3 x)+\frac{c_{2} \mathrm{e}^{2 x} \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Figure 372: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x} \cos (3 x)+\frac{c_{2} \mathrm{e}^{2 x} \sin (3 x)}{3}
$$

Verified OK.

10.9.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-4 y^{\prime}+13 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-4 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{4 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(2-3 \mathrm{I}, 2+3 \mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{2 x} \cos (3 x)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x} \sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{2 x} \cos (3 x)+c_{2} \mathrm{e}^{2 x} \sin (3 x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve(diff $(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+13 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{2 x}\left(c_{1} \sin (3 x)+c_{2} \cos (3 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 26
DSolve[y'' $[x]-4 * y$ ' $[x]+13 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{2 x}\left(c_{2} \cos (3 x)+c_{1} \sin (3 x)\right)
$$

10.10 problem 10

10.10.1 Solving as second order linear constant coeff ode 1964
10.10.2 Solving using Kovacic algorithm 1966
10.10.3 Maple step by step solution . 1970

Internal problem ID [11740]
Internal file name [OUTPUT/11749_Thursday_April_11_2024_08_49_21_PM_75173537/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+6 y^{\prime}+25 y=0
$$

10.10.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=25$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(25)} \\
& =-3 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-3+4 i \\
\lambda_{2}=-3-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-3+4 i \\
& \lambda_{2}=-3-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right) \tag{1}
\end{equation*}
$$

Figure 373: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Verified OK.

10.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+6 y^{\prime}+25 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 295: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (4 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x} \cos (4 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (4 x)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x} \cos (4 x)\right)+c_{2}\left(\mathrm{e}^{-3 x} \cos (4 x)\left(\frac{\tan (4 x)}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x} \cos (4 x)+\frac{c_{2} \mathrm{e}^{-3 x} \sin (4 x)}{4} \tag{1}
\end{equation*}
$$

Figure 374: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x} \cos (4 x)+\frac{c_{2} \mathrm{e}^{-3 x} \sin (4 x)}{4}
$$

Verified OK.

10.10.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+25 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+6 r+25=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3-4 \mathrm{I},-3+4 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-3 x} \cos (4 x)$
- $\quad 2 \mathrm{nd}$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-3 x} \sin (4 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x} \cos (4 x)+c_{2} \mathrm{e}^{-3 x} \sin (4 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve($\operatorname{diff}(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+25 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-3 x}\left(c_{1} \sin (4 x)+c_{2} \cos (4 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 26
DSolve $\left[y^{\prime \prime}[x]+6 * y\right.$ ' $[x]+25 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow e^{-3 x}\left(c_{2} \cos (4 x)+c_{1} \sin (4 x)\right)
$$

10.11 problem 11

10.11.1 Solving as second order linear constant coeff ode 1972
10.11.2 Solving as second order ode can be made integrable ode 1974
10.11.3 Solving using Kovacic algorithm 1976
10.11.4 Maple step by step solution . 1980

Internal problem ID [11741]
Internal file name [OUTPUT/11750_Thursday_April_11_2024_08_49_21_PM_92995520/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+9 y=0
$$

10.11.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x) \tag{1}
\end{equation*}
$$

Figure 375: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Verified OK.

10.11.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+9 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+9 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{9 y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-9 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-9 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-9 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-9 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =x+c_{2} \tag{1}\\
-\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =c_{3}+x \tag{2}
\end{align*}
$$

Figure 376: Slope field plot

Verification of solutions

$$
\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3}=x+c_{2}
$$

Verified OK.

$$
-\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3}=c_{3}+x
$$

Verified OK.

10.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 297: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Figure 377: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

Verified OK.

10.11.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)+9*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (3 x)+c_{2} \cos (3 x)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20

```
DSolve[y''[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

10.12 problem 12

10.12.1 Solving as second order linear constant coeff ode 1982
10.12.2 Solving as second order ode can be made integrable ode 1984
10.12.3 Solving using Kovacic algorithm 1986
10.12.4 Maple step by step solution . 1990

Internal problem ID [11742]
Internal file name [OUTPUT/11751_Thursday_April_11_2024_08_49_22_PM_63064774/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}+y=0
$$

10.12.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{0^{2}-(4)(4)(1)} \\
& = \pm \frac{i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =+\frac{i}{2} \\
\lambda_{2} & =-\frac{i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{i}{2} \\
\lambda_{2} & =-\frac{i}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\frac{1}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)\right)
$$

Or

$$
y=c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right) \tag{1}
\end{equation*}
$$

Figure 378: Slope field plot

Verification of solutions

$$
y=c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)
$$

Verified OK.

10.12.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
4 y^{\prime} y^{\prime \prime}+y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(4 y^{\prime} y^{\prime \prime}+y y^{\prime}\right) d x=0 \\
\frac{y^{2}}{2}+2{y^{\prime}}^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{\sqrt{-y^{2}+2 c_{1}}}{2} \tag{1}\\
y^{\prime} & =-\frac{\sqrt{-y^{2}+2 c_{1}}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{2}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
2 \arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{2}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-2 \arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
2 \arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{2} \tag{1}\\
-2 \arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{3}+x \tag{2}
\end{align*}
$$

Figure 379: Slope field plot

Verification of solutions

$$
2 \arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{2}
$$

Verified OK.

$$
-2 \arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{3}+x
$$

Verified OK.

10.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =4 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 299: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos \left(\frac{x}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos \left(\frac{x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos \left(\frac{x}{2}\right) \int \frac{1}{\cos \left(\frac{x}{2}\right)^{2}} d x \\
& =\cos \left(\frac{x}{2}\right)\left(2 \tan \left(\frac{x}{2}\right)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos \left(\frac{x}{2}\right)\right)+c_{2}\left(\cos \left(\frac{x}{2}\right)\left(2 \tan \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{x}{2}\right)+2 c_{2} \sin \left(\frac{x}{2}\right) \tag{1}
\end{equation*}
$$

Figure 380: Slope field plot

Verification of solutions

$$
y=c_{1} \cos \left(\frac{x}{2}\right)+2 c_{2} \sin \left(\frac{x}{2}\right)
$$

Verified OK.

10.12.4 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}+y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}+\frac{1}{4}=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-1})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{\mathrm{I}}{2}, \frac{\mathrm{I}}{2}\right)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos \left(\frac{x}{2}\right)
$$

- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\sin \left(\frac{x}{2}\right)$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(4*diff(y(x),x$2)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin \left(\frac{x}{2}\right)+c_{2} \cos \left(\frac{x}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 24
DSolve[4*y' ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)
$$

10.13 problem 13

10.13.1 Maple step by step solution

1994
Internal problem ID [11743]
Internal file name [OUTPUT/11752_Thursday_April_11_2024_08_49_22_PM_74938499/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 13.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-5 y^{\prime \prime}+7 y^{\prime}-3 y=0
$$

The characteristic equation is

$$
\lambda^{3}-5 \lambda^{2}+7 \lambda-3=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}
$$

Verified OK.

10.13.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-5 y^{\prime \prime}+7 y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=5 y_{3}(x)-7 y_{2}(x)+3 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=5 y_{3}(x)-7 y_{2}(x)+3 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
3 & -7 & 5
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
3 & -7 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an
$\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
3 & -7 & 5
\end{array}\right]-1 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{x} c_{1} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{c_{3} \mathrm{e}^{3 x}}{9}+\mathrm{e}^{x}\left(c_{2}(x-1)+c_{1}\right)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$3)-5*diff (y(x),x$2)+7*\operatorname{diff}(y(x),x)-3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{x}\left(c_{3} x+c_{2}\right)
$$

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 24

```
DSolve[y'''[x]-5*y''[x]+7*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{x}\left(c_{2} x+c_{3} e^{2 x}+c_{1}\right)
$$

10.14 problem 14

10.14.1 Maple step by step solution 1999

Internal problem ID [11744]
Internal file name [OUTPUT/11753_Thursday_April_11_2024_08_49_23_PM_82557195/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 14.
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
4 y^{\prime \prime \prime}+4 y^{\prime \prime}-7 y^{\prime}+2 y=0
$$

The characteristic equation is

$$
4 \lambda^{3}+4 \lambda^{2}-7 \lambda+2=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=\frac{1}{2} \\
& \lambda_{3}=\frac{1}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{\frac{x}{2}} c_{2}+x \mathrm{e}^{\frac{x}{2}} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{\frac{x}{2}} \\
& y_{3}=\mathrm{e}^{\frac{x}{2}} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{\frac{x}{2}} c_{2}+x \mathrm{e}^{\frac{x}{2}} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{\frac{x}{2}} c_{2}+x \mathrm{e}^{\frac{x}{2}} c_{3}
$$

Verified OK.

10.14.1 Maple step by step solution

Let's solve
$4 y^{\prime \prime \prime}+4 y^{\prime \prime}-7 y^{\prime}+2 y=0$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-y^{\prime \prime}+\frac{7 y^{\prime}}{4}-\frac{y}{2}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}+y^{\prime \prime}-\frac{7 y^{\prime}}{4}+\frac{y}{2}=0$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-y_{3}(x)+\frac{7 y_{2}(x)}{4}-\frac{y_{1}(x)}{2}
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-y_{3}(x)+\frac{7 y_{2}(x)}{4}-\frac{y_{1}(x)}{2}\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{1}{2} & \frac{7}{4} & -1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{1}{2} & \frac{7}{4} & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$\left[-2,\left[\begin{array}{c} \frac{1}{4} \\ -\frac{1}{2} \\ 1 \end{array}\right]\right],\left[\frac{1}{2},\left[\begin{array}{c} 4 \\ 2 \\ 1 \end{array}\right]\right],\left[\frac{1}{2},\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]\right.$										

- Consider eigenpair
$\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[\frac{1}{2},\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue $\frac{1}{2}$

$$
\vec{y}_{2}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=\frac{1}{2}$ is the eigenvalue, an $\vec{y}_{3}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue $\frac{1}{2}$

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{1}{2} & \frac{7}{4} & -1
\end{array}\right]-\frac{1}{2} \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-8 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue $\frac{1}{2}$

$$
\vec{y}_{3}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left(x \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-8 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{\frac{x}{2}} c_{2} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{\frac{x}{2}} \cdot\left(x \cdot\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-8 \\
0 \\
0
\end{array}\right]\right)
$$

- First component of the vector is the solution to the ODE

$$
y=4 \mathrm{e}^{-2 x}\left(\left((x-2) c_{3}+c_{2}\right) \mathrm{e}^{\frac{5 x}{2}}+\frac{c_{1}}{16}\right)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve(4*diff(y(x),x$3)+4*diff(y(x),x$2)-7*diff (y(x),x)+2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(\left(c_{3} x+c_{2}\right) \mathrm{e}^{\frac{5 x}{2}}+c_{1}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 93
DSolve[4*y' ' ' $[\mathrm{x}]+4 * \mathrm{y}$ '' $[\mathrm{x}]+7 * \mathrm{y}$ ' $[\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \exp \left(x \operatorname{Root}\left[4 \# 1^{3}+4 \# 1^{2}+7 \# 1+2 \&, 1\right]\right) \\
& +c_{2} \exp \left(x \operatorname{Root}\left[4 \# 1^{3}+4 \# 1^{2}+7 \# 1+2 \&, 2\right]\right) \\
& +c_{3} \exp \left(x \operatorname{Root}\left[4 \# 1^{3}+4 \# 1^{2}+7 \# 1+2 \&, 3\right]\right)
\end{aligned}
$$

10.15 problem 15

Internal problem ID [11745]
Internal file name [OUTPUT/11754_Thursday_April_11_2024_08_49_23_PM_77245304/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 15 .
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=2 \\
& \lambda_{3}=2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x+x^{2} \mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{2 x} x \\
& y_{3}=x^{2} \mathrm{e}^{2 x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x+x^{2} \mathrm{e}^{2 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x+x^{2} \mathrm{e}^{2 x} c_{3}
$$

Verified OK.
Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve (diff $(y(x), x \$ 3)-6 * \operatorname{diff}(y(x), x \$ 2)+12 * \operatorname{diff}(y(x), x)-8 * y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\mathrm{e}^{2 x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 23
DSolve[y'''[x]-6*y''[x]+12*y'[x]-8*y[x]==0,y[x],x, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{2 x}\left(x\left(c_{3} x+c_{2}\right)+c_{1}\right)
$$

10.16 problem 16

10.16.1 Maple step by step solution 2007

Internal problem ID [11746]
Internal file name [OUTPUT/11755_Thursday_April_11_2024_08_49_24_PM_2170690/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 16.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

The characteristic equation is

$$
\lambda^{3}+4 \lambda^{2}+5 \lambda+6=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{7}}{2} \\
& \lambda_{3}=-\frac{1}{2}+\frac{i \sqrt{7}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{7}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{7}}{2}\right) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{7}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{7}}{2}\right) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{7}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{7}}{2}\right) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{7}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{7}}{2}\right) x} c_{3}
$$

Verified OK.

10.16.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-4 y_{3}(x)-5 y_{2}(x)-6 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-4 y_{3}(x)-5 y_{2}(x)-6 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -5 & -4
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -5 & -4
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}+\frac{\mathrm{I} \sqrt{7}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{7}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{7}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{7} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{7} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{7} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{7} x}{2}\right)}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{7} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{7} x}{2}\right)}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
\cos \left(\frac{\sqrt{7} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{7} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{3 \cos \left(\frac{\sqrt{7} x}{2}\right)}{8}-\frac{\sin \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7}}{8} \\
-\frac{\cos \left(\frac{\sqrt{7} x}{2}\right)}{4}+\frac{\sin \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7}}{4} \\
\cos \left(\frac{\sqrt{7} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7}}{8}+\frac{3 \sin \left(\frac{\sqrt{7} x}{2}\right)}{8} \\
\frac{\cos \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7}}{4}+\frac{\sin \left(\frac{\sqrt{7} x}{2}\right)}{4} \\
-\sin \left(\frac{\sqrt{7} x}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{3 \cos \left(\frac{\sqrt{7} x}{2}\right)}{8}-\frac{\sin \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7}}{8} \\
-\frac{\cos \left(\frac{\sqrt{7} x}{2}\right)}{4}+\frac{\sin \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7}}{4} \\
\cos \left(\frac{\sqrt{7} x}{2}\right)
\end{array}\right]+c_{3} \mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7}}{8}+\frac{3 \sin \left(\frac{\sqrt{7}}{2}\right.}{8} \\
\frac{\cos \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7}}{4}+\frac{\sin \left(\frac{\sqrt{7} x}{2}\right.}{4}, \\
-\sin \left(\frac{\sqrt{7} x}{2}\right)
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{3\left(\frac{c_{3} \sqrt{7}}{3}+c_{2}\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)}{8}-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{2} \sqrt{7}-3 c_{3}\right) \sin \left(\frac{\sqrt{7} x}{2}\right)}{8}+\frac{c_{1} \mathrm{e}^{-3 x}}{9}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 37
dsolve($\operatorname{diff}(y(x), x \$ 3)+4 * \operatorname{diff}(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)+6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{7} x}{2}\right)+c_{3} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 56

$$
\begin{aligned}
& \text { DSolve }[\mathrm{y} \text { '' ' }[\mathrm{x}]+4 * \mathrm{y} \text { ' ' }[\mathrm{x}]+5 * \mathrm{y} \text { ' }[\mathrm{x}]+6 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True] } \\
& \qquad y(x) \rightarrow e^{-3 x}\left(c_{2} e^{5 x / 2} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{1} e^{5 x / 2} \sin \left(\frac{\sqrt{7} x}{2}\right)+c_{3}\right)
\end{aligned}
$$

10.17 problem 17

10.17.1 Maple step by step solution . 2012

Internal problem ID [11747]
Internal file name [OUTPUT/11756_Thursday_April_11_2024_08_49_24_PM_84570994/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 17.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}-\lambda^{2}+\lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =i \\
\lambda_{3} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{x} \\
y_{2} & =\mathrm{e}^{i x} \\
y_{3} & =\mathrm{e}^{-i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

Verified OK.

10.17.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=y_{3}(x)-y_{2}(x)+y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=y_{3}(x)-y_{2}(x)+y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored $\left[-\mathrm{I},\left[\begin{array}{c}-1 \\ \mathrm{I} \\ 1\end{array}\right]\right]$
- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{x} c_{1} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \cos (x)+c_{3} \sin (x) \\
c_{2} \sin (x)+c_{3} \cos (x) \\
c_{2} \cos (x)-c_{3} \sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=\mathrm{e}^{x} c_{1}+c_{3} \sin (x)-c_{2} \cos (x)$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$3)-diff (y(x),x$2)+diff (y (x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{x}+\sin (x) c_{2}+c_{3} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 22
DSolve[y'''[x]-y''[x]+y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{3} e^{x}+c_{1} \cos (x)+c_{2} \sin (x)
$$

10.18 problem 18

Internal problem ID [11748]
Internal file name [OUTPUT/11757_Thursday_April_11_2024_08_49_24_PM_39924745/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 18.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant__coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+8 y^{\prime \prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{4}+8 \lambda^{2}+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 i \\
\lambda_{2} & =-2 i \\
\lambda_{3} & =2 i \\
\lambda_{4} & =-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{2 i x} c_{1}+x \mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}+x \mathrm{e}^{-2 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 i x} \\
& y_{2}=x \mathrm{e}^{2 i x} \\
& y_{3}=\mathrm{e}^{-2 i x} \\
& y_{4}=x \mathrm{e}^{-2 i x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 i x} c_{1}+x \mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}+x \mathrm{e}^{-2 i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 i x} c_{1}+x \mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}+x \mathrm{e}^{-2 i x} c_{4}
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
dsolve(diff $(y(x), x \$ 4)+8 * \operatorname{diff}(y(x), x \$ 2)+16 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{4} x+c_{2}\right) \cos (2 x)+\sin (2 x)\left(c_{3} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30
DSolve[y''''[x]+8*y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow\left(c_{2} x+c_{1}\right) \cos (2 x)+\left(c_{4} x+c_{3}\right) \sin (2 x)
$$

10.19 problem 19

10.19.1 Maple step by step solution . 2019

Internal problem ID [11749]
Internal file name [OUTPUT/11758_Thursday_April_11_2024_08_49_25_PM_75101065/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 19.
ODE order: 5 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_x]]
```

$$
y^{(5)}-2 y^{\prime \prime \prime \prime}+y^{\prime \prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{5}-2 \lambda^{4}+\lambda^{3}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=1 \\
& \lambda_{5}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{x} c_{4}+x \mathrm{e}^{x} c_{5}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2} \\
& y_{4}=\mathrm{e}^{x} \\
& y_{5}=x \mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{x} c_{4}+x \mathrm{e}^{x} c_{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{x} c_{4}+x \mathbf{e}^{x} c_{5}
$$

Verified OK.

10.19.1 Maple step by step solution

Let's solve
$y^{(5)}-2 y^{\prime \prime \prime \prime}+y^{\prime \prime \prime}=0$

- Highest derivative means the order of the ODE is 5
$y^{(5)}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Define new variable $y_{5}(x)$

$$
y_{5}(x)=y^{\prime \prime \prime \prime}
$$

- Isolate for $y_{5}^{\prime}(x)$ using original ODE
$y_{5}^{\prime}(x)=2 y_{5}(x)-y_{4}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{5}(x)=y_{4}^{\prime}(x), y_{5}^{\prime}(x)=2 y_{5}(x)-y_{4}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x) \\
y_{5}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
$\left[1,\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]\right]$
- First solution from eigenvalue 1

$$
\vec{y}_{4}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an $\vec{y}_{5}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{5}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{5}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]-1 \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 1

$$
\vec{y}_{5}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}(x)+c_{5} \vec{y}_{5}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{x} c_{4} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+c_{5} \mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{1} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\left((x-1) c_{5}+c_{4}\right) \mathrm{e}^{x}+c_{1}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22
dsolve(diff $(y(x), x \$ 5)-2 * \operatorname{diff}(y(x), x \$ 4)+\operatorname{diff}(y(x), x \$ 3)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{5} x+c_{4}\right) \mathrm{e}^{x}+c_{3} x^{2}+c_{2} x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.096 (sec). Leaf size: 30
DSolve[y'C''[x]-2*y'C'[x]+y'C'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{x}\left(c_{2}(x-3)+c_{1}\right)+x\left(c_{5} x+c_{4}\right)+c_{3}
$$

10.20 problem 20

10.20.1 Maple step by step solution 2027

Internal problem ID [11750]
Internal file name [OUTPUT/11759_Thursday_April_11_2024_08_49_25_PM_94911187/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 20.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-3 y^{\prime \prime}+y^{\prime}+2 y=0
$$

The characteristic equation is

$$
\lambda^{4}-\lambda^{3}-3 \lambda^{2}+\lambda+2=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-1 \\
\lambda_{4} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{x} \\
& y_{4}=\mathrm{e}^{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}
$$

Verified OK.

10.20.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-3 y^{\prime \prime}+y^{\prime}+2 y=0$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=y_{4}(x)+3 y_{3}(x)-y_{2}(x)-2 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=y_{4}(x)+3 y_{3}(x)-y_{2}(x)-2 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & -1 & 3 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & -1 & 3 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A
$\left[\left[-1,\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]\right],\left[-1,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right],\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue - 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & -1 & 3 & 1
\end{array}\right]-(-1) \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{4}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{4} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\left((-x-1) c_{2}-c_{1}\right) \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{2 x} c_{4}}{8}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$4)-diff (y(x),x$3)-3*diff (y(x),x$2)+\operatorname{diff}(y(x),x)+2*y(x)=0,y(x), singsol=al
```

$$
y(x)=\left(c_{4} x+c_{3}\right) \mathrm{e}^{-x}+c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 33
DSolve[y''''[x]-y'''[x]-3*y''[x]+y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(c_{2} x+e^{2 x}\left(c_{4} e^{x}+c_{3}\right)+c_{1}\right)
$$

10.21 problem 21

10.21.1 Maple step by step solution 2034

Internal problem ID [11751]
Internal file name [OUTPUT/11760_Thursday_April_11_2024_08_49_25_PM_40279363/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 21.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}+12 y=0
$$

The characteristic equation is

$$
\lambda^{4}-3 \lambda^{3}-2 \lambda^{2}+2 \lambda+12=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=3 \\
& \lambda_{3}=-1-i \\
& \lambda_{4}=-1+i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{(-1+i) x} c_{3}+\mathrm{e}^{(-1-i) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{3 x} \\
& y_{3}=\mathrm{e}^{(-1+i) x} \\
& y_{4}=\mathrm{e}^{(-1-i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{(-1+i) x} c_{3}+\mathrm{e}^{(-1-i) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{(-1+i) x} c_{3}+\mathrm{e}^{(-1-i) x} c_{4}
$$

Verified OK.

10.21.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}+12 y=0
$$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=3 y_{4}(x)+2 y_{3}(x)-2 y_{2}(x)-12 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=3 y_{4}(x)+2 y_{3}(x)-2 y_{2}(x)-12 y_{1}(x)\right]
$$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x) \\ y_{4}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -12 & -2 & 2 & 3\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-12 & -2 & 2 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right],\left[-1-\mathrm{I},\left[\begin{array}{c}
\frac{1}{4}+\frac{\mathrm{I}}{4} \\
-\frac{\mathrm{I}}{2} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[-1+\mathrm{I},\left[\begin{array}{c}
\frac{1}{4}-\frac{\mathrm{I}}{4} \\
\frac{\mathrm{I}}{2} \\
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{27} \\ \frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I},\left[\begin{array}{c}
\frac{1}{4}+\frac{\mathrm{I}}{4} \\
-\frac{\mathrm{I}}{2} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{1}{4}+\frac{\mathrm{I}}{4} \\
-\frac{\mathrm{I}}{2} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{1}{4}+\frac{\mathrm{I}}{4} \\
-\frac{\mathrm{I}}{2} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\left(\frac{1}{4}+\frac{\mathrm{I}}{4}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
-\frac{\mathrm{I}}{2}(\cos (x)-\mathrm{I} \sin (x)) \\
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}+\frac{\sin (x)}{4} \\
-\frac{\sin (x)}{2} \\
-\frac{\cos (x)}{2}+\frac{\sin (x)}{2} \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}-\frac{\sin (x)}{4} \\
-\frac{\cos (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{3 x} c_{2} \cdot\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}+\frac{\sin (x)}{4} \\
-\frac{\sin (x)}{2} \\
-\frac{\cos (x)}{2}+\frac{\sin (x)}{2} \\
\cos (x)
\end{array}\right]+c_{4} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}-\frac{\sin (x)}{4} \\
-\frac{\cos (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
-\sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(\left(c_{3}+c_{4}\right) \cos (x)+\sin (x)\left(c_{3}-c_{4}\right)\right) \mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{3 x} c_{2}}{27}+\frac{c_{1} \mathrm{e}^{2 x}}{8}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
dsolve(diff $(y(x), x \$ 4)-3 * \operatorname{diff}(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+12 * y(x)=0, y(x)$, sings

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{3 x}+c_{3} \mathrm{e}^{-x} \sin (x)+c_{4} \mathrm{e}^{-x} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 37
DSolve[y''''[x]-3*y'' $[x]-2 * y$ '' $[x]+2 * y$ ' $[x]+12 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow e^{-x}\left(e^{3 x}\left(c_{4} e^{x}+c_{3}\right)+c_{2} \cos (x)+c_{1} \sin (x)\right)
$$

10.22 problem 22

10.22.1 Maple step by step solution

Internal problem ID [11752]
Internal file name [OUTPUT/11761_Thursday_April_11_2024_08_49_26_PM_31848990/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 22.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+6 y^{\prime \prime \prime}+15 y^{\prime \prime}+20 y^{\prime}+12 y=0
$$

The characteristic equation is

$$
\lambda^{4}+6 \lambda^{3}+15 \lambda^{2}+20 \lambda+12=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2}-1 \\
& \lambda_{2}=-1-i \sqrt{2} \\
& \lambda_{3}=-2 \\
& \lambda_{4}=-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+\mathrm{e}^{(i \sqrt{2}-1) x} c_{3}+\mathrm{e}^{(-1-i \sqrt{2}) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{(i \sqrt{2}-1) x} \\
& y_{4}=\mathrm{e}^{(-1-i \sqrt{2}) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+\mathrm{e}^{(i \sqrt{2}-1) x} c_{3}+\mathrm{e}^{(-1-i \sqrt{2}) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+\mathrm{e}^{(i \sqrt{2}-1) x} c_{3}+\mathrm{e}^{(-1-i \sqrt{2}) x} c_{4}
$$

Verified OK.

10.22.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}+6 y^{\prime \prime \prime}+15 y^{\prime \prime}+20 y^{\prime}+12 y=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=-6 y_{4}(x)-15 y_{3}(x)-20 y_{2}(x)-12 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-6 y_{4}(x)-15 y_{3}(x)-20 y_{2}(x)-12 y_{1}(x)\right]$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x) \\ y_{4}(x)\end{array}\right]$
- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-12 & -20 & -15 & -6
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-12 & -20 & -15 & -6
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[-2,\left[\begin{array}{c}-\frac{1}{8} \\ \frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right],\left[-2,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right],\left[-1-\mathrm{I} \sqrt{2},\left[\begin{array}{c}\frac{1}{(-1-\mathrm{I} \sqrt{2})^{3}} \\ \frac{1}{(-1-\mathrm{I} \sqrt{2})^{2}} \\ \frac{1}{-1-\mathrm{I} \sqrt{2}} \\ 1\end{array}\right]\right],\left[\mathrm{I} \sqrt{2}-1,\left[\begin{array}{c}\frac{1}{(\mathrm{I} \sqrt{2}-1)^{3}} \\ \frac{1}{(\mathrm{I} \sqrt{2}-1)^{2}} \\ \frac{1}{\mathrm{I} \sqrt{2}-1} \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue -2

$$
\vec{y}_{1}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-2$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -2

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-12 & -20 & -15 & -6
\end{array}\right]-(-2) \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{1}{16} \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue -2

$$
\vec{y}_{2}(x)=\mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{16} \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{ } 2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-x} \cdot(\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)) \cdot\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(-1-\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(-1-\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{-1-\mathrm{I} \sqrt{2}} \\
\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{5 \cos (\sqrt{2} x)}{27}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{27} \\
-\frac{\cos (\sqrt{2} x)}{9}-\frac{2 \sin (\sqrt{2} x) \sqrt{2}}{9} \\
-\frac{\cos (\sqrt{2} x)}{3}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{3} \\
\cos (\sqrt{2} x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{27}-\frac{5 \sin (\sqrt{2} x)}{27} \\
-\frac{2 \cos (\sqrt{2} x) \sqrt{2}}{9}+\frac{\sin (\sqrt{2} x)}{9} \\
\frac{\cos (\sqrt{2} x) \sqrt{2}}{3}+\frac{\sin (\sqrt{2} x)}{3} \\
-\sin (\sqrt{2} x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{16} \\
0 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{5 \cos (\sqrt{2} x)}{27}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{27} \\
-\frac{\cos (\sqrt{2} x)}{9}-\frac{2 \sin (\sqrt{2} x) \sqrt{2}}{9} \\
-\frac{\cos (\sqrt{2} x)}{3}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{3} \\
\cos (\sqrt{2} x)
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{5 \mathrm{e}^{-x}\left(\frac{c_{4} \sqrt{2}}{5}+c_{3}\right) \cos (\sqrt{2} x)}{27}+\frac{\mathrm{e}^{-x}\left(\sqrt{2} c_{3}-5 c_{4}\right) \sin (\sqrt{2} x)}{27}-\frac{\left(\left(x+\frac{1}{2}\right) c_{2}+c_{1}\right) \mathrm{e}^{-2 x}}{8}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve(diff(y(x),x$4)+6*diff(y(x),x$3)+15*\operatorname{diff}(y(x),x$2)+20*diff (y(x),x)+12*y(x)=0,y(x), sin
```

$$
y(x)=c_{4} \mathrm{e}^{-x} \cos (x \sqrt{2})+c_{3} \mathrm{e}^{-x} \sin (x \sqrt{2})+\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 46
DSolve $[y$ '''' $[x]+6 * y$ '' $[x]+15 * y$ ' $[x]+20 * y$ ' $[x]+12 * y[x]==0, y[x], x$, IncludeSingularSolutions $->~ T$

$$
y(x) \rightarrow e^{-2 x}\left(c_{4} x+c_{2} e^{x} \cos (\sqrt{2} x)+c_{1} e^{x} \sin (\sqrt{2} x)+c_{3}\right)
$$

10.23 problem 23

10.23.1 Maple step by step solution . 2047

Internal problem ID [11753]
Internal file name [OUTPUT/11762_Thursday_April_11_2024_08_49_26_PM_21910946/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 23.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2} \\
& \lambda_{2}=-\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2} \\
& \lambda_{3}=-\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2} \\
& \lambda_{4}=\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{\left(\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right) x} c_{1}+\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right) x} c_{3}+\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\left(\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right) x} \\
& y_{2}=\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right) x} \\
& y_{4}=\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\left(\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right) x} c_{1}+\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right) x} c_{3}+\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\left(\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right) x} c_{1}+\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right) x} c_{3}+\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}+\frac{i \sqrt{2}}{2}\right) x} c_{4}
$$

Verified OK.

10.23.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}+y=0$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=-y_{1}(x)$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-y_{1}(x)\right]$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x) \\ y_{4}(x)\end{array}\right]$
- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{3}} \\
\frac{1}{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{2}} \\
\frac{1}{-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{3}} \\
\frac{1}{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{2}} \\
\frac{1}{-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{\sqrt{2}}{2} x} \cdot\left(\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{3}} \\
\frac{1}{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{2}} \\
\frac{1}{-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{\sqrt{2} x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)}{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{3}} \\
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)}{\left(-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)}{-\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}} \\
\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\mathrm{e}^{-\frac{\sqrt{2} x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
-\sin \left(\frac{\sqrt{2} x}{2}\right) \\
-\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
\cos \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right], \vec{y}_{2}(x)=\mathrm{e}^{-\frac{\sqrt{2} x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}-\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
-\cos \left(\frac{\sqrt{2} x}{2}\right) \\
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
-\sin \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right]\right.
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
- Solution from eigenpair

$$
\mathrm{e}^{\left(\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{\sqrt{2}}{2}-\frac{1 \sqrt{2}}{2}\right)^{3}} \\
\frac{1}{\left(\frac{\sqrt{2}}{2}-\frac{1 \sqrt{2}}{2}\right)^{2}} \\
\frac{1}{\frac{\sqrt{2}}{2}-\frac{1 \sqrt{2}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{\frac{\sqrt{2}}{2} x} \cdot\left(\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{3}} \\
\frac{1}{\left(\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{2}} \\
\frac{1}{\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\frac{\sqrt{2} x}{2} x} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)}{\left(\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{3}} \\
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)}{\left(\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)}{\frac{\sqrt{2}}{2}-\frac{\mathrm{I} \sqrt{2}}{2}} \\
\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{\frac{\sqrt{2} x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
\sin \left(\frac{\sqrt{2} x}{2}\right) \\
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
\cos \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{\frac{\sqrt{2} x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
\cos \left(\frac{\sqrt{2} x}{2}\right) \\
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}-\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
-\sin \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-\frac{\sqrt{2} x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
-\sin \left(\frac{\sqrt{2} x}{2}\right) \\
-\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
\cos \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{\sqrt{2} x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}-\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
-\cos \left(\frac{\sqrt{2} x}{2}\right) \\
\frac{\cos \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2}+\frac{\sin \left(\frac{\sqrt{2} x}{2}\right) \sqrt{2}}{2} \\
-\sin \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right]+c_{3} \mathrm{e}^{\frac{\sqrt{2} x}{2}}\left[\begin{array}{c}
\\
-
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\sqrt{2}\left(\left(\left(c_{1}+c_{2}\right) \mathrm{e}^{-\frac{\sqrt{2} x}{2}}-\mathrm{e}^{\frac{\sqrt{2} x}{2} x}\left(c_{3}-c_{4}\right)\right) \cos \left(\frac{\sqrt{2} x}{2}\right)+\left(\left(c_{1}-c_{2}\right) \mathrm{e}^{-\frac{\sqrt{2} x}{2} x}+\mathrm{e}^{\frac{\sqrt{2} x}{2}}\left(c_{3}+c_{4}\right)\right) \sin \left(\frac{\sqrt{2} x}{2}\right)\right)}{2}$

Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 61

```
dsolve(diff(y(x),x$4)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(-c_{1} \mathrm{e}^{-\frac{x \sqrt{2}}{2}}-c_{2} \mathrm{e}^{\frac{x \sqrt{2}}{2}}\right) \sin \left(\frac{x \sqrt{2}}{2}\right)+\left(c_{3} \mathrm{e}^{-\frac{x \sqrt{2}}{2}}+c_{4} \mathrm{e}^{\frac{x \sqrt{2}}{2}}\right) \cos \left(\frac{x \sqrt{2}}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65
DSolve[y''''[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-\frac{x}{\sqrt{2}}}\left(\left(c_{1} e^{\sqrt{2} x}+c_{2}\right) \cos \left(\frac{x}{\sqrt{2}}\right)+\left(c_{4} e^{\sqrt{2} x}+c_{3}\right) \sin \left(\frac{x}{\sqrt{2}}\right)\right)
$$

10.24 problem 24

10.24.1 Maple step by step solution 2054

Internal problem ID [11754]
Internal file name [OUTPUT/11763_Thursday_April_11_2024_08_49_26_PM_9690685/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 24.
ODE order: 5.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _quadrature]]

$$
y^{(5)}=0
$$

The characteristic equation is

$$
\lambda^{5}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0 \\
& \lambda_{5}=0
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{5} x^{4}+c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2} \\
& y_{4}=x^{3} \\
& y_{5}=x^{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{5} x^{4}+c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{5} x^{4}+c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}
$$

Verified OK.

10.24.1 Maple step by step solution

Let's solve
$y^{(5)}=0$

- Highest derivative means the order of the ODE is 5
$y^{(5)}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Define new variable $y_{5}(x)$
$y_{5}(x)=y^{\prime \prime \prime \prime}$
- Isolate for $y_{5}^{\prime}(x)$ using original ODE

$$
y_{5}^{\prime}(x)=0
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{5}(x)=y_{4}^{\prime}(x), y_{5}^{\prime}(x)=0\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x) \\
y_{5}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{5}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}+c_{5} \vec{y}_{5}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\left[\begin{array}{c}
c_{1} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=c_{1}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$5)=0,y(x), singsol=all)
```

$$
y(x)=\frac{1}{24} x^{4} c_{1}+\frac{1}{6} c_{2} x^{3}+\frac{1}{2} c_{3} x^{2}+c_{4} x+c_{5}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 27
DSolve[y''1''[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow x\left(x\left(x\left(c_{5} x+c_{4}\right)+c_{3}\right)+c_{2}\right)+c_{1}
$$

10.25 problem 25

10.25.1 Existence and uniqueness analysis 2060
10.25.2 Solving as second order linear constant coeff ode 2061
10.25.3 Solving using Kovacic algorithm 2063
10.25.4 Maple step by step solution . 2067

Internal problem ID [11755]
Internal file name [OUTPUT/11764_Thursday_April_11_2024_08_49_27_PM_74442270/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}-12 y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=5\right]
$$

10.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-12 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-12 y=0
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-12$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.25.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-12$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-12 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-12=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-12$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-12)} \\
& =\frac{1}{2} \pm \frac{7}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{7}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{7}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=4 c_{1} \mathrm{e}^{4 x}-3 c_{2} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=4 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{4 x}+\mathrm{e}^{-3 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{4 x}+\mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{4 x}+\mathrm{e}^{-3 x}
$$

Verified OK.

10.25.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-12 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{49}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=49 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{49 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 311: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{49}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{7 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{7 x}}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{7 x}}{7}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{4 x}}{7} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1}+\frac{c_{2}}{7} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+\frac{4 c_{2} \mathrm{e}^{4 x}}{7}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=-3 c_{1}+\frac{4 c_{2}}{7} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=14
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{4 x}+\mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{4 x}+\mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \mathrm{e}^{4 x}+\mathrm{e}^{-3 x}
$$

Verified OK.

10.25.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-12 y=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-r-12=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-4)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,4)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{4 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{4 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{4 x}$

- Use initial condition $y(0)=3$

$$
3=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+4 c_{2} \mathrm{e}^{4 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$

$$
5=-3 c_{1}+4 c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify

$$
y=\left(2 \mathrm{e}^{7 x}+1\right) \mathrm{e}^{-3 x}
$$

- \quad Solution to the IVP

$$
y=\left(2 \mathrm{e}^{7 x}+1\right) \mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve([diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-12 * y(x)=0, y(0)=3, D(y)(0)=5], y(x)$, singsol=all)

$$
y(x)=\left(2 \mathrm{e}^{7 x}+1\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]-y\right.\right.$ ' $\left.[x]-12 * y[x]==0,\left\{y[0]==3, y^{\prime}[0]==5\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-3 x}+2 e^{4 x}
$$

10.26 problem 26

10.26.1 Existence and uniqueness analysis 2070
10.26.2 Solving as second order linear constant coeff ode 2071
10.26.3 Solving using Kovacic algorithm 2073
10.26.4 Maple step by step solution . 2077

Internal problem ID [11756]
Internal file name [OUTPUT/11765_Thursday_April_11_2024_08_49_27_PM_74205676/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

With initial conditions

$$
\left[y(0)=-4, y^{\prime}(0)=2\right]
$$

10.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =7 \\
q(x) & =10 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

The domain of $p(x)=7$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=10$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.26.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=7, C=10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+7 \lambda \mathrm{e}^{\lambda x}+10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+7 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=7, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-7}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{7^{2}-(4)(1)(10)} \\
& =-\frac{7}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{7}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{7}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-5
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-2) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=0$ in the above gives

$$
\begin{equation*}
-4=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}-5 c_{2} \mathrm{e}^{-5 x}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=-2 c_{1}-5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-6 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x}
$$

Verified OK.

10.26.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+7 y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=7 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 313: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{17}{2} d x} \\
& =z_{1} e^{-\frac{7 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{7 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-7 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-2 x}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-4$ and $x=0$ in the above gives

$$
\begin{equation*}
-4=c_{1}+\frac{c_{2}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-5 c_{1} \mathrm{e}^{-5 x}-\frac{2 c_{2} \mathrm{e}^{-2 x}}{3}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=-5 c_{1}-\frac{2 c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-18
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x}
$$

Verified OK.

10.26.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+7 y^{\prime}+10 y=0, y(0)=-4,\left.y^{\prime}\right|_{\{x=0\}}=2\right]$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+7 r+10=0
$$

- Factor the characteristic polynomial

$$
(r+5)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-5,-2)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-5 x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-2 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-2 x}$

- Use initial condition $y(0)=-4$
$-4=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-5 c_{1} \mathrm{e}^{-5 x}-2 c_{2} \mathrm{e}^{-2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=2$
$2=-5 c_{1}-2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=-6\right\}$
- Substitute constant values into general solution and simplify

$$
y=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x}
$$

- \quad Solution to the IVP

$$
y=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)+7 * \operatorname{diff}(y(x), x)+10 * y(x)=0, y(0)=-4, D(y)(0)=2], y(x)$, singsol=all)

$$
y(x)=2 \mathrm{e}^{-5 x}-6 \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime \prime}[x]+7 * y\right.\right.$ ' $\left.[x]+10 * y[x]==0,\left\{y[0]==-4, y^{\prime}[0]==2\right\}\right\}, y[x], x$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
y(x) \rightarrow e^{-5 x}\left(2-6 e^{3 x}\right)
$$

10.27 problem 27

10.27.1 Existence and uniqueness analysis 2080
10.27.2 Solving as second order linear constant coeff ode 2081
10.27.3 Solving using Kovacic algorithm 2083
10.27.4 Maple step by step solution . 2087

Internal problem ID [11757]
Internal file name [OUTPUT/11766_Thursday_April_11_2024_08_49_28_PM_72234192/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-6 y^{\prime}+8 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=6\right]
$$

10.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-6 \\
q(x) & =8 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-6 y^{\prime}+8 y=0
$$

The domain of $p(x)=-6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=8$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.27.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=8$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+8 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(8)} \\
& =3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=3+1 \\
& \lambda_{2}=3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=4 c_{1} \mathrm{e}^{4 x}+2 c_{2} \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=4 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}
$$

Verified OK.

10.27.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 315: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}+2 c_{2} \mathrm{e}^{4 x}
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=2 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}
$$

Verified OK.

10.27.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-6 y^{\prime}+8 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=6\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-6 r+8=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r-4)=0
$$

- Roots of the characteristic polynomial

$$
r=(2,4)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{2 x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{4 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{4 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{4 x}$

- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}+4 c_{2} \mathrm{e}^{4 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=6$
$6=2 c_{1}+4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-1, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify

$$
y=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}
$$

- \quad Solution to the IVP

$$
y=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+8 * y(x)=0, y(0)=1, D(y)(0)=6], y(x)$, singsol=all)

$$
y(x)=2 \mathrm{e}^{4 x}-\mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime} '[x]-6 * y\right.\right.$ ' $[x]+8 * y[x]==0,\{y[0]==1, y$ ' $\left.[0]==6\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow e^{2 x}\left(2 e^{2 x}-1\right)
$$

10.28 problem 28

10.28.1 Existence and uniqueness analysis 2090
10.28.2 Solving as second order linear constant coeff ode 2091
10.28.3 Solving using Kovacic algorithm 2093
10.28.4 Maple step by step solution . 2097

Internal problem ID [11758]
Internal file name [OUTPUT/11767_Thursday_April_11_2024_08_49_28_PM_1544632/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
3 y^{\prime \prime}+4 y^{\prime}-4 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-4\right]
$$

10.28.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{4}{3} \\
q(x) & =-\frac{4}{3} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{4 y^{\prime}}{3}-\frac{4 y}{3}=0
$$

The domain of $p(x)=\frac{4}{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-\frac{4}{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.28.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=3, B=4, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
3 \lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
3 \lambda^{2}+4 \lambda-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=3, B=4, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(3)} \pm \frac{1}{(2)(3)} \sqrt{4^{2}-(4)(3)(-4)} \\
& =-\frac{2}{3} \pm \frac{4}{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{2}{3}+\frac{4}{3} \\
& \lambda_{2}=-\frac{2}{3}-\frac{4}{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{2}{3} \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{2}{3}\right) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{2 x}{3}}+c_{2} \mathrm{e}^{-2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 x}{3}}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} \mathrm{e}^{\frac{2 x}{3}}}{3}-2 c_{2} \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=-4$ and $x=0$ in the above gives

$$
\begin{equation*}
-4=\frac{2 c_{1}}{3}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-2 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-2 x}
$$

Verified OK.

10.28.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
3 y^{\prime \prime}+4 y^{\prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=3 \\
& B=4 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{16}{9} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=16 \\
& t=9
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{16 z(x)}{9} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 317: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{16}{9}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{4 x}{3}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{3} d x} \\
& =z_{1} e^{-\frac{2 x}{3}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{2 x}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{3} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{4 x}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{3 e^{\frac{8 x}{3}}}{8}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{3 \mathrm{e}^{\frac{8 x}{3}}}{8}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{3 c_{2} \mathrm{e}^{\frac{2 x}{3}}}{8} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{3 c_{2}}{8} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{\frac{2 x}{3}}}{4}
$$

substituting $y^{\prime}=-4$ and $x=0$ in the above gives

$$
\begin{equation*}
-4=-2 c_{1}+\frac{c_{2}}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \mathrm{e}^{-2 x}
$$

Verified OK.

10.28.4 Maple step by step solution

Let's solve

$$
\left[3 y^{\prime \prime}+4 y^{\prime}-4 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=-4\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y^{\prime}}{3}+\frac{4 y}{3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{4 y^{\prime}}{3}-\frac{4 y}{3}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+\frac{4}{3} r-\frac{4}{3}=0
$$

- Factor the characteristic polynomial
$\frac{(r+2)(3 r-2)}{3}=0$
- Roots of the characteristic polynomial
$r=\left(-2, \frac{2}{3}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{2 x}{3}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{\frac{2 x}{3}}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{\frac{2 x}{3}}$
- Use initial condition $y(0)=2$
$2=c_{1}+c_{2}$
- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{2 c_{2} e^{\frac{2 x}{3}}}{3}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-4$
$-4=-2 c_{1}+\frac{2 c_{2}}{3}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify
$y=2 \mathrm{e}^{-2 x}$
- \quad Solution to the IVP
$y=2 \mathrm{e}^{-2 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve([3*diff(y(x),x$2)+4*diff(y(x),x)-4*y(x)=0,y(0) = 2, D(y)(0) = -4],y(x), singsol=all)
```

$$
y(x)=2 \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 12
DSolve $[\{3 * y$ '' $[\mathrm{x}]+4 * \mathrm{y}$ ' $[\mathrm{x}]-4 * \mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==2, \mathrm{y}$ ' $[0]==-4\}\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow I

$$
y(x) \rightarrow 2 e^{-2 x}
$$

10.29 problem 29

10.29.1 Existence and uniqueness analysis 2101
10.29.2 Solving as second order linear constant coeff ode 2101
10.29.3 Solving as linear second order ode solved by an integrating factor
ode . 2103
10.29.4 Solving using Kovacic algorithm 2105
10.29.5 Maple step by step solution . 2109

Internal problem ID [11759]
Internal file name [OUTPUT/11768_Thursday_April_11_2024_08_49_29_PM_39302860/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-3\right]
$$

10.29.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =6 \\
q(x) & =9 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

The domain of $p(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.29.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}-3 c_{2} x \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=-3$ and $x=0$ in the above gives

$$
\begin{equation*}
-3=-3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{-3 x}+2 \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}(3 x+2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}(3 x+2) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-3 x}(3 x+2)
$$

Verified OK.

10.29.3 Solving as linear second order ode solved by an integrating factor

 odeThe ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{3 x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{3 x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{3 x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{-3 x}-3 c_{1} x \mathrm{e}^{-3 x}-3 c_{2} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=-3$ and $x=0$ in the above gives

$$
\begin{equation*}
-3=c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{-3 x}+2 \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}(3 x+2)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}(3 x+2) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}(3 x+2)
$$

Verified OK.

10.29.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =6 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 319: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}-3 c_{2} x \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=-3$ and $x=0$ in the above gives

$$
\begin{equation*}
-3=-3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{-3 x}+2 \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}(3 x+2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}(3 x+2) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-3 x}(3 x+2)
$$

Verified OK.

10.29.5 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+6 y^{\prime}+9 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=-3\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+6 r+9=0
$$

- Factor the characteristic polynomial

$$
(r+3)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-3
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}$Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}$
- Use initial condition $y(0)=2$
$2=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}-3 c_{2} x \mathrm{e}^{-3 x}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-3$
$-3=-3 c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-3 x}(3 x+2)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-3 x}(3 x+2)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14
dsolve([diff $(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+9 * y(x)=0, y(0)=2, D(y)(0)=-3], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-3 x}(3 x+2)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 16
DSolve $\left[\left\{y^{\prime \prime}[x]+6 * y\right.\right.$ ' $\left.[x]+9 * y[x]==0,\left\{y[0]==2, y^{\prime}[0]==-3\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow e^{-3 x}(3 x+2)
$$

10.30 problem 30

10.30.1 Existence and uniqueness analysis 2113
10.30.2 Solving as second order linear constant coeff ode 2113
10.30.3 Solving as linear second order ode solved by an integrating factor
ode . 2115 .
10.30.4 Solving using Kovacic algorithm 2118
10.30.5 Maple step by step solution . 2122

Internal problem ID [11760]
Internal file name [OUTPUT/11769_Thursday_April_11_2024_08_49_29_PM_26050774/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135
Problem number: 30 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
$$

With initial conditions

$$
\left[y(0)=4, y^{\prime}(0)=9\right]
$$

10.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-3 \\
q(x) & =\frac{9}{4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-3 y^{\prime}+\frac{9 y}{4}=0
$$

The domain of $p(x)=-3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{9}{4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.30.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=-12, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-12 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}-12 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=-12, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{12}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(-12)^{2}-(4)(4)(9)} \\
& =\frac{3}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-\frac{3}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{3 c_{1} \mathrm{e}^{\frac{3 x}{2}}}{2}+\mathrm{e}^{\frac{3 x}{2}} c_{2}+\frac{3 c_{2} x \mathrm{e}^{\frac{3 x}{2}}}{2}
$$

substituting $y^{\prime}=9$ and $x=0$ in the above gives

$$
\begin{equation*}
9=\frac{3 c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{\frac{3 x}{2}}+4 \mathrm{e}^{\frac{3 x}{2}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x)
$$

Verified OK.

10.30.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-3$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-3 d x} \\
& =\mathrm{e}^{-\frac{3 x}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
& (M(x) y)^{\prime \prime}=0 \\
& \left(\mathrm{e}^{-\frac{3 x}{2}} y\right)^{\prime \prime}=0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-\frac{3 x}{2}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-\frac{3 x}{2}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-\frac{3 x}{2}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{\frac{3 x}{2}}+\mathrm{e}^{\frac{3 x}{2}} c_{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{\frac{3 x}{2}}+\mathrm{e}^{\frac{3 x}{2}} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{\frac{3 x}{2}}+\frac{3 c_{1} x \mathrm{e}^{\frac{3 x}{2}}}{2}+\frac{3 \mathrm{e}^{\frac{3 x}{2}} c_{2}}{2}
$$

substituting $y^{\prime}=9$ and $x=0$ in the above gives

$$
\begin{equation*}
9=c_{1}+\frac{3 c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{\frac{3 x}{2}}+4 \mathrm{e}^{\frac{3 x}{2}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x)
$$

Verified OK.

10.30.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-12 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=-12 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 321: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-12}{4} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{3 x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-12}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{3 x}{2}}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{3 c_{1} \mathrm{e}^{\frac{3 x}{2}}}{2}+\mathrm{e}^{\frac{3 x}{2}} c_{2}+\frac{3 c_{2} x \mathrm{e}^{\frac{3 x}{2}}}{2}
$$

substituting $y^{\prime}=9$ and $x=0$ in the above gives

$$
\begin{equation*}
9=\frac{3 c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{\frac{3 x}{2}}+4 \mathrm{e}^{\frac{3 x}{2}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x)
$$

Verified OK.

10.30.5 Maple step by step solution

Let's solve

$$
\left[4 y^{\prime \prime}-12 y^{\prime}+9 y=0, y(0)=4,\left.y^{\prime}\right|_{\{x=0\}}=9\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=3 y^{\prime}-\frac{9 y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-3 y^{\prime}+\frac{9 y}{4}=0
$$

- Characteristic polynomial of ODE
$r^{2}-3 r+\frac{9}{4}=0$
- Factor the characteristic polynomial
$\frac{(2 r-3)^{2}}{4}=0$
- Root of the characteristic polynomial

$$
r=\frac{3}{2}
$$

- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\frac{3 x}{2}}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{\frac{3 x}{2}}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}}$
Check validity of solution $y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}}$
- Use initial condition $y(0)=4$
$4=c_{1}$
- Compute derivative of the solution
$y^{\prime}=\frac{3 c_{1} \mathrm{e}^{\frac{3 x}{2}}}{2}+\mathrm{e}^{\frac{3 x}{2}} c_{2}+\frac{3 c_{2} x \mathrm{e}^{\frac{3 x}{2}}}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=9$

$$
9=\frac{3 c_{1}}{2}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=4, c_{2}=3\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{\frac{3 x}{2}}(4+3 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([4*diff(y(x),x$2)-12*diff (y(x),x)+9*y(x)=0,y(0) = 4, D(y)(0) = 9],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{3 x}{2}}(3 x+4)
$$

Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18

```
DSolve[{4*y''[x]-12*y'[x]+9*y[x]==0,{y[0]==4,y'[0]==9}},y[x],x, IncludeSingularSolutions -> I
```

$$
y(x) \rightarrow e^{3 x / 2}(3 x+4)
$$

10.31 problem 31

10.31.1 Existence and uniqueness analysis 2125
10.31.2 Solving as second order linear constant coeff ode 2125
10.31.3 Solving as linear second order ode solved by an integrating factor ode . 2127
10.31.4 Solving using Kovacic algorithm 2129
10.31.5 Maple step by step solution . 2133

Internal problem ID [11761]
Internal file name [OUTPUT/11770_Thursday_April_11_2024_08_49_30_PM_15626544/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients. Exercises page 135
Problem number: 31 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=7\right]
$$

10.31.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =4 \\
q(x) & =4 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

The domain of $p(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.31.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x} c_{2}
$$

substituting $y^{\prime}=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=13
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=13 x \mathrm{e}^{-2 x}+3 \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}(3+13 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}(3+13 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}(3+13 x)
$$

Verified OK.

10.31.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(y \mathrm{e}^{2 x}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(y \mathrm{e}^{2 x}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(y \mathrm{e}^{2 x}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{2 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{-2 x}-2 c_{1} x \mathrm{e}^{-2 x}-2 c_{2} \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=13 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=13 x \mathrm{e}^{-2 x}+3 \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}(3+13 x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}(3+13 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}(3+13 x)
$$

Verified OK.

10.31.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 323: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x} c_{2}
$$

substituting $y^{\prime}=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=13
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=13 x \mathrm{e}^{-2 x}+3 \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}(3+13 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}(3+13 x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 x}(3+13 x)
$$

Verified OK.

10.31.5 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+4 y^{\prime}+4 y=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=7\right]$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+4 r+4=0
$$

- Factor the characteristic polynomial

$$
(r+2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-2
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-2 x}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}$

- Use initial condition $y(0)=3$
$3=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x} c_{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=7$

$$
7=-2 c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=3, c_{2}=13\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-2 x}(3+13 x)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-2 x}(3+13 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve([diff $(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)+4 * y(x)=0, y(0)=3, D(y)(0)=7], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-2 x}(3+13 x)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 16
DSolve $\left[\left\{y^{\prime \prime}[x]+4 * y\right.\right.$ ' $\left.[x]+4 * y[x]==0,\left\{y[0]==3, y^{\prime}[0]==7\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow e^{-2 x}(13 x+3)
$$

10.32 problem 32

10.32.1 Existence and uniqueness analysis 2137
10.32.2 Solving as second order linear constant coeff ode 2137
10.32.3 Solving as linear second order ode solved by an integrating factor
ode . 2139]
10.32.4 Solving using Kovacic algorithm 2142
10.32.5 Maple step by step solution . 2146

Internal problem ID [11762]
Internal file name [OUTPUT/11771_Thursday_April_11_2024_08_49_31_PM_45171481/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
9 y^{\prime \prime}-6 y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=-1\right]
$$

10.32.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{2}{3} \\
q(x) & =\frac{1}{9} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{2 y^{\prime}}{3}+\frac{y}{9}=0
$$

The domain of $p(x)=-\frac{2}{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{1}{9}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.32.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=9, B=-6, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
9 \lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
9 \lambda^{2}-6 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=9, B=-6, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(9)} \pm \frac{1}{(2)(9)} \sqrt{(-6)^{2}-(4)(9)(1)} \\
& =\frac{1}{3}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-\frac{1}{3}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{3}}+c_{2} x \mathrm{e}^{\frac{x}{3}} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{3}}+c_{2} x \mathrm{e}^{\frac{x}{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{3}}}{3}+c_{2} \mathrm{e}^{\frac{x}{3}}+\frac{c_{2} x \mathrm{e}^{\frac{x}{3}}}{3}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=\frac{c_{1}}{3}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{\frac{x}{3}}+3 \mathrm{e}^{\frac{x}{3}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

Verified OK.
10.32.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{2}{3}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{2}{3} d x} \\
& =\mathrm{e}^{-\frac{x}{3}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-\frac{x}{3}} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-\frac{x}{3}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-\frac{x}{3}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-\frac{x}{3}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{\frac{x}{3}}+c_{2} \mathrm{e}^{\frac{x}{3}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{\frac{x}{3}}+c_{2} \mathrm{e}^{\frac{x}{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{\frac{x}{3}}+\frac{c_{1} x \mathrm{e}^{\frac{x}{3}}}{3}+\frac{c_{2} \mathrm{e}^{\frac{x}{3}}}{3}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1}+\frac{c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{\frac{x}{3}}+3 \mathrm{e}^{\frac{x}{3}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

Verified OK.

10.32.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
9 y^{\prime \prime}-6 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=9 \\
& B=-6 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 325: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{9} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\frac{x}{3}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{x}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{9} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{2 x}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{3}}\right)+c_{2}\left(\mathrm{e}^{\frac{x}{3}}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{3}}+c_{2} x \mathrm{e}^{\frac{x}{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{3}}}{3}+c_{2} \mathrm{e}^{\frac{x}{3}}+\frac{c_{2} x \mathrm{e}^{\frac{x}{3}}}{3}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=\frac{c_{1}}{3}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{\frac{x}{3}}+3 \mathrm{e}^{\frac{x}{3}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

Verified OK.

10.32.5 Maple step by step solution

Let's solve
$\left[9 y^{\prime \prime}-6 y^{\prime}+y=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{2 y^{\prime}}{3}-\frac{y}{9}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{2 y^{\prime}}{3}+\frac{y}{9}=0$
- Characteristic polynomial of ODE
$r^{2}-\frac{2}{3} r+\frac{1}{9}=0$
- Factor the characteristic polynomial
$\frac{(3 r-1)^{2}}{9}=0$
- Root of the characteristic polynomial

$$
r=\frac{1}{3}
$$

- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\frac{x}{3}}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{\frac{x}{3}}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{\frac{x}{3}}+c_{2} x \mathrm{e}^{\frac{x}{3}}$
Check validity of solution $y=c_{1} \mathrm{e}^{\frac{x}{3}}+c_{2} x \mathrm{e}^{\frac{x}{3}}$
- Use initial condition $y(0)=3$
$3=c_{1}$
- Compute derivative of the solution
$y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{3}}}{3}+c_{2} \mathrm{e}^{\frac{x}{3}}+\frac{c_{2} x \mathrm{e}^{\frac{x}{3}}}{3}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$

$$
-1=\frac{c_{1}}{3}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=3, c_{2}=-2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve([9*diff(y(x),x$2)-6*diff (y (x),x)+y(x)=0,y(0) = 3, D(y)(0) = -1],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x}{3}}(-2 x+3)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18
DSolve $[\{9 * y$ '' $[x]-6 * y$ ' $[x]+y[x]==0,\{y[0]==3, y$ ' $[0]==-1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow e^{x / 3}(3-2 x)
$$

10.33 problem 33

10.33.1 Existence and uniqueness analysis 2148
10.33.2 Solving as second order linear constant coeff ode 2149
10.33.3 Solving using Kovacic algorithm 2151
10.33.4 Maple step by step solution . 2155

Internal problem ID [11763]
Internal file name [OUTPUT/11772_Thursday_April_11_2024_08_49_31_PM_4033505/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 33 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-4 y^{\prime}+29 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=5\right]
$$

10.33.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-4 \\
q(x) & =29 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y^{\prime}+29 y=0
$$

The domain of $p(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=29$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.33.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=29$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+29 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+29=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=29$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(29)} \\
& =2 \pm 5 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=2+5 i \\
& \lambda_{2}=2-5 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2+5 i \\
& \lambda_{2}=2-5 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=2$ and $\beta=5$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{2 x}\left(c_{1} \cos (5 x)+c_{2} \sin (5 x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{1} \cos (5 x)+c_{2} \sin (5 x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 \mathrm{e}^{2 x}\left(c_{1} \cos (5 x)+c_{2} \sin (5 x)\right)+\mathrm{e}^{2 x}\left(-5 c_{1} \sin (5 x)+5 c_{2} \cos (5 x)\right)
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=2 c_{1}+5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{2 x} \sin (5 x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} \sin (5 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} \sin (5 x)
$$

Verified OK.

10.33.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+29 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=29
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-25}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-25 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-25 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 327: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-25$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (5 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x} \cos (5 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (5 x)}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x} \cos (5 x)\right)+c_{2}\left(\mathrm{e}^{2 x} \cos (5 x)\left(\frac{\tan (5 x)}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x} \cos (5 x)+\frac{\mathrm{e}^{2 x} c_{2} \sin (5 x)}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x} \cos (5 x)-5 c_{1} \mathrm{e}^{2 x} \sin (5 x)+\frac{2 \mathrm{e}^{2 x} c_{2} \sin (5 x)}{5}+\mathrm{e}^{2 x} c_{2} \cos (5 x)
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{2 x} \sin (5 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} \sin (5 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} \sin (5 x)
$$

Verified OK.

10.33.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y^{\prime}+29 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-4 r+29=0$
- Use quadratic formula to solve for r
$r=\frac{4 \pm(\sqrt{-100})}{2}$
- Roots of the characteristic polynomial

$$
r=(2-5 \mathrm{I}, 2+5 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{2 x} \cos (5 x)
$$

- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x} \sin (5 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{2 x} \cos (5 x)+\mathrm{e}^{2 x} c_{2} \sin (5 x)
$$

Check validity of solution $y=c_{1} \mathrm{e}^{2 x} \cos (5 x)+\mathrm{e}^{2 x} c_{2} \sin (5 x)$

- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x} \cos (5 x)-5 c_{1} \mathrm{e}^{2 x} \sin (5 x)+2 \mathrm{e}^{2 x} c_{2} \sin (5 x)+5 \mathrm{e}^{2 x} c_{2} \cos (5 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$
$5=2 c_{1}+5 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{2 x} \sin (5 x)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{2 x} \sin (5 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve([diff $(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+29 * y(x)=0, y(0)=0, D(y)(0)=5], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{2 x} \sin (5 x)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 15
DSolve $\left[\left\{y^{\prime \prime}[x]-4 * y\right.\right.$ ' $[x]+29 * y[x]==0,\{y[0]==0, y$ ' $\left.[0]==5\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow e^{2 x} \sin (5 x)
$$

10.34 problem 34

10.34.1 Existence and uniqueness analysis 2158
10.34.2 Solving as second order linear constant coeff ode 2159
10.34.3 Solving using Kovacic algorithm 2161
10.34.4 Maple step by step solution . 2166

Internal problem ID [11764]
Internal file name [OUTPUT/11773_Thursday_April_11_2024_08_49_32_PM_86141505/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 34 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+6 y^{\prime}+58 y=0
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=5\right]
$$

10.34.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =6 \\
q(x) & =58 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+58 y=0
$$

The domain of $p(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=58$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.34.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=58$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+58 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+58=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=58$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(58)} \\
& =-3 \pm 7 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+7 i \\
& \lambda_{2}=-3-7 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-3+7 i \\
\lambda_{2}=-3-7 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=7$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-3 x}\left(c_{1} \cos (7 x)+c_{2} \sin (7 x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (7 x)+c_{2} \sin (7 x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 x}\left(c_{1} \cos (7 x)+c_{2} \sin (7 x)\right)+\mathrm{e}^{-3 x}\left(-7 c_{1} \sin (7 x)+7 c_{2} \cos (7 x)\right)
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=-3 c_{1}+7 c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{2}{7}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-3 x}(7 \cos (7 x)-2 \sin (7 x))}{7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-3 x}(7 \cos (7 x)-2 \sin (7 x))}{7} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-3 x}(7 \cos (7 x)-2 \sin (7 x))}{7}
$$

Verified OK.

10.34.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+58 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=58
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-49}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-49 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-49 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 329: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-49$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (7 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x} \cos (7 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (7 x)}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x} \cos (7 x)\right)+c_{2}\left(\mathrm{e}^{-3 x} \cos (7 x)\left(\frac{\tan (7 x)}{7}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x} \cos (7 x)+\frac{c_{2} \mathrm{e}^{-3 x} \sin (7 x)}{7} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x} \cos (7 x)-7 c_{1} \mathrm{e}^{-3 x} \sin (7 x)-\frac{3 c_{2} \mathrm{e}^{-3 x} \sin (7 x)}{7}+c_{2} \mathrm{e}^{-3 x} \cos (7 x)
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=-3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{-3 x} \cos (7 x)+\frac{2 \mathrm{e}^{-3 x} \sin (7 x)}{7}
$$

Which simplifies to

$$
y=-\frac{\mathrm{e}^{-3 x}(7 \cos (7 x)-2 \sin (7 x))}{7}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-3 x}(7 \cos (7 x)-2 \sin (7 x))}{7} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-3 x}(7 \cos (7 x)-2 \sin (7 x))}{7}
$$

Verified OK.

10.34.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+58 y=0, y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+6 r+58=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-196})}{2}$
- Roots of the characteristic polynomial
$r=(-3-7 \mathrm{I},-3+7 \mathrm{I})$
- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x} \cos (7 x)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-3 x} \sin (7 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x} \cos (7 x)+c_{2} \mathrm{e}^{-3 x} \sin (7 x)
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x} \cos (7 x)+c_{2} \mathrm{e}^{-3 x} \sin (7 x)$

- Use initial condition $y(0)=-1$

$$
-1=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x} \cos (7 x)-7 c_{1} \mathrm{e}^{-3 x} \sin (7 x)-3 c_{2} \mathrm{e}^{-3 x} \sin (7 x)+7 c_{2} \mathrm{e}^{-3 x} \cos (7 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$
$5=-3 c_{1}+7 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-1, c_{2}=\frac{2}{7}\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-3 x}(7 \cos (7 x)-2 \sin (7 x))}{7}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-3 x}(7 \cos (7 x)-2 \sin (7 x))}{7}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 23

$$
\begin{gathered}
\text { dsolve }([\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+6 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+58 * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(0)=-1, \mathrm{D}(\mathrm{y})(0)=5], \mathrm{y}(\mathrm{x}), \text { singsol=all) } \\
y(x)=\frac{\mathrm{e}^{-3 x}(2 \sin (7 x)-7 \cos (7 x))}{7}
\end{gathered}
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 27
DSolve $\left[\left\{y^{\prime \prime}[x]+6 * y\right.\right.$ ' $[x]+58 * y[x]==0,\{y[0]==-1, y$ ' $\left.[0]==5\}\right\}, y[x], x$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(x) \rightarrow \frac{1}{7} e^{-3 x}(2 \sin (7 x)-7 \cos (7 x))
$$

10.35 problem 35

10.35.1 Existence and uniqueness analysis 2168
10.35.2 Solving as second order linear constant coeff ode 2169
10.35.3 Solving using Kovacic algorithm 2171
10.35.4 Maple step by step solution . 2175

Internal problem ID [11765]
Internal file name [OUTPUT/11774_Thursday_April_11_2024_08_49_32_PM_47626021/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 35 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=-1\right]
$$

10.35.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =6 \\
q(x) & =13 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

The domain of $p(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=13$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.35.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(13)} \\
& =-3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\mathrm{e}^{-3 x}\left(-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)\right)
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-3 c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-3 x}(3 \cos (2 x)+4 \sin (2 x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}(3 \cos (2 x)+4 \sin (2 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}(3 \cos (2 x)+4 \sin (2 x))
$$

Verified OK.

10.35.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 331: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-3 x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-3 x} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x} \cos (2 x)-2 c_{1} \mathrm{e}^{-3 x} \sin (2 x)-\frac{3 c_{2} \mathrm{e}^{-3 x} \sin (2 x)}{2}+c_{2} \mathrm{e}^{-3 x} \cos (2 x)
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \mathrm{e}^{-3 x} \cos (2 x)+4 \mathrm{e}^{-3 x} \sin (2 x)
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}(3 \cos (2 x)+4 \sin (2 x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}(3 \cos (2 x)+4 \sin (2 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}(3 \cos (2 x)+4 \sin (2 x))
$$

Verified OK.

10.35.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+13 y=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+6 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3-2 \mathrm{I},-3+2 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x} \cos (2 x)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-3 x} \sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+c_{2} \mathrm{e}^{-3 x} \sin (2 x)$
$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+c_{2} \mathrm{e}^{-3 x} \sin (2 x)$
- Use initial condition $y(0)=3$

$$
3=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x} \cos (2 x)-2 c_{1} \mathrm{e}^{-3 x} \sin (2 x)-3 c_{2} \mathrm{e}^{-3 x} \sin (2 x)+2 c_{2} \mathrm{e}^{-3 x} \cos (2 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$

$$
-1=-3 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=3, c_{2}=4\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-3 x}(3 \cos (2 x)+4 \sin (2 x))
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-3 x}(3 \cos (2 x)+4 \sin (2 x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve $([\operatorname{diff}(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+13 * y(x)=0, y(0)=3, D(y)(0)=-1], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-3 x}(4 \sin (2 x)+3 \cos (2 x))
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 24
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+6 * y\right.\right.$ ' $\left.[x]+13 * y[x]==0,\left\{y[0]==3, y^{\prime}[0]==-1\right\}\right\}, y[x], x$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
y(x) \rightarrow e^{-3 x}(4 \sin (2 x)+3 \cos (2 x))
$$

10.36 problem 36

10.36.1 Existence and uniqueness analysis 2178
10.36.2 Solving as second order linear constant coeff ode 2179
10.36.3 Solving using Kovacic algorithm 2181
10.36.4 Maple step by step solution . 2185

Internal problem ID [11766]
Internal file name [OUTPUT/11775_Thursday_April_11_2024_08_49_33_PM_53540331/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 36 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=6\right]
$$

10.36.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =5 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

The domain of $p(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.36.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(5)} \\
& =-1 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1+2 i \\
\lambda_{2}=-1-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\mathrm{e}^{-x}\left(-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)\right)
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=-c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-x}(\cos (2 x)+2 \sin (2 x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-x}(\cos (2 x)+2 \sin (2 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-x}(\cos (2 x)+2 \sin (2 x))
$$

Verified OK.

10.36.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 333: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-x} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x} \cos (2 x)-2 c_{1} \mathrm{e}^{-x} \sin (2 x)-\frac{c_{2} \mathrm{e}^{-x} \sin (2 x)}{2}+c_{2} \mathrm{e}^{-x} \cos (2 x)
$$

substituting $y^{\prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-x} \cos (2 x)+4 \mathrm{e}^{-x} \sin (2 x)
$$

Which simplifies to

$$
y=2 \mathrm{e}^{-x}(\cos (2 x)+2 \sin (2 x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-x}(\cos (2 x)+2 \sin (2 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-x}(\cos (2 x)+2 \sin (2 x))
$$

Verified OK.

10.36.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=6\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+2 r+5=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-1-2 \mathrm{I},-1+2 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos (2 x)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-x} \sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-x} \cos (2 x)+c_{2} \mathrm{e}^{-x} \sin (2 x)$
Check validity of solution $y=c_{1} \mathrm{e}^{-x} \cos (2 x)+c_{2} \mathrm{e}^{-x} \sin (2 x)$
- Use initial condition $y(0)=2$
$2=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x} \cos (2 x)-2 c_{1} \mathrm{e}^{-x} \sin (2 x)-c_{2} \mathrm{e}^{-x} \sin (2 x)+2 c_{2} \mathrm{e}^{-x} \cos (2 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=6$

$$
6=-c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=4\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=2 \mathrm{e}^{-x}(\cos (2 x)+2 \sin (2 x))
$$

- \quad Solution to the IVP

$$
y=2 \mathrm{e}^{-x}(\cos (2 x)+2 \sin (2 x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21
dsolve([diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(0)=2, D(y)(0)=6], y(x)$, singsol=all)

$$
y(x)=2 \mathrm{e}^{-x}(2 \sin (2 x)+\cos (2 x))
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 23
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+2 * y\right.\right.$ ' $[x]+5 * y[x]==0,\{y[0]==2, y$ ' $\left.[0]==6\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow 2 e^{-x}(2 \sin (2 x)+\cos (2 x))
$$

10.37 problem 37

10.37.1 Existence and uniqueness analysis 2188
10.37.2 Solving as second order linear constant coeff ode 2189
10.37.3 Solving using Kovacic algorithm 2192
10.37.4 Maple step by step solution . 2196

Internal problem ID [11767]
Internal file name [OUTPUT/11776_Thursday_April_11_2024_08_49_34_PM_41951789/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 37 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
9 y^{\prime \prime}+6 y^{\prime}+5 y=0
$$

With initial conditions

$$
\left[y(0)=6, y^{\prime}(0)=0\right]
$$

10.37.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{3} \\
q(x) & =\frac{5}{9} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{3}+\frac{5 y}{9}=0
$$

The domain of $p(x)=\frac{2}{3}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{5}{9}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.37.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=9, B=6, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
9 \lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
9 \lambda^{2}+6 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=9, B=6, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(9)} \pm \frac{1}{(2)(9)} \sqrt{6^{2}-(4)(9)(5)} \\
& =-\frac{1}{3} \pm \frac{2 i}{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{3}+\frac{2 i}{3} \\
& \lambda_{2}=-\frac{1}{3}-\frac{2 i}{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{3}+\frac{2 i}{3} \\
\lambda_{2} & =-\frac{1}{3}-\frac{2 i}{3}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{3}$ and $\beta=\frac{2}{3}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{3}}\left(c_{1} \cos \left(\frac{2 x}{3}\right)+c_{2} \sin \left(\frac{2 x}{3}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{3}}\left(c_{1} \cos \left(\frac{2 x}{3}\right)+c_{2} \sin \left(\frac{2 x}{3}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{3}}\left(c_{1} \cos \left(\frac{2 x}{3}\right)+c_{2} \sin \left(\frac{2 x}{3}\right)\right)}{3}+\mathrm{e}^{-\frac{x}{3}}\left(-\frac{2 c_{1} \sin \left(\frac{2 x}{3}\right)}{3}+\frac{2 c_{2} \cos \left(\frac{2 x}{3}\right)}{3}\right)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{3}+\frac{2 c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \mathrm{e}^{-\frac{x}{3}}\left(2 \cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{-\frac{x}{3}}\left(2 \cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{-\frac{x}{3}}\left(2 \cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)\right)
$$

Verified OK.

10.37.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
9 y^{\prime \prime}+6 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=9 \\
& B=6 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{9} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=9
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{4 z(x)}{9} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 335: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{4}{9}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{2 x}{3}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\frac{1}{2} \frac{6}{9} d x} \\
& =z_{1} e^{-\frac{x}{3}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{9} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{2 x}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{3 \tan \left(\frac{2 x}{3}\right)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)\left(\frac{3 \tan \left(\frac{2 x}{3}\right)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)+\frac{3 c_{2} \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)}{3}-\frac{2 c_{1} \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)}{3}-\frac{c_{2} \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)}{2}+c_{2} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{3}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=6 \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)+3 \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)
$$

Which simplifies to

$$
y=3 \mathrm{e}^{-\frac{x}{3}}\left(2 \cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{-\frac{x}{3}}\left(2 \cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 \mathrm{e}^{-\frac{x}{3}}\left(2 \cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)\right)
$$

Verified OK.

10.37.4 Maple step by step solution

Let's solve

$$
\left[9 y^{\prime \prime}+6 y^{\prime}+5 y=0, y(0)=6,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{3}-\frac{5 y}{9}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{3}+\frac{5 y}{9}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+\frac{2}{3} r+\frac{5}{9}=0
$$

- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{2}{3}\right) \pm\left(\sqrt{-\frac{16}{9}}\right)}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{3}-\frac{2 \mathrm{I}}{3},-\frac{1}{3}+\frac{2 \mathrm{I}}{3}\right)
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)+c_{2} \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)$
Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)+c_{2} \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)$
- Use initial condition $y(0)=6$

$$
6=c_{1}
$$

- Compute derivative of the solution
$y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)}{3}-\frac{2 c_{1} \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)}{3}-\frac{c_{2} \mathrm{e}^{-\frac{x}{3}} \sin \left(\frac{2 x}{3}\right)}{3}+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{3}} \cos \left(\frac{2 x}{3}\right)}{3}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=-\frac{c_{1}}{3}+\frac{2 c_{2}}{3}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=6, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify

$$
y=3 \mathrm{e}^{-\frac{x}{3}}\left(2 \cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)\right)
$$

- \quad Solution to the IVP
$y=3 \mathrm{e}^{-\frac{x}{3}}\left(2 \cos \left(\frac{2 x}{3}\right)+\sin \left(\frac{2 x}{3}\right)\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

$$
\begin{aligned}
& \text { dsolve }([9 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+6 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+5 * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(0)=6, \mathrm{D}(\mathrm{y})(0)=0], \mathrm{y}(\mathrm{x}), \text { singsol=all) } \\
& \qquad y(x)=3 \mathrm{e}^{-\frac{x}{3}}\left(\sin \left(\frac{2 x}{3}\right)+2 \cos \left(\frac{2 x}{3}\right)\right)
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 29
DSolve $[\{9 * y$ ' ' $[x]+6 * y$ ' $[x]+5 * y[x]==0,\{y[0]==6, y$ ' $[0]==0\}\}, y[x], x$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
y(x) \rightarrow 3 e^{-x / 3}\left(\sin \left(\frac{2 x}{3}\right)+2 \cos \left(\frac{2 x}{3}\right)\right)
$$

10.38 problem 38

10.38.1 Existence and uniqueness analysis 2199
10.38.2 Solving as second order linear constant coeff ode 2200
10.38.3 Solving using Kovacic algorithm 2202
10.38.4 Maple step by step solution . 2207

Internal problem ID [11768]
Internal file name [OUTPUT/11777_Thursday_April_11_2024_08_49_34_PM_8249898/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 38 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}+4 y^{\prime}+37 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-4\right]
$$

10.38.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\frac{37}{4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}+\frac{37 y}{4}=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{37}{4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

10.38.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=4, C=37$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+37 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+4 \lambda+37=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=4, C=37$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{4^{2}-(4)(4)(37)} \\
& =-\frac{1}{2} \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+3 i \\
& \lambda_{2}=-\frac{1}{2}-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+3 i \\
& \lambda_{2}=-\frac{1}{2}-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)}{2}+\mathrm{e}^{-\frac{x}{2}}\left(-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)\right)
$$

substituting $y^{\prime}=-4$ and $x=0$ in the above gives

$$
\begin{equation*}
-4=-\frac{c_{1}}{2}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-\frac{x}{2}}(2 \cos (3 x)-\sin (3 x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}(2 \cos (3 x)-\sin (3 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}(2 \cos (3 x)-\sin (3 x))
$$

Verified OK.

10.38.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}+4 y^{\prime}+37 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=4 \tag{3}\\
& C=37
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 337: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{4} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos (3 x)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (3 x)+\frac{c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (3 x)}{2}-3 c_{1} \mathrm{e}^{-\frac{x}{2}} \sin (3 x)-\frac{c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (3 x)}{6}+c_{2} \mathrm{e}^{-\frac{x}{2}} \cos (3 x)
$$

substituting $y^{\prime}=-4$ and $x=0$ in the above gives

$$
\begin{equation*}
-4=-\frac{c_{1}}{2}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-\frac{x}{2}} \cos (3 x)-\mathrm{e}^{-\frac{x}{2}} \sin (3 x)
$$

Which simplifies to

$$
y=\mathrm{e}^{-\frac{x}{2}}(2 \cos (3 x)-\sin (3 x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}(2 \cos (3 x)-\sin (3 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}(2 \cos (3 x)-\sin (3 x))
$$

Verified OK.

10.38.4 Maple step by step solution

Let's solve

$$
\left[4 y^{\prime \prime}+4 y^{\prime}+37 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=-4\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-y^{\prime}-\frac{37 y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime}+\frac{37 y}{4}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+r+\frac{37}{4}=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-1) \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}-3 \mathrm{I},-\frac{1}{2}+3 \mathrm{I}\right)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos (3 x)
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin (3 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (3 x)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (3 x)
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (3 x)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (3 x)$

- Use initial condition $y(0)=2$
$2=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (3 x)}{2}-3 c_{1} \mathrm{e}^{-\frac{x}{2}} \sin (3 x)-\frac{c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (3 x)}{2}+3 c_{2} \mathrm{e}^{-\frac{x}{2}} \cos (3 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-4$

$$
-4=-\frac{c_{1}}{2}+3 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=-1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-\frac{x}{2}}(2 \cos (3 x)-\sin (3 x))
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-\frac{x}{2}}(2 \cos (3 x)-\sin (3 x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22

```
dsolve([4*diff (y(x),x$2)+4*diff (y(x),x)+37*y(x)=0,y(0) = 2, D(y)(0) = -4],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{2}}(-\sin (3 x)+2 \cos (3 x))
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 26
DSolve $\left[\left\{4 * y\right.\right.$ ' ' $[x]+4 * y$ ' $\left.[x]+37 * y[x]==0,\left\{y[0]==2, y^{\prime}[0]==-4\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow e^{-x / 2}(2 \cos (3 x)-\sin (3 x))
$$

10.39 problem 39

10.39.1 Maple step by step solution . 2211

Internal problem ID [11769]
Internal file name [OUTPUT/11778_Thursday_April_11_2024_08_49_35_PM_59199865/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 39.
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=2\right]
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+2 c_{2} \mathrm{e}^{2 x}+3 c_{3} \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 c_{2}+3 c_{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=\mathrm{e}^{x} c_{1}+4 c_{2} \mathrm{e}^{2 x}+9 c_{3} \mathrm{e}^{3 x}
$$

substituting $y^{\prime \prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+4 c_{2}+9 c_{3} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-2 \\
& c_{3}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{x}-2 \mathrm{e}^{2 x}+\mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}-2 \mathrm{e}^{2 x}+\mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 413: Solution plot

Verification of solutions

$$
y=\mathrm{e}^{x}-2 \mathrm{e}^{2 x}+\mathrm{e}^{3 x}
$$

Verified OK.

10.39.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=6 y_{3}(x)-11 y_{2}(x)+6 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=6 y_{3}(x)-11 y_{2}(x)+6 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[1,\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{x} c_{1} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=\mathrm{e}^{x} c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{c_{3} \mathrm{e}^{3 x}}{9}$
- Use the initial condition $y(0)=0$
$0=c_{1}+\frac{c_{2}}{4}+\frac{c_{3}}{9}$
- Calculate the 1st derivative of the solution
$y^{\prime}=\mathrm{e}^{x} c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}+\frac{c_{3} \mathrm{e}^{3 x}}{3}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{3}$
- Calculate the 2 nd derivative of the solution
$y^{\prime \prime}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}$
- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=2$
$2=c_{1}+c_{2}+c_{3}$
- Solve for the unknown coefficients
$\left\{c_{1}=1, c_{2}=-8, c_{3}=9\right\}$
- \quad Solution to the IVP
$y=\mathrm{e}^{x}-2 \mathrm{e}^{2 x}+\mathrm{e}^{3 x}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve ([diff $(y(x), x \$ 3)-6 * \operatorname{diff}(y(x), x \$ 2)+11 * \operatorname{diff}(y(x), x)-6 * y(x)=0, y(0)=0, D(y)(0)=0,(D @ C$

$$
y(x)=\mathrm{e}^{x}-2 \mathrm{e}^{2 x}+\mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 16

$$
y(x) \rightarrow e^{x}\left(e^{x}-1\right)^{2}
$$

10.40 problem 40

10.40.1 Maple step by step solution . 2218

Internal problem ID [11770]
Internal file name [OUTPUT/11779_Thursday_April_11_2024_08_49_35_PM_64211150/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 40.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=0, y^{\prime \prime}(0)=0\right]
$$

The characteristic equation is

$$
\lambda^{3}-2 \lambda^{2}+4 \lambda-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =2 i \\
\lambda_{3} & =-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{2 i x} \\
& y_{3}=\mathrm{e}^{-2 i x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2}+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}+2 i \mathrm{e}^{2 i x} c_{2}-2 i \mathrm{e}^{-2 i x} c_{3}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=2 c_{2} i-2 c_{3} i+2 c_{1} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=4 c_{1} \mathrm{e}^{2 x}-4 \mathrm{e}^{2 i x} c_{2}-4 \mathrm{e}^{-2 i x} c_{3}
$$

substituting $y^{\prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=4 c_{1}-4 c_{2}-4 c_{3} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =1 \\
c_{2} & =\frac{1}{2}+\frac{i}{2} \\
c_{3} & =\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{2 x}+\cos (2 x)-\sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}+\cos (2 x)-\sin (2 x) \tag{1}
\end{equation*}
$$

Figure 414: Solution plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}+\cos (2 x)-\sin (2 x)
$$

Verified OK.

10.40.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=2 y_{3}(x)-4 y_{2}(x)+8 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=2 y_{3}(x)-4 y_{2}(x)+8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -4 & 2
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -4 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right],\left[-2 \mathrm{I},\left[\begin{array}{c}-\frac{1}{4} \\ \frac{\mathrm{I}}{2} \\ 1\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}-\frac{1}{4} \\ -\frac{\mathrm{I}}{2} \\ 1\end{array}\right]\right]\right]\right.$
- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (2 x)-I \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{I}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\cos (2 x)}{4}+\frac{I \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-I \sin (2 x)) \\
\cos (2 x)-I \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} \cos (2 x)}{4}+\frac{c_{3} \sin (2 x)}{4} \\
\frac{c_{2} \sin (2 x)}{2}+\frac{c_{3} \cos (2 x)}{2} \\
c_{2} \cos (2 x)-c_{3} \sin (2 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=\frac{c_{1} \mathrm{e}^{2 x}}{4}+\frac{c_{3} \sin (2 x)}{4}-\frac{c_{2} \cos (2 x)}{4}$
- Use the initial condition $y(0)=2$
$2=\frac{c_{1}}{4}-\frac{c_{2}}{4}$
- Calculate the 1st derivative of the solution
$y^{\prime}=\frac{c_{1} \mathrm{e}^{2 x}}{2}+\frac{c_{3} \cos (2 x)}{2}+\frac{c_{2} \sin (2 x)}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=\frac{c_{1}}{2}+\frac{c_{3}}{2}$
- Calculate the 2 nd derivative of the solution
$y^{\prime \prime}=c_{1} \mathrm{e}^{2 x}-c_{3} \sin (2 x)+c_{2} \cos (2 x)$
- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=0$
$0=c_{1}+c_{2}$
- Solve for the unknown coefficients
$\left\{c_{1}=4, c_{2}=-4, c_{3}=-4\right\}$
- Solution to the IVP
$y=\mathrm{e}^{2 x}+\cos (2 x)-\sin (2 x)$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 19
dsolve ([diff $(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)-8 * y(x)=0, y(0)=2, D(y)(0)=0, \quad($ @@ 2

$$
y(x)=\mathrm{e}^{2 x}-\sin (2 x)+\cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 21
DSolve[\{y' '' $[x]-2 * y$ '' $[x]+4 * y$ ' $[x]-8 * y[x]==0,\{y[0]==2, y$ ' $[0]==0, y$ ' $[0]==0\}\}, y[x], x$, IncludeSingu

$$
y(x) \rightarrow e^{2 x}-\sin (2 x)+\cos (2 x)
$$

10.41 problem 41

10.41.1 Maple step by step solution 2226

Internal problem ID [11771]
Internal file name [OUTPUT/11780_Thursday_April_11_2024_08_49_36_PM_34242024/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 41.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-8, y^{\prime \prime}(0)=-4\right]
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{2 x} x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 x} c_{3}+2 x \mathrm{e}^{2 x} c_{3}
$$

substituting $y^{\prime}=-8$ and $x=0$ in the above gives

$$
\begin{equation*}
-8=-c_{1}+2 c_{2}+c_{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+4 c_{2} \mathrm{e}^{2 x}+4 \mathrm{e}^{2 x} c_{3}+4 x \mathrm{e}^{2 x} c_{3}
$$

substituting $y^{\prime \prime}=-4$ and $x=0$ in the above gives

$$
\begin{equation*}
-4=c_{1}+4 c_{2}+4 c_{3} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{32}{9} \\
& c_{2}=-\frac{23}{9} \\
& c_{3}=\frac{2}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{32 \mathrm{e}^{-x}}{9}-\frac{23 \mathrm{e}^{2 x}}{9}+\frac{2 \mathrm{e}^{2 x} x}{3}
$$

Which simplifies to

$$
y=\frac{(6 x-23) \mathrm{e}^{2 x}}{9}+\frac{32 \mathrm{e}^{-x}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(6 x-23) \mathrm{e}^{2 x}}{9}+\frac{32 \mathrm{e}^{-x}}{9} \tag{1}
\end{equation*}
$$

Figure 415: Solution plot

Verification of solutions

$$
y=\frac{(6 x-23) \mathrm{e}^{2 x}}{9}+\frac{32 \mathrm{e}^{-x}}{9}
$$

Verified OK.

10.41.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=-8,\left.y^{\prime \prime}\right|_{\{x=0\}}=-4\right]
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=3 y_{3}(x)-4 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs $\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 y_{3}(x)-4 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-4 & 0 & 3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 0 & 3\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 2

$$
\vec{y}_{2}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=2$ is the eigenvalue, an $\vec{y}_{3}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 2

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-4 & 0 & 3
\end{array}\right]-2 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-\frac{1}{8} \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 2

$$
\vec{y}_{3}(x)=\mathrm{e}^{2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left((2 x-1) c_{3}+2 c_{2}\right) \mathrm{e}^{2 x}}{8}+c_{1} \mathrm{e}^{-x}
$$

- Use the initial condition $y(0)=1$
$1=-\frac{c_{3}}{8}+\frac{c_{2}}{4}+c_{1}$
- Calculate the 1st derivative of the solution
$y^{\prime}=\frac{\mathrm{e}^{2 x} c_{3}}{4}+\frac{\left((2 x-1) c_{3}+2 c_{2}\right) \mathrm{e}^{2 x}}{4}-c_{1} \mathrm{e}^{-x}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-8$
$-8=\frac{c_{2}}{2}-c_{1}$
- Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=\mathrm{e}^{2 x} c_{3}+\frac{\left((2 x-1) c_{3}+2 c_{2}\right) \mathrm{e}^{2 x}}{2}+c_{1} \mathrm{e}^{-x}
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=-4$

$$
-4=\frac{c_{3}}{2}+c_{2}+c_{1}
$$

- \quad Solve for the unknown coefficients

$$
\left\{c_{1}=\frac{32}{9}, c_{2}=-\frac{80}{9}, c_{3}=\frac{8}{3}\right\}
$$

- \quad Solution to the IVP
$y=\frac{(6 x-23) \mathrm{e}^{2 x}}{9}+\frac{32 \mathrm{e}^{-x}}{9}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve $([\operatorname{diff}(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)+4 * y(x)=0, y(0)=1, D(y)(0)=-8, \quad(D @ @ 2)(y)(0)=-4]$,

$$
y(x)=\frac{(6 x-23) \mathrm{e}^{2 x}}{9}+\frac{32 \mathrm{e}^{-x}}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 27
DSolve[\{y' ' ' $[x]-3 * y$ ' ' $[x]+4 * y[x]==0,\left\{y[0]==1, y^{\prime}[0]==-8, y\right.$ ' ' $\left.\left.[0]==-4\right\}\right\}, y[x], x$, IncludeSingularSol

$$
y(x) \rightarrow \frac{1}{9} e^{-x}\left(e^{3 x}(6 x-23)+32\right)
$$

10.42 problem 42

10.42.1 Maple step by step solution 2233

Internal problem ID [11772]
Internal file name [OUTPUT/11781_Thursday_April_11_2024_08_49_36_PM_84460581/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 42.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-5 y^{\prime \prime}+9 y^{\prime}-5 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=6\right]
$$

The characteristic equation is

$$
\lambda^{3}-5 \lambda^{2}+9 \lambda-5=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2-i \\
& \lambda_{3}=2+i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+\mathrm{e}^{(2+i) x} c_{2}+\mathrm{e}^{(2-i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{(2+i) x} \\
& y_{3}=\mathrm{e}^{(2-i) x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{(2+i) x} c_{2}+\mathrm{e}^{(2-i) x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+(2+i) \mathrm{e}^{(2+i) x} c_{2}+(2-i) \mathrm{e}^{(2-i) x} c_{3}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+(2+i) c_{2}+(2-i) c_{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=\mathrm{e}^{x} c_{1}+(3+4 i) \mathrm{e}^{(2+i) x} c_{2}+(3-4 i) \mathrm{e}^{(2-i) x} c_{3}
$$

substituting $y^{\prime \prime}=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1}+(3+4 i) c_{2}+(3-4 i) c_{3} \tag{3A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\frac{1}{2}-i \\
& c_{3}=-\frac{1}{2}+i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{x}-\frac{\mathrm{e}^{(2+i) x}}{2}-i \mathrm{e}^{(2+i) x}-\frac{\mathrm{e}^{(2-i) x}}{2}+i \mathrm{e}^{(2-i) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{1}{2}+i\right) \mathrm{e}^{(2-i) x}+\left(-\frac{1}{2}-i\right) \mathrm{e}^{(2+i) x}+\mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{1}{2}+i\right) \mathrm{e}^{(2-i) x}+\left(-\frac{1}{2}-i\right) \mathrm{e}^{(2+i) x}+\mathrm{e}^{x}
$$

Verified OK.

10.42.1 Maple step by step solution

Let's solve
$\left[y^{\prime \prime \prime}-5 y^{\prime \prime}+9 y^{\prime}-5 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1,\left.y^{\prime \prime}\right|_{\{x=0\}}=6\right]$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=5 y_{3}(x)-9 y_{2}(x)+5 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=5 y_{3}(x)-9 y_{2}(x)+5 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
5 & -9 & 5
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
5 & -9 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2-\mathrm{I},\left[\begin{array}{c}
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[2+\mathrm{I},\left[\begin{array}{c}
\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
\frac{2}{5}-\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-\mathrm{I},\left[\begin{array}{c}
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(2-\mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{2 x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\left(\frac{3}{25}+\frac{4 \mathrm{I}}{25}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\left(\frac{2}{5}+\frac{\mathrm{I}}{5}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{3 \cos (x)}{25}+\frac{4 \sin (x)}{25} \\
\frac{2 \cos (x)}{5}+\frac{\sin (x)}{5} \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
-\frac{3 \sin (x)}{25}+\frac{4 \cos (x)}{25} \\
-\frac{2 \sin (x)}{5}+\frac{\cos (x)}{5} \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{x} c_{1} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{3 \cos (x)}{25}+\frac{4 \sin (x)}{25} \\
\frac{2 \cos (x)}{5}+\frac{\sin (x)}{5} \\
\cos (x)
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
-\frac{3 \sin (x)}{25}+\frac{4 \cos (x)}{25} \\
-\frac{2 \sin (x)}{5}+\frac{\cos (x)}{5} \\
-\sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(\left(3 c_{2}+4 c_{3}\right) \cos (x)+4\left(c_{2}-\frac{3 c_{3}}{4}\right) \sin (x)\right) \mathrm{e}^{2 x}}{25}+\mathrm{e}^{x} c_{1}$
- Use the initial condition $y(0)=0$
$0=\frac{3 c_{2}}{25}+\frac{4 c_{3}}{25}+c_{1}$
- Calculate the 1st derivative of the solution
$y^{\prime}=\frac{\left(-\left(3 c_{2}+4 c_{3}\right) \sin (x)+4\left(c_{2}-\frac{3 c_{3}}{4}\right) \cos (x)\right) \mathrm{e}^{2 x}}{25}+\frac{2\left(\left(3 c_{2}+4 c_{3}\right) \cos (x)+4\left(c_{2}-\frac{3 c_{3}}{4}\right) \sin (x)\right) \mathrm{e}^{2 x}}{25}+\mathrm{e}^{x} c_{1}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=\frac{2 c_{2}}{5}+\frac{c_{3}}{5}+c_{1}
$$

- Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=\frac{\left(-\left(3 c_{2}+4 c_{3}\right) \cos (x)-4\left(c_{2}-\frac{3 c_{3}}{4}\right) \sin (x)\right) \mathrm{e}^{2 x}}{25}+\frac{4\left(-\left(3 c_{2}+4 c_{3}\right) \sin (x)+4\left(c_{2}-\frac{3 c_{3}}{4}\right) \cos (x)\right) \mathrm{e}^{2 x}}{25}+\frac{4\left(\left(3 c_{2}+4 c_{3}\right) \cos (x)+4(c\right.}{25}
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=6$

$$
6=c_{1}+c_{2}
$$

- Solve for the unknown coefficients

$$
\left\{c_{1}=1, c_{2}=5, c_{3}=-10\right\}
$$

- \quad Solution to the IVP

$$
y=(-\cos (x)+2 \sin (x)) \mathrm{e}^{2 x}+\mathrm{e}^{x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([diff (y(x),x$3)-5*\operatorname{diff (y (x),x$2)+9*\operatorname{diff}(y(x),x)-5*y(x)=0,y(0) = 0, D(y)(0) = 1, (D@@2}
```

$$
y(x)=\mathrm{e}^{x}+(2 \sin (x)-\cos (x)) \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25
DSolve[\{y' ' ' $[x]-5 * y$ ' ' $[x]+9 * y$ ' $[x]-5 * y[x]==0,\left\{y[0]==0, y\right.$ ' $[0]==1, y^{\prime}$ ' $\left.\left.[0]==6\right\}\right\}, y[x], x$, IncludeSingu

$$
y(x) \rightarrow e^{x}\left(2 e^{x} \sin (x)-e^{x} \cos (x)+1\right)
$$

10.43 problem 45

10.43.1 Maple step by step solution . 2238

Internal problem ID [11773]
Internal file name [OUTPUT/11782_Thursday_April_11_2024_08_49_37_PM_10735052/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 45.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+6 y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{3}+6 \lambda^{2}+2 \lambda+5=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i \\
& \lambda_{3}=-1-2 i \\
& \lambda_{4}=-1+2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(-1-2 i) x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{(-1+2 i) x} c_{3}+\mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(-1-2 i) x} \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{(-1+2 i) x} \\
& y_{4}=\mathrm{e}^{-i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{(-1-2 i) x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{(-1+2 i) x} c_{3}+\mathrm{e}^{-i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{(-1-2 i) x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{(-1+2 i) x} c_{3}+\mathrm{e}^{-i x} c_{4}
$$

Verified OK.

10.43.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+6 y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=-2 y_{4}(x)-6 y_{3}(x)-2 y_{2}(x)-5 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-2 y_{4}(x)-6 y_{3}(x)-2 y_{2}(x)-5 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-5 & -2 & -6 & -2
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -5 & -2 & -6 & -2\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right],\left[-1-2 \mathrm{I},\left[\begin{array}{c}
\frac{11}{125}-\frac{2 \mathrm{I}}{125} \\
-\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[-1+2 \mathrm{I},\left[\begin{array}{c}
\frac{11}{125}+\frac{2 \mathrm{I}}{125} \\
-\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}-\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-2 \mathrm{I},\left[\begin{array}{c}
\frac{11}{125}-\frac{2 \mathrm{I}}{125} \\
-\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-2 \mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{11}{125}-\frac{2 \mathrm{I}}{125} \\
-\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-x} \cdot(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
\frac{11}{125}-\frac{2 \mathrm{I}}{125} \\
-\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\left(\frac{11}{125}-\frac{2 \mathrm{I}}{125}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\left(-\frac{3}{25}-\frac{4 \mathrm{I}}{25}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\left(-\frac{1}{5}+\frac{2 \mathrm{I}}{5}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{11 \cos (2 x)}{125}-\frac{2 \sin (2 x)}{125} \\
-\frac{3 \cos (2 x)}{25}-\frac{4 \sin (2 x)}{25} \\
-\frac{\cos (2 x)}{5}+\frac{2 \sin (2 x)}{5} \\
\cos (2 x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{11 \sin (2 x)}{125}-\frac{2 \cos (2 x)}{125} \\
\frac{3 \sin (2 x)}{25}-\frac{4 \cos (2 x)}{25} \\
\frac{\sin (2 x)}{5}+\frac{2 \cos (2 x)}{5} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{3} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{11 \cos (2 x)}{125}-\frac{2 \sin (2 x)}{125} \\
-\frac{3 \cos (2 x)}{25}-\frac{4 \sin (2 x)}{25} \\
-\frac{\cos (2 x)}{5}+\frac{2 \sin (2 x)}{5} \\
\cos (2 x)
\end{array}\right]+c_{4} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{11 \sin (2 x)}{125}-\frac{2 \cos (2 x)}{125} \\
\frac{3 \sin (2 x)}{25}-\frac{4 \cos (2 x)}{25} \\
\frac{\sin (2 x)}{5}+\frac{2 \cos (2 x)}{5} \\
-\sin (2 x)
\end{array}\right]+\left[\begin{array}{c}
-\sin (x) c_{1}-c_{2} \cos (\\
-c_{1} \cos (x)+c_{2} \sin (\\
\sin (x) c_{1}+c_{2} \cos (x \\
c_{1} \cos (x)-c_{2} \sin (x
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(\left(22 c_{3}-4 c_{4}\right) \cos (x)^{2}-4\left(c_{3}+\frac{11 c_{4}}{2}\right) \sin (x) \cos (x)-11 c_{3}+2 c_{4}\right) \mathrm{e}^{-x}}{125}-\sin (x) c_{1}-c_{2} \cos (x)
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve(diff(y(x),x$4)+2*diff(y(x),x$3)+6*\operatorname{diff}(y(x),x$2)+2*\operatorname{diff}(y(x),x)+5*y(x)=0,y(x), singso
```

$$
y(x)=\left(2 c_{3} \cos (x) \sin (x)+2 c_{4} \cos (x)^{2}-c_{4}\right) \mathrm{e}^{-x}+c_{1} \sin (x)+c_{2} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 40
DSolve[y''''[x]+2*y'''[x]+6*y''[x]+2*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow c_{3} \cos (x)+e^{-x}\left(c_{2} \cos (2 x)+c_{4} e^{x} \sin (x)+c_{1} \sin (2 x)\right)
$$

10.44 problem 46

10.44.1 Maple step by step solution 2244

Internal problem ID [11774]
Internal file name [OUTPUT/11783_Thursday_April_11_2024_08_49_37_PM_9949308/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.2. The homogeneous linear equation with constant coefficients.
Exercises page 135
Problem number: 46.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}+y^{\prime \prime}+13 y^{\prime}+30 y=0
$$

The characteristic equation is

$$
\lambda^{4}+3 \lambda^{3}+\lambda^{2}+13 \lambda+30=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=1-2 i \\
& \lambda_{4}=1+2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+\mathrm{e}^{(1+2 i) x} c_{3}+\mathrm{e}^{(1-2 i) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-3 x} \\
& y_{3}=\mathrm{e}^{(1+2 i) x} \\
& y_{4}=\mathrm{e}^{(1-2 i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+\mathrm{e}^{(1+2 i) x} c_{3}+\mathrm{e}^{(1-2 i) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+\mathrm{e}^{(1+2 i) x} c_{3}+\mathrm{e}^{(1-2 i) x} c_{4}
$$

Verified OK.

10.44.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}+y^{\prime \prime}+13 y^{\prime}+30 y=0
$$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=-3 y_{4}(x)-y_{3}(x)-13 y_{2}(x)-30 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-3 y_{4}(x)-y_{3}(x)-13 y_{2}(x)-30 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-30 & -13 & -1 & -3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -30 & -13 & -1 & -3\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[1-2 \mathrm{I},\left[\begin{array}{c}
-\frac{11}{125}-\frac{2 \mathrm{I}}{125} \\
-\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(1-2 \mathrm{I}) x} \cdot\left[\begin{array}{c}
-\frac{11}{125}-\frac{2 \mathrm{I}}{125} \\
-\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{x} \cdot(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{11}{125}-\frac{2 \mathrm{I}}{125} \\
-\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\left(-\frac{11}{125}-\frac{2 \mathrm{I}}{125}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\left(-\frac{3}{25}+\frac{4 \mathrm{I}}{25}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\left(\frac{1}{5}+\frac{2 \mathrm{I}}{5}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
-\frac{11 \cos (2 x)}{125}-\frac{2 \sin (2 x)}{125} \\
-\frac{3 \cos (2 x)}{25}+\frac{4 \sin (2 x)}{25} \\
\frac{\cos (2 x)}{5}+\frac{2 \sin (2 x)}{5} \\
\cos (2 x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{11 \sin (2 x)}{125}-\frac{2 \cos (2 x)}{125} \\
\frac{3 \sin (2 x)}{25}+\frac{4 \cos (2 x)}{25} \\
-\frac{\sin (2 x)}{5}+\frac{2 \cos (2 x)}{5} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
-\frac{11 \cos (2 x)}{125}-\frac{2 \sin (2 x)}{125} \\
-\frac{3 \cos (2 x)}{25}+\frac{4 \sin (2 x)}{25} \\
\frac{\cos (2 x)}{5}+\frac{2 \sin (2 x)}{5} \\
\cos (2 x)
\end{array}\right]+\mathrm{e}^{x} c_{4} \cdot\left[\begin{array}{c}
\frac{11 \sin (2 x)}{125}- \\
\frac{3 \sin (2 x)}{25}+ \\
-\frac{\sin (2 x)}{5}+ \\
-\sin (
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{2 \mathrm{e}^{-3 x}\left(\left(\left(\frac{11 c_{3}}{2}+c_{4}\right) \cos (2 x)+\sin (2 x)\left(c_{3}-\frac{11 c_{4}}{2}\right)\right) \mathrm{e}^{4 x}+\frac{125 c_{2} \mathrm{e}^{x}}{16}+\frac{125 c_{1}}{54}\right)}{125}
$$

Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
dsolve (diff $(y(x), x \$ 4)+3 * \operatorname{diff}(y(x), x \$ 3)+\operatorname{diff}(y(x), x \$ 2)+13 * \operatorname{diff}(y(x), x)+30 * y(x)=0, y(x)$, singso

$$
y(x)=\left(c_{3} \mathrm{e}^{4 x} \sin (2 x)+c_{4} \mathrm{e}^{4 x} \cos (2 x)+c_{2} \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 43
DSolve[y''''[x]+3*y'' $[x]+y$ '' $[x]+13 * y$ ' $[x]+30 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow c_{2} e^{x} \cos (2 x)+e^{-3 x}\left(c_{4} e^{x}+c_{1} e^{4 x} \sin (2 x)+c_{3}\right)
$$

11 Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
11.1 problem 1 2251
11.2 problem 2 2263
11.3 problem 3 2274
11.4 problem 4 2285
11.5 problem 5 2296
11.6 problem 6 2307
11.7 problem 7 2318
11.8 problem 8 2329
11.9 problem 9 2340
11.10problem 10 2348
11.11problem 11 2356
11.12problem 12 2364
11.13problem 13 2372
11.14problem 14 2384
11.15problem 15 2397
11.16problem 16 2406
11.17 problem 17 2414
11.18problem 18 2424
11.19problem 19 2428
11.20problem 20 2436
11.21problem 21 2445
11.22problem 22 2456
11.23problem 23 2467
11.24problem 24 2471
11.25problem 25 2483
11.26problem 26 2496
11.27problem 27 2509
11.28problem 28 2522
11.29problem 29 2535
11.30problem 30 2550
11.31problem 31 2565
11.32problem 32 2578
11.33problem 33 2591
11.34problem 34 2605
11.35problem 35 2620
11.36problem 36 2636
11.37problem 37 2651
11.38problem 38 2664
11.39problem 39 2677
11.40problem 40 2687
11.41problem 41 2697
11.42problem 42 2708
11.43problem 43 2719
11.44problem 44 2730
11.45problem 45 2744
11.46problem 46 2761
11.47problem 47 2769
11.48problem 48 2773
11.49problem 49 2788
11.50problem 50 2801
11.51problem 51 2810
11.52problem 52 2816
11.53problem 53 2830
11.54problem 54 2842

11.1 problem 1

11.1.1 Solving as second order linear constant coeff ode 2251
11.1.2 Solving using Kovacic algorithm 2255
11.1.3 Maple step by step solution . 2260

Internal problem ID [11775]
Internal file name [OUTPUT/11784_Thursday_April_11_2024_08_49_37_PM_56146256/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-3 y^{\prime}+8 y=4 x^{2}
$$

11.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-3, C=8, f(x)=4 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=8$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+8 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(8)} \\
& =\frac{3}{2} \pm \frac{i \sqrt{23}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{i \sqrt{23}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{i \sqrt{23}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{i \sqrt{23}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{i \sqrt{23}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=\frac{3}{2}$ and $\beta=\frac{\sqrt{23}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right), \mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{3} x^{2}+8 A_{2} x-6 x A_{3}+8 A_{1}-3 A_{2}+2 A_{3}=4 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{64}, A_{2}=\frac{3}{8}, A_{3}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{2} x^{2}+\frac{3}{8} x+\frac{1}{64}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right)\right)\right)+\left(\frac{1}{2} x^{2}+\frac{3}{8} x+\frac{1}{64}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right)\right)+\frac{x^{2}}{2}+\frac{3 x}{8}+\frac{1}{64} \tag{1}
\end{equation*}
$$

Figure 416: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right)\right)+\frac{x^{2}}{2}+\frac{3 x}{8}+\frac{1}{64}
$$

Verified OK.

11.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-23}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-23 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{23 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 345: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{23}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{23} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{23} \tan \left(\frac{\sqrt{23} x}{2}\right)}{23}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)\left(\frac{2 \sqrt{23} \tan \left(\frac{\sqrt{23} x}{2}\right)}{23}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right) \mathrm{e}^{\frac{3 x}{2}} \sqrt{23}}{23}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right), \frac{2 \sin \left(\frac{\sqrt{23} x}{2}\right) \mathrm{e}^{\frac{3 x}{2}} \sqrt{23}}{23}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{3} x^{2}+8 A_{2} x-6 x A_{3}+8 A_{1}-3 A_{2}+2 A_{3}=4 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{64}, A_{2}=\frac{3}{8}, A_{3}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{2} x^{2}+\frac{3}{8} x+\frac{1}{64}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right) \mathrm{e}^{\frac{3 x}{2}} \sqrt{23}}{23}\right)+\left(\frac{1}{2} x^{2}+\frac{3}{8} x+\frac{1}{64}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right) \mathrm{e}^{\frac{3 x}{2}} \sqrt{23}}{23}+\frac{x^{2}}{2}+\frac{3 x}{8}+\frac{1}{64} \tag{1}
\end{equation*}
$$

Figure 417: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) c_{1}+\frac{2 c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right) \mathrm{e}^{\frac{3 x}{2}} \sqrt{23}}{23}+\frac{x^{2}}{2}+\frac{3 x}{8}+\frac{1}{64}
$$

Verified OK.

11.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-3 y^{\prime}+8 y=4 x^{2}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-3 r+8=0$
- Use quadratic formula to solve for r
$r=\frac{3 \pm(\sqrt{-23})}{2}$
- Roots of the characteristic polynomial
$r=\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{23}}{2}, \frac{3}{2}+\frac{\mathrm{I} \sqrt{23}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) c_{1}+\mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 x^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) & \mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right) \\
\frac{3 \mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{23} x}{2}\right) \mathrm{e}^{\frac{3 x}{2} \sqrt{23}}}{2} & \frac{3 \mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{3 x}{2}} \sqrt{23} \cos \left(\frac{\sqrt{23} x}{2}\right)}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{23} \mathrm{e}^{3 x}}{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{8 \mathrm{e}^{\frac{3 x}{2}} \sqrt{23}\left(\cos \left(\frac{\sqrt{23} x}{2}\right)\left(\int x^{2} \mathrm{e}^{-\frac{3 x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{23} x}{2}\right)\left(\int x^{2} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) d x\right)\right)}{23}
$$

- Compute integrals

$$
y_{p}(x)=\frac{1}{2} x^{2}+\frac{3}{8} x+\frac{1}{64}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) c_{1}+\mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right) c_{2}+\frac{x^{2}}{2}+\frac{3 x}{8}+\frac{1}{64}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 40

```
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+8*y(x)=4*x^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right) c_{2}+\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right) c_{1}+\frac{x^{2}}{2}+\frac{3 x}{8}+\frac{1}{64}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 63
DSolve[y'' $[x]-3 * y$ ' $[x]+8 * y[x]==4 * x \wedge 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{2}}{2}+\frac{3 x}{8}+c_{2} e^{3 x / 2} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{1} e^{3 x / 2} \sin \left(\frac{\sqrt{23} x}{2}\right)+\frac{1}{64}
$$

11.2 problem 2

11.2.1 Solving as second order linear constant coeff ode 2263
11.2.2 Solving using Kovacic algorithm 2266
11.2.3 Maple step by step solution . 2271

Internal problem ID [11776]
Internal file name [OUTPUT/11785_Thursday_April_11_2024_08_49_38_PM_3825123/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-2 y^{\prime}-8 y=4 \mathrm{e}^{2 x}-21 \mathrm{e}^{-3 x}
$$

11.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=-8, f(x)=\left(4 \mathrm{e}^{5 x}-21\right) \mathrm{e}^{-3 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=-8$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-8 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda-8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=-8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-8)} \\
& =1 \pm 3
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+3 \\
& \lambda_{2}=1-3
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =4 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\left(4 \mathrm{e}^{5 x}-21\right) \mathrm{e}^{-3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
7 A_{1} \mathrm{e}^{-3 x}-8 A_{2} \mathrm{e}^{2 x}=\left(4 \mathrm{e}^{5 x}-21\right) \mathrm{e}^{-3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-3, A_{2}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-3 \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{2 x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-3 \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}-3 \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{2 x}}{2} \tag{1}
\end{equation*}
$$

Figure 418: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-2 x}-3 \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{2 x}}{2}
$$

Verified OK.

11.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 347: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-3 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{6 x}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\left(4 \mathrm{e}^{5 x}-21\right) \mathrm{e}^{-3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{4 x}}{6}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC__set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
7 A_{1} \mathrm{e}^{-3 x}-8 A_{2} \mathrm{e}^{2 x}=\left(4 \mathrm{e}^{5 x}-21\right) \mathrm{e}^{-3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-3, A_{2}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-3 \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{2 x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}\right)+\left(-3 \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}-3 \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{2 x}}{2} \tag{1}
\end{equation*}
$$

Figure 419: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{6}-3 \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{2 x}}{2}
$$

Verified OK.

11.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}-8 y=\left(4 \mathrm{e}^{5 x}-21\right) \mathrm{e}^{-3 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r-8=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-4)=0
$$

- Roots of the characteristic polynomial
$r=(-2,4)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{4 x}+y_{p}(x)$
$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function
$\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\left(4 \mathrm{e}^{5 x}-21\right) \mathrm{e}^{-3 x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{4 x} \\ -2 \mathrm{e}^{-2 x} & 4 \mathrm{e}^{4 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=6 \mathrm{e}^{2 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{-2 x}\left(\int\left(4 \mathrm{e}^{4 x}-21 \mathrm{e}^{-x}\right) d x\right)}{6}+\frac{\mathrm{e}^{4 x}\left(\int\left(4 \mathrm{e}^{5 x}-21\right) \mathrm{e}^{-7 x} d x\right)}{6}$
- Compute integrals
$y_{p}(x)=-\frac{\left(\mathrm{e}^{5 x}+6\right) \mathrm{e}^{-3 x}}{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{4 x}-\frac{\left(\mathrm{e}^{5 x}+6\right) \mathrm{e}^{-3 x}}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30
dsolve($\operatorname{diff}(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)-8 * y(x)=4 * \exp (2 * x)-21 * \exp (-3 * x), y(x)$, singsol=all)

$$
y(x)=\frac{\left(2 c_{2} \mathrm{e}^{7 x}-\mathrm{e}^{5 x}+2 c_{1} \mathrm{e}^{x}-6\right) \mathrm{e}^{-3 x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 38
DSolve $[y$ '' $[x]-2 * y$ ' $[x]-8 * y[x]==4 * \operatorname{Exp}[2 * x]-21 * \operatorname{Exp}[-3 * x], y[x], x$, IncludeSingularSolutions $->$ Tru

$$
y(x) \rightarrow-\frac{1}{2} e^{-3 x}\left(e^{5 x}+6\right)+c_{1} e^{-2 x}+c_{2} e^{4 x}
$$

11.3 problem 3

11.3.1 Solving as second order linear constant coeff ode 2274
11.3.2 Solving using Kovacic algorithm 2277
11.3.3 Maple step by step solution . 2282

Internal problem ID [11777]
Internal file name [OUTPUT/11786_Thursday_April_11_2024_08_49_38_PM_85345288/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+5 y=6 \sin (2 x)+7 \cos (2 x)
$$

11.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=5, f(x)=6 \sin (2 x)+7 \cos (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(5)} \\
& =-1 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
6 \sin (2 x)+7 \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (2 x), \mathrm{e}^{-x} \sin (2 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (2 x)+A_{2} \sin (2 x)-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=6 \sin (2 x)+7 \cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\cos (2 x)+2 \sin (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+(-\cos (2 x)+2 \sin (2 x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)-\cos (2 x)+2 \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 420: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)-\cos (2 x)+2 \sin (2 x)
$$

Verified OK.

11.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 349: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-x} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
6 \sin (2 x)+7 \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (2 x), \frac{\mathrm{e}^{-x} \sin (2 x)}{2}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (2 x)+A_{2} \sin (2 x)-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=6 \sin (2 x)+7 \cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\cos (2 x)+2 \sin (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-x} \sin (2 x)}{2}\right)+(-\cos (2 x)+2 \sin (2 x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-x} \sin (2 x)}{2}-\cos (2 x)+2 \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 421: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-x} \sin (2 x)}{2}-\cos (2 x)+2 \sin (2 x)
$$

Verified OK.

11.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+5 y=6 \sin (2 x)+7 \cos (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial
$r=(-1-2 \mathrm{I},-1+2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x} \cos (2 x)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{-x} \sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x} \cos (2 x)+c_{2} \mathrm{e}^{-x} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=6 \sin (2 x)+7 \cos (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (2 x) & \mathrm{e}^{-x} \sin (2 x) \\
-\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x) & -\mathrm{e}^{-x} \sin (2 x)+2 \mathrm{e}^{-x} \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{-2 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\frac{\mathrm{e}^{-x}\left(\cos (2 x)\left(\int(-7 \sin (4 x)-6+6 \cos (4 x)) \mathrm{e}^{x} d x\right)+\sin (2 x)\left(\int(7 \cos (4 x)+7+6 \sin (4 x)) \mathrm{e}^{x} d x\right)\right)}{4}$
- Compute integrals

$$
y_{p}(x)=-\cos (2 x)+2 \sin (2 x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x} \cos (2 x)+c_{2} \mathrm{e}^{-x} \sin (2 x)-\cos (2 x)+2 \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
dsolve (diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+5 * y(x)=6 * \sin (2 * x)+7 * \cos (2 * x), y(x)$, singsol=all)

$$
y(x)=\left(\cos (2 x) c_{1}+c_{2} \sin (2 x)\right) \mathrm{e}^{-x}-\cos (2 x)+2 \sin (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 38
DSolve $[y$ '' $[x]+2 * y$ ' $[x]+5 * y[x]==6 * \operatorname{Sin}[2 * x]+7 * \operatorname{Cos}[2 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(\left(-e^{x}+c_{2}\right) \cos (2 x)+\left(2 e^{x}+c_{1}\right) \sin (2 x)\right)
$$

11.4 problem 4

11.4.1 Solving as second order linear constant coeff ode 2285
11.4.2 Solving using Kovacic algorithm 2288
11.4.3 Maple step by step solution . 2293

Internal problem ID [11778]
Internal file name [OUTPUT/11787_Thursday_April_11_2024_08_49_39_PM_78115731/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+2 y=10 \sin (4 x)
$$

11.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=2, f(x)=10 \sin (4 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(2)} \\
& =-1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \sin (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (4 x)+A_{2} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-14 A_{1} \cos (4 x)-14 A_{2} \sin (4 x)-8 A_{1} \sin (4 x)+8 A_{2} \cos (4 x)=10 \sin (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{13}, A_{2}=-\frac{7}{13}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13} \tag{1}
\end{equation*}
$$

Figure 422: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13}
$$

Verified OK.

11.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =2 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 351: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (x)(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (x) \mathrm{e}^{-x} c_{1}+\sin (x) \mathrm{e}^{-x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \sin (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (4 x)+A_{2} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-14 A_{1} \cos (4 x)-14 A_{2} \sin (4 x)-8 A_{1} \sin (4 x)+8 A_{2} \cos (4 x)=10 \sin (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{13}, A_{2}=-\frac{7}{13}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) \mathrm{e}^{-x} c_{1}+\sin (x) \mathrm{e}^{-x} c_{2}\right)+\left(-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13} \tag{1}
\end{equation*}
$$

Figure 423: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13}
$$

Verified OK.

11.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+2 y=10 \sin (4 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-1-\mathrm{I},-1+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos (x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x} \sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=\cos (x) \mathrm{e}^{-x} c_{1}+\sin (x) \mathrm{e}^{-x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=10 \sin (4 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (x) & \mathrm{e}^{-x} \sin (x) \\
-\mathrm{e}^{-x} \cos (x)-\mathrm{e}^{-x} \sin (x) & -\mathrm{e}^{-x} \sin (x)+\mathrm{e}^{-x} \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-10 \mathrm{e}^{-x}\left(\cos (x)\left(\int \sin (x) \sin (4 x) \mathrm{e}^{x} d x\right)-\sin (x)\left(\int \cos (x) \sin (4 x) \mathrm{e}^{x} d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=-\frac{4 \cos (4 x)}{13}-\frac{7 \sin (4 x)}{13}
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos (x) \mathrm{e}^{-x} c_{1}+\sin (x) \mathrm{e}^{-x} c_{2}-\frac{7 \sin (4 x)}{13}-\frac{4 \cos (4 x)}{13}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+2*y(x)=10*sin(4*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x} \sin (x) c_{2}+\mathrm{e}^{-x} \cos (x) c_{1}-\frac{7 \sin (4 x)}{13}-\frac{4 \cos (4 x)}{13}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 42
DSolve [y' ' $[\mathrm{x}]+2 * \mathrm{y}^{\prime}[\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==10 * \operatorname{Sin}[4 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{7}{13} \sin (4 x)-\frac{4}{13} \cos (4 x)+c_{2} e^{-x} \cos (x)+c_{1} e^{-x} \sin (x)
$$

11.5 problem 5

11.5.1 Solving as second order linear constant coeff ode 2296
11.5.2 Solving using Kovacic algorithm 2299
11.5.3 Maple step by step solution 2304

Internal problem ID [11779]
Internal file name [OUTPUT/11788_Thursday_April_11_2024_08_49_40_PM_7302965/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+4 y=\cos (4 x)
$$

11.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=4, f(x)=\cos (4 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(4)} \\
& =-1 \pm i \sqrt{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{3} \\
& \lambda_{2}=-1-i \sqrt{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{3}-1 \\
& \lambda_{2}=-i \sqrt{3}-1
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=\sqrt{3}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (\sqrt{3} x), \mathrm{e}^{-x} \sin (\sqrt{3} x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (4 x)+A_{2} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-12 A_{1} \cos (4 x)-12 A_{2} \sin (4 x)-8 A_{1} \sin (4 x)+8 A_{2} \cos (4 x)=\cos (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{52}, A_{2}=\frac{1}{26}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)\right)\right)+\left(-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)\right)-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26} \tag{1}
\end{equation*}
$$

Figure 424: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)\right)-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26}
$$

Verified OK.

11.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-3 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-3 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 353: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-3$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (\sqrt{3} x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (\sqrt{3} x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{3} \tan (\sqrt{3} x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (\sqrt{3} x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (\sqrt{3} x)\left(\frac{\sqrt{3} \tan (\sqrt{3} x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-x} \cos (\sqrt{3} x) c_{1}+\frac{c_{2} \sin (\sqrt{3} x) \mathrm{e}^{-x} \sqrt{3}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (\sqrt{3} x), \frac{\sin (\sqrt{3} x) \mathrm{e}^{-x} \sqrt{3}}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (4 x)+A_{2} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-12 A_{1} \cos (4 x)-12 A_{2} \sin (4 x)-8 A_{1} \sin (4 x)+8 A_{2} \cos (4 x)=\cos (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{52}, A_{2}=\frac{1}{26}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x} \cos (\sqrt{3} x) c_{1}+\frac{c_{2} \sin (\sqrt{3} x) \mathrm{e}^{-x} \sqrt{3}}{3}\right)+\left(-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x} \cos (\sqrt{3} x) c_{1}+\frac{c_{2} \sin (\sqrt{3} x) \mathrm{e}^{-x} \sqrt{3}}{3}-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26} \tag{1}
\end{equation*}
$$

Figure 425: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x} \cos (\sqrt{3} x) c_{1}+\frac{c_{2} \sin (\sqrt{3} x) \mathrm{e}^{-x} \sqrt{3}}{3}-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26}
$$

Verified OK.

11.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+4 y=\cos (4 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+2 r+4=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-12})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I} \sqrt{3}-1, \mathrm{I} \sqrt{3}-1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x} \cos (\sqrt{3} x)$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{-x} \sin (\sqrt{3} x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-x} \cos (\sqrt{3} x) c_{1}+\mathrm{e}^{-x} \sin (\sqrt{3} x) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (4 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (\sqrt{3} x) & \mathrm{e}^{-x} \sin (\sqrt{3} x) \\
-\mathrm{e}^{-x} \cos (\sqrt{3} x)-\sin (\sqrt{3} x) \mathrm{e}^{-x} \sqrt{3} & -\mathrm{e}^{-x} \sin (\sqrt{3} x)+\mathrm{e}^{-x} \sqrt{3} \cos (\sqrt{3} x
\end{array}\right.
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\sqrt{3} \mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x} \sqrt{3}\left(\cos (\sqrt{3} x)\left(\int \cos (4 x) \mathrm{e}^{x} \sin (\sqrt{3} x) d x\right)-\sin (\sqrt{3} x)\left(\int \cos (4 x) \mathrm{e}^{x} \cos (\sqrt{3} x) d x\right)\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-x} \cos (\sqrt{3} x) c_{1}+\mathrm{e}^{-x} \sin (\sqrt{3} x) c_{2}-\frac{3 \cos (4 x)}{52}+\frac{\sin (4 x)}{26}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 41

```
dsolve(diff(y(x),x$2)+2*diff (y(x),x)+4*y(x)=cos(4*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x} \sin (\sqrt{3} x) c_{2}+\mathrm{e}^{-x} \cos (\sqrt{3} x) c_{1}+\frac{\sin (4 x)}{26}-\frac{3 \cos (4 x)}{52}
$$

\checkmark Solution by Mathematica
Time used: 1.15 (sec). Leaf size: 54
DSolve[y''[x]+2*y'[x]+4*y[x]==Cos[4*x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{26} \sin (4 x)-\frac{3}{52} \cos (4 x)+c_{2} e^{-x} \cos (\sqrt{3} x)+c_{1} e^{-x} \sin (\sqrt{3} x)
$$

11.6 problem 6

11.6.1 Solving as second order linear constant coeff ode 2307
11.6.2 Solving using Kovacic algorithm 2310
11.6.3 Maple step by step solution . 2315

Internal problem ID [11780]
Internal file name [OUTPUT/11789_Thursday_April_11_2024_08_49_40_PM_29232317/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-3 y^{\prime}-4 y=16 x-12 \mathrm{e}^{2 x}
$$

11.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-3, C=-4, f(x)=16 x-12 \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-3, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-3 \lambda-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-3, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(-4)} \\
& =\frac{3}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{3}{2}+\frac{5}{2} \\
\lambda_{2} & =\frac{3}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
16 x-12 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\{1, x\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x}, \mathrm{e}^{4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}+A_{2}+A_{3} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \mathrm{e}^{2 x}-3 A_{3}-4 A_{2}-4 A_{3} x=16 x-12 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=3, A_{3}=-4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{2 x}+3-4 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}\right)+\left(2 \mathrm{e}^{2 x}+3-4 x\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}+2 \mathrm{e}^{2 x}+3-4 x \tag{1}
\end{equation*}
$$

Figure 426: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-x}+2 \mathrm{e}^{2 x}+3-4 x
$$

Verified OK.

11.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-3 y^{\prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 355: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-3 y^{\prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{4 x}}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
16 x-12 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\{1, x\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{4 x}}{5}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}+A_{2}+A_{3} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \mathrm{e}^{2 x}-3 A_{3}-4 A_{2}-4 A_{3} x=16 x-12 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=3, A_{3}=-4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{2 x}+3-4 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{4 x}}{5}\right)+\left(2 \mathrm{e}^{2 x}+3-4 x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{4 x}}{5}+2 \mathrm{e}^{2 x}+3-4 x \tag{1}
\end{equation*}
$$

Figure 427: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{4 x}}{5}+2 \mathrm{e}^{2 x}+3-4 x
$$

Verified OK.

11.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-3 y^{\prime}-4 y=16 x-12 \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}-3 r-4=0$
- Factor the characteristic polynomial

$$
(r+1)(r-4)=0
$$

- Roots of the characteristic polynomial
$r=(-1,4)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{4 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function
$\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=16 x-12 \mathrm{e}^{2 x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{4 x} \\ -\mathrm{e}^{-x} & 4 \mathrm{e}^{4 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=5 \mathrm{e}^{3 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\frac{4 \mathrm{e}^{-x}\left(\int\left(3 \mathrm{e}^{2 x}-4 x\right) \mathrm{e}^{x} d x\right)}{5}-\frac{4 \mathrm{e}^{4 x}\left(\int\left(3 \mathrm{e}^{2 x}-4 x\right) \mathrm{e}^{-4 x} d x\right)}{5}$
- Compute integrals
$y_{p}(x)=2 \mathrm{e}^{2 x}+3-4 x$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{4 x}+2 \mathrm{e}^{2 x}+3-4 x$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)-3*diff (y(x),x)-4*y(x)=16*x-12*exp(2*x),y(x), singsol=all)
```

$$
y(x)=c_{2} \mathrm{e}^{4 x}+c_{1} \mathrm{e}^{-x}+2 \mathrm{e}^{2 x}-4 x+3
$$

\checkmark Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 33
DSolve [y''[x]-3*y'[x]-4*y[x]==16*x-12*Exp[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-4 x+2 e^{2 x}+c_{1} e^{-x}+c_{2} e^{4 x}+3
$$

11.7 problem 7

11.7.1 Solving as second order linear constant coeff ode 2318
11.7.2 Solving using Kovacic algorithm 2321
11.7.3 Maple step by step solution . 2326

Internal problem ID [11781]
Internal file name [OUTPUT/11790_Thursday_April_11_2024_08_49_41_PM_4744995/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+5 y=2 \mathrm{e}^{x}+10 \mathrm{e}^{5 x}
$$

11.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=6, C=5, f(x)=2 \mathrm{e}^{x}+10 \mathrm{e}^{5 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(5)} \\
& =-3 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+2 \\
& \lambda_{2}=-3-2
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-5
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-5 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-5 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{x}+10 \mathrm{e}^{5 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{\mathrm{e}^{5 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-5 x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2} \mathrm{e}^{5 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{x}+60 A_{2} \mathrm{e}^{5 x}=2 \mathrm{e}^{x}+10 \mathrm{e}^{5 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{6}, A_{2}=\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-5 x}\right)+\left(\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-5 x}+\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6} \tag{1}
\end{equation*}
$$

Figure 428: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-5 x}+\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6}
$$

Verified OK.

11.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =6 \tag{3}\\
C & =5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 357: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-x}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{x}+10 \mathrm{e}^{5 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{\mathrm{e}^{5 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-x}}{4}, \mathrm{e}^{-5 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2} \mathrm{e}^{5 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{x}+60 A_{2} \mathrm{e}^{5 x}=2 \mathrm{e}^{x}+10 \mathrm{e}^{5 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{6}, A_{2}=\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-x}}{4}\right)+\left(\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6} \tag{1}
\end{equation*}
$$

Figure 429: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6}
$$

Verified OK.

11.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+5 y=2 \mathrm{e}^{x}+10 \mathrm{e}^{5 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+5=0
$$

- Factor the characteristic polynomial

$$
(r+5)(r+1)=0
$$

- Roots of the characteristic polynomial
$r=(-5,-1)$
- 1st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-5 x}$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{-x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function
$\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \mathrm{e}^{x}+10 \mathrm{e}^{5 x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-5 x} & \mathrm{e}^{-x} \\ -5 \mathrm{e}^{-5 x} & -\mathrm{e}^{-x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4 \mathrm{e}^{-6 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{-5 x}\left(\int \mathrm{e}^{6 x}\left(5 \mathrm{e}^{4 x}+1\right) d x\right)}{2}+\frac{\mathrm{e}^{-x}\left(\int \mathrm{e}^{2 x}\left(5 \mathrm{e}^{4 x}+1\right) d x\right)}{2}$
- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{6}+\frac{\mathrm{e}^{5 x}}{6}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$2)+6*diff(y(x),x)+5*y(x)=2*exp(x)+10*exp(5*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(\mathrm{e}^{10 x}+\mathrm{e}^{6 x}+6 c_{1} \mathrm{e}^{4 x}+6 c_{2}\right) \mathrm{e}^{-5 x}}{6}
$$

\checkmark Solution by Mathematica
Time used: 0.089 (sec). Leaf size: 36
DSolve $[y$ '' $[x]+6 * y$ ' $[x]+5 * y[x]==2 * \operatorname{Exp}[x]+10 * \operatorname{Exp}[5 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{6} e^{x}\left(e^{4 x}+1\right)+c_{1} e^{-5 x}+c_{2} e^{-x}
$$

11.8 problem 8

11.8.1 Solving as second order linear constant coeff ode 2329
11.8.2 Solving using Kovacic algorithm 2332
11.8.3 Maple step by step solution . 2337

Internal problem ID [11782]
Internal file name [OUTPUT/11791_Thursday_April_11_2024_08_49_42_PM_27254097/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+10 y=5 x \mathrm{e}^{-2 x}
$$

11.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=10, f(x)=5 x \mathrm{e}^{-2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+10 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(10)} \\
& =-1 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-1+3 i \\
\lambda_{2}=-1-3 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1+3 i \\
\lambda_{2}=-1-3 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 x \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (3 x), \mathrm{e}^{-x} \sin (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-2 x}+A_{2} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{-2 x}+10 A_{1} x \mathrm{e}^{-2 x}+10 A_{2} \mathrm{e}^{-2 x}=5 x \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-2 x}}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)\right)+\left(\frac{x \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-2 x}}{10}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\frac{x \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-2 x}}{10} \tag{1}
\end{equation*}
$$

Figure 430: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\frac{x \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-2 x}}{10}
$$

Verified OK.

11.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+2 y^{\prime}+10 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 359: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (3 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+10 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-x} \cos (3 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (3 x) c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 x \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (3 x), \frac{\mathrm{e}^{-x} \sin (3 x)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-2 x}+A_{2} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{-2 x}+10 A_{1} x \mathrm{e}^{-2 x}+10 A_{2} \mathrm{e}^{-2 x}=5 x \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-2 x}}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
= & \left(\mathrm{e}^{-x} \cos (3 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (3 x) c_{2}}{3}\right)+\left(\frac{x \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-2 x}}{10}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x} \cos (3 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (3 x) c_{2}}{3}+\frac{x \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-2 x}}{10} \tag{1}
\end{equation*}
$$

Figure 431: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x} \cos (3 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (3 x) c_{2}}{3}+\frac{x \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{-2 x}}{10}
$$

Verified OK.

11.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+10 y=5 x \mathrm{e}^{-2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+10=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial
$r=(-1-3 \mathrm{I},-1+3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x} \cos (3 x)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{-x} \sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-x} \cos (3 x) c_{1}+\mathrm{e}^{-x} \sin (3 x) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=5 x \mathrm{e}^{-2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (3 x) & \mathrm{e}^{-x} \sin (3 x) \\
-\mathrm{e}^{-x} \cos (3 x)-3 \mathrm{e}^{-x} \sin (3 x) & -\mathrm{e}^{-x} \sin (3 x)+3 \mathrm{e}^{-x} \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-2 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{5 \mathrm{e}^{-x}\left(\cos (3 x)\left(\int \mathrm{e}^{-x} \sin (3 x) x d x\right)-\sin (3 x)\left(\int \mathrm{e}^{-x} \cos (3 x) x d x\right)\right)}{3}$
- Compute integrals

$$
y_{p}(x)=\frac{(5 x+1) \mathrm{e}^{-2 x}}{10}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-x} \cos (3 x) c_{1}+\mathrm{e}^{-x} \sin (3 x) c_{2}+\frac{(5 x+1) \mathrm{e}^{-2 x}}{10}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 37
dsolve(diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+10 * y(x)=5 * x * \exp (-2 * x), y(x), \quad$ singsol=all $)$

$$
y(x)=\frac{\left(10 c_{1} \cos (3 x)+10 c_{2} \sin (3 x)\right) \mathrm{e}^{-x}}{10}+\frac{(5 x+1) \mathrm{e}^{-2 x}}{10}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 41
DSolve [y''[x]+2*y'[x]+10*y[x]==5*x*Exp[-2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{10} e^{-2 x}\left(5 x+10 c_{2} e^{x} \cos (3 x)+10 c_{1} e^{x} \sin (3 x)+1\right)
$$

11.9 problem 9

11.9.1 Maple step by step solution 2342

Internal problem ID [11783]
Internal file name [OUTPUT/11792_Thursday_April_11_2024_08_49_42_PM_60476993/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 9 .
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+y^{\prime}-6 y=-18 x^{2}+1
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+y^{\prime}-6 y=0
$$

The characteristic equation is

$$
\lambda^{3}+4 \lambda^{2}+\lambda-6=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-3 \\
\lambda_{3} & =-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{-3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+y^{\prime}-6 y=-18 x^{2}+1
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-3 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{3} x^{2}-6 A_{2} x+2 x A_{3}-6 A_{1}+A_{2}+8 A_{3}=-18 x^{2}+1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=4, A_{2}=1, A_{3}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x^{2}+x+4
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{3}\right)+\left(3 x^{2}+x+4\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{3}+3 x^{2}+x+4 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{3}+3 x^{2}+x+4
$$

Verified OK.

11.9.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+4 y^{\prime \prime}+y^{\prime}-6 y=-18 x^{2}+1
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-18 x^{2}-4 y_{3}(x)-y_{2}(x)+6 y_{1}(x)+1
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-18 x^{2}-4 y_{3}(x)-y_{2}(x)+6 y_{1}(x)+1\right]
$$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -1 & -4\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ -18 x^{2}+1\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ -18 x^{2}+1\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -1 & -4\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[-3,\left[\begin{array}{c}\frac{1}{9} \\ -\frac{1}{3} \\ 1\end{array}\right]\right],\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right],\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair
$\left[-3,\left[\begin{array}{c}\frac{1}{9} \\ -\frac{1}{3} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst
$\phi(x)=\left[\begin{array}{ccc}\frac{\mathrm{e}^{-3 x}}{9} & \frac{\mathrm{e}^{-2 x}}{4} & \mathrm{e}^{x} \\ -\frac{\mathrm{e}^{-3 x}}{3} & -\frac{\mathrm{e}^{-2 x}}{2} & \mathrm{e}^{x} \\ \mathrm{e}^{-3 x} & \mathrm{e}^{-2 x} & \mathrm{e}^{x}\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-3 x}}{9} & \frac{\mathrm{e}^{-2 x}}{4} & \mathrm{e}^{x} \\
-\frac{\mathrm{e}^{-3 x}}{3} & -\frac{\mathrm{e}^{-2 x}}{2} & \mathrm{e}^{x} \\
\mathrm{e}^{-3 x} & \mathrm{e}^{-2 x} & \mathrm{e}^{x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
\frac{1}{9} & \frac{1}{4} & 1 \\
-\frac{1}{3} & -\frac{1}{2} & 1 \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\left(\mathrm{e}^{4 x}+2 \mathrm{e}^{x}-1\right) \mathrm{e}^{-3 x}}{2} & -\frac{\left(-5 \mathrm{e}^{4 x}+8 \mathrm{e}^{x}-3\right) \mathrm{e}^{-3 x}}{12} & \frac{\left(\mathrm{e}^{4 x}-4 \mathrm{e}^{x}+3\right) \mathrm{e}^{-3 x}}{12} \\
\frac{\left(\mathrm{e}^{4 x}-4 \mathrm{e}^{x}+3\right) \mathrm{e}^{-3 x}}{2} & \frac{\left(5 \mathrm{e}^{4 x}+16 \mathrm{e}^{x}-9\right) \mathrm{e}^{-3 x}}{12} & \frac{\left(\mathrm{e}^{4 x}+8 \mathrm{e}^{x}-9\right) \mathrm{e}^{-3 x}}{12} \\
\frac{\left(\mathrm{e}^{4 x}+8 \mathrm{e}^{x}-9\right) \mathrm{e}^{-3 x}}{2} & -\frac{\left(-5 \mathrm{e}^{4 x}+32 \mathrm{e}^{x}-27\right) \mathrm{e}^{-3 x}}{12} & \frac{\left(\mathrm{e}^{4 x}-16 \mathrm{e}^{x}+27\right) \mathrm{e}^{-3 x}}{12}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$ $\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\mathrm{e}^{-3 x}\left(\left(3 x^{2}+x+4\right) \mathrm{e}^{3 x}-\frac{4 \mathrm{e}^{x}}{3}-\frac{35 \mathrm{e}^{4 x}}{12}+\frac{1}{4}\right) \\
\frac{\left(-35 \mathrm{e}^{4 x}+72 x \mathrm{e}^{3 x}+12 \mathrm{e}^{3 x}+32 \mathrm{e}^{x}-9\right) \mathrm{e}^{-3 x}}{12} \\
\frac{\left(-35 \mathrm{e}^{4 x}+72 \mathrm{e}^{3 x}-64 \mathrm{e}^{x}+27\right) \mathrm{e}^{-3 x}}{12}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\mathrm{e}^{-3 x}\left(\left(3 x^{2}+x+4\right) \mathrm{e}^{3 x}-\frac{4 \mathrm{e}^{x}}{3}-\frac{35 \mathrm{e}^{4 x}}{12}+\frac{1}{4}\right) \\
\frac{\left(-35 \mathrm{e}^{4 x}+72 x \mathrm{e}^{3 x}+12 \mathrm{e}^{3 x}+32 \mathrm{e}^{x}-9\right) \mathrm{e}^{-3 x}}{12} \\
\frac{\left(-35 \mathrm{e}^{4 x}+72 \mathrm{e}^{3 x}-64 \mathrm{e}^{x}+27\right) \mathrm{e}^{-3 x}}{12}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\mathrm{e}^{-3 x}\left(\left(3 x^{2}+x+4\right) \mathrm{e}^{3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}+\mathrm{e}^{4 x} c_{3}+\frac{c_{1}}{9}-\frac{4 \mathrm{e}^{x}}{3}-\frac{35 \mathrm{e}^{4 x}}{12}+\frac{1}{4}\right)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$3)+4*diff(y(x),x$2)+\operatorname{diff}(y(x),x)-6*y(x)=-18*x^2+1,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-3 x}\left(\left(3 x^{2}+x+4\right) \mathrm{e}^{3 x}+c_{1} \mathrm{e}^{4 x}+c_{3} \mathrm{e}^{x}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 35
DSolve[y'' $\quad[x]+4 * y$ '' $[x]+y$ ' $[x]-6 * y[x]==-18 * x^{\wedge} 2+1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 3 x^{2}+x+c_{1} e^{-3 x}+c_{2} e^{-2 x}+c_{3} e^{x}+4
$$

11.10 problem 10

11.10.1 Maple step by step solution

Internal problem ID [11784]
Internal file name [OUTPUT/11793_Thursday_April_11_2024_08_49_43_PM_4198183/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 10.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-3 y^{\prime}-10 y=8 x \mathrm{e}^{-2 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-3 y^{\prime}-10 y=0
$$

The characteristic equation is

$$
\lambda^{3}+2 \lambda^{2}-3 \lambda-10=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2-i \\
& \lambda_{3}=-2+i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(-2-i) x} c_{2}+\mathrm{e}^{(-2+i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{(-2-i) x} \\
& y_{3}=\mathrm{e}^{(-2+i) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-3 y^{\prime}-10 y=8 x \mathrm{e}^{-2 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 x \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{(-2-i) x}, \mathrm{e}^{(-2+i) x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-2 x}+A_{2} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-2 x}-4 A_{1} x \mathrm{e}^{-2 x}-4 A_{2} \mathrm{e}^{-2 x}=8 x \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(-2-i) x} c_{2}+\mathrm{e}^{(-2+i) x} c_{3}\right)+\left(-2 x \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(-2-i) x} c_{2}+\mathrm{e}^{(-2+i) x} c_{3}-2 x \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(-2-i) x} c_{2}+\mathrm{e}^{(-2+i) x} c_{3}-2 x \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x}}{2}
$$

Verified OK.

11.10.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-3 y^{\prime}-10 y=8 x \mathrm{e}^{-2 x}
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=8 x \mathrm{e}^{-2 x}-2 y_{3}(x)+3 y_{2}(x)+10 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=8 x \mathrm{e}^{-2 x}-2 y_{3}(x)+3 y_{2}(x)+10 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
10 & 3 & -2
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
8 x \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 8 x \mathrm{e}^{-2 x}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
10 & 3 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-2-\mathrm{I},\left[\begin{array}{c}
\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[-2+\mathrm{I},\left[\begin{array}{c}
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
-\frac{2}{5}-\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2-\mathrm{I},\left[\begin{array}{c}
\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-2-\mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-2 x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\left(\frac{3}{25}-\frac{4 \mathrm{I}}{25}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\left(-\frac{2}{5}+\frac{\mathrm{I}}{5}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{3 \cos (x)}{25}-\frac{4 \sin (x)}{25} \\
-\frac{2 \cos (x)}{5}+\frac{\sin (x)}{5} \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{3 \sin (x)}{25}-\frac{4 \cos (x)}{25} \\
\frac{2 \sin (x)}{5}+\frac{\cos (x)}{5} \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{4} & \mathrm{e}^{-2 x}\left(\frac{3 \cos (x)}{25}-\frac{4 \sin (x)}{25}\right) & \mathrm{e}^{-2 x}\left(-\frac{3 \sin (x)}{25}-\frac{4 \cos (x)}{25}\right) \\
\frac{\mathrm{e}^{2 x}}{2} & \mathrm{e}^{-2 x}\left(-\frac{2 \cos (x)}{5}+\frac{\sin (x)}{5}\right) & \mathrm{e}^{-2 x}\left(\frac{2 \sin (x)}{5}+\frac{\cos (x)}{5}\right) \\
\mathrm{e}^{2 x} & \cos (x) \mathrm{e}^{-2 x} & -\mathrm{e}^{-2 x} \sin (x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{4} & \mathrm{e}^{-2 x}\left(\frac{3 \cos (x)}{25}-\frac{4 \sin (x)}{25}\right) & \mathrm{e}^{-2 x}\left(-\frac{3 \sin (x)}{25}-\frac{4 \cos (x)}{25}\right) \\
\frac{\mathrm{e}^{2 x}}{2} & \mathrm{e}^{-2 x}\left(-\frac{2 \cos (x)}{5}+\frac{\sin (x)}{5}\right) & \mathrm{e}^{-2 x}\left(\frac{2 \sin (x)}{5}+\frac{\cos (x)}{5}\right) \\
\mathrm{e}^{2 x} & \cos (x) \mathrm{e}^{-2 x} & -\mathrm{e}^{-2 x} \sin (x)
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
\frac{1}{4} & \frac{3}{25} & -\frac{4}{25} \\
\frac{1}{2} & -\frac{2}{5} & \frac{1}{5} \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{2(6 \cos (x)+7 \sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{5 \mathrm{e}^{2 x}}{17} & \frac{(-4 \cos (x)+\sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{4 \mathrm{e}^{2 x}}{17} & \frac{(-\cos (x)-4 \sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{\mathrm{e}^{2}}{17} \\
\frac{10(-\cos (x)-4 \sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{10 \mathrm{e}^{2 x}}{17} & \frac{(9 \cos (x)+2 \sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{8 \mathrm{e}^{2 x}}{17} & \frac{(-2 \cos (x)+9 \sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{2 \mathrm{e}}{1} \\
\frac{10(-2 \cos (x)+9 \sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{20 \mathrm{e}^{2 x}}{17} & \frac{(-16 \cos (x)-13 \sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{16 \mathrm{e}^{2 x}}{17} & \frac{(13 \cos (x)-16 \sin (x)) \mathrm{e}^{-2 x}}{17}+\frac{4 \mathrm{e}}{1}
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix $\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 x}\left(\mathrm{e}^{4 x}+16 \cos (x)+64 \sin (x)-68 x-17\right)}{34} \\
\frac{\mathrm{e}^{-2 x}\left(\mathrm{e}^{4 x}+16 \cos (x)-72 \sin (x)+68 x-17\right)}{17} \\
\frac{2 \mathrm{e}^{-2 x}\left(\mathrm{e}^{4 x}-52 \cos (x)+64 \sin (x)-68 x+51\right)}{17}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 x}\left(\mathrm{e}^{4 x}+16 \cos (x)+64 \sin (x)-68 x-17\right)}{34} \\
\frac{\mathrm{e}^{-2 x}\left(\mathrm{e}^{4 x}+16 \cos (x)-72 \sin (x)+68 x-17\right)}{17} \\
\frac{2 \mathrm{e}^{-2 x}\left(\mathrm{e}^{4 x}-52 \cos (x)+64 \sin (x)-68 x+51\right)}{17}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(\left(204 c_{2}-272 c_{3}+800\right) \cos (x)+\left(-272 c_{2}-204 c_{3}+3200\right) \sin (x)-3400 x-850\right) \mathrm{e}^{-2 x}}{1700}+\frac{\left(425 c_{1}+50\right) \mathrm{e}^{2 x}}{1700}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$3)+2*diff (y(x),x$2)-3*diff (y(x),x)-10*y(x)=8*x*exp(-2*x),y(x), singsol=al
```

$$
y(x)=\frac{\left(2 c_{2} \cos (x)+2 c_{3} \sin (x)-4 x-1\right) \mathrm{e}^{-2 x}}{2}+\mathrm{e}^{2 x} c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 40
DSolve[y'''[x]+2*y''[x]-3*y'[x]-10*y[x]==8*x*Exp[-2*x],y[x],x,IncludeSingularSolutions $->$ Tr

$$
y(x) \rightarrow \frac{1}{2} e^{-2 x}\left(-4 x+2 c_{3} e^{4 x}+2 c_{2} \cos (x)+2 c_{1} \sin (x)-1\right)
$$

11.11 problem 11

11.11.1 Maple step by step solution . 2358

Internal problem ID [11785]
Internal file name [OUTPUT/11794_Thursday_April_11_2024_08_49_43_PM_74629381/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 11.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}+y^{\prime \prime}+3 y^{\prime}-5 y=5 \sin (2 x)+10 x^{2}+3 x+7
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+y^{\prime \prime}+3 y^{\prime}-5 y=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda^{2}+3 \lambda-5=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-1-2 i \\
& \lambda_{3}=-1+2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+\mathrm{e}^{(-1-2 i) x} c_{2}+\mathrm{e}^{(-1+2 i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{(-1-2 i) x} \\
& y_{3}=\mathrm{e}^{(-1+2 i) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+y^{\prime \prime}+3 y^{\prime}-5 y=5 \sin (2 x)+10 x^{2}+3 x+7
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \sin (2 x)+10 x^{2}+3 x+7
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{\cos (2 x), \sin (2 x)\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{(-1-2 i) x}, \mathrm{e}^{(-1+2 i) x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{1} \sin (2 x)-2 A_{2} \cos (2 x)-9 A_{1} \cos (2 x)-9 A_{2} \sin (2 x)+2 A_{5} \\
& \quad+3 A_{4}+6 A_{5} x-5 A_{3}-5 A_{4} x-5 A_{5} x^{2}=5 \sin (2 x)+10 x^{2}+3 x+7
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{2}{17}, A_{2}=-\frac{9}{17}, A_{3}=-4, A_{4}=-3, A_{5}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{2 \cos (2 x)}{17}-\frac{9 \sin (2 x)}{17}-4-3 x-2 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+\mathrm{e}^{(-1-2 i) x} c_{2}+\mathrm{e}^{(-1+2 i) x} c_{3}\right)+\left(\frac{2 \cos (2 x)}{17}-\frac{9 \sin (2 x)}{17}-4-3 x-2 x^{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{(-1-2 i) x} c_{2}+\mathrm{e}^{(-1+2 i) x} c_{3}+\frac{2 \cos (2 x)}{17}-\frac{9 \sin (2 x)}{17}-4-3 x-2 x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{(-1-2 i) x} c_{2}+\mathrm{e}^{(-1+2 i) x} c_{3}+\frac{2 \cos (2 x)}{17}-\frac{9 \sin (2 x)}{17}-4-3 x-2 x^{2}
$$

Verified OK.

11.11.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime \prime}+3 y^{\prime}-5 y=5 \sin (2 x)+10 x^{2}+3 x+7
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=10 x^{2}-y_{3}(x)-3 y_{2}(x)+5 y_{1}(x)+5 \sin (2 x)+3 x+7$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=10 x^{2}-y_{3}(x)-3 y_{2}(x)+5 y_{1}(x)+5 \sin (2 x)+3 x+7\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
5 & -3 & -1
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
5 \sin (2 x)+10 x^{2}+3 x+7
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 5 \sin (2 x)+10 x^{2}+3 x+7\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
5 & -3 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-1-2 \mathrm{I},\left[\begin{array}{c}
-\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[-1+2 \mathrm{I},\left[\begin{array}{c}
-\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}-\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-2 \mathrm{I},\left[\begin{array}{c}
-\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{(-1-2 \mathrm{I}) x} \cdot\left[\begin{array}{c}
-\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
-\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos
$\mathrm{e}^{-x} \cdot(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}-\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\ -\frac{1}{5}+\frac{2 \mathrm{I}}{5} \\ 1\end{array}\right]$
- Simplify expression
$\mathrm{e}^{-x} \cdot\left[\begin{array}{c}\left(-\frac{3}{25}-\frac{4 \mathrm{I}}{25}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\ \left(-\frac{1}{5}+\frac{2 \mathrm{I}}{5}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\ \cos (2 x)-\mathrm{I} \sin (2 x)\end{array}\right]$
- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{3 \cos (2 x)}{25}-\frac{4 \sin (2 x)}{25} \\
-\frac{\cos (2 x)}{5}+\frac{2 \sin (2 x)}{5} \\
\cos (2 x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{3 \sin (2 x)}{25}-\frac{4 \cos (2 x)}{25} \\
\frac{\sin (2 x)}{5}+\frac{2 \cos (2 x)}{5} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-x}\left(-\frac{3 \cos (2 x)}{25}-\frac{4 \sin (2 x)}{25}\right) & \mathrm{e}^{-x}\left(\frac{3 \sin (2 x)}{25}-\frac{4 \cos (2 x)}{25}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-x}\left(-\frac{\cos (2 x)}{5}+\frac{2 \sin (2 x)}{5}\right) & \mathrm{e}^{-x}\left(\frac{\sin (2 x)}{5}+\frac{2 \cos (2 x)}{5}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-x} \cos (2 x) & -\mathrm{e}^{-x} \sin (2 x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-x}\left(-\frac{3 \cos (2 x)}{25}-\frac{4 \sin (2 x)}{25}\right) & \mathrm{e}^{-x}\left(\frac{3 \sin (2 x)}{25}-\frac{4 \cos (2 x)}{25}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-x}\left(-\frac{\cos (2 x)}{5}+\frac{2 \sin (2 x)}{5}\right) & \mathrm{e}^{-x}\left(\frac{\sin (2 x)}{5}+\frac{2 \cos (2 x)}{5}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-x} \cos (2 x) & -\mathrm{e}^{-x} \sin (2 x)
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
1 & -\frac{3}{25} & -\frac{4}{25} \\
1 & -\frac{1}{5} & \frac{2}{5} \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{(-\sin (2 x)+3 \cos (2 x)) \mathrm{e}^{-x}}{8}+\frac{5 \mathrm{e}^{x}}{8} & \frac{(\sin (2 x)-\cos (2 x)) \mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4} & \frac{(-\sin (2 x)-\cos (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8} \\
\frac{(-5 \sin (2 x)-5 \cos (2 x)) \mathrm{e}^{-x}}{8}+\frac{5 \mathrm{e}^{x}}{8} & \frac{(\sin (2 x)+3 \cos (2 x)) \mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4} & \frac{(3 \sin (2 x)-\cos (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8} \\
\frac{5(3 \sin (2 x)-\cos (2 x)) \mathrm{e}^{-x}}{8}+\frac{5 \mathrm{e}^{x}}{8} & \frac{(-\cos (2 x)-7 \sin (2 x)) \mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4} & \frac{(7 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\left(-4 \mathrm{e}^{-x}+4\right) \cos (2 x)}{34}-2 x^{2}-\frac{\mathrm{e}^{-x} \sin (2 x)}{34}-3 x+4 \mathrm{e}^{x}-\frac{9 \sin (2 x)}{17}-4 \\
\frac{\left(2 \mathrm{e}^{-x}-36\right) \cos (2 x)}{34}+\frac{9 \mathrm{e}^{-x} \sin (2 x)}{34}-4 x+4 \mathrm{e}^{x}-\frac{4 \sin (2 x)}{17}-3 \\
-4+\frac{8\left(-1+\mathrm{e}^{-x}\right) \cos (2 x)}{17}-\frac{13 \mathrm{e}^{-x} \sin (2 x)}{34}+4 \mathrm{e}^{x}+\frac{36 \sin (2 x)}{17}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{\left(-4 \mathrm{e}^{-x}+4\right) \cos (2 x)}{34}-2 x^{2}-\frac{\mathrm{e}^{-x} \sin (2 x)}{34}-3 x+4 \mathrm{e}^{x}-\frac{9 \sin (2 x)}{17}- \\
\frac{\left(2 \mathrm{e}^{-x}-36\right) \cos (2 x)}{34}+\frac{9 \mathrm{e}^{-x} \sin (2 x)}{34}-4 x+4 \mathrm{e}^{x}-\frac{4 \sin (2 x)}{17}-3 \\
-4+\frac{8\left(-1+\mathrm{e}^{-x}\right) \cos (2 x)}{17}-\frac{13 \mathrm{e}^{-x} \sin (2 x)}{34}+4 \mathrm{e}^{x}+\frac{36 \sin (2 x)}{17}
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=-4+\frac{\left(\left(-50-51 c_{2}-68 c_{3}\right) \cos (2 x)-68 \sin (2 x)\left(c_{2}-\frac{3 c_{3}}{4}+\frac{25}{136}\right)\right) \mathrm{e}^{-x}}{425}+\frac{2 \cos (2 x)}{17}-\frac{9 \sin (2 x)}{17}+\left(c_{1}+4\right) \mathrm{e}^{x}-2 x^{2}-
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 49
dsolve (diff $(y(x), x \$ 3)+\operatorname{diff}(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)-5 * y(x)=5 * \sin (2 * x)+10 * x^{\wedge} 2+3 * x+7, y(x)$, \sin

$$
y(x)=\frac{\left(17 c_{3} \mathrm{e}^{-x}-9\right) \sin (2 x)}{17}+c_{2} \mathrm{e}^{-x} \cos (2 x)-2 x^{2}+c_{1} \mathrm{e}^{x}-3 x+\frac{2 \cos (2 x)}{17}-4
$$

\checkmark Solution by Mathematica
Time used: 0.419 (sec). Leaf size: 55
DSolve $[y$ ' ' ' $[x]+y$ ' ' $[x]+3 * y$ ' $[x]-5 * y[x]==5 * \operatorname{Sin}[2 * x]+10 * x \wedge 2+3 * x+7, y[x], x$, IncludeSingularSolution

$$
y(x) \rightarrow-2 x^{2}-3 x+c_{3} e^{x}+\left(\frac{2}{17}+c_{2} e^{-x}\right) \cos (2 x)+\left(-\frac{9}{17}+c_{1} e^{-x}\right) \sin (2 x)-4
$$

11.12 problem 12

11.12.1 Maple step by step solution

Internal problem ID [11786]
Internal file name [OUTPUT/11795_Thursday_April_11_2024_08_49_44_PM_54708509/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 12.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
4 y^{\prime \prime \prime}-4 y^{\prime \prime}-5 y^{\prime}+3 y=3 x^{3}-8 x
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
4 y^{\prime \prime \prime}-4 y^{\prime \prime}-5 y^{\prime}+3 y=0
$$

The characteristic equation is

$$
4 \lambda^{3}-4 \lambda^{2}-5 \lambda+3=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =\frac{3}{2} \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\frac{x}{2}} c_{2}+c_{3} \mathrm{e}^{\frac{3 x}{2}}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{\frac{x}{2}} \\
& y_{3}=\mathrm{e}^{\frac{3 x}{2}}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
4 y^{\prime \prime \prime}-4 y^{\prime \prime}-5 y^{\prime}+3 y=3 x^{3}-8 x
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{3}+x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}, x^{3}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x}, \mathrm{e}^{\frac{x}{2}}, \mathrm{e}^{\frac{3 x}{2}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{4} x^{3}+A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 3 A_{4} x^{3}+3 A_{3} x^{2}-15 x^{2} A_{4}+3 A_{2} x-10 x A_{3}-24 x A_{4}+3 A_{1}-5 A_{2}-8 A_{3}+24 A_{4} \\
& \quad=3 x^{3}-8 x
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=42, A_{2}=22, A_{3}=5, A_{4}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x^{3}+5 x^{2}+22 x+42
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\frac{x}{2}} c_{2}+c_{3} \mathrm{e}^{\frac{3 x}{2}}\right)+\left(x^{3}+5 x^{2}+22 x+42\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\frac{x}{2}} c_{2}+c_{3} \mathrm{e}^{\frac{3 x}{2}}+x^{3}+5 x^{2}+22 x+42 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\frac{x}{2}} c_{2}+c_{3} \mathrm{e}^{\frac{3 x}{2}}+x^{3}+5 x^{2}+22 x+42
$$

Verified OK.

11.12.1 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime \prime}-4 y^{\prime \prime}-5 y^{\prime}+3 y=3 x^{3}-8 x
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=y^{\prime \prime}+\frac{5 y^{\prime}}{4}-\frac{3 y}{4}+\frac{3 x^{3}}{4}-2 x
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}-y^{\prime \prime}-\frac{5 y^{\prime}}{4}+\frac{3 y}{4}=\frac{3}{4} x^{3}-2 x$ Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=\frac{3 x^{3}}{4}-2 x+y_{3}(x)+\frac{5 y_{2}(x)}{4}-\frac{3 y_{1}(x)}{4}$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\frac{3 x^{3}}{4}-2 x+y_{3}(x)+\frac{5 y_{2}(x)}{4}-\frac{3 y_{1}(x)}{4}\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{3}{4} & \frac{5}{4} & 1
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
\frac{3}{4} x^{3}-2 x
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
\frac{3}{4} x^{3}-2 x
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\frac{3}{4} & \frac{5}{4} & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[\frac{1}{2},\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]\right],\left[\frac{3}{2},\left[\begin{array}{c}
\frac{4}{9} \\
\frac{2}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[\frac{1}{2},\left[\begin{array}{c}4 \\ 2 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[\frac{3}{2},\left[\begin{array}{c}\frac{4}{9} \\ \frac{2}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{\frac{3 x}{2}} \cdot\left[\begin{array}{c}
\frac{4}{9} \\
\frac{2}{3} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & 4 \mathrm{e}^{\frac{x}{2}} & \frac{4 \mathrm{e}^{\frac{3 x}{2}}}{9} \\
-\mathrm{e}^{-x} & 2 \mathrm{e}^{\frac{x}{2}} & \frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3} \\
\mathrm{e}^{-x} & \mathrm{e}^{\frac{x}{2}} & \mathrm{e}^{\frac{3 x}{2}}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & 4 \mathrm{e}^{\frac{x}{2}} & \frac{4 \mathrm{e}^{\frac{3 x}{2}}}{9} \\
-\mathrm{e}^{-x} & 2 \mathrm{e}^{\frac{x}{2}} & \frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3} \\
\mathrm{e}^{-x} & \mathrm{e}^{\frac{x}{2}} & \mathrm{e}^{\frac{3 x}{2}}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 4 & \frac{4}{9} \\
-1 & 2 & \frac{2}{3} \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
-\frac{\left(\mathrm{e}^{\frac{5 x}{2}}-5 \mathrm{e}^{\frac{3 x}{2}}-1\right) \mathrm{e}^{-x}}{5} & \frac{\left(3 \mathrm{e}^{\frac{5 x}{2}}+5 \mathrm{e}^{\frac{3 x}{2}}-8\right) \mathrm{e}^{-x}}{15} & \frac{2\left(3 \mathrm{e}^{\frac{5 x}{2}}-5 \mathrm{e}^{\frac{3 x}{2}}+2\right) \mathrm{e}^{-x}}{15} \\
-\frac{\left(3 \mathrm{e}^{\frac{5 x}{2}}-5 \mathrm{e}^{\frac{3 x}{2}}+2\right) \mathrm{e}^{-x}}{10} & \frac{\left(9 \mathrm{e}^{\frac{5 x}{2}}+5 \mathrm{e}^{\frac{3 x}{2}}+16\right) \mathrm{e}^{-x}}{30} & \frac{\left(9 \mathrm{e}^{\frac{5 x}{2}}-5 \mathrm{e}^{\frac{3 x}{2}}-4\right) \mathrm{e}^{-x}}{15} \\
-\frac{\left(9 \mathrm{e}^{\frac{5 x}{2}}-5 \mathrm{e}^{\frac{3 x}{2}}-4\right) \mathrm{e}^{-x}}{20} & \frac{\left(27 \mathrm{e}^{\frac{5 x}{2}}+5 \mathrm{e}^{\frac{3 x}{2}}-32\right) \mathrm{e}^{-x}}{60} & \frac{\left(27 \mathrm{e}^{\frac{5 x}{2}}-5 \mathrm{e}^{\frac{3 x}{2}}+8\right) \mathrm{e}^{-x}}{30}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\mathrm{e}^{-x}\left(-\frac{128 \mathrm{e}^{\frac{3 x}{2}}}{3}+\frac{2}{3}+\left(x^{3}+5 x^{2}+22 x+42\right) \mathrm{e}^{x}\right) \\
\frac{\left(9 x^{2} \mathrm{e}^{x}-64 \mathrm{e}^{\frac{3 x}{2}}+30 x \mathrm{e}^{x}+66 \mathrm{e}^{x}-2\right) \mathrm{e}^{-x}}{3} \\
\frac{2\left(-16 \mathrm{e}^{\frac{3 x}{2}}+9 x \mathrm{e}^{x}+15 \mathrm{e}^{x}+1\right) \mathrm{e}^{-x}}{3}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\mathrm{e}^{-x}\left(-\frac{128 \mathrm{e}^{\frac{3 x}{2}}}{3}+\frac{2}{3}+\left(x^{3}+5 x^{2}+22 x+42\right) \mathrm{e}^{x}\right) \\
\frac{\left(9 x^{2} \mathrm{e}^{x}-64 \mathrm{e}^{\frac{3 x}{2}}+30 x \mathrm{e}^{x}+66 \mathrm{e}^{x}-2\right) \mathrm{e}^{-x}}{3} \\
\frac{2\left(-16 \mathrm{e}^{\frac{3 x}{2}}+9 x \mathrm{e}^{x}+15 \mathrm{e}^{x}+1\right) \mathrm{e}^{-x}}{3}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\mathrm{e}^{-x}\left(\frac{2}{3}+4\left(-\frac{32}{3}+c_{2}\right) \mathrm{e}^{\frac{3 x}{2}}+\frac{4 c_{3} \mathrm{e}^{\frac{5 x}{2}}}{9}+\left(x^{3}+5 x^{2}+22 x+42\right) \mathrm{e}^{x}+c_{1}\right)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve(4*diff (y(x),x$3)-4*diff(y(x),x$2)-5*diff(y(x),x)+3*y(x)=3*x^3-8*x,y(x), singsol=all)
```

$$
y(x)=\left(c_{2} \mathrm{e}^{\frac{3 x}{2}}+c_{3} \mathrm{e}^{\frac{5 x}{2}}+\left(x^{3}+5 x^{2}+22 x+42\right) \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 46

```
DSolve[4*y'''[x]-4*y''[x]-5*y'[x]+3*y[x]==3*x^3-8*x,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{3}+5 x^{2}+22 x+c_{1} e^{x / 2}+c_{2} e^{3 x / 2}+c_{3} e^{-x}+42
$$

11.13 problem 13

11.13.1 Solving as second order linear constant coeff ode 2372
11.13.2 Solving using Kovacic algorithm 2375
11.13.3 Maple step by step solution . 2382

Internal problem ID [11787]
Internal file name [OUTPUT/11796_Thursday_April_11_2024_08_49_44_PM_37991172/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}-6 y=10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11
$$

11.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=-6, f(x)=10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{\mathrm{e}^{3 x}\right\},\{1, x\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x}, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{\mathrm{e}^{2 x} x\right\},\left\{\mathrm{e}^{3 x}\right\},\{1, x\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} x+A_{2} \mathrm{e}^{3 x}+A_{3}+A_{4} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \mathrm{e}^{2 x}+6 A_{2} \mathrm{e}^{3 x}+A_{4}-6 A_{3}-6 A_{4} x=10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=-3, A_{3}=2, A_{4}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{2 x} x-3 \mathrm{e}^{3 x}+2+x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}\right)+\left(2 \mathrm{e}^{2 x} x-3 \mathrm{e}^{3 x}+2+x\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}+2 \mathrm{e}^{2 x} x-3 \mathrm{e}^{3 x}+2+x \tag{1}
\end{equation*}
$$

Figure 432: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}+2 \mathrm{e}^{2 x} x-3 \mathrm{e}^{3 x}+2+x
$$

Verified OK.

11.13.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 365: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{5}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & \frac{\mathrm{e}^{2 x}}{5} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{5}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & \frac{\mathrm{e}^{2 x}}{5} \\
-3 \mathrm{e}^{-3 x} & \frac{2 \mathrm{e}^{2 x}}{5}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-3 x}\right)\left(\frac{2 \mathrm{e}^{2 x}}{5}\right)-\left(\frac{\mathrm{e}^{2 x}}{5}\right)\left(-3 \mathrm{e}^{-3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-3 x} \mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x}\left(10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11\right)}{5}}{\mathrm{e}^{-x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11\right) \mathrm{e}^{3 x}}{5} d x
$$

Hence

$$
u_{1}=\frac{3 \mathrm{e}^{3 x}}{5}-\frac{2 \mathrm{e}^{5 x}}{5}+\frac{3 \mathrm{e}^{6 x}}{5}+\frac{2 x \mathrm{e}^{3 x}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-3 x}\left(10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11\right)}{\mathrm{e}^{-x}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11\right) \mathrm{e}^{-2 x} d x
$$

Hence

$$
u_{2}=10 x+7 \mathrm{e}^{-2 x}+3 x \mathrm{e}^{-2 x}-18 \mathrm{e}^{x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(3+2 x) \mathrm{e}^{3 x}}{5}-\frac{2 \mathrm{e}^{5 x}}{5}+\frac{3 \mathrm{e}^{6 x}}{5} \\
& u_{2}=\left(-18 \mathrm{e}^{3 x}+10 \mathrm{e}^{2 x} x+3 x+7\right) \mathrm{e}^{-2 x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{(3+2 x) \mathrm{e}^{3 x}}{5}-\frac{2 \mathrm{e}^{5 x}}{5}+\frac{3 \mathrm{e}^{6 x}}{5}\right) \mathrm{e}^{-3 x}+\frac{\left(-18 \mathrm{e}^{3 x}+10 \mathrm{e}^{2 x} x+3 x+7\right) \mathrm{e}^{-2 x} \mathrm{e}^{2 x}}{5}
$$

Which simplifies to

$$
y_{p}(x)=2-\frac{2 \mathrm{e}^{2 x}}{5}-3 \mathrm{e}^{3 x}+x+2 \mathrm{e}^{2 x} x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}\right)+\left(2-\frac{2 \mathrm{e}^{2 x}}{5}-3 \mathrm{e}^{3 x}+x+2 \mathrm{e}^{2 x} x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}+2-\frac{2 \mathrm{e}^{2 x}}{5}-3 \mathrm{e}^{3 x}+x+2 \mathrm{e}^{2 x} x \tag{1}
\end{equation*}
$$

Figure 433: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}+2-\frac{2 \mathrm{e}^{2 x}}{5}-3 \mathrm{e}^{3 x}+x+2 \mathrm{e}^{2 x} x
$$

Verified OK.

11.13.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-6 y=10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+r-6=0$
- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-\right.
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 x} & \mathrm{e}^{2 x} \\ -3 \mathrm{e}^{-3 x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=5 \mathrm{e}^{-x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{5 x}\left(\int\left(10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11\right) \mathrm{e}^{-2 x} d x\right)-\left(\int\left(10 \mathrm{e}^{2 x}-18 \mathrm{e}^{3 x}-6 x-11\right) \mathrm{e}^{3 x} d x\right)\right) \mathrm{e}^{-3 x}}{5}
$$

- Compute integrals

$$
y_{p}(x)=2-\frac{2 \mathrm{e}^{2 x}}{5}-3 \mathrm{e}^{3 x}+x+2 \mathrm{e}^{2 x} x
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}+2-\frac{2 \mathrm{e}^{2 x}}{5}-3 \mathrm{e}^{3 x}+x+2 \mathrm{e}^{2 x} x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve(diff(y(x),x$2)+diff (y(x),x)-6*y(x)=10*exp(2*x)-18*exp(3*x) -6*x-11,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-3 x}\left(\left(2 x+c_{1}-\frac{2}{5}\right) \mathrm{e}^{5 x}+(x+2) \mathrm{e}^{3 x}+c_{2}-3 \mathrm{e}^{6 x}\right)
$$

Solution by Mathematica

Time used: 0.299 (sec). Leaf size: 38
DSolve $\left[y^{\prime \prime}[x]+y\right.$ ' $[x]-6 * y[x]==10 * \operatorname{Exp}[2 * x]-18 * \operatorname{Exp}[3 * x]-6 * x-11, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow x-3 e^{3 x}+c_{1} e^{-3 x}+e^{2 x}\left(2 x-\frac{2}{5}+c_{2}\right)+2
$$

11.14 problem 14

11.14.1 Solving as second order linear constant coeff ode 2384
11.14.2 Solving using Kovacic algorithm 2388
11.14.3 Maple step by step solution . 2394

Internal problem ID [11788]
Internal file name [OUTPUT/11797_Thursday_April_11_2024_08_49_45_PM_81940993/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}-2 y=6 \mathrm{e}^{-2 x}+3 \mathrm{e}^{x}-4 x^{2}
$$

11.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=-2, f(x)=\left(-4 x^{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+6\right) \mathrm{e}^{-2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-2)} \\
& =-\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\left(-4 x^{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+6\right) \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{\mathrm{e}^{-2 x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-2 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\},\left\{\mathrm{e}^{-2 x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

Since $\mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\},\left\{x \mathrm{e}^{-2 x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} x \mathrm{e}^{-2 x}+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
$3 A_{1} \mathrm{e}^{x}-3 A_{2} \mathrm{e}^{-2 x}+2 A_{5}+A_{4}+2 A_{5} x-2 A_{3}-2 A_{4} x-2 A_{5} x^{2}=\left(-4 x^{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+6\right) \mathrm{e}^{-2 x}$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-2, A_{3}=3, A_{4}=2, A_{5}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}-2 x \mathrm{e}^{-2 x}+3+2 x+2 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-2 x}\right)+\left(x \mathrm{e}^{x}-2 x \mathrm{e}^{-2 x}+3+2 x+2 x^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-2 x}+x \mathrm{e}^{x}-2 x \mathrm{e}^{-2 x}+3+2 x+2 x^{2} \tag{1}
\end{equation*}
$$

Figure 434: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-2 x}+x \mathrm{e}^{x}-2 x \mathrm{e}^{-2 x}+3+2 x+2 x^{2}
$$

Verified OK.

11.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 367: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{x}}{3} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{x}}{3} \\
-2 \mathrm{e}^{-2 x} & \frac{\mathrm{e}^{x}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\frac{\mathrm{e}^{x}}{3}\right)-\left(\frac{\mathrm{e}^{x}}{3}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{x}\left(-4 x^{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+6\right) \mathrm{e}^{-2 x}}{3}}{\mathrm{e}^{-x}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{4 x^{2} \mathrm{e}^{2 x}}{3}+\mathrm{e}^{3 x}+2\right) d x
$$

Hence

$$
u_{1}=-2 x+\frac{2 x^{2} \mathrm{e}^{2 x}}{3}-\frac{2 \mathrm{e}^{2 x} x}{3}+\frac{\mathrm{e}^{2 x}}{3}-\frac{\mathrm{e}^{3 x}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-4 x}\left(-4 x^{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+6\right)}{\mathrm{e}^{-x}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-3 x}\left(-4 x^{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+6\right) d x
$$

Hence

$$
u_{2}=3 x-2 \mathrm{e}^{-3 x}+4 x^{2} \mathrm{e}^{-x}+8 x \mathrm{e}^{-x}+8 \mathrm{e}^{-x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{3}-2 x-\frac{\mathrm{e}^{3 x}}{3} \\
& u_{2}=\left(4 x^{2}+8 x+8\right) \mathrm{e}^{-x}+3 x-2 \mathrm{e}^{-3 x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=\left(\frac{\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{3}-2 x-\frac{\mathrm{e}^{3 x}}{3}\right) \mathrm{e}^{-2 x}+\frac{\left(\left(4 x^{2}+8 x+8\right) \mathrm{e}^{-x}+3 x-2 \mathrm{e}^{-3 x}\right) \mathrm{e}^{x}}{3}$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-2 x}\left(\left(2 x^{2}+2 x+3\right) \mathrm{e}^{2 x}+x \mathrm{e}^{3 x}-2 x-\frac{\mathrm{e}^{3 x}}{3}-\frac{2}{3}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}\right)+\left(\mathrm{e}^{-2 x}\left(\left(2 x^{2}+2 x+3\right) \mathrm{e}^{2 x}+x \mathrm{e}^{3 x}-2 x-\frac{\mathrm{e}^{3 x}}{3}-\frac{2}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}+\mathrm{e}^{-2 x}\left(\left(2 x^{2}+2 x+3\right) \mathrm{e}^{2 x}+x \mathrm{e}^{3 x}-2 x-\frac{\mathrm{e}^{3 x}}{3}-\frac{2}{3}\right) \tag{1}
\end{equation*}
$$

Figure 435: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}+\mathrm{e}^{-2 x}\left(\left(2 x^{2}+2 x+3\right) \mathrm{e}^{2 x}+x \mathrm{e}^{3 x}-2 x-\frac{\mathrm{e}^{3 x}}{3}-\frac{2}{3}\right)
$$

Verified OK.

11.14.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-2 y=\left(-4 x^{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+6\right) \mathrm{e}^{-2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-4 \mathrm{e}^{2 x} \mathrm{e}^{-2 x} x^{2}+3 \mathrm{e}^{3 x} \mathrm{e}^{-2 x}-y^{\prime}+2 y+6 \mathrm{e}^{-2 x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime}-2 y=-\left(4 x^{2} \mathrm{e}^{2 x}-3 \mathrm{e}^{3 x}-6\right) \mathrm{e}^{-2 x}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,1)
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-\left(4 x^{2} \mathrm{e}^{2 x}-3 \mathrm{e}^{3 x}-6\right) \epsilon\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\left(\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-3 x}\left(4 x^{2} \mathrm{e}^{2 x}-3 \mathrm{e}^{3 x}-6\right) d x\right)+\int\left(-4 x^{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}+6\right) d x\right) \mathrm{e}^{-2 x}}{3}
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{-2 x}\left(\left(2 x^{2}+2 x+3\right) \mathrm{e}^{2 x}+x \mathrm{e}^{3 x}-2 x-\frac{\mathrm{e}^{3 x}}{3}-\frac{2}{3}\right)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-2 x}\left(\left(2 x^{2}+2 x+3\right) \mathrm{e}^{2 x}+x \mathrm{e}^{3 x}-2 x-\frac{\mathrm{e}^{3 x}}{3}-\frac{2}{3}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve(diff (y(x),x$2)+\operatorname{diff}(y(x),x)-2*y(x)=6*exp(-2*x)+3*exp(x)-4*x^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x}\left(\left(2 x^{2}+2 x+3\right) \mathrm{e}^{2 x}+\left(c_{2}+x-\frac{1}{3}\right) \mathrm{e}^{3 x}-2 x+c_{1}-\frac{2}{3}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.163 (sec). Leaf size: 54
DSolve $\left[y\right.$ '' $[x]+y$ ' $[x]-2 * y[x]==6 * \operatorname{Exp}[-2 * x]+3 * \operatorname{Exp}[x]-4 * x^{\wedge} 2, y[x], x$, IncludeSingularSolutions $\rightarrow T r$

$$
y(x) \rightarrow \frac{1}{3} e^{-2 x}\left(e^{2 x}\left(6 x^{2}+6 x+9\right)-6 x+e^{3 x}\left(3 x-1+3 c_{2}\right)-2+3 c_{1}\right)
$$

11.15 problem 15

11.15.1 Maple step by step solution 2399

Internal problem ID [11789]
Internal file name [OUTPUT/11798_Thursday_April_11_2024_08_49_45_PM_5507649/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 15.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y=4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{2 x} x
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y=4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{\mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{x \mathrm{e}^{-x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2} x \mathrm{e}^{-x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+9 A_{2} \mathrm{e}^{-x}=4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{x}-2 x \mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{3}\right)+\left(2 \mathrm{e}^{x}-2 x \mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{-x}+2 \mathrm{e}^{x}-2 x \mathrm{e}^{-x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{-x}+2 \mathrm{e}^{x}-2 x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{-x}+2 \mathrm{e}^{x}-2 x \mathrm{e}^{-x}
$$

Verified OK.

11.15.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y=4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}+3 y_{3}(x)-4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}+3 y_{3}(x)-4 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-4 & 0 & 3
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 4 \mathrm{e}^{x}-18 \mathrm{e}^{-x}\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 0 & 3\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 2

$$
\vec{y}_{2}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=2$ is the eigenvalue, an $\vec{y}_{3}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- Simplify equation

$$
\lambda \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{3}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 2

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-4 & 0 & 3
\end{array}\right]-2 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-\frac{1}{8} \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 2
$\vec{y}_{3}(x)=\mathrm{e}^{2 x} \cdot\left(x \cdot\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]+\left[\begin{array}{c}-\frac{1}{8} \\ 0 \\ 0\end{array}\right]\right)$
- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst
$\phi(x)=\left[\begin{array}{ccc}\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{4} & \mathrm{e}^{2 x}\left(\frac{x}{4}-\frac{1}{8}\right) \\ -\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{2 x} x}{2} \\ \mathrm{e}^{-x} & \mathrm{e}^{2 x} & \mathrm{e}^{2 x} x\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{4} & \mathrm{e}^{2 x}\left(\frac{x}{4}-\frac{1}{8}\right) \\
-\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{2 x} x}{2} \\
\mathrm{e}^{-x} & \mathrm{e}^{2 x} & \mathrm{e}^{2 x} x
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
1 & \frac{1}{4} & -\frac{1}{8} \\
-1 & \frac{1}{2} & 0 \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
(-2 x+1) \mathrm{e}^{2 x} & -\frac{2 \mathrm{e}^{-x}}{3}+\frac{2 \mathrm{e}^{2 x}}{3}-\mathrm{e}^{2 x} x & \frac{\mathrm{e}^{-x}}{3}-\frac{\mathrm{e}^{2 x}}{3}+\mathrm{e}^{2 x} x \\
-4 \mathrm{e}^{2 x} x & \frac{2 \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}-2 \mathrm{e}^{2 x} x & -\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{3}+2 \mathrm{e}^{2 x} x \\
-8 \mathrm{e}^{2 x} x & -\frac{2 \mathrm{e}^{-x}}{3}+\frac{2 \mathrm{e}^{2 x}}{3}-4 \mathrm{e}^{2 x} x & \frac{\mathrm{e}^{-x}}{3}+\frac{2 \mathrm{e}^{2 x}}{3}+4 \mathrm{e}^{2 x} x
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution $\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$
$\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{(-18 x-14) \mathrm{e}^{-x}}{3}+\frac{(-6 x-4) \mathrm{e}^{2 x}}{3}+6 \mathrm{e}^{x} \\
\frac{(18 x-4) \mathrm{e}^{-x}}{3}+\frac{(-12 x-14) \mathrm{e}^{2 x}}{3}+6 \mathrm{e}^{x} \\
\frac{(-18 x-14) \mathrm{e}^{-x}}{3}+\frac{(-24 x-28) \mathrm{e}^{2 x}}{3}+14 \mathrm{e}^{x}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{(-18 x-14) \mathrm{e}^{-x}}{3}+\frac{(-6 x-4) \mathrm{e}^{2 x}}{3}+6 \mathrm{e}^{x} \\
\frac{(18 x-4) \mathrm{e}^{-x}}{3}+\frac{(-12 x-14) \mathrm{e}^{2 x}}{3}+6 \mathrm{e}^{x} \\
\frac{(-18 x-14) \mathrm{e}^{-x}}{3}+\frac{(-24 x-28) \mathrm{e}^{2 x}}{3}+14 \mathrm{e}^{x}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(-32+6\left(-8+c_{3}\right) x+6 c_{2}-3 c_{3}\right) \mathrm{e}^{2 x}}{24}+\frac{\left(-14-18 x+3 c_{1}\right) \mathrm{e}^{-x}}{3}+6 \mathrm{e}^{x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
dsolve (diff $(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)+4 * y(x)=4 * \exp (x)-18 * \exp (-x), y(x)$, singsol=all)

$$
y(x)=\frac{\left(-6 x+3 c_{1}-4\right) \mathrm{e}^{-x}}{3}+\left(c_{3} x+c_{2}\right) \mathrm{e}^{2 x}+2 \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 44
DSolve $[y$ ''' $[x]-3 * y$ '' $[x]+4 * y[x]==4 * \operatorname{Exp}[x]-18 * \operatorname{Exp}[-x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{1}{3} e^{-x}\left(-6 x+6 e^{2 x}+3 e^{3 x}\left(c_{3} x+c_{2}\right)-4+3 c_{1}\right)
$$

11.16 problem 16

11.16.1 Maple step by step solution . 2408

Internal problem ID [11790]
Internal file name [OUTPUT/11799_Thursday_April_11_2024_08_49_46_PM_29813267/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 16.
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0
$$

The characteristic equation is

$$
\lambda^{3}-2 \lambda^{2}-\lambda+2=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{\mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x} x\right\},\left\{\mathrm{e}^{3 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} x+A_{2} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{2 x}+8 A_{2} \mathrm{e}^{3 x}=9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{2 x} x-\mathrm{e}^{3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}\right)+\left(3 \mathrm{e}^{2 x} x-\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+3 \mathrm{e}^{2 x} x-\mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+3 \mathrm{e}^{2 x} x-\mathrm{e}^{3 x}
$$

Verified OK.

11.16.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}+2 y_{3}(x)+y_{2}(x)-2 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}+2 y_{3}(x)+y_{2}(x)-2 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 9 \mathrm{e}^{2 x}-8 \mathrm{e}^{3 x}\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 2\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 1 & \frac{1}{4} \\
-1 & 1 & \frac{1}{2} \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-x}}{3}+\mathrm{e}^{x}-\frac{\mathrm{e}^{2 x}}{3} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{6}-\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{2 x}}{3} \\
-\frac{\mathrm{e}^{-x}}{3}+\mathrm{e}^{x}-\frac{2 \mathrm{e}^{2 x}}{3} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{6}-\frac{\mathrm{e}^{x}}{2}+\frac{2 \mathrm{e}^{2 x}}{3} \\
\frac{\mathrm{e}^{-x}}{3}+\mathrm{e}^{x}-\frac{4 \mathrm{e}^{2 x}}{3} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{6}-\frac{\mathrm{e}^{x}}{2}+\frac{4 \mathrm{e}^{2 x}}{3}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{4 \mathrm{e}^{2 x}}{3}+3 \mathrm{e}^{2 x} x-\frac{\mathrm{e}^{-x}}{6}+\frac{5 \mathrm{e}^{x}}{2}-\mathrm{e}^{3 x} \\
\frac{\mathrm{e}^{2 x}}{3}+6 \mathrm{e}^{2 x} x+\frac{\mathrm{e}^{-x}}{6}+\frac{5 \mathrm{e}^{x}}{2}-3 \mathrm{e}^{3 x} \\
\frac{20 \mathrm{e}^{2 x}}{3}+12 \mathrm{e}^{2 x} x-\frac{\mathrm{e}^{-x}}{6}+\frac{5 \mathrm{e}^{x}}{2}-9 \mathrm{e}^{3 x}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{4 \mathrm{e}^{2 x}}{3}+3 \mathrm{e}^{2 x} x-\frac{\mathrm{e}^{-x}}{6}+\frac{5 \mathrm{e}^{x}}{2}-\mathrm{e}^{3 x} \\
\frac{\mathrm{e}^{2 x}}{3}+6 \mathrm{e}^{2 x} x+\frac{\mathrm{e}^{-x}}{6}+\frac{5 \mathrm{e}^{x}}{2}-3 \mathrm{e}^{3 x} \\
\frac{20 \mathrm{e}^{2 x}}{3}+12 \mathrm{e}^{2 x} x-\frac{\mathrm{e}^{-x}}{6}+\frac{5 \mathrm{e}^{x}}{2}-9 \mathrm{e}^{3 x}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(36 x+3 c_{3}-16\right) \mathrm{e}^{2 x}}{12}+\frac{\left(-1+6 c_{1}\right) \mathrm{e}^{-x}}{6}-\mathrm{e}^{3 x}+\frac{\left(5+2 c_{2}\right) \mathrm{e}^{x}}{2}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 32
dsolve(diff $(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)+2 * y(x)=9 * \exp (2 * x)-8 * \exp (3 * x), y(x)$, sings

$$
y(x)=\left(3 x+c_{3}-4\right) \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}-\mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 44
DSolve $[y$ ' ' ' $[x]-2 * y$ ' ' $[x]-y$ ' $[x]+2 * y[x]==9 * E x p[2 * x]-8 * E x p[3 * x], y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow-e^{3 x}+c_{1} e^{-x}+\left(\frac{81}{32}+c_{2}\right) e^{x}+e^{2 x}\left(3 x-4+c_{3}\right)
$$

11.17 problem 17

11.17.1 Maple step by step solution . 2418

Internal problem ID [11791]
Internal file name [OUTPUT/11800_Thursday_April_11_2024_08_49_46_PM_28207374/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 17.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _missing_y]]
```

$$
y^{\prime \prime \prime}+y^{\prime}=2 x^{2}+4 \sin (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =i \\
\lambda_{3} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+y^{\prime}=2 x^{2}+4 \sin (x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{ccc}
1 & \mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
0 & i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} \\
0 & -\mathrm{e}^{i x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
&|W|=-2 i \mathrm{e}^{i x} \mathrm{e}^{-i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=-2 i
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x}
\end{array}\right] \\
&=-2 i \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
1 & \mathrm{e}^{-i x} \\
0 & -i \mathrm{e}^{-i x}
\end{array}\right] \\
& =-i \mathrm{e}^{-i x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
1 & \mathrm{e}^{i x} \\
0 & i \mathrm{e}^{i x}
\end{array}\right] \\
& =i \mathrm{e}^{i x}
\end{aligned}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(2 x^{2}+4 \sin (x)\right)(-2 i)}{(1)(-2 i)} d x \\
& =\int \frac{-2 i\left(2 x^{2}+4 \sin (x)\right)}{-2 i} d x \\
& =\int\left(2 x^{2}+4 \sin (x)\right) d x \\
& =\frac{2 x^{3}}{3}-4 \cos (x) \\
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(2 x^{2}+4 \sin (x)\right)\left(-i \mathrm{e}^{-i x}\right)}{(1)(-2 i)} d x \\
& =-\int \frac{-i\left(2 x^{2}+4 \sin (x)\right) \mathrm{e}^{-i x}}{-2 i} d x \\
& =-\int\left(\left(x^{2}+2 \sin (x)\right) \mathrm{e}^{-i x}\right) d x \\
& =-\left(\int\left(x^{2}+2 \sin (x)\right) \mathrm{e}^{-i x} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(2 x^{2}+4 \sin (x)\right)\left(i \mathrm{e}^{i x}\right)}{(1)(-2 i)} d x \\
& =\int \frac{i\left(2 x^{2}+4 \sin (x)\right) \mathrm{e}^{i x}}{-2 i} d x \\
& =\int\left(-\left(x^{2}+2 \sin (x)\right) \mathrm{e}^{i x}\right) d x \\
& =\frac{-4 i \mathrm{e}^{i x}+(-2-i) x \mathrm{e}^{i x}+(-4+2 i) \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)+i x^{2} \mathrm{e}^{i x}+(-2+i) x \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)^{2}+i x^{2} \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)^{2}-}{1+\tan \left(\frac{x}{2}\right)^{2}} \\
& =\frac{-4 i \mathrm{e}^{i x}+(-2-i) x \mathrm{e}^{i x}+(-4+2 i) \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)+i x^{2} \mathrm{e}^{i x}+(-2+i) x \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)^{2}+i x^{2} \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)^{2}-}{1+\tan \left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{2 x^{3}}{3}-4 \cos (x)\right) \\
& +\left(-\left(\int\left(x^{2}+2 \sin (x)\right) \mathrm{e}^{-i x} d x\right)\right)\left(\mathrm{e}^{i x}\right) \\
& +\left(\frac{-4 i \mathrm{e}^{i x}+(-2-i) x \mathrm{e}^{i x}+(-4+2 i) \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)+i x^{2} \mathrm{e}^{i x}+(-2+i) x \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)^{2}+i x^{2} \mathrm{e}^{i x} \tan \left(\frac{x}{2}\right)^{2}}{1+\tan \left(\frac{x}{2}\right)^{2}}\right.
\end{aligned}
$$

Therefore the particular solution is
$y_{p}=-2 i-\left(\int\left(x^{2}+2 \sin (x)\right) \mathrm{e}^{-i x} d x\right) \mathrm{e}^{i x}+(-i x-2 i-4) \cos (x)+(-2+i-x) \sin (x)+i x^{2}+\frac{2 x^{3}}{3}-2 x$
Which simplifies to
$y_{p}=-2 i-\left(\int\left(x^{2}+2 \sin (x)\right) \cos (x) d x\right)(i \sin (x)+\cos (x))+(-\sin (x)+i \cos (x))\left(\int\left(x^{2}+2 \sin (x)\right)\right.$
Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}\right)+\left(-2 i-\left(\int\left(x^{2}+2 \sin (x)\right) \cos (x) d x\right)(i \sin (x)+\cos (x))\right. \\
& \quad+(-\sin (x)+i \cos (x))\left(\int\left(x^{2}+2 \sin (x)\right) \sin (x) d x\right)+(-i x-2 i-4) \cos (x) \\
& \\
& \left.+(-2+i-x) \sin (x)+i x^{2}+\frac{2 x^{3}}{3}-2 x\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}-2 i-\left(\int\left(x^{2}+2 \sin (x)\right) \cos (x) d x\right)(i \sin (x)+\cos (x)) \\
& +(-\sin (x)+i \cos (x))\left(\int\left(x^{2}+2 \sin (x)\right) \sin (x) d x\right) \tag{1}\\
& +(-i x-2 i-4) \cos (x)+(-2+i-x) \sin (x)+i x^{2}+\frac{2 x^{3}}{3}-2 x
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}-2 i-\left(\int\left(x^{2}+2 \sin (x)\right) \cos (x) d x\right)(i \sin (x)+\cos (x)) \\
& +(-\sin (x)+i \cos (x))\left(\int\left(x^{2}+2 \sin (x)\right) \sin (x) d x\right) \\
& +(-i x-2 i-4) \cos (x)+(-2+i-x) \sin (x)+i x^{2}+\frac{2 x^{3}}{3}-2 x
\end{aligned}
$$

Verified OK.

11.17.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime}=2 x^{2}+4 \sin (x)
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=2 x^{2}+4 \sin (x)-y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=2 x^{2}+4 \sin (x)-y_{2}(x)\right]
$$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ 2 x^{2}+4 \sin (x)\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 2 x^{2}+4 \sin (x)\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
1 & -\cos (x) & \sin (x) \\
0 & \sin (x) & \cos (x) \\
0 & \cos (x) & -\sin (x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\cos (x) & \sin (x) \\
0 & \sin (x) & \cos (x) \\
0 & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & \sin (x) & 1-\cos (x) \\
0 & \cos (x) & \sin (x) \\
0 & -\sin (x) & \cos (x)
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-2 x \sin (x)+4 \sin (x)+\frac{2 x^{3}}{3}-4 \cos (x)-4 x+4 \\
(-2 x+4) \cos (x)+2 x^{2}+2 \sin (x)-4 \\
(2 x-4) \sin (x)+4 x
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
-2 x \sin (x)+4 \sin (x)+\frac{2 x^{3}}{3}-4 \cos (x)-4 x+4 \\
(-2 x+4) \cos (x)+2 x^{2}+2 \sin (x)-4 \\
(2 x-4) \sin (x)+4 x
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=4+\left(-2 x+4+c_{3}\right) \sin (x)+\left(-4-c_{2}\right) \cos (x)+\frac{2 x^{3}}{3}-4 x+c_{1}
$$

Maple trace

```
MMethods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = 2*_a^2+4*sin(_a)-_b(_a), _b(_
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        <- constant coefficients successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

```
dsolve(diff(y(x),x$3)+diff(y(x),x)=2*x^2+4*sin(x),y(x), singsol=all)
```

$$
y(x)=\left(-2-c_{2}\right) \cos (x)+\left(-2 x+c_{1}\right) \sin (x)+\frac{2 x^{3}}{3}-4 x+c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 35

```
DSolve[y'''[x]+y'[x]==2*x^2+4*Sin[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{2 x^{3}}{3}-4 x-\left(2+c_{2}\right) \cos (x)+\left(-2 x+c_{1}\right) \sin (x)+c_{3}
$$

11.18 problem 18

Internal problem ID [11792]
Internal file name [OUTPUT/11801_Thursday_April_11_2024_08_49_47_PM_42252830/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 18.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_y]]
```

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 \mathrm{e}^{-x}+6 \mathrm{e}^{2 x}-6 x
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}+2 y^{\prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{4}-3 \lambda^{3}+2 \lambda^{2}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=2 \\
& \lambda_{4}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{2} x+c_{1}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=\mathrm{e}^{x} \\
& y_{4}=\mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}+2 y^{\prime \prime}=3 \mathrm{e}^{-x}+6 \mathrm{e}^{2 x}-6 x
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-x}+6 \mathrm{e}^{2 x}-6 x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x}\right\},\{1, x\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x, \mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x}\right\},\left\{x, x^{2}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x}\right\},\left\{x^{2}, x^{3}\right\}\right]
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x} x\right\},\left\{x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-x}+A_{2} \mathrm{e}^{2 x} x+A_{3} x^{2}+A_{4} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{-x}+4 A_{2} \mathrm{e}^{2 x}-18 A_{4}+4 A_{3}+12 A_{4} x=3 \mathrm{e}^{-x}+6 \mathrm{e}^{2 x}-6 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{3}{2}, A_{3}=-\frac{9}{4}, A_{4}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{2 x} x}{2}-\frac{9 x^{2}}{4}-\frac{x^{3}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}\right)+\left(\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{2 x} x}{2}-\frac{9 x^{2}}{4}-\frac{x^{3}}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}+\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{2 x} x}{2}-\frac{9 x^{2}}{4}-\frac{x^{3}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x+c_{1}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}+\frac{\mathrm{e}^{-x}}{2}+\frac{3 \mathrm{e}^{2 x} x}{2}-\frac{9 x^{2}}{4}-\frac{x^{3}}{2}
$$

Verified OK.

Maple trace

```
'Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = 3*(diff(_b(_a), _a))-2*_b(_a)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    <- double symmetry of the form [xi=0, eta=F(x)] successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 41

```
dsolve(diff(y(x),x$4)-3*diff (y(x),x$3)+2*diff(y(x),x$2)=3*exp(-x)+6*exp(2*x) -6*x,y(x), sings
```

$$
y(x)=\frac{\left(6 x+c_{1}-12\right) \mathrm{e}^{2 x}}{4}-\frac{x^{3}}{2}-\frac{9 x^{2}}{4}+c_{3} x+c_{2} \mathrm{e}^{x}+c_{4}+\frac{\mathrm{e}^{-x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.372 (sec). Leaf size: 54

$$
y(x) \rightarrow \frac{1}{4}\left(-\left((2 x+9) x^{2}\right)+2 e^{-x}+4 c_{1} e^{x}+e^{2 x}\left(6 x-12+c_{2}\right)\right)+c_{4} x+c_{3}
$$

11.19 problem 19

11.19.1 Maple step by step solution . 2430

Internal problem ID [11793]
Internal file name [OUTPUT/11802_Thursday_April_11_2024_08_49_47_PM_75614766/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 19.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{\mathrm{e}^{4 x}\right\},\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}, \mathrm{e}^{3 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{\mathrm{e}^{4 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}\right\}\right]
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x} x\right\},\left\{\mathrm{e}^{4 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} x+A_{2} \mathrm{e}^{4 x}+A_{3} x \mathrm{e}^{x}+A_{4} x^{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{4} x \mathrm{e}^{x}-A_{1} \mathrm{e}^{2 x}+2 A_{3} \mathrm{e}^{x}-6 A_{4} \mathrm{e}^{x}+6 A_{2} \mathrm{e}^{4 x}=x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=4, A_{2}=1, A_{3}=\frac{3}{4}, A_{4}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=4 \mathrm{e}^{2 x} x+\mathrm{e}^{4 x}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{x^{2} \mathrm{e}^{x}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}\right)+\left(4 \mathrm{e}^{2 x} x+\mathrm{e}^{4 x}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{x^{2} \mathrm{e}^{x}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}+4 \mathrm{e}^{2 x} x+\mathrm{e}^{4 x}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{x^{2} \mathrm{e}^{x}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}+4 \mathrm{e}^{2 x} x+\mathrm{e}^{4 x}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{x^{2} \mathrm{e}^{x}}{4}
$$

Verified OK.

11.19.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}+6 y_{3}(x)-11 y_{2}(x)+6 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}+6 y_{3}(x)-11 y_{2}(x)+6 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+6 \mathrm{e}^{4 x}\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} & \frac{\mathrm{e}^{3 x}}{9} \\
\mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{x} & \mathrm{e}^{2 x} & \mathrm{e}^{3 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} & \frac{\mathrm{e}^{3 x}}{9} \\
\mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{x} & \mathrm{e}^{2 x} & \mathrm{e}^{3 x}
\end{array}\right] \cdot \frac{}{} \begin{array}{lll}
{\left[\begin{array}{ccc}
1 & \frac{1}{4} & \frac{1}{9} \\
1 & \frac{1}{2} & \frac{1}{3} \\
1 & 1 & 1
\end{array}\right]}
\end{array}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
3 \mathrm{e}^{x}-3 \mathrm{e}^{2 x}+\mathrm{e}^{3 x} & -\frac{5 \mathrm{e}^{x}}{2}+4 \mathrm{e}^{2 x}-\frac{3 \mathrm{e}^{3 x}}{2} & \frac{\mathrm{e}^{x}}{2}-\mathrm{e}^{2 x}+\frac{\mathrm{e}^{3 x}}{2} \\
3 \mathrm{e}^{x}-6 \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x} & -\frac{5 \mathrm{e}^{x}}{2}+8 \mathrm{e}^{2 x}-\frac{9 \mathrm{e}^{3 x}}{2} & \frac{\mathrm{e}^{x}}{2}-2 \mathrm{e}^{2 x}+\frac{3 \mathrm{e}^{3 x}}{2} \\
3 \mathrm{e}^{x}-12 \mathrm{e}^{2 x}+9 \mathrm{e}^{3 x} & -\frac{5 \mathrm{e}^{x}}{2}+16 \mathrm{e}^{2 x}-\frac{27 \mathrm{e}^{3 x}}{2} & \frac{\mathrm{e}^{x}}{2}-4 \mathrm{e}^{2 x}+\frac{9 \mathrm{e}^{3 x}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
2(2 x+1) \mathrm{e}^{2 x}-\frac{39 \mathrm{e}^{3 x}}{8}+\mathrm{e}^{4 x}+\frac{\left(2 x^{2}+6 x+15\right) \mathrm{e}^{x}}{8} \\
8(1+x) \mathrm{e}^{2 x}-\frac{117 \mathrm{e}^{3 x}}{8}+4 \mathrm{e}^{4 x}+\frac{\left(2 x^{2}+10 x+21\right) \mathrm{e}^{x}}{8} \\
8(3+2 x) \mathrm{e}^{2 x}-\frac{351 \mathrm{e}^{3 x}}{8}+16 \mathrm{e}^{4 x}+\frac{\left(2 x^{2}+14 x+31\right) \mathrm{e}^{x}}{8}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
2(2 x+1) \mathrm{e}^{2 x}-\frac{39 \mathrm{e}^{3 x}}{8}+\mathrm{e}^{4 x}+\frac{\left(2 x^{2}+6 x+15\right) \mathrm{e}^{x}}{8} \\
8(1+x) \mathrm{e}^{2 x}-\frac{117 \mathrm{e}^{3 x}}{8}+4 \mathrm{e}^{4 x}+\frac{\left(2 x^{2}+10 x+21\right) \mathrm{e}^{x}}{8} \\
8(3+2 x) \mathrm{e}^{2 x}-\frac{351 \mathrm{e}^{3 x}}{8}+16 \mathrm{e}^{4 x}+\frac{\left(2 x^{2}+14 x+31\right) \mathrm{e}^{x}}{8}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(8+16 x+c_{2}\right) \mathrm{e}^{2 x}}{4}+\frac{\left(8 c_{3}-351\right) \mathrm{e}^{3 x}}{72}+\mathrm{e}^{4 x}+\frac{\left(2 x^{2}+8 c_{1}+6 x+15\right) \mathrm{e}^{x}}{8}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 42
dsolve (diff $(y(x), x \$ 3)-6 * \operatorname{diff}(y(x), x \$ 2)+11 * \operatorname{diff}(y(x), x)-6 * y(x)=x * \exp (x)-4 * \exp (2 * x)+6 * \exp (4 * x)$

$$
y(x)=\left(4 x+c_{2}\right) \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}+\mathrm{e}^{4 x}+\frac{\left(2 x^{2}+8 c_{1}+6 x+7\right) \mathrm{e}^{x}}{8}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 53
DSolve $[y$ ' ' ' $[x]-6 * y$ ' $[x]+11 * y$ ' $[x]-6 * y[x]==x * \operatorname{Exp}[x]-4 * \operatorname{Exp}[2 * x]+6 * \operatorname{Exp}[4 * x], y[x], x$, IncludeSingul

$$
y(x) \rightarrow \frac{1}{8} e^{x}\left(2 x^{2}+6 x+8 e^{3 x}+8 e^{x}\left(4 x+c_{2}\right)+8 c_{3} e^{2 x}+7+8 c_{1}\right)
$$

11.20 problem 20

11.20.1 Maple step by step solution . 2439

Internal problem ID [11794]
Internal file name [OUTPUT/11803_Thursday_April_11_2024_08_49_48_PM_81427022/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 20.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=3 x^{2} \mathrm{e}^{x}-7 \mathrm{e}^{x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=0
$$

The characteristic equation is

$$
\lambda^{3}-4 \lambda^{2}+5 \lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=3 x^{2} \mathrm{e}^{x}-7 \mathrm{e}^{x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x^{2} \mathrm{e}^{x}-7 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}\right\}\right]
$$

Since $x \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}, \mathrm{e}^{x} x^{4}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{x}+A_{2} x^{3} \mathrm{e}^{x}+A_{3} \mathrm{e}^{x} x^{4}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{2} x \mathrm{e}^{x}-12 A_{3} \mathrm{e}^{x} x^{2}+24 A_{3} \mathrm{e}^{x} x+6 A_{2} \mathrm{e}^{x}-2 A_{1} \mathrm{e}^{x}=3 x^{2} \mathrm{e}^{x}-7 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=-1, A_{3}=-\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{2} \mathrm{e}^{x}}{2}-x^{3} \mathrm{e}^{x}-\frac{\mathrm{e}^{x} x^{4}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}\right)+\left(\frac{x^{2} \mathrm{e}^{x}}{2}-x^{3} \mathrm{e}^{x}-\frac{\mathrm{e}^{x} x^{4}}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{x}}{2}-x^{3} \mathrm{e}^{x}-\frac{\mathrm{e}^{x} x^{4}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{x}}{2}-x^{3} \mathrm{e}^{x}-\frac{\mathrm{e}^{x} x^{4}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{x}}{2}-x^{3} \mathrm{e}^{x}-\frac{\mathrm{e}^{x} x^{4}}{4}
$$

Verified OK.

11.20.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=3 x^{2} \mathrm{e}^{x}-7 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=3 x^{2} \mathrm{e}^{x}+4 y_{3}(x)-5 y_{2}(x)+2 y_{1}(x)-7 \mathrm{e}^{x}$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 x^{2} \mathrm{e}^{x}+4 y_{3}(x)-5 y_{2}(x)+2 y_{1}(x)-7 \mathrm{e}^{x}\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -5 & 4
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
3 x^{2} \mathrm{e}^{x}-7 \mathrm{e}^{x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 3 x^{2} \mathrm{e}^{x}-7 \mathrm{e}^{x}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -5 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- Simplify equation

$$
\lambda \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- \quad Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -5 & 4
\end{array}\right]-1 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(x)=\left[\begin{array}{ccc}\mathrm{e}^{x} & \mathrm{e}^{x}(x-1) & \frac{\mathrm{e}^{2 x}}{4} \\ \mathrm{e}^{x} & x \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\ \mathrm{e}^{x} & x \mathrm{e}^{x} & \mathrm{e}^{2 x}\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{x}(x-1) & \frac{\mathrm{e}^{2 x}}{4} \\
\mathrm{e}^{x} & x \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{x} & x \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -1 & \frac{1}{4} \\
1 & 0 & \frac{1}{2} \\
1 & 0 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
-\mathrm{e}^{x}(x-1) & -\frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{x}(3 x+1)}{2} & \frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{x}(-x-1)}{2} \\
-x \mathrm{e}^{x} & 2 \mathrm{e}^{x}+\frac{3 x \mathrm{e}^{x}}{2}-\mathrm{e}^{2 x} & -\mathrm{e}^{x}-\frac{x \mathrm{e}^{x}}{2}+\mathrm{e}^{2 x} \\
-x \mathrm{e}^{x} & 2 \mathrm{e}^{x}+\frac{3 x \mathrm{e}^{x}}{2}-2 \mathrm{e}^{2 x} & -\mathrm{e}^{x}-\frac{x \mathrm{e}^{x}}{2}+2 \mathrm{e}^{2 x}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 x}}{2}+\frac{\left(-x^{4}-4 x^{3}+2 x^{2}+4 x+4\right) \mathrm{e}^{x}}{8} \\
-\mathrm{e}^{2 x}+\frac{\left(-x^{4}-8 x^{3}-10 x^{2}+8 x+8\right) \mathrm{e}^{x}}{8} \\
-2 \mathrm{e}^{2 x}+\frac{\left(-x^{4}-8 x^{3}-34 x^{2}-40 x+16\right) \mathrm{e}^{x}}{8}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 x}}{2}+\frac{\left(-x^{4}-4 x^{3}+2 x^{2}+4 x+4\right) \mathrm{e}^{x}}{8} \\
-\mathrm{e}^{2 x}+\frac{\left(-x^{4}-8 x^{3}-10 x^{2}+8 x+8\right) \mathrm{e}^{x}}{8} \\
-2 \mathrm{e}^{2 x}+\frac{\left(-x^{4}-8 x^{3}-34 x^{2}-40 x+16\right) \mathrm{e}^{x}}{8}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(2 c_{3}-4\right) \mathrm{e}^{2 x}}{8}-\frac{\left(x^{4}+4 x^{3}-2 x^{2}+\left(-8 c_{2}-4\right) x-8 c_{1}+8 c_{2}-4\right) \mathrm{e}^{x}}{8}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve (diff $(y(x), x \$ 3)-4 * \operatorname{diff}(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)-2 * y(x)=3 * x^{\wedge} 2 * \exp (x)-7 * \exp (x), y(x)$, sin

$$
y(x)=-\frac{\mathrm{e}^{x}\left(x^{4}+4 x^{3}-4 c_{2} \mathrm{e}^{x}-4 c_{3} x-2 x^{2}-4 c_{1}\right)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 47
DSolve[y'' $\quad[x]-4 * y$ ' $[x]+5 * y$ ' $[x]-2 * y[x]==3 * x \wedge 2 * \operatorname{Exp}[x]-7 * \operatorname{Exp}[x], y[x], x$, IncludeSingularSolution

$$
y(x) \rightarrow \frac{1}{4} e^{x}\left(-x^{4}-4 x^{3}+2 x^{2}+4\left(1+c_{2}\right) x+4\left(c_{3} e^{x}+1+c_{1}\right)\right)
$$

11.21 problem 21

11.21.1 Solving as second order linear constant coeff ode 2445
11.21.2 Solving using Kovacic algorithm 2449
11.21.3 Maple step by step solution . 2453

Internal problem ID [11795]
Internal file name [OUTPUT/11804_Thursday_April_11_2024_08_49_48_PM_227895/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=x \sin (x)
$$

11.21.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=x \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{x \sin (x), \cos (x) x, \cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \sin (x), \cos (x) x, \cos (x) x^{2}, \sin (x) x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \sin (x)+A_{2} \cos (x) x+A_{3} \cos (x) x^{2}+A_{4} \sin (x) x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{1} \cos (x)-2 A_{2} \sin (x)-4 A_{3} \sin (x) x+2 A_{3} \cos (x)+4 A_{4} \cos (x) x+2 A_{4} \sin (x) \\
& \quad=x \sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{4}, A_{2}=0, A_{3}=-\frac{1}{4}, A_{4}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \sin (x)}{4}-\frac{\cos (x) x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{x \sin (x)}{4}-\frac{\cos (x) x^{2}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{x \sin (x)}{4}-\frac{\cos (x) x^{2}}{4} \tag{1}
\end{equation*}
$$

Figure 436: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{x \sin (x)}{4}-\frac{\cos (x) x^{2}}{4}
$$

Verified OK.

11.21.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 374: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{x \sin (x), \cos (x) x, \cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \sin (x), \cos (x) x, \cos (x) x^{2}, \sin (x) x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \sin (x)+A_{2} \cos (x) x+A_{3} \cos (x) x^{2}+A_{4} \sin (x) x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{1} \cos (x)-2 A_{2} \sin (x)-4 A_{3} \sin (x) x+2 A_{3} \cos (x)+4 A_{4} \cos (x) x+2 A_{4} \sin (x) \\
& \quad=x \sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{4}, A_{2}=0, A_{3}=-\frac{1}{4}, A_{4}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x \sin (x)}{4}-\frac{\cos (x) x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{x \sin (x)}{4}-\frac{\cos (x) x^{2}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{x \sin (x)}{4}-\frac{\cos (x) x^{2}}{4} \tag{1}
\end{equation*}
$$

Figure 437: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{x \sin (x)}{4}-\frac{\cos (x) x^{2}}{4}
$$

Verified OK.

11.21.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=x \sin (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- \quad 1st solution of the homogeneous ODE
$y_{1}(x)=\cos (x)$
- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x)^{2} x d x\right)+\frac{\sin (x)\left(\int \sin (2 x) x d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{x(-\cos (x) x+\sin (x))}{4}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{x(-\cos (x) x+\sin (x))}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)+y(x)=x*sin(x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(-x^{2}+4 c_{1}\right) \cos (x)}{4}+\frac{\sin (x)\left(4 c_{2}+x\right)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 34
DSolve[y'' $[x]+y[x]==x * \operatorname{Sin}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{8}\left(\left(-2 x^{2}+1+8 c_{1}\right) \cos (x)+2\left(x+4 c_{2}\right) \sin (x)\right)
$$

11.22 problem 22

11.22.1 Solving as second order linear constant coeff ode
11.22.2 Solving using Kovacic algorithm 2460
11.22.3 Maple step by step solution 2465

Internal problem ID [11796]
Internal file name [OUTPUT/11805_Thursday_April_11_2024_08_49_49_PM_63250674/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+4 y=12 x^{2}-16 x \cos (2 x)
$$

11.22.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=12 x^{2}-16 x \cos (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
12 x^{2}-16 x \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\},\{x \cos (2 x), \sin (2 x) x, \cos (2 x), \sin (2 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{1, x, x^{2}\right\},\left\{x \cos (2 x), x^{2} \cos (2 x), x^{2} \sin (2 x), \sin (2 x) x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}+A_{4} x \cos (2 x)+A_{5} x^{2} \cos (2 x)+A_{6} x^{2} \sin (2 x)+A_{7} \sin (2 x) x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{3}-4 A_{4} \sin (2 x)+2 A_{5} \cos (2 x)-8 A_{5} x \sin (2 x)+2 A_{6} \sin (2 x) \\
& \quad+8 A_{6} x \cos (2 x)+4 A_{7} \cos (2 x)+4 A_{3} x^{2}+4 A_{2} x+4 A_{1}=12 x^{2}-16 x \cos (2 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{2}, A_{2}=0, A_{3}=3, A_{4}=-1, A_{5}=0, A_{6}=-2, A_{7}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x^{2}-\frac{3}{2}-x \cos (2 x)-2 x^{2} \sin (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(3 x^{2}-\frac{3}{2}-x \cos (2 x)-2 x^{2} \sin (2 x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+3 x^{2}-\frac{3}{2}-x \cos (2 x)-2 x^{2} \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 438: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+3 x^{2}-\frac{3}{2}-x \cos (2 x)-2 x^{2} \sin (2 x)
$$

Verified OK.

11.22.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 376: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
12 x^{2}-16 x \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\},\{x \cos (2 x), \sin (2 x) x, \cos (2 x), \sin (2 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{1, x, x^{2}\right\},\left\{x \cos (2 x), x^{2} \cos (2 x), x^{2} \sin (2 x), \sin (2 x) x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}+A_{4} x \cos (2 x)+A_{5} x^{2} \cos (2 x)+A_{6} x^{2} \sin (2 x)+A_{7} \sin (2 x) x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{3}-4 A_{4} \sin (2 x)+2 A_{5} \cos (2 x)-8 A_{5} x \sin (2 x)+2 A_{6} \sin (2 x) \\
& \quad+8 A_{6} x \cos (2 x)+4 A_{7} \cos (2 x)+4 A_{3} x^{2}+4 A_{2} x+4 A_{1}=12 x^{2}-16 x \cos (2 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{2}, A_{2}=0, A_{3}=3, A_{4}=-1, A_{5}=0, A_{6}=-2, A_{7}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x^{2}-\frac{3}{2}-x \cos (2 x)-2 x^{2} \sin (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(3 x^{2}-\frac{3}{2}-x \cos (2 x)-2 x^{2} \sin (2 x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+3 x^{2}-\frac{3}{2}-x \cos (2 x)-2 x^{2} \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 439: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+3 x^{2}-\frac{3}{2}-x \cos (2 x)-2 x^{2} \sin (2 x)
$$

Verified OK.

11.22.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=12 x^{2}-16 x \cos (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=12 x^{2}-16 x \cos (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=2 \cos (2 x)\left(\int \sin (2 x) x(4 \cos (2 x)-3 x) d x\right)-2 \sin (2 x)\left(\int \cos (2 x) x(4 \cos (2 x)-3 x) d x\right.
$$

- Compute integrals

$$
y_{p}(x)=-2 x^{2} \sin (2 x)+\frac{\sin (2 x)}{2}-x \cos (2 x)+3 x^{2}-\frac{3}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-2 x^{2} \sin (2 x)+\frac{\sin (2 x)}{2}-x \cos (2 x)+3 x^{2}-\frac{3}{2}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
\rightarrow Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful-

Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

```
dsolve(diff (y(x),x$2)+4*y(x)=12*x^2-16*x*\operatorname{cos}(2*x),y(x), singsol=all)
```

$$
y(x)=-\frac{3}{2}+\frac{\left(-8 x^{2}+4 c_{2}+1\right) \sin (2 x)}{4}+\left(c_{1}-x\right) \cos (2 x)+3 x^{2}
$$

Solution by Mathematica
Time used: 0.251 (sec). Leaf size: 44

```
DSolve[y''[x]+4*y[x]==12*x^2-16*x*Cos[2*x],y[x],x, IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 3 x^{2}+\frac{1}{4}\left(-8 x^{2}+1+4 c_{2}\right) \sin (2 x)+\left(-x+c_{1}\right) \cos (2 x)-\frac{3}{2}
$$

11.23 problem 23

Internal problem ID [11797]
Internal file name [OUTPUT/11806_Thursday_April_11_2024_08_49_50_PM_86836542/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 23.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_y]]
```

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}-3 y^{\prime \prime}=18 x^{2}+16 x \mathrm{e}^{x}+4 \mathrm{e}^{3 x}-9
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}-3 y^{\prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{3}-3 \lambda^{2}=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =0 \\
\lambda_{3} & =1 \\
\lambda_{4} & =-3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{2} x+c_{1}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=\mathrm{e}^{x} \\
& y_{4}=\mathrm{e}^{-3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}-3 y^{\prime \prime}=18 x^{2}+16 x \mathrm{e}^{x}+4 \mathrm{e}^{3 x}-9
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
18 x^{2}+16 x \mathrm{e}^{x}+4 \mathrm{e}^{3 x}-9
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 x}\right\},\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x, \mathrm{e}^{x}, \mathrm{e}^{-3 x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{3 x}\right\},\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\},\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{3 x}\right\},\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\},\left\{x^{2}, x^{3}, x^{4}\right\}\right]
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{3 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}\right\},\left\{x^{2}, x^{3}, x^{4}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{3 x}+A_{2} x \mathrm{e}^{x}+A_{3} x^{2} \mathrm{e}^{x}+A_{4} x^{2}+A_{5} x^{3}+A_{6} x^{4}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 108 A_{1} \mathrm{e}^{3 x}+4 A_{2} \mathrm{e}^{x}+18 A_{3} \mathrm{e}^{x}+8 A_{3} x \mathrm{e}^{x}+24 A_{6}+12 A_{5}+48 A_{6} x \\
& \quad-6 A_{4}-18 A_{5} x-36 A_{6} x^{2}=18 x^{2}+16 x \mathrm{e}^{x}+4 \mathrm{e}^{3 x}-9
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{27}, A_{2}=-9, A_{3}=2, A_{4}=-\frac{19}{6}, A_{5}=-\frac{4}{3}, A_{6}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{3 x}}{27}-9 x \mathrm{e}^{x}+2 x^{2} \mathrm{e}^{x}-\frac{19 x^{2}}{6}-\frac{4 x^{3}}{3}-\frac{x^{4}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{4}\right)+\left(\frac{\mathrm{e}^{3 x}}{27}-9 x \mathrm{e}^{x}+2 x^{2} \mathrm{e}^{x}-\frac{19 x^{2}}{6}-\frac{4 x^{3}}{3}-\frac{x^{4}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{4}+\frac{\mathrm{e}^{3 x}}{27}-9 x \mathrm{e}^{x}+2 x^{2} \mathrm{e}^{x}-\frac{19 x^{2}}{6}-\frac{4 x^{3}}{3}-\frac{x^{4}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x+c_{1}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{4}+\frac{\mathrm{e}^{3 x}}{27}-9 x \mathrm{e}^{x}+2 x^{2} \mathrm{e}^{x}-\frac{19 x^{2}}{6}-\frac{4 x^{3}}{3}-\frac{x^{4}}{2}
$$

Verified OK.

Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = 16*_a*exp(_a)+18*_a^2-2*(diff
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 64
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 4)+2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 3)-3 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)=18 * \mathrm{x}^{\wedge} 2+16 * \mathrm{x} * \exp (\mathrm{x})+4 * \exp (3 * x)-9, y(x)$
$y(x)=$

$$
-\frac{\left(\left(x^{4}+\frac{8}{3} x^{3}+\frac{19}{3} x^{2}-2 c_{3} x-2 c_{4}\right) \mathrm{e}^{3 x}+\left(-4 x^{2}+18 x-2 c_{2}-\frac{57}{2}\right) \mathrm{e}^{4 x}-\frac{2 c_{1}}{9}-\frac{2 \mathrm{e}^{6 x}}{27}\right) \mathrm{e}^{-3 x}}{2}
$$

Solution by Mathematica
Time used: 1.232 (sec). Leaf size: 70

$y(x) \rightarrow-\frac{1}{6}\left(3 x^{2}+8 x+19\right) x^{2}+\frac{1}{4} e^{x}\left(8 x^{2}-36 x+57+4 c_{2}\right)+\frac{e^{3 x}}{27}+c_{4} x+\frac{1}{9} c_{1} e^{-3 x}+c_{3}$

11.24 problem 24

11.24.1 Maple step by step solution . 2476

Internal problem ID [11798]
Internal file name [OUTPUT/11807_Thursday_April_11_2024_08_49_50_PM_12791522/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 24.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime \prime}+7 y^{\prime \prime}-5 y^{\prime}+6 y=5 \sin (x)-12 \sin (2 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime \prime}+7 y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

The characteristic equation is

$$
\lambda^{4}-5 \lambda^{3}+7 \lambda^{2}-5 \lambda+6=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =3 \\
\lambda_{3} & =i \\
\lambda_{4} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{3 x} \\
& y_{3}=\mathrm{e}^{i x} \\
& y_{4}=\mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime \prime}+7 y^{\prime \prime}-5 y^{\prime}+6 y=5 \sin (x)-12 \sin (2 x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{2 x} & \mathrm{e}^{3 x} & \mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
2 \mathrm{e}^{2 x} & 3 \mathrm{e}^{3 x} & i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} \\
4 \mathrm{e}^{2 x} & 9 \mathrm{e}^{3 x} & -\mathrm{e}^{i x} & -\mathrm{e}^{-i x} \\
8 \mathrm{e}^{2 x} & 27 \mathrm{e}^{3 x} & -i \mathrm{e}^{i x} & i \mathrm{e}^{-i x}
\end{array}\right] \\
&|W|=-100 i \mathrm{e}^{2 x} \mathrm{e}^{3 x} \mathrm{e}^{i x} \mathrm{e}^{-i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=-100 i \mathrm{e}^{5 x}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{3 x} & \mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
3 \mathrm{e}^{3 x} & i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} \\
9 \mathrm{e}^{3 x} & -\mathrm{e}^{i x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =-20 i \mathrm{e}^{3 x}
\end{aligned}
$$

$$
\begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{2 x} & \mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
2 \mathrm{e}^{2 x} & i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} \\
4 \mathrm{e}^{2 x} & -\mathrm{e}^{i x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =-10 i \mathrm{e}^{2 x}
\end{aligned}
$$

$$
\begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{2 x} & \mathrm{e}^{3 x} & \mathrm{e}^{-i x} \\
2 \mathrm{e}^{2 x} & 3 \mathrm{e}^{3 x} & -i \mathrm{e}^{-i x} \\
4 \mathrm{e}^{2 x} & 9 \mathrm{e}^{3 x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =(5+5 i) \mathrm{e}^{(5-i) x}
\end{aligned}
$$

$$
W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{2 x} & \mathrm{e}^{3 x} & \mathrm{e}^{i x} \\
2 \mathrm{e}^{2 x} & 3 \mathrm{e}^{3 x} & i \mathrm{e}^{i x} \\
4 \mathrm{e}^{2 x} & 9 \mathrm{e}^{3 x} & -\mathrm{e}^{i x}
\end{array}\right]
$$

$$
=(5-5 i) \mathrm{e}^{(5+i) x}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
& U_{1}=(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{(5 \sin (x)-12 \sin (2 x))\left(-20 i \mathrm{e}^{3 x}\right)}{(1)\left(-100 i \mathrm{e}^{5 x}\right)} d x \\
& =-\int \frac{-20 i(5 \sin (x)-12 \sin (2 x)) \mathrm{e}^{3 x}}{-100 i \mathrm{e}^{5 x}} d x \\
& =-\int\left(-\frac{(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{-2 x}}{5}\right) d x \\
& =\frac{3 \mathrm{e}^{-2 x}(-2 \sin (2 x)-2 \cos (2 x))}{10}+\frac{\cos (x) \mathrm{e}^{-2 x}}{5}+\frac{2 \mathrm{e}^{-2 x} \sin (x)}{5} \\
& =\frac{3 \mathrm{e}^{-2 x}(-2 \sin (2 x)-2 \cos (2 x))}{10}+\frac{\cos (x) \mathrm{e}^{-2 x}}{5}+\frac{2 \mathrm{e}^{-2 x} \sin (x)}{5} \\
& U_{2}=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(5 \sin (x)-12 \sin (2 x))\left(-10 i \mathrm{e}^{2 x}\right)}{(1)\left(-100 i \mathrm{e}^{5 x}\right)} d x \\
& =\int \frac{-10 i(5 \sin (x)-12 \sin (2 x)) \mathrm{e}^{2 x}}{-100 i \mathrm{e}^{5 x}} d x \\
& =\int\left(-\frac{(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{-3 x}}{10}\right) d x \\
& =-\frac{6 \mathrm{e}^{-3 x}(-3 \sin (2 x)-2 \cos (2 x))}{65}-\frac{\mathrm{e}^{-3 x} \cos (x)}{20}-\frac{3 \mathrm{e}^{-3 x} \sin (x)}{20} \\
& =-\frac{6 \mathrm{e}^{-3 x}(-3 \sin (2 x)-2 \cos (2 x))}{65}-\frac{\mathrm{e}^{-3 x} \cos (x)}{20}-\frac{3 \mathrm{e}^{-3 x} \sin (x)}{20} \\
& U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(5 \sin (x)-12 \sin (2 x))\left((5+5 i) \mathrm{e}^{(5-i) x}\right)}{(1)\left(-100 i \mathrm{e}^{5 x}\right)} d x \\
& =-\int \frac{(5+5 i)(5 \sin (x)-12 \sin (2 x)) \mathrm{e}^{(5-i) x}}{-100 i \mathrm{e}^{5 x}} d x \\
& =-\int\left(\left(\frac{1}{20}-\frac{i}{20}\right)(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{-i x}\right) d x \\
& =-\left(\int\left(\frac{1}{20}-\frac{i}{20}\right)(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{-i x} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
U_{4} & =(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{(5 \sin (x)-12 \sin (2 x))\left((5-5 i) \mathrm{e}^{(5+i) x}\right)}{(1)\left(-100 i \mathrm{e}^{5 x}\right)} d x \\
& =\int \frac{(5-5 i)(5 \sin (x)-12 \sin (2 x)) \mathrm{e}^{(5+i) x}}{-100 i \mathrm{e}^{5 x}} d x \\
& =\int\left(\left(-\frac{1}{20}-\frac{i}{20}\right)(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{i x}\right) d x \\
& =\int\left(-\frac{1}{20}-\frac{i}{20}\right)(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{i x} d x
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{3 \mathrm{e}^{-2 x}(-2 \sin (2 x)-2 \cos (2 x))}{10}+\frac{\cos (x) \mathrm{e}^{-2 x}}{5}+\frac{2 \mathrm{e}^{-2 x} \sin (x)}{5}\right)\left(\mathrm{e}^{2 x}\right) \\
& +\left(-\frac{6 \mathrm{e}^{-3 x}(-3 \sin (2 x)-2 \cos (2 x))}{65}-\frac{\mathrm{e}^{-3 x} \cos (x)}{20}-\frac{3 \mathrm{e}^{-3 x} \sin (x)}{20}\right)\left(\mathrm{e}^{3 x}\right) \\
& +\left(-\left(\int\left(\frac{1}{20}-\frac{i}{20}\right)(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{-i x} d x\right)\right)\left(\mathrm{e}^{i x}\right) \\
& +\left(\int\left(-\frac{1}{20}-\frac{i}{20}\right)(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{i x} d x\right)\left(\mathrm{e}^{-i x}\right)
\end{aligned}
$$

Therefore the particular solution is
$y_{p}=\left(-\frac{1}{20}+\frac{i}{20}\right)\left(\int(-5 \sin (x)+12 \sin (2 x)) \mathrm{e}^{-i x} d x\right) \mathrm{e}^{i x}+\left(-\frac{1}{20}-\frac{i}{20}\right)\left(\int(-5 \sin (x)+12 \sin (2 x)\right.$
Which simplifies to
$y_{p}=\frac{27}{65}+\frac{(\cos (x)-\sin (x))\left(\int(24 \cos (x)-5) \sin (x)^{2} d x\right)}{10}+\frac{(-\cos (x)-\sin (x))\left(\int(24 \cos (x)-5) \sin (x\right.}{10}$
Therefore the general solution is

$$
y=y_{h}+y_{p}
$$

$$
\begin{aligned}
= & \left(c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}\right) \\
& +\left(\frac{27}{65}+\frac{(\cos (x)-\sin (x))\left(\int(24 \cos (x)-5) \sin (x)^{2} d x\right)}{10}\right. \\
& +\frac{(-\cos (x)-\sin (x))\left(\int(24 \cos (x)-5) \sin (x) \cos (x) d x\right)}{10}-\frac{54 \cos (x)^{2}}{65} \\
& \left.\quad+\frac{3(13-56 \sin (x)) \cos (x)}{260}+\frac{\sin (x)}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}+\frac{27}{65} \\
& +\frac{(\cos (x)-\sin (x))\left(\int(24 \cos (x)-5) \sin (x)^{2} d x\right)}{10} \tag{1}\\
& +\frac{(-\cos (x)-\sin (x))\left(\int(24 \cos (x)-5) \sin (x) \cos (x) d x\right)}{10} \\
& -\frac{54 \cos (x)^{2}}{65}+\frac{3(13-56 \sin (x)) \cos (x)}{260}+\frac{\sin (x)}{4}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}+\frac{27}{65}+\frac{(\cos (x)-\sin (x))\left(\int(24 \cos (x)-5) \sin (x)^{2} d x\right)}{10} \\
& +\frac{(-\cos (x)-\sin (x))\left(\int(24 \cos (x)-5) \sin (x) \cos (x) d x\right)}{10} \\
& -\frac{54 \cos (x)^{2}}{65}+\frac{3(13-56 \sin (x)) \cos (x)}{260}+\frac{\sin (x)}{4}
\end{aligned}
$$

Verified OK.

11.24.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime \prime}+7 y^{\prime \prime}-5 y^{\prime}+6 y=5 \sin (x)-12 \sin (2 x)
$$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=5 \sin (x)-12 \sin (2 x)+5 y_{4}(x)-7 y_{3}(x)+5 y_{2}(x)-6 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=5 \sin (x)-12 \sin (2 x)+5 y_{4}(x)-7 y_{3}(x)+\right.
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-6 & 5 & -7 & 5
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
5 \sin (x)-12 \sin (2 x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
5 \sin (x)-12 \sin (2 x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-6 & 5 & -7 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{27} \\ \frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- \quad Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p}

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)
$$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cccc}
\frac{\mathrm{e}^{2 x}}{8} & \frac{\mathrm{e}^{3 x}}{27} & -\sin (x) & -\cos (x) \\
\frac{\mathrm{e}^{2 x}}{4} & \frac{\mathrm{e}^{3 x}}{9} & -\cos (x) & \sin (x) \\
\frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{3 x}}{3} & \sin (x) & \cos (x) \\
\mathrm{e}^{2 x} & \mathrm{e}^{3 x} & \cos (x) & -\sin (x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cccc}
\frac{\mathrm{e}^{2 x}}{8} & \frac{\mathrm{e}^{3 x}}{27} & -\sin (x) & -\cos (x) \\
\frac{\mathrm{e}^{2 x}}{4} & \frac{\mathrm{e}^{3 x}}{9} & -\cos (x) & \sin (x) \\
\frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{3 x}}{3} & \sin (x) & \cos (x) \\
\mathrm{e}^{2 x} & \mathrm{e}^{3 x} & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{4}{\left[\begin{array}{cccc}
\frac{1}{8} & \frac{1}{27} & 0 & -1 \\
\frac{1}{4} & \frac{1}{9} & -1 & 0 \\
\frac{1}{2} & \frac{1}{3} & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{3 \mathrm{e}^{2 x}}{5}-\frac{\mathrm{e}^{3 x}}{5}-\frac{3 \sin (x)}{5}+\frac{3 \cos (x)}{5} & -\frac{\mathrm{e}^{2 x}}{5}+\frac{\mathrm{e}^{3 x}}{10}+\frac{11 \sin (x)}{10}+\frac{\cos (x)}{10} & \frac{3 \mathrm{e}^{2 x}}{5}-\frac{\mathrm{e}^{3 x}}{5}-\frac{3 \sin (x)}{5} \\
\frac{6 \mathrm{e}^{2 x}}{5}-\frac{3 \mathrm{e}^{3 x}}{5}-\frac{3 \cos (x)}{5}-\frac{3 \sin (x)}{5} & -\frac{2 \mathrm{e}^{2 x}}{5}+\frac{3 \mathrm{e}^{3 x}}{10}+\frac{11 \cos (x)}{10}-\frac{\sin (x)}{10} & \frac{6 \mathrm{e}^{2 x}}{5}-\frac{3 \mathrm{e}^{3 x}}{5}-\frac{3 \cos (x}{5} \\
\frac{12 \mathrm{e}^{2 x}}{5}-\frac{9 \mathrm{e}^{3 x}}{5}+\frac{3 \sin (x)}{5}-\frac{3 \cos (x)}{5} & -\frac{4 \mathrm{e}^{2 x}}{5}+\frac{9 \mathrm{e}^{3 x}}{10}-\frac{11 \sin (x)}{10}-\frac{\cos (x)}{10} & \frac{12 \mathrm{e}^{2 x}}{5}-\frac{9 \mathrm{e}^{3 x}}{5}+\frac{3 \sin (x .2}{5} \\
\frac{24 \mathrm{e}^{2 x}}{5}-\frac{27 \mathrm{e}^{3 x}}{5}+\frac{3 \cos (x)}{5}+\frac{3 \sin (x)}{5} & -\frac{8 \mathrm{e}^{2 x}}{5}+\frac{27 \mathrm{e}^{3 x}}{10}-\frac{11 \cos (x)}{10}+\frac{\sin (x)}{10} & \frac{24 \mathrm{e}^{2 x}}{5}-\frac{27 \mathrm{e}^{3 x}}{5}+\frac{3 \cos (}{5}
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$

$$
\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)
$$

- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{5}{13}+\frac{2 \mathrm{e}^{2 x}}{5}-\frac{7 \mathrm{e}^{3 x}}{52}+\frac{10 \cos (x)^{2}}{13}+\frac{(-65 x+40 \sin (x)-169) \cos (x)}{260}+\frac{(-6+5 x) \sin (x)}{20} \\
-\frac{2}{13}+\frac{4 \mathrm{e}^{2 x}}{5}-\frac{21 \mathrm{e}^{3 x}}{52}+\frac{4 \cos (x)^{2}}{13}+\frac{(65 x-400 \sin (x)-143) \cos (x)}{260}+\frac{(18+5 x) \sin (x)}{20} \\
\frac{20}{13}+\frac{8 \mathrm{e}^{2 x}}{5}-\frac{63 \mathrm{e}^{3 x}}{52}-\frac{40 \cos (x)^{2}}{13}+\frac{(65 x-160 \sin (x)+299) \cos (x)}{260}+\frac{(16-5 x) \sin (x)}{20} \\
\frac{8}{13}+\frac{16 \mathrm{e}^{2 x}}{5}-\frac{189 \mathrm{e}^{3 x}}{52}-\frac{16 \cos (x)^{2}}{13}+\frac{(-65 x+1600 \sin (x)+273) \cos (x)}{260}+\frac{(-28-5 x) \sin (x)}{20}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
-\frac{5}{13}+\frac{2 \mathrm{e}^{2 x}}{5}-\frac{7 \mathrm{e}^{3 x}}{52}+\frac{10 \cos (x)^{2}}{13}+\frac{(-65 x+40 \sin (x)-169}{260} \\
-\frac{2}{13}+\frac{4 \mathrm{e}^{2 x}}{5}-\frac{21 \mathrm{e}^{3 x}}{52}+\frac{4 \cos (x)^{2}}{13}+\frac{(65 x-400 \sin (x)-143}{260} \\
\frac{20}{13}+\frac{8 \mathrm{e}^{2 x}}{5}-\frac{63 \mathrm{e}^{3 x}}{52}-\frac{40 \cos (x)^{2}}{13}+\frac{(65 x-160 \sin (x)+299)}{260} \\
\frac{8}{13}+\frac{16 \mathrm{e}^{2 x}}{5}-\frac{189 \mathrm{e}^{3 x}}{52}-\frac{16 \cos (x)^{2}}{13}+\frac{(-65 x+1600 \sin (x)+27}{260}
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{5}{13}+\frac{\left(16+5 c_{1}\right) \mathrm{e}^{2 x}}{40}+\frac{\left(-189+52 c_{2}\right) \mathrm{e}^{3 x}}{1404}+\frac{10 \cos (x)^{2}}{13}+\frac{\left(-169-65 x-260 c_{4}+40 \sin (x)\right) \cos (x)}{260}+\frac{\left(-6+5 x-20 c_{3}\right) \sin (x)}{20}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 51

```
dsolve(diff(y(x),x$4)-5*diff (y(x),x$3)+7*\operatorname{diff}(y(x),x$2)-5*\operatorname{diff}(y(x),x)+6*y(x)=5*\operatorname{sin}(x)-12*si
```

$$
\begin{aligned}
y(x)= & \frac{5 \cos (2 x)}{13}+c_{3} \mathrm{e}^{2 x}+c_{4} \mathrm{e}^{3 x}+\frac{\sin (2 x)}{13} \\
& +\frac{\left(-2-5 x+20 c_{1}\right) \cos (x)}{20}+\frac{\left(1+x+4 c_{2}\right) \sin (x)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.232 (sec). Leaf size: 71
DSolve $[y$ ' ' ' ' $[x]-5 * y$ ' ' ' $[x]+7 * y$ ' ' $[x]-5 * y$ ' $[x]+6 * y[x]==5 * \operatorname{Sin}[x]-12 * \operatorname{Sin}[2 * x], y[x], x$, IncludeSingul

$$
\begin{aligned}
y(x) \rightarrow & -\frac{5 \sin ^{2}(x)}{13}+\frac{5 \cos ^{2}(x)}{13}+e^{2 x}\left(c_{4} e^{x}+c_{3}\right) \\
& +\left(\frac{x}{4}+\frac{3}{8}+c_{2}\right) \sin (x)+\cos (x)\left(-\frac{x}{4}+\frac{2 \sin (x)}{13}-\frac{1}{10}+c_{1}\right)
\end{aligned}
$$

11.25 problem 25

11.25.1 Existence and uniqueness analysis 2483
11.25.2 Solving as second order linear constant coeff ode 2484
11.25.3 Solving using Kovacic algorithm 2488
11.25.4 Maple step by step solution . 2493

Internal problem ID [11799]
Internal file name [OUTPUT/11808_Thursday_April_11_2024_08_49_52_PM_42387168/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-4 y^{\prime}+3 y=9 x^{2}+4
$$

With initial conditions

$$
\left[y(0)=6, y^{\prime}(0)=8\right]
$$

11.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-4 \\
q(x) & =3 \\
F & =9 x^{2}+4
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y^{\prime}+3 y=9 x^{2}+4
$$

The domain of $p(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=9 x^{2}+4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.25.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=3, f(x)=9 x^{2}+4$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+3 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(3)} \\
& =2 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=2+1 \\
& \lambda_{2}=2-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{3} x^{2}+3 A_{2} x-8 x A_{3}+3 A_{1}-4 A_{2}+2 A_{3}=9 x^{2}+4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=10, A_{2}=8, A_{3}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x^{2}+8 x+10
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}\right)+\left(3 x^{2}+8 x+10\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}+3 x^{2}+8 x+10 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1}+c_{2}+10 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{x}+6 x+8
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=3 c_{1}+c_{2}+8 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-6
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=10+3 x^{2}+2 \mathrm{e}^{3 x}-6 \mathrm{e}^{x}+8 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=10+3 x^{2}+2 \mathrm{e}^{3 x}-6 \mathrm{e}^{x}+8 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=10+3 x^{2}+2 \mathrm{e}^{3 x}-6 \mathrm{e}^{x}+8 x
$$

Verified OK.

11.25.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 379: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+\frac{\mathrm{e}^{3 x} c_{2}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{3 x}}{2}, \mathrm{e}^{x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{3} x^{2}+3 A_{2} x-8 x A_{3}+3 A_{1}-4 A_{2}+2 A_{3}=9 x^{2}+4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=10, A_{2}=8, A_{3}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x^{2}+8 x+10
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+\frac{\mathrm{e}^{3 x} c_{2}}{2}\right)+\left(3 x^{2}+8 x+10\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+\frac{\mathrm{e}^{3 x} c_{2}}{2}+3 x^{2}+8 x+10 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1}+\frac{c_{2}}{2}+10 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+\frac{3 \mathrm{e}^{3 x} c_{2}}{2}+6 x+8
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=c_{1}+\frac{3 c_{2}}{2}+8 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-6 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=10+3 x^{2}+2 \mathrm{e}^{3 x}-6 \mathrm{e}^{x}+8 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=10+3 x^{2}+2 \mathrm{e}^{3 x}-6 \mathrm{e}^{x}+8 x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=10+3 x^{2}+2 \mathrm{e}^{3 x}-6 \mathrm{e}^{x}+8 x
$$

Verified OK.

11.25.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y^{\prime}+3 y=9 x^{2}+4, y(0)=6,\left.y^{\prime}\right|_{\{x=0\}}=8\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-4 r+3=0$
- Factor the characteristic polynomial

$$
(r-1)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(1,3)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{3 x} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=9 x^{2}+4\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{x} & \mathrm{e}^{3 x} \\ \mathrm{e}^{x} & 3 \mathrm{e}^{3 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{4 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{x}\left(\int\left(9 x^{2}+4\right) \mathrm{e}^{-x} d x\right)}{2}+\frac{\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-3 x}\left(9 x^{2}+4\right) d x\right)}{2}$
- Compute integrals

$$
y_{p}(x)=3 x^{2}+8 x+10
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{3 x} c_{2}+3 x^{2}+8 x+10$
Check validity of solution $y=\mathrm{e}^{x} c_{1}+\mathrm{e}^{3 x} c_{2}+3 x^{2}+8 x+10$
- Use initial condition $y(0)=6$

$$
6=c_{1}+c_{2}+10
$$

- Compute derivative of the solution

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+3 \mathrm{e}^{3 x} c_{2}+6 x+8
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=8$

$$
8=c_{1}+3 c_{2}+8
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-6, c_{2}=2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=10+3 x^{2}+2 \mathrm{e}^{3 x}-6 \mathrm{e}^{x}+8 x
$$

- \quad Solution to the IVP

$$
y=10+3 x^{2}+2 \mathrm{e}^{3 x}-6 \mathrm{e}^{x}+8 x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve([diff(y(x),x$2)-4*\operatorname{diff}(y(x),x)+3*y(x)=9*x^2+4,y(0) = 6, D(y)(0) = 8],y(x), singsol=al
```

$$
y(x)=-6 \mathrm{e}^{x}+2 \mathrm{e}^{3 x}+3 x^{2}+8 x+10
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 27

```
DSolve[{y''[x]-4*y'[x]+3*y[x]==9*x^2+4,{y[0]==6,y'[0]==8}},y[x],x,IncludeSingularSolutions -
```

$$
y(x) \rightarrow 3 x^{2}+8 x-6 e^{x}+2 e^{3 x}+10
$$

11.26 problem 26

11.26.1 Existence and uniqueness analysis 2496
11.26.2 Solving as second order linear constant coeff ode 2497
11.26.3 Solving using Kovacic algorithm 2501
11.26.4 Maple step by step solution . 2506

Internal problem ID [11800]
Internal file name [OUTPUT/11809_Thursday_April_11_2024_08_49_52_PM_16421415/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+5 y^{\prime}+4 y=16 x+20 \mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=3\right]
$$

11.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =5 \\
q(x) & =4 \\
F & =16 x+20 \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+4 y=16 x+20 \mathrm{e}^{x}
$$

The domain of $p(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=16 x+20 \mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.26.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=5, C=4, f(x)=16 x+20 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(4)} \\
& =-\frac{5}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-4) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
16 x+20 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\{1, x\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2}+A_{3} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1} \mathrm{e}^{x}+5 A_{3}+4 A_{2}+4 A_{3} x=16 x+20 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=-5, A_{3}=4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{x}-5+4 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}\right)+\left(2 \mathrm{e}^{x}-5+4 x\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}+2 \mathrm{e}^{x}-5+4 x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-3 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}-4 c_{2} \mathrm{e}^{-4 x}+2 \mathrm{e}^{x}+4
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-c_{1}-4 c_{2}+6 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5+2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}+4 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-5+2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}+4 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-5+2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}+4 x
$$

Verified OK.

11.26.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 381: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 x}\right)+c_{2}\left(\mathrm{e}^{-4 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{-x}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
16 x+20 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\{1, x\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-x}}{3}, \mathrm{e}^{-4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2}+A_{3} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1} \mathrm{e}^{x}+5 A_{3}+4 A_{2}+4 A_{3} x=16 x+20 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=-5, A_{3}=4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{x}-5+4 x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{-x}}{3}\right)+\left(2 \mathrm{e}^{x}-5+4 x\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{-x}}{3}+2 \mathrm{e}^{x}-5+4 x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{3}-3 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 x}-\frac{c_{2} \mathrm{e}^{-x}}{3}+2 \mathrm{e}^{x}+4
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-4 c_{1}-\frac{c_{2}}{3}+6 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=9
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-5+2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}+4 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-5+2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}+4 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-5+2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}+4 x
$$

Verified OK.

11.26.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+5 y^{\prime}+4 y=16 x+20 \mathrm{e}^{x}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=3\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+5 r+4=0
$$

- Factor the characteristic polynomial

$$
(r+4)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-4,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-4 x}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=16 x+20 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 x} & \mathrm{e}^{-x} \\
-4 \mathrm{e}^{-4 x} & -\mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-5 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{4 \mathrm{e}^{-4 x}\left(\int\left(4 x+5 \mathrm{e}^{x}\right) \mathrm{e}^{4 x} d x\right)}{3}+\frac{4 \mathrm{e}^{-x}\left(\int\left(4 x+5 \mathrm{e}^{x}\right) \mathrm{e}^{x} d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=2 \mathrm{e}^{x}-5+4 x
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-x}+2 \mathrm{e}^{x}-5+4 x$
Check validity of solution $y=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-x}+2 \mathrm{e}^{x}-5+4 x$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-3$
- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 x}-c_{2} \mathrm{e}^{-x}+2 \mathrm{e}^{x}+4
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=3$

$$
3=-4 c_{1}-c_{2}+6
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify

$$
y=-5+2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}+4 x
$$

- \quad Solution to the IVP

$$
y=-5+2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}+4 x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve([diff(y(x),x$2)+5*\operatorname{diff}(y(x),x)+4*y(x)=16*x+20*exp(x),y(0) = 0, D(y)(0)=3],y(x), sin
```

$$
y(x)=3 \mathrm{e}^{-x}-5+2 \mathrm{e}^{x}+4 x
$$

\checkmark Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 22
DSolve $[\{y$ ' ' $[x]+5 * y$ ' $[x]+4 * y[x]==16 * x+20 * \operatorname{Exp}[x],\{y[0]==0, y$ ' $[0]==3\}\}, y[x], x$, IncludeSingularSolu

$$
y(x) \rightarrow 4 x+3 e^{-x}+2 e^{x}-5
$$

11.27 problem 27

11.27.1 Existence and uniqueness analysis 2509
11.27.2 Solving as second order linear constant coeff ode 2510
11.27.3 Solving using Kovacic algorithm 2514
11.27.4 Maple step by step solution . 2519

Internal problem ID [11801]
Internal file name [OUTPUT/11810_Thursday_April_11_2024_08_49_53_PM_59993326/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-8 y^{\prime}+15 y=9 \mathrm{e}^{2 x} x
$$

With initial conditions

$$
\left[y(0)=5, y^{\prime}(0)=10\right]
$$

11.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-8 \\
q(x) & =15 \\
F & =9 \mathrm{e}^{2 x} x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-8 y^{\prime}+15 y=9 \mathrm{e}^{2 x} x
$$

The domain of $p(x)=-8$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=15$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=9 \mathrm{e}^{2 x} x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.27.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-8, C=15, f(x)=9 \mathrm{e}^{2 x} x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-8 y^{\prime}+15 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-8, C=15$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-8 \lambda \mathrm{e}^{\lambda x}+15 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-8 \lambda+15=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-8, C=15$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-8^{2}-(4)(1)(15)} \\
& =4 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=4+1 \\
& \lambda_{2}=4-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(5) x}+c_{2} e^{(3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{5 x}+\mathrm{e}^{3 x} c_{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{5 x}+\mathrm{e}^{3 x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
9 \mathrm{e}^{2 x} x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{e^{3 x}, e^{5 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} x+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{2 x} x-4 A_{1} \mathrm{e}^{2 x}+3 A_{2} \mathrm{e}^{2 x}=9 \mathrm{e}^{2 x} x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{2 x} x+4 \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{5 x}+\mathrm{e}^{3 x} c_{2}\right)+\left(3 \mathrm{e}^{2 x} x+4 \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+\mathrm{e}^{3 x} c_{2}+3 \mathrm{e}^{2 x} x+4 \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2}+4 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=5 c_{1} \mathrm{e}^{5 x}+3 \mathrm{e}^{3 x} c_{2}+6 \mathrm{e}^{2 x} x+11 \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=5 c_{1}+3 c_{2}+11 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \mathrm{e}^{2 x} x+4 \mathrm{e}^{2 x}-2 \mathrm{e}^{5 x}+3 \mathrm{e}^{3 x}
$$

Which simplifies to

$$
y=(4+3 x) \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}-2 \mathrm{e}^{5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(4+3 x) \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}-2 \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(4+3 x) \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}-2 \mathrm{e}^{5 x}
$$

Verified OK.

11.27.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-8 y^{\prime}+15 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-8 \tag{3}\\
& C=15
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 383: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{4 x} \\
& =z_{1}\left(\mathrm{e}^{4 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-8}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{8 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x}\right)+c_{2}\left(\mathrm{e}^{3 x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-8 y^{\prime}+15 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+\frac{c_{2} \mathrm{e}^{5 x}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
9 \mathrm{e}^{2 x} x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{5 x}}{2}, \mathrm{e}^{3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} x+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{2 x} x-4 A_{1} \mathrm{e}^{2 x}+3 A_{2} \mathrm{e}^{2 x}=9 \mathrm{e}^{2 x} x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{2 x} x+4 \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+\frac{c_{2} \mathrm{e}^{5 x}}{2}\right)+\left(3 \mathrm{e}^{2 x} x+4 \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+\frac{c_{2} \mathrm{e}^{5 x}}{2}+3 \mathrm{e}^{2 x} x+4 \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=c_{1}+\frac{c_{2}}{2}+4 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 x}+\frac{5 c_{2} \mathrm{e}^{5 x}}{2}+6 \mathrm{e}^{2 x} x+11 \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=3 c_{1}+\frac{5 c_{2}}{2}+11 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \mathrm{e}^{2 x} x+4 \mathrm{e}^{2 x}-2 \mathrm{e}^{5 x}+3 \mathrm{e}^{3 x}
$$

Which simplifies to

$$
y=(4+3 x) \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}-2 \mathrm{e}^{5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(4+3 x) \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}-2 \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(4+3 x) \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}-2 \mathrm{e}^{5 x}
$$

Verified OK.

11.27.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-8 y^{\prime}+15 y=9 \mathrm{e}^{2 x} x, y(0)=5,\left.y^{\prime}\right|_{\{x=0\}}=10\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-8 r+15=0
$$

- Factor the characteristic polynomial

$$
(r-3)(r-5)=0
$$

- Roots of the characteristic polynomial
$r=(3,5)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{3 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{5 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{5 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=9 \mathrm{e}^{2 x} x\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{3 x} & \mathrm{e}^{5 x} \\ 3 \mathrm{e}^{3 x} & 5 \mathrm{e}^{5 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{8 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{9 \mathrm{e}^{3 x}\left(\int x \mathrm{e}^{-x} d x\right)}{2}+\frac{9 \mathrm{e}^{5 x}\left(\int x \mathrm{e}^{-3 x} d x\right)}{2}$
- Compute integrals

$$
y_{p}(x)=(4+3 x) \mathrm{e}^{2 x}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{5 x}+(4+3 x) \mathrm{e}^{2 x}$
Check validity of solution $y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{5 x}+(4+3 x) \mathrm{e}^{2 x}$
- Use initial condition $y(0)=5$
$5=c_{1}+c_{2}+4$
- Compute derivative of the solution
$y^{\prime}=3 c_{1} \mathrm{e}^{3 x}+5 c_{2} \mathrm{e}^{5 x}+3 \mathrm{e}^{2 x}+2(4+3 x) \mathrm{e}^{2 x}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=10$
$10=3 c_{1}+5 c_{2}+11$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=3, c_{2}=-2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(4+3 x) \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}-2 \mathrm{e}^{5 x}
$$

- \quad Solution to the IVP

$$
y=(4+3 x) \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}-2 \mathrm{e}^{5 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 27

```
dsolve([diff (y(x),x$2)-8*diff (y (x),x)+15*y(x)=9*x*exp(2*x),y(0)=5,D(y)(0)=10],y(x), sin
```

$$
y(x)=-2 \mathrm{e}^{5 x}+3 \mathrm{e}^{3 x}+(3 x+4) \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 28
DSolve[\{y' ' $[x]-8 * y$ ' $[x]+15 * y[x]==9 * x * \operatorname{Exp}[2 * x],\{y[0]==5, y$ ' $[0]==10\}\}, y[x], x$, IncludeSingularSolu

$$
y(x) \rightarrow e^{2 x}\left(3 x+3 e^{x}-2 e^{3 x}+4\right)
$$

11.28 problem 28

11.28.1 Existence and uniqueness analysis 2522
11.28.2 Solving as second order linear constant coeff ode 2523
11.28.3 Solving using Kovacic algorithm 2527
11.28.4 Maple step by step solution . 2532

Internal problem ID [11802]
Internal file name [OUTPUT/11811_Thursday_April_11_2024_08_49_54_PM_95445400/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+7 y^{\prime}+10 y=4 x \mathrm{e}^{-3 x}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=-1\right]
$$

11.28.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =7 \\
q(x) & =10 \\
F & =4 x \mathrm{e}^{-3 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+7 y^{\prime}+10 y=4 x \mathrm{e}^{-3 x}
$$

The domain of $p(x)=7$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=10$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=4 x \mathrm{e}^{-3 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.28.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=7, C=10, f(x)=4 x \mathrm{e}^{-3 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=7, C=10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+7 \lambda \mathrm{e}^{\lambda x}+10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+7 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=7, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-7}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{7^{2}-(4)(1)(10)} \\
& =-\frac{7}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{7}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{7}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-5
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-2) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 x \mathrm{e}^{-3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-5 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{-3 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-3 x}-2 A_{1} x \mathrm{e}^{-3 x}-2 A_{2} \mathrm{e}^{-3 x}=4 x \mathrm{e}^{-3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x \mathrm{e}^{-3 x}-\mathrm{e}^{-3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x}\right)+\left(-2 x \mathrm{e}^{-3 x}-\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x}-2 x \mathrm{e}^{-3 x}-\mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-1 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}-5 c_{2} \mathrm{e}^{-5 x}+\mathrm{e}^{-3 x}+6 x \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-2 c_{1}-5 c_{2}+1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{-3 x}-\mathrm{e}^{-3 x}+\mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=(-2 x-1) \mathrm{e}^{-3 x}+\mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-2 x-1) \mathrm{e}^{-3 x}+\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(-2 x-1) \mathrm{e}^{-3 x}+\mathrm{e}^{-2 x}
$$

Verified OK.

11.28.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+7 y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=7 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 385: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{7 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{7 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-7 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-2 x}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 x \mathrm{e}^{-3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 x}}{3}, \mathrm{e}^{-5 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{-3 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-3 x}-2 A_{1} x \mathrm{e}^{-3 x}-2 A_{2} \mathrm{e}^{-3 x}=4 x \mathrm{e}^{-3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x \mathrm{e}^{-3 x}-\mathrm{e}^{-3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-2 x}}{3}\right)+\left(-2 x \mathrm{e}^{-3 x}-\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-2 x}}{3}-2 x \mathrm{e}^{-3 x}-\mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{3}-1 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-5 c_{1} \mathrm{e}^{-5 x}-\frac{2 c_{2} \mathrm{e}^{-2 x}}{3}+\mathrm{e}^{-3 x}+6 x \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-5 c_{1}-\frac{2 c_{2}}{3}+1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{-3 x}-\mathrm{e}^{-3 x}+\mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=(-2 x-1) \mathrm{e}^{-3 x}+\mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-2 x-1) \mathrm{e}^{-3 x}+\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(-2 x-1) \mathrm{e}^{-3 x}+\mathrm{e}^{-2 x}
$$

Verified OK.

11.28.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+7 y^{\prime}+10 y=4 x \mathrm{e}^{-3 x}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+7 r+10=0$
- Factor the characteristic polynomial
$(r+5)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-5,-2)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-5 x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 x \mathrm{e}^{-3 x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-5 x} & \mathrm{e}^{-2 x} \\ -5 \mathrm{e}^{-5 x} & -2 \mathrm{e}^{-2 x}\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-7 x}
$$

- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{4 \mathrm{e}^{-5 x}\left(\int \mathrm{e}^{2 x} x d x\right)}{3}+\frac{4 \mathrm{e}^{-2 x}\left(\int x \mathrm{e}^{-x} d x\right)}{3}$
- Compute integrals
$y_{p}(x)=(-2 x-1) \mathrm{e}^{-3 x}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-2 x}+(-2 x-1) \mathrm{e}^{-3 x}$
Check validity of solution $y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-2 x}+(-2 x-1) \mathrm{e}^{-3 x}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}-1
$$

- Compute derivative of the solution

$$
y^{\prime}=-5 c_{1} \mathrm{e}^{-5 x}-2 c_{2} \mathrm{e}^{-2 x}-2 \mathrm{e}^{-3 x}-3(-2 x-1) \mathrm{e}^{-3 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$
$-1=-5 c_{1}-2 c_{2}+1$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(-2 x-1) \mathrm{e}^{-3 x}+\mathrm{e}^{-2 x}
$$

- \quad Solution to the IVP

$$
y=(-2 x-1) \mathrm{e}^{-3 x}+\mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve([diff (y(x),x$2)+7*diff (y(x),x)+10*y(x)=4*x*exp(-3*x),y(0) = 0, D(y)(0)=-1],y(x), si
```

$$
y(x)=\mathrm{e}^{-2 x}+(-2 x-1) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 19
DSolve $\left[\left\{y^{\prime} '[x]+7 * y\right.\right.$ ' $\left.[x]+10 * y[x]==4 * x * \operatorname{Exp}[-3 * x],\left\{y[0]==0, y^{\prime}[0]==-1\right\}\right\}, y[x], x$, IncludeSingularSol

$$
y(x) \rightarrow e^{-3 x}\left(-2 x+e^{x}-1\right)
$$

11.29 problem 29

11.29.1 Existence and uniqueness analysis 2536
11.29.2 Solving as second order linear constant coeff ode 2536
11.29.3 Solving as linear second order ode solved by an integrating factor
ode . 2540
11.29.4 Solving using Kovacic algorithm 2542
11.29.5 Maple step by step solution . 2547

Internal problem ID [11803]
Internal file name [OUTPUT/11812_Thursday_April_11_2024_08_49_54_PM_52142107/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+8 y^{\prime}+16 y=8 \mathrm{e}^{-2 x}
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=0\right]
$$

11.29.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =8 \\
q(x) & =16 \\
F & =8 \mathrm{e}^{-2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+8 y^{\prime}+16 y=8 \mathrm{e}^{-2 x}
$$

The domain of $p(x)=8$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=16$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=8 \mathrm{e}^{-2 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.29.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=8, C=16, f(x)=8 \mathrm{e}^{-2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+8 y^{\prime}+16 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=8, C=16$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+8 \lambda \mathrm{e}^{\lambda x}+16 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+8 \lambda+16=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=8, C=16$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(8)^{2}-(4)(1)(16)} \\
& =-4
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=4$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-4 x} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-4 x}+c_{2} x \mathrm{e}^{-4 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 x} x, \mathrm{e}^{-4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{-2 x}=8 \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{-2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 x}+c_{2} x \mathrm{e}^{-4 x}\right)+\left(2 \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-4 x}\left(c_{2} x+c_{1}\right)+2 \mathrm{e}^{-2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-4 x}\left(c_{2} x+c_{1}\right)+2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=2+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 \mathrm{e}^{-4 x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{-4 x}-4 \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-4-4 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}
$$

Verified OK.

11.29.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=8$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 8 d x} \\
& =\mathrm{e}^{4 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =8 \mathrm{e}^{4 x} \mathrm{e}^{-2 x} \\
\left(\mathrm{e}^{4 x} y\right)^{\prime \prime} & =8 \mathrm{e}^{4 x} \mathrm{e}^{-2 x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{4 x} y\right)^{\prime}=4 \mathrm{e}^{2 x}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{4 x} y\right)=c_{1} x+2 \mathrm{e}^{2 x}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+2 \mathrm{e}^{2 x}+c_{2}}{\mathrm{e}^{4 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-4 x}+2 \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-4 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-4 x}+2 \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-4 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{2}+2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{-4 x}-4 c_{1} x \mathrm{e}^{-4 x}-4 \mathrm{e}^{-2 x}-4 c_{2} \mathrm{e}^{-4 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-4+c_{1}-4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}
$$

Verified OK.

11.29.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+8 y^{\prime}+16 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=8 \tag{3}\\
& C=16
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 387: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-4 x} \\
& =z_{1}\left(\mathrm{e}^{-4 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{8}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-8 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 x}\right)+c_{2}\left(\mathrm{e}^{-4 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+8 y^{\prime}+16 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 x}+c_{2} x \mathrm{e}^{-4 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 x} x, \mathrm{e}^{-4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{-2 x}=8 \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{-2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 x}+c_{2} x \mathrm{e}^{-4 x}\right)+\left(2 \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-4 x}\left(c_{2} x+c_{1}\right)+2 \mathrm{e}^{-2 x}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-4 x}\left(c_{2} x+c_{1}\right)+2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=2+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 \mathrm{e}^{-4 x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{-4 x}-4 \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-4-4 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}
$$

Verified OK.

11.29.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+8 y^{\prime}+16 y=8 \mathrm{e}^{-2 x}, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+8 r+16=0$
- Factor the characteristic polynomial
$(r+4)^{2}=0$
- Root of the characteristic polynomial

$$
r=-4
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-4 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=\mathrm{e}^{-4 x} x
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 x}+c_{2} x \mathrm{e}^{-4 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=8 \mathrm{e}^{-2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 x} & \mathrm{e}^{-4 x} x \\
-4 \mathrm{e}^{-4 x} & -4 \mathrm{e}^{-4 x} x+\mathrm{e}^{-4 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-8 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-8 \mathrm{e}^{-4 x}\left(\int \mathrm{e}^{2 x} x d x-\left(\int \mathrm{e}^{2 x} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=2 \mathrm{e}^{-2 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-4 x}+c_{2} x \mathrm{e}^{-4 x}+2 \mathrm{e}^{-2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-4 x}+c_{2} x \mathrm{e}^{-4 x}+2 \mathrm{e}^{-2 x}$

- Use initial condition $y(0)=2$

$$
2=2+c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-4 x}-4 c_{2} x \mathrm{e}^{-4 x}-4 \mathrm{e}^{-2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=-4-4 c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=4\right\}$
- Substitute constant values into general solution and simplify

$$
y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}
$$

- \quad Solution to the IVP
$y=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve([\operatorname{diff}(y(x),x$2)+8*\operatorname{diff}(y(x),x)+16*y(x)=8*exp(-2*x),y(0)=2,D(y)(0) = 0],y(x), sings
```

$$
y(x)=4 \mathrm{e}^{-4 x} x+2 \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 21
DSolve $[\{y$ ' ' $[x]+8 * y$ ' $[x]+16 * y[x]==8 * \operatorname{Exp}[-2 * x],\{y[0]==2, y$ ' $[0]==0\}\}, y[x], x$, IncludeSingularSoluti

$$
y(x) \rightarrow 2 e^{-4 x}\left(2 x+e^{2 x}\right)
$$

11.30 problem 30

11.30.1 Existence and uniqueness analysis 2551
11.30.2 Solving as second order linear constant coeff ode 2551
11.30.3 Solving as linear second order ode solved by an integrating factor ode 2555
11.30.4 Solving using Kovacic algorithm 2557
11.30.5 Maple step by step solution 2562

Internal problem ID [11804]
Internal file name [OUTPUT/11813_Thursday_April_11_2024_08_49_55_PM_97443435/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 30 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+6 y^{\prime}+9 y=27 \mathrm{e}^{-6 x}
$$

With initial conditions

$$
\left[y(0)=-2, y^{\prime}(0)=0\right]
$$

11.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =6 \\
q(x) & =9 \\
F & =27 \mathrm{e}^{-6 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+9 y=27 \mathrm{e}^{-6 x}
$$

The domain of $p(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=27 \mathrm{e}^{-6 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.30.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=6, C=9, f(x)=27 \mathrm{e}^{-6 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
27 \mathrm{e}^{-6 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-6 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-6 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{-6 x}=27 \mathrm{e}^{-6 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{-6 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(3 \mathrm{e}^{-6 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+3 \mathrm{e}^{-6 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+3 \mathrm{e}^{-6 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=3+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{-3 x}-18 \mathrm{e}^{-6 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-18-3 c_{1}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-5 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}-5 \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

Verified OK.

11.30.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =27 \mathrm{e}^{3 x} \mathrm{e}^{-6 x} \\
\left(\mathrm{e}^{3 x} y\right)^{\prime \prime} & =27 \mathrm{e}^{3 x} \mathrm{e}^{-6 x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{3 x} y\right)^{\prime}=-9 \mathrm{e}^{-3 x}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{3 x} y\right)=c_{1} x+3 \mathrm{e}^{-3 x}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+3 \mathrm{e}^{-3 x}+c_{2}}{\mathrm{e}^{3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{2}+3 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{-3 x}-3 c_{1} x \mathrm{e}^{-3 x}-3 c_{2} \mathrm{e}^{-3 x}-18 \mathrm{e}^{-6 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-3 c_{2}-18 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}-5 \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

Verified OK.

11.30.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 389: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d x}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
27 \mathrm{e}^{-6 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-6 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-6 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{-6 x}=27 \mathrm{e}^{-6 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{-6 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(3 \mathrm{e}^{-6 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+3 \mathrm{e}^{-6 x}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+3 \mathrm{e}^{-6 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=3+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{-3 x}-18 \mathrm{e}^{-6 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-18-3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-5 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}-5 \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

Verified OK.

11.30.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+9 y=27 \mathrm{e}^{-6 x}, y(0)=-2,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+9=0$
- Factor the characteristic polynomial

$$
(r+3)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-3
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence
$y_{2}(x)=x \mathrm{e}^{-3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=27 \mathrm{e}^{-6 x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\ -3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-27 \mathrm{e}^{-3 x}\left(\int x \mathrm{e}^{-3 x} d x-\left(\int \mathrm{e}^{-3 x} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=3 \mathrm{e}^{-6 x}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}$
Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}$
- Use initial condition $y(0)=-2$
$-2=3+c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}-3 c_{2} x \mathrm{e}^{-3 x}-18 \mathrm{e}^{-6 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=-18-3 c_{1}+c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-5, c_{2}=3\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

- \quad Solution to the IVP

$$
y=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve([diff (y (x),x$2)+6*\operatorname{diff}(y(x),x)+9*y(x)=27*exp(-6*x),y(0)=-2,D(y)(0)=0],y(x), sing
```

$$
y(x)=(3 x-5) \mathrm{e}^{-3 x}+3 \mathrm{e}^{-6 x}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 24
DSolve $\left[\left\{y\right.\right.$ ' ' $[x]+6 * y$ ' $\left.[x]+9 * y[x]==27 * \operatorname{Exp}[-6 * x],\left\{y[0]==-2, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolut

$$
y(x) \rightarrow e^{-6 x}\left(e^{3 x}(3 x-5)+3\right)
$$

11.31 problem 31

11.31.1 Existence and uniqueness analysis 2565
11.31.2 Solving as second order linear constant coeff ode 2566
11.31.3 Solving using Kovacic algorithm 2570
11.31.4 Maple step by step solution . 2575

Internal problem ID [11805]
Internal file name [OUTPUT/11814_Thursday_April_11_2024_08_49_56_PM_89938605/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 31.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+13 y=18 \mathrm{e}^{-2 x}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=4\right]
$$

11.31.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =4 \\
q(x) & =13 \\
F & =18 \mathrm{e}^{-2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+13 y=18 \mathrm{e}^{-2 x}
$$

The domain of $p(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=13$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=18 \mathrm{e}^{-2 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.31.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=13, f(x)=18 \mathrm{e}^{-2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(13)} \\
& =-2 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+3 i \\
\lambda_{2}=-2-3 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2+3 i \\
\lambda_{2}=-2-3 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
18 \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x} \cos (3 x), \mathrm{e}^{-2 x} \sin (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{-2 x}=18 \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{-2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)\right)+\left(2 \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 \mathrm{e}^{-2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\mathrm{e}^{-2 x}\left(-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)\right)-4 \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=-2 c_{1}+3 c_{2}-4 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=\frac{4}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{4 \mathrm{e}^{-2 x} \sin (3 x)}{3}-2 \mathrm{e}^{-2 x} \cos (3 x)+2 \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=-\frac{2 \mathrm{e}^{-2 x}(-3-2 \sin (3 x)+3 \cos (3 x))}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \mathrm{e}^{-2 x}(-3-2 \sin (3 x)+3 \cos (3 x))}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2 \mathrm{e}^{-2 x}(-3-2 \sin (3 x)+3 \cos (3 x))}{3}
$$

Verified OK.

11.31.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 391: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x} \cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x} \cos (3 x)\right)+c_{2}\left(\mathrm{e}^{-2 x} \cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x} \cos (3 x)+\frac{\sin (3 x) \mathrm{e}^{-2 x} c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
18 \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x} \cos (3 x), \frac{\mathrm{e}^{-2 x} \sin (3 x)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{-2 x}=18 \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{-2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x} \cos (3 x)+\frac{\sin (3 x) \mathrm{e}^{-2 x} c_{2}}{3}\right)+\left(2 \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x} \cos (3 x)+\frac{\sin (3 x) \mathrm{e}^{-2 x} c_{2}}{3}+2 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x} \cos (3 x)-3 c_{1} \mathrm{e}^{-2 x} \sin (3 x)+\cos (3 x) \mathrm{e}^{-2 x} c_{2}-\frac{2 \sin (3 x) \mathrm{e}^{-2 x} c_{2}}{3}-4 \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=-2 c_{1}-4+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{4 \mathrm{e}^{-2 x} \sin (3 x)}{3}-2 \mathrm{e}^{-2 x} \cos (3 x)+2 \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=-\frac{2 \mathrm{e}^{-2 x}(-3-2 \sin (3 x)+3 \cos (3 x))}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \mathrm{e}^{-2 x}(-3-2 \sin (3 x)+3 \cos (3 x))}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{2 \mathrm{e}^{-2 x}(-3-2 \sin (3 x)+3 \cos (3 x))}{3}
$$

Verified OK.

11.31.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+13 y=18 \mathrm{e}^{-2 x}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2-3 \mathrm{I},-2+3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x} \cos (3 x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x} \sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x} \cos (3 x)+\sin (3 x) \mathrm{e}^{-2 x} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=18 \mathrm{e}^{-2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} \cos (3 x) & \mathrm{e}^{-2 x} \sin (3 x) \\
-2 \mathrm{e}^{-2 x} \cos (3 x)-3 \mathrm{e}^{-2 x} \sin (3 x) & -2 \mathrm{e}^{-2 x} \sin (3 x)+3 \mathrm{e}^{-2 x} \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-6 \mathrm{e}^{-2 x}\left(\cos (3 x)\left(\int \sin (3 x) d x\right)-\sin (3 x)\left(\int \cos (3 x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=2 \mathrm{e}^{-2 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x} \cos (3 x)+\sin (3 x) \mathrm{e}^{-2 x} c_{2}+2 \mathrm{e}^{-2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-2 x} \cos (3 x)+\sin (3 x) \mathrm{e}^{-2 x} c_{2}+2 \mathrm{e}^{-2 x}$

- Use initial condition $y(0)=0$
$0=c_{1}+2$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x} \cos (3 x)-3 c_{1} \mathrm{e}^{-2 x} \sin (3 x)+3 \cos (3 x) \mathrm{e}^{-2 x} c_{2}-2 \sin (3 x) \mathrm{e}^{-2 x} c_{2}-4 \mathrm{e}^{-2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=4$
$4=-2 c_{1}+3 c_{2}-4$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-2, c_{2}=\frac{4}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{2 \mathrm{e}^{-2 x}(-3-2 \sin (3 x)+3 \cos (3 x))}{3}
$$

- \quad Solution to the IVP

$$
y=-\frac{2 \mathrm{e}^{-2 x}(-3-2 \sin (3 x)+3 \cos (3 x))}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.015 (sec). Leaf size: 24

```
dsolve([diff (y (x),x$2)+4*\operatorname{diff}(y(x),x)+13*y(x)=18*exp (-2*x),y(0) = 0, D(y)(0)=4],y(x), sing
```

$$
y(x)=\frac{2 \mathrm{e}^{-2 x}(2 \sin (3 x)-3 \cos (3 x)+3)}{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 28
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+4 * y\right.\right.$ ' $\left.[x]+13 * y[x]==18 * \operatorname{Exp}[-2 * x],\left\{y[0]==0, y^{\prime}[0]==4\right\}\right\}, y[x], x$, IncludeSingularSolut

$$
y(x) \rightarrow \frac{1}{3} e^{-2 x}(4 \sin (3 x)-6 \cos (3 x)+6)
$$

11.32 problem 32

11.32.1 Existence and uniqueness analysis 2578
11.32.2 Solving as second order linear constant coeff ode 2579
11.32.3 Solving using Kovacic algorithm 2583
11.32.4 Maple step by step solution . 2588

Internal problem ID [11806]
Internal file name [OUTPUT/11815_Thursday_April_11_2024_08_49_57_PM_19006565/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-10 y^{\prime}+29 y=8 \mathrm{e}^{5 x}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=8\right]
$$

11.32.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-10 \\
q(x) & =29 \\
F & =8 \mathrm{e}^{5 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-10 y^{\prime}+29 y=8 \mathrm{e}^{5 x}
$$

The domain of $p(x)=-10$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=29$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=8 \mathrm{e}^{5 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.32.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-10, C=29, f(x)=8 \mathrm{e}^{5 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-10 y^{\prime}+29 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-10, C=29$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-10 \lambda \mathrm{e}^{\lambda x}+29 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-10 \lambda+29=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-10, C=29$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{10}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-10^{2}-(4)(1)(29)} \\
& =5 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=5+2 i \\
& \lambda_{2}=5-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=5+2 i \\
& \lambda_{2}=5-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=5$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{5 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{5 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 e^{5 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{5 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{5 x} \cos (2 x), \mathrm{e}^{5 x} \sin (2 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{5 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{5 x}=8 \mathrm{e}^{5 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{5 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{5 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(2 \mathrm{e}^{5 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{5 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+2 \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=5 \mathrm{e}^{5 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\mathrm{e}^{5 x}\left(-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)\right)+10 \mathrm{e}^{5 x}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=5 c_{1}+2 c_{2}+10 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 \mathrm{e}^{5 x} \cos (2 x)+4 \mathrm{e}^{5 x} \sin (2 x)+2 \mathrm{e}^{5 x}
$$

Which simplifies to

$$
y=-2 \mathrm{e}^{5 x}(-1+\cos (2 x)-2 \sin (2 x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 \mathrm{e}^{5 x}(-1+\cos (2 x)-2 \sin (2 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \mathrm{e}^{5 x}(-1+\cos (2 x)-2 \sin (2 x))
$$

Verified OK.

11.32.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-10 y^{\prime}+29 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-10 \tag{3}\\
& C=29
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 393: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-10}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{5 x} \\
& =z_{1}\left(\mathrm{e}^{5 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{5 x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-10}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{10 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{5 x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{5 x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-10 y^{\prime}+29 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{5 x} \cos (2 x)+\frac{\sin (2 x) \mathrm{e}^{5 x} c_{2}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 e^{5 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{5 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{5 x} \cos (2 x), \frac{\mathrm{e}^{5 x} \sin (2 x)}{2}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{5 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{5 x}=8 \mathrm{e}^{5 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{5 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{5 x} \cos (2 x)+\frac{\sin (2 x) \mathrm{e}^{5 x} c_{2}}{2}\right)+\left(2 \mathrm{e}^{5 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x} \cos (2 x)+\frac{\sin (2 x) \mathrm{e}^{5 x} c_{2}}{2}+2 \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=5 c_{1} \mathrm{e}^{5 x} \cos (2 x)-2 c_{1} \mathrm{e}^{5 x} \sin (2 x)+\cos (2 x) \mathrm{e}^{5 x} c_{2}+\frac{5 \sin (2 x) \mathrm{e}^{5 x} c_{2}}{2}+10 \mathrm{e}^{5 x}
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=5 c_{1}+10+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=8
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 \mathrm{e}^{5 x} \cos (2 x)+4 \mathrm{e}^{5 x} \sin (2 x)+2 \mathrm{e}^{5 x}
$$

Which simplifies to

$$
y=-2 \mathrm{e}^{5 x}(-1+\cos (2 x)-2 \sin (2 x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \mathrm{e}^{5 x}(-1+\cos (2 x)-2 \sin (2 x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \mathrm{e}^{5 x}(-1+\cos (2 x)-2 \sin (2 x))
$$

Verified OK.

11.32.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-10 y^{\prime}+29 y=8 \mathrm{e}^{5 x}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=8\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-10 r+29=0$
- Use quadratic formula to solve for r
$r=\frac{10 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(5-2 \mathrm{I}, 5+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{5 x} \cos (2 x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{5 x} \sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{5 x} \cos (2 x)+\sin (2 x) \mathrm{e}^{5 x} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=8 \mathrm{e}^{5 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{5 x} \cos (2 x) & \mathrm{e}^{5 x} \sin (2 x) \\
5 \mathrm{e}^{5 x} \cos (2 x)-2 \mathrm{e}^{5 x} \sin (2 x) & 5 \mathrm{e}^{5 x} \sin (2 x)+2 \mathrm{e}^{5 x} \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{10 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{5 x}\left(\cos (2 x)\left(\int \sin (2 x) d x\right)-\sin (2 x)\left(\int \cos (2 x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=2 \mathrm{e}^{5 x}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{5 x} \cos (2 x)+\sin (2 x) \mathrm{e}^{5 x} c_{2}+2 \mathrm{e}^{5 x}$
Check validity of solution $y=c_{1} \mathrm{e}^{5 x} \cos (2 x)+\sin (2 x) \mathrm{e}^{5 x} c_{2}+2 \mathrm{e}^{5 x}$
- Use initial condition $y(0)=0$
$0=c_{1}+2$
- Compute derivative of the solution

$$
y^{\prime}=5 c_{1} \mathrm{e}^{5 x} \cos (2 x)-2 c_{1} \mathrm{e}^{5 x} \sin (2 x)+2 \cos (2 x) \mathrm{e}^{5 x} c_{2}+5 \sin (2 x) \mathrm{e}^{5 x} c_{2}+10 \mathrm{e}^{5 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=8$
$8=5 c_{1}+2 c_{2}+10$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-2, c_{2}=4\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-2 \mathrm{e}^{5 x}(-1+\cos (2 x)-2 \sin (2 x))
$$

- \quad Solution to the IVP

$$
y=-2 \mathrm{e}^{5 x}(-1+\cos (2 x)-2 \sin (2 x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve([diff (y (x),x$2)-10*\operatorname{diff}(y(x),x)+29*y(x)=8*exp(5*x),y(0) = 0, D(y)(0) = 8],y(x), sings
```

$$
y(x)=-2 \mathrm{e}^{5 x}(-1-2 \sin (2 x)+\cos (2 x))
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 24
DSolve[\{y' ' $[x]-10 * y$ ' $[x]+29 * y[x]==8 * \operatorname{Exp}[5 * x],\{y[0]==0, y$ ' $[0]==8\}\}, y[x], x$, IncludeSingularSoluti

$$
y(x) \rightarrow-2 e^{5 x}(-2 \sin (2 x)+\cos (2 x)-1)
$$

11.33 problem 33

11.33.1 Existence and uniqueness analysis 2591
11.33.2 Solving as second order linear constant coeff ode 2592
11.33.3 Solving using Kovacic algorithm 2596
11.33.4 Maple step by step solution . 2602

Internal problem ID [11807]
Internal file name [OUTPUT/11816_Thursday_April_11_2024_08_49_58_PM_34915414/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 33 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y^{\prime}+13 y=8 \sin (3 x)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=2\right]
$$

11.33.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-4 \\
q(x) & =13 \\
F & =8 \sin (3 x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y^{\prime}+13 y=8 \sin (3 x)
$$

The domain of $p(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=13$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=8 \sin (3 x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.33.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=13, f(x)=8 \sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(13)} \\
& =2 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=2+3 i \\
& \lambda_{2}=2-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2+3 i \\
& \lambda_{2}=2-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=2$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x} \cos (3 x), \mathrm{e}^{2 x} \sin (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \cos (3 x)+4 A_{2} \sin (3 x)+12 A_{1} \sin (3 x)-12 A_{2} \cos (3 x)=8 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{5}, A_{2}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)\right)+\left(\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{3}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=2 \mathrm{e}^{2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\mathrm{e}^{2 x}\left(-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)\right)-\frac{9 \sin (3 x)}{5}+\frac{3 \cos (3 x)}{5}$ substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=2 c_{1}+\frac{3}{5}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{2}{5} \\
& c_{2}=\frac{1}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 \mathrm{e}^{2 x} \cos (3 x)}{5}+\frac{\mathrm{e}^{2 x} \sin (3 x)}{5}+\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}
$$

Which simplifies to

$$
y=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5}
$$

Verified OK.

11.33.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-4 y^{\prime}+13 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 395: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x} \cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x} \cos (3 x)\right)+c_{2}\left(\mathrm{e}^{2 x} \cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{2 x} \cos (3 x)+\frac{\mathrm{e}^{2 x} c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x} \cos (3 x), \frac{\mathrm{e}^{2 x} \sin (3 x)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \cos (3 x)+4 A_{2} \sin (3 x)+12 A_{1} \sin (3 x)-12 A_{2} \cos (3 x)=8 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{5}, A_{2}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x} \cos (3 x)+\frac{\mathrm{e}^{2 x} c_{2} \sin (3 x)}{3}\right)+\left(\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x} \cos (3 x)+\frac{\mathrm{e}^{2 x} c_{2} \sin (3 x)}{3}+\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{3}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=2 c_{1} \mathrm{e}^{2 x} \cos (3 x)-3 c_{1} \mathrm{e}^{2 x} \sin (3 x)+\frac{2 \mathrm{e}^{2 x} c_{2} \sin (3 x)}{3}+\mathrm{e}^{2 x} c_{2} \cos (3 x)-\frac{9 \sin (3 x)}{5}+\frac{3 \cos (3 x)}{5}$
substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=2 c_{1}+\frac{3}{5}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{2}{5} \\
& c_{2}=\frac{3}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 \mathrm{e}^{2 x} \cos (3 x)}{5}+\frac{\mathrm{e}^{2 x} \sin (3 x)}{5}+\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}
$$

Which simplifies to

$$
y=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5}
$$

Verified OK.

11.33.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y^{\prime}+13 y=8 \sin (3 x), y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-4 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{4 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(2-3 \mathrm{I}, 2+3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{2 x} \cos (3 x)$
- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x} \sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{2 x} \cos (3 x)+\mathrm{e}^{2 x} c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=8 \sin (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 x} \cos (3 x) & \mathrm{e}^{2 x} \sin (3 x) \\
2 \mathrm{e}^{2 x} \cos (3 x)-3 \mathrm{e}^{2 x} \sin (3 x) & 2 \mathrm{e}^{2 x} \sin (3 x)+3 \mathrm{e}^{2 x} \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{4 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{4 \mathrm{e}^{2 x}\left(-2 \cos (3 x)\left(\int \mathrm{e}^{-2 x} \sin (3 x)^{2} d x\right)+\sin (3 x)\left(\int \sin (6 x) \mathrm{e}^{-2 x} d x\right)\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{2 x} \cos (3 x)+\mathrm{e}^{2 x} c_{2} \sin (3 x)+\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{2 x} \cos (3 x)+\mathrm{e}^{2 x} c_{2} \sin (3 x)+\frac{3 \cos (3 x)}{5}+\frac{\sin (3 x)}{5}$

- Use initial condition $y(0)=1$

$$
1=c_{1}+\frac{3}{5}
$$

- Compute derivative of the solution

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x} \cos (3 x)-3 c_{1} \mathrm{e}^{2 x} \sin (3 x)+2 \mathrm{e}^{2 x} c_{2} \sin (3 x)+3 \mathrm{e}^{2 x} c_{2} \cos (3 x)-\frac{9 \sin (3 x)}{5}+\frac{3 \cos (3 x)}{5}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=2$

$$
2=2 c_{1}+\frac{3}{5}+3 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{2}{5}, c_{2}=\frac{1}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 31
dsolve ([diff $(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+13 * y(x)=8 * \sin (3 * x), y(0)=1, D(y)(0)=2], y(x)$, singso

$$
y(x)=\frac{\left(2 \mathrm{e}^{2 x}+3\right) \cos (3 x)}{5}+\frac{\sin (3 x)\left(\mathrm{e}^{2 x}+1\right)}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 36
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]-4 * y\right.\right.$ ' $[x]+13 * y[x]==8 * \operatorname{Sin}[3 * x],\{y[0]==1, y$ ' $\left.[0]==2\}\right\}, y[x], x$, IncludeSingularSolutio

$$
y(x) \rightarrow \frac{1}{5}\left(\left(e^{2 x}+1\right) \sin (3 x)+\left(2 e^{2 x}+3\right) \cos (3 x)\right)
$$

11.34 problem 34

11.34.1 Existence and uniqueness analysis 2605
11.34.2 Solving as second order linear constant coeff ode 2606
11.34.3 Solving using Kovacic algorithm 2610
11.34.4 Maple step by step solution . 2617

Internal problem ID [11808]
Internal file name [OUTPUT/11817_Thursday_April_11_2024_08_49_58_PM_20923427/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 34 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-6 y=8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=5\right]
$$

11.34.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-6 \\
F & =8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-6 y=8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.34.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-1, C=-6, f(x)=8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-6)} \\
& =\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{\mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{3 x}\right\}
$$

Since $\mathrm{e}^{3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{3 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}+A_{2} x \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \mathrm{e}^{2 x}+5 A_{2} \mathrm{e}^{3 x}=8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 \mathrm{e}^{2 x}-x \mathrm{e}^{3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-2 \mathrm{e}^{2 x}-x \mathrm{e}^{3 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}-2 \mathrm{e}^{2 x}-x \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2}-2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 x}-2 c_{2} \mathrm{e}^{-2 x}-4 \mathrm{e}^{2 x}-\mathrm{e}^{3 x}-3 x \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=3 c_{1}-2 c_{2}-5 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x \mathrm{e}^{3 x}-2 \mathrm{e}^{2 x}+4 \mathrm{e}^{3 x}+\mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

Verified OK.

11.34.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 397: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{3 x} c_{2}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\frac{\mathrm{e}^{3 x}}{5}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{3 x}}{5} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{3 x}}{5}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{3 x}}{5} \\
-2 \mathrm{e}^{-2 x} & \frac{3 \mathrm{e}^{3 x}}{5}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\frac{3 \mathrm{e}^{3 x}}{5}\right)-\left(\frac{\mathrm{e}^{3 x}}{5}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{3 x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{3 x}\left(8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}\right)}{5}}{\mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{4 x}\left(5 \mathrm{e}^{x}-8\right)}{5} d x
$$

Hence

$$
u_{1}=-\frac{2 \mathrm{e}^{4 x}}{5}+\frac{\mathrm{e}^{5 x}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x}\left(8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}\right)}{\mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(-5+8 \mathrm{e}^{-x}\right) d x
$$

Hence

$$
u_{2}=-5 x-8 \mathrm{e}^{-x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{2 \mathrm{e}^{4 x}}{5}+\frac{\mathrm{e}^{5 x}}{5}\right) \mathrm{e}^{-2 x}+\frac{\left(-5 x-8 \mathrm{e}^{-x}\right) \mathrm{e}^{3 x}}{5}
$$

Which simplifies to

$$
y_{p}(x)=-2 \mathrm{e}^{2 x}+\frac{\mathrm{e}^{3 x}}{5}-x \mathrm{e}^{3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{3 x} c_{2}}{5}\right)+\left(-2 \mathrm{e}^{2 x}+\frac{\mathrm{e}^{3 x}}{5}-x \mathrm{e}^{3 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{\mathrm{e}^{3 x} c_{2}}{5}-2 \mathrm{e}^{2 x}+\frac{\mathrm{e}^{3 x}}{5}-x \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1}+\frac{c_{2}}{5}-\frac{9}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{3 \mathrm{e}^{3 x} c_{2}}{5}-4 \mathrm{e}^{2 x}-\frac{2 \mathrm{e}^{3 x}}{5}-3 x \mathrm{e}^{3 x}
$$

substituting $y^{\prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=-2 c_{1}+\frac{3 c_{2}}{5}-\frac{22}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=19
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-x \mathrm{e}^{3 x}-2 \mathrm{e}^{2 x}+4 \mathrm{e}^{3 x}+\mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

Verified OK.

11.34.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-6 y=8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-6=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,3)
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{3 x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=8 \mathrm{e}^{2 x}-5 \mathrm{e}^{3 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{3 x} \\
-2 \mathrm{e}^{-2 x} & 3 \mathrm{e}^{3 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=5 \mathrm{e}^{x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{5 x}\left(\int\left(-5+8 \mathrm{e}^{-x}\right) d x\right)+\int \mathrm{e}^{4 x}\left(5 \mathrm{e}^{x}-8\right) d x\right) \mathrm{e}^{-2 x}}{5}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(-10+(-5 x+1) \mathrm{e}^{x}\right) \mathrm{e}^{2 x}}{5}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{3 x} c_{2}+\frac{\left(-10+(-5 x+1) \mathrm{e}^{x}\right) \mathrm{e}^{2 x}}{5}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{3 x} c_{2}+\frac{\left(-10+(-5 x+1) \mathrm{e}^{x}\right) \mathrm{e}^{2 x}}{5}$

- Use initial condition $y(0)=3$

$$
3=c_{1}+c_{2}-\frac{9}{5}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+3 \mathrm{e}^{3 x} c_{2}+\frac{\left(-5 \mathrm{e}^{x}+(-5 x+1) \mathrm{e}^{x}\right) \mathrm{e}^{2 x}}{5}+\frac{2\left(-10+(-5 x+1) \mathrm{e}^{x}\right) \mathrm{e}^{2 x}}{5}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=5$
$5=-2 c_{1}+3 c_{2}-\frac{22}{5}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=\frac{19}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

- \quad Solution to the IVP

$$
y=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 28
dsolve ([diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-6 * y(x)=8 * \exp (2 * x)-5 * \exp (3 * x), y(0)=3, D(y)(0)=5], y(x)$

$$
y(x)=-\left((-4+x) \mathrm{e}^{5 x}+2 \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 28
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]-y\right.\right.$ ' $[x]-6 * y[x]==8 * \operatorname{Exp}[2 * x]-5 * \operatorname{Exp}[3 * x],\{y[0]==3, y$ ' $\left.[0]==5\}\right\}, y[x], x$, IncludeSingula

$$
y(x) \rightarrow-e^{3 x}(x-4)+e^{-2 x}-2 e^{2 x}
$$

11.35 problem 35

$$
\text { 11.35.1 Existence and uniqueness analysis } 2621
$$

11.35.2 Solving as second order linear constant coeff ode 2621
11.35.3 Solving as linear second order ode solved by an integrating factor ode 2625
11.35.4 Solving using Kovacic algorithm 2627
11.35.5 Maple step by step solution . 2633

Internal problem ID [11809]
Internal file name [OUTPUT/11818_Thursday_April_11_2024_08_49_59_PM_2985471/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

11.35.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =1 \\
F & =2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+y=2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.35.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=1, f(x)=2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}\right]
$$

Since $x \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{x}+A_{2} \mathrm{e}^{2 x} x+A_{3} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+A_{2} \mathrm{e}^{2 x} x+2 A_{2} \mathrm{e}^{2 x}+A_{3} \mathrm{e}^{2 x}=2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=2, A_{3}=-4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-4+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{x}+6 x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}+4 \mathrm{e}^{2 x} x-6 \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-6+c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x+x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+5 \mathrm{e}^{x}
$$

Which simplifies to

$$
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

Verified OK.

11.35.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\mathrm{e}^{-x}\left(2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}\right) \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =\mathrm{e}^{-x}\left(2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}\right)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=(2 x-2) \mathrm{e}^{x}+6 x+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=(2 x-4) \mathrm{e}^{x}+3 x^{2}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{(2 x-4) \mathrm{e}^{x}+3 x^{2}+c_{1} x+c_{2}}{\mathrm{e}^{-x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x+c_{2} \mathrm{e}^{x}-4 \mathrm{e}^{2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x+c_{2} \mathrm{e}^{x}-4 \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-4+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+c_{1} x \mathrm{e}^{x}+6 x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}-6 \mathrm{e}^{2 x}+4 \mathrm{e}^{2 x} x+c_{2} \mathrm{e}^{x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-6+c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x+x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+5 \mathrm{e}^{x}
$$

Which simplifies to

$$
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

Verified OK.

11.35.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 399: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}\right]
$$

Since $x \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{x}\right\},\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{x}+A_{2} \mathrm{e}^{2 x} x+A_{3} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+A_{2} \mathrm{e}^{2 x} x+2 A_{2} \mathrm{e}^{2 x}+A_{3} \mathrm{e}^{2 x}=2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=2, A_{3}=-4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x-4 \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-4+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{x}+6 x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}+4 \mathrm{e}^{2 x} x-6 \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-6+c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x^{2} \mathrm{e}^{x}+2 \mathrm{e}^{2 x} x+x \mathrm{e}^{x}-4 \mathrm{e}^{2 x}+5 \mathrm{e}^{x}
$$

Which simplifies to

$$
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

Verified OK.

11.35.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+y=2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-2 r+1=0$
- Factor the characteristic polynomial
$(r-1)^{2}=0$
- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{x}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \mathrm{e}^{2 x} x+6 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \mathrm{e}^{x}\left(\int x\left(x \mathrm{e}^{x}+3\right) d x-\left(\int\left(x \mathrm{e}^{x}+3\right) d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=(2 x-4)\left(\mathrm{e}^{x}\right)^{2}+3 x^{2} \mathrm{e}^{x}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+(2 x-4)\left(\mathrm{e}^{x}\right)^{2}+3 x^{2} \mathrm{e}^{x}
$$

Check validity of solution $y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+(2 x-4)\left(\mathrm{e}^{x}\right)^{2}+3 x^{2} \mathrm{e}^{x}$

- Use initial condition $y(0)=1$
$1=-4+c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+2\left(\mathrm{e}^{x}\right)^{2}+2(2 x-4)\left(\mathrm{e}^{x}\right)^{2}+6 x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=-6+c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=5, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

- \quad Solution to the IVP

$$
y=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30
dsolve ([diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+y(x)=2 * x * \exp (2 * x)+6 * \exp (x), y(0)=1, D(y)(0)=0], y(x)$

$$
y(x)=(2 x-4) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(3 x^{2}+x+5\right)
$$

\checkmark Solution by Mathematica
Time used: 0.104 (sec). Leaf size: 25
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]-2 * y\right.\right.$ ' $\left.[x]+y[x]==2 * x * \operatorname{Exp}[2 * x]+6 * \operatorname{Exp}[x],\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingula

$$
y(x) \rightarrow e^{x}\left(3 x^{2}+x+2 e^{x}(x-2)+5\right)
$$

11.36 problem 36

11.36.1 Existence and uniqueness analysis 2636
11.36.2 Solving as second order linear constant coeff ode 2637
11.36.3 Solving using Kovacic algorithm 2641
11.36.4 Maple step by step solution . 2648

Internal problem ID [11810]
Internal file name [OUTPUT/11819_Thursday_April_11_2024_08_50_00_PM_59531729/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 36 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y=3 x^{2} \mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=2\right]
$$

11.36.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-1 \\
F & =3 x^{2} \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=3 x^{2} \mathrm{e}^{x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=3 x^{2} \mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.36.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-1, f(x)=3 x^{2} \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x^{2} \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC__set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} x^{2} \mathrm{e}^{x}+A_{3} x^{3} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+2 A_{2} \mathrm{e}^{x}+4 A_{2} x \mathrm{e}^{x}+6 A_{3} x \mathrm{e}^{x}+6 A_{3} x^{2} \mathrm{e}^{x}=3 x^{2} \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{4}, A_{2}=-\frac{3}{4}, A_{3}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 x \mathrm{e}^{x}}{4}-\frac{3 x^{2} \mathrm{e}^{x}}{4}+\frac{x^{3} \mathrm{e}^{x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}\right)+\left(\frac{3 x \mathrm{e}^{x}}{4}-\frac{3 x^{2} \mathrm{e}^{x}}{4}+\frac{x^{3} \mathrm{e}^{x}}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}+\frac{3 x \mathrm{e}^{x}}{4}-\frac{3 x^{2} \mathrm{e}^{x}}{4}+\frac{x^{3} \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x} c_{1}-c_{2} \mathrm{e}^{-x}-\frac{3 x \mathrm{e}^{x}}{4}+\frac{3 \mathrm{e}^{x}}{4}+\frac{3 x^{2} \mathrm{e}^{x}}{4}+\frac{x^{3} \mathrm{e}^{x}}{2}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}-c_{2}+\frac{3}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =\frac{9}{8} \\
c_{2} & =-\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{9 \mathrm{e}^{x}}{8}-\frac{\mathrm{e}^{-x}}{8}+\frac{3 x \mathrm{e}^{x}}{4}-\frac{3 x^{2} \mathrm{e}^{x}}{4}+\frac{x^{3} \mathrm{e}^{x}}{2}
$$

Which simplifies to

$$
y=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8}
$$

Verified OK.

11.36.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 401: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{2} \mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2} \\
-\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{x}}{2}\right)-\left(\frac{\mathrm{e}^{x}}{2}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{3 x^{2} \mathrm{e}^{2 x}}{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{3 x^{2} \mathrm{e}^{2 x}}{2} d x
$$

Hence

$$
u_{1}=-\frac{3\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{8}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{3 \mathrm{e}^{-x} x^{2} \mathrm{e}^{x}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 3 x^{2} d x
$$

Hence

$$
u_{2}=x^{3}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{3\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x} \mathrm{e}^{-x}}{8}+\frac{x^{3} \mathrm{e}^{x}}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{x}\left(4 x^{3}-6 x^{2}+6 x-3\right)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{2} \mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}\right)+\left(\frac{\mathrm{e}^{x}\left(4 x^{3}-6 x^{2}+6 x-3\right)}{8}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}\left(4 x^{3}-6 x^{2}+6 x-3\right)}{8} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{c_{2}}{2}+c_{1}-\frac{3}{8} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{2} \mathrm{e}^{x}}{2}-c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}\left(4 x^{3}-6 x^{2}+6 x-3\right)}{8}+\frac{\left(12 x^{2}-12 x+6\right) \mathrm{e}^{x}}{8}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=\frac{c_{2}}{2}-c_{1}+\frac{3}{8} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{8} \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{9 \mathrm{e}^{x}}{8}-\frac{\mathrm{e}^{-x}}{8}+\frac{3 x \mathrm{e}^{x}}{4}-\frac{3 x^{2} \mathrm{e}^{x}}{4}+\frac{x^{3} \mathrm{e}^{x}}{2}
$$

Which simplifies to

$$
y=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8}
$$

Verified OK.

11.36.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=3 x^{2} \mathrm{e}^{x}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}-1=0$
- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 x^{2} \mathrm{e}^{x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{x} \\ -\mathrm{e}^{-x} & \mathrm{e}^{x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{3 \mathrm{e}^{-x}\left(\int x^{2} \mathrm{e}^{2 x} d x\right)}{2}+\frac{3 \mathrm{e}^{x}\left(\int x^{2} d x\right)}{2}$
- Compute integrals
$y_{p}(x)=\frac{\mathrm{e}^{x}\left(4 x^{3}-6 x^{2}+6 x-3\right)}{8}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{x}\left(4 x^{3}-6 x^{2}+6 x-3\right)}{8}$
Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{x}\left(4 x^{3}-6 x^{2}+6 x-3\right)}{8}$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}-\frac{3}{8}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{x}\left(4 x^{3}-6 x^{2}+6 x-3\right)}{8}+\frac{\left(12 x^{2}-12 x+6\right) \mathrm{e}^{x}}{8}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=2$

$$
2=-c_{1}+c_{2}+\frac{3}{8}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{8}, c_{2}=\frac{3}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8}
$$

- \quad Solution to the IVP
$y=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30
dsolve([diff $\left.(y(x), x \$ 2)-y(x)=3 * x^{\wedge} 2 * \exp (x), y(0)=1, D(y)(0)=2\right], y(x)$, singsol=all)

$$
y(x)=-\frac{\mathrm{e}^{-x}}{8}+\frac{\left(4 x^{3}-6 x^{2}+6 x+9\right) \mathrm{e}^{x}}{8}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 37
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]-y[x]==3 * x^{\wedge} 2 * \operatorname{Exp}[x],\left\{y[0]==1, y^{\prime}[0]==2\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow \frac{1}{8} e^{-x}\left(e^{2 x}\left(4 x^{3}-6 x^{2}+6 x+9\right)-1\right)
$$

11.37 problem 37

11.37.1 Existence and uniqueness analysis 2651
11.37.2 Solving as second order linear constant coeff ode 2652
11.37.3 Solving using Kovacic algorithm 2656
11.37.4 Maple step by step solution . 2661

Internal problem ID [11811]
Internal file name [OUTPUT/11820_Thursday_April_11_2024_08_50_01_PM_87746551/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 37.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=3 x^{2}-4 \sin (x)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

11.37.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =3 x^{2}-4 \sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y=3 x^{2}-4 \sin (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=3 x^{2}-4 \sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.37.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=3 x^{2}-4 \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x^{2}-4 \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{\cos (x), \sin (x)\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{x \sin (x), \cos (x) x\},\left\{1, x, x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \sin (x)+A_{2} \cos (x) x+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \cos (x)-2 A_{2} \sin (x)+2 A_{5}+A_{3}+A_{4} x+A_{5} x^{2}=3 x^{2}-4 \sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=2, A_{3}=-6, A_{4}=0, A_{5}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-6+2 \cos (x) x+3 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-6+2 \cos (x) x+3 x^{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-6+2 \cos (x) x+3 x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-6 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)-2 x \sin (x)+2 \cos (x)+6 x
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2}+2 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-6+2 \cos (x) x+3 x^{2}-\sin (x)+6 \cos (x)
$$

Which simplifies to

$$
y=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6
$$

Verified OK.

11.37.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 403: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x^{2}-4 \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{\cos (x), \sin (x)\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{x \sin (x), \cos (x) x\},\left\{1, x, x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \sin (x)+A_{2} \cos (x) x+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \cos (x)-2 A_{2} \sin (x)+2 A_{5}+A_{3}+A_{4} x+A_{5} x^{2}=3 x^{2}-4 \sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=2, A_{3}=-6, A_{4}=0, A_{5}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-6+2 \cos (x) x+3 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-6+2 \cos (x) x+3 x^{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-6+2 \cos (x) x+3 x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-6 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)-2 x \sin (x)+2 \cos (x)+6 x
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2}+2 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-6+2 \cos (x) x+3 x^{2}-\sin (x)+6 \cos (x)
$$

Which simplifies to

$$
y=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6
$$

Verified OK.

11.37.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=3 x^{2}-4 \sin (x), y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+1=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 x^{2}-4 \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\cos (x)\left(\int\left(4 \sin (x)^{2}-3 \sin (x) x^{2}\right) d x\right)-\sin (x)\left(\int \cos (x)\left(-3 x^{2}+4 \sin (x)\right) d x\right)$
- Compute integrals

$$
y_{p}(x)=-6+2 \cos (x) x+3 x^{2}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)-6+2 \cos (x) x+3 x^{2}$
Check validity of solution $y=c_{1} \cos (x)+c_{2} \sin (x)-6+2 \cos (x) x+3 x^{2}$
- Use initial condition $y(0)=0$
$0=c_{1}-6$
- Compute derivative of the solution
$y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)-2 x \sin (x)+2 \cos (x)+6 x$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=c_{2}+2$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=6, c_{2}=-1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6
$$

- \quad Solution to the IVP

$$
y=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve([diff (y (x),x$2)+y(x)=3*x^2-4*\operatorname{sin}(x),y(0)=0,D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=(2 x+6) \cos (x)+3 x^{2}-\sin (x)-6
$$

Solution by Mathematica

Time used: 0.158 (sec). Leaf size: 23
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+y[x]==3 * x^{\wedge} 2-4 * \operatorname{Sin}[x],\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ I

$$
y(x) \rightarrow 3 x^{2}-\sin (x)+2(x+3) \cos (x)-6
$$

11.38 problem 38

11.38.1 Existence and uniqueness analysis 2664
11.38.2 Solving as second order linear constant coeff ode 2665
11.38.3 Solving using Kovacic algorithm 2669
11.38.4 Maple step by step solution . 2674

Internal problem ID [11812]
Internal file name [OUTPUT/11821_Thursday_April_11_2024_08_50_01_PM_54548519/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=8 \sin (2 x)
$$

With initial conditions

$$
\left[y(0)=6, y^{\prime}(0)=8\right]
$$

11.38.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =4 \\
F & =8 \sin (2 x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=8 \sin (2 x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=8 \sin (2 x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.38.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=8 \sin (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (2 x), \sin (2 x) x\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x)+A_{2} \sin (2 x) x
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=8 \sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x \cos (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+(-2 x \cos (2 x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-2 x \cos (2 x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)-2 \cos (2 x)+4 \sin (2 x) x
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=-2+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \cos (2 x)+5 \sin (2 x)+6 \cos (2 x)
$$

Which simplifies to

$$
y=(-2 x+6) \cos (2 x)+5 \sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-2 x+6) \cos (2 x)+5 \sin (2 x) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=(-2 x+6) \cos (2 x)+5 \sin (2 x)
$$

Verified OK.

11.38.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 405: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (2 x), \sin (2 x) x\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x)+A_{2} \sin (2 x) x
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=8 \sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x \cos (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+(-2 x \cos (2 x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-2 x \cos (2 x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=6$ and $x=0$ in the above gives

$$
\begin{equation*}
6=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 x)+c_{2} \cos (2 x)-2 \cos (2 x)+4 \sin (2 x) x
$$

substituting $y^{\prime}=8$ and $x=0$ in the above gives

$$
\begin{equation*}
8=c_{2}-2 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6 \\
& c_{2}=10
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \cos (2 x)+5 \sin (2 x)+6 \cos (2 x)
$$

Which simplifies to

$$
y=(-2 x+6) \cos (2 x)+5 \sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-2 x+6) \cos (2 x)+5 \sin (2 x) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=(-2 x+6) \cos (2 x)+5 \sin (2 x)
$$

Verified OK.

11.38.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=8 \sin (2 x), y(0)=6,\left.y^{\prime}\right|_{\{x=0\}}=8\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=8 \sin (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (2 x) & \sin (2 x) \\ -2 \sin (2 x) & 2 \cos (2 x)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-2 \cos (2 x)\left(\int(1-\cos (4 x)) d x\right)+2 \sin (2 x)\left(\int \sin (4 x) d x\right)$
- Compute integrals

$$
y_{p}(x)=\frac{\sin (2 x)}{2}-2 x \cos (2 x)
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\sin (2 x)}{2}-2 x \cos (2 x)$
Check validity of solution $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\sin (2 x)}{2}-2 x \cos (2 x)$
- Use initial condition $y(0)=6$

$$
6=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)-\cos (2 x)+4 \sin (2 x) x
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=8$

$$
8=-1+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=6, c_{2}=\frac{9}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(-2 x+6) \cos (2 x)+5 \sin (2 x)
$$

- \quad Solution to the IVP

$$
y=(-2 x+6) \cos (2 x)+5 \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve([diff (y (x),x$2)+4*y(x)=8*\operatorname{sin}(2*x),y(0)=6,D(y)(0) = 8],y(x), singsol=all)
```

$$
y(x)=(-2 x+6) \cos (2 x)+5 \sin (2 x)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 19
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+4 * y[x]==8 * \operatorname{Sin}[2 * x],\{y[0]==0, y\right.\right.$ ' $\left.[0]==1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow 3 \sin (x) \cos (x)-2 x \cos (2 x)
$$

11.39 problem 39

11.39.1 Maple step by step solution . 2681

Internal problem ID [11813]
Internal file name [OUTPUT/11822_Thursday_April_11_2024_08_50_02_PM_7433673/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 39 .
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+y^{\prime}+6 y=3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x)
$$

With initial conditions

$$
\left[y(0)=\frac{33}{40}, y^{\prime}(0)=0, y^{\prime \prime}(0)=0\right]
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+y^{\prime}+6 y=0
$$

The characteristic equation is

$$
\lambda^{3}-4 \lambda^{2}+\lambda+6=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+y^{\prime}+6 y=3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\},\{\cos (x), \sin (x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x}, \mathrm{e}^{2 x}, \mathrm{e}^{3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}+A_{3} \cos (x)+A_{4} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \mathrm{e}^{x}+4 A_{1} x \mathrm{e}^{x}+4 A_{2} \mathrm{e}^{x}+10 A_{3} \cos (x)+10 A_{4} \sin (x)=3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{4}, A_{2}=\frac{5}{4}, A_{3}=0, A_{4}=-\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 x \mathrm{e}^{x}}{4}+\frac{5 \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}\right)+\left(\frac{3 x \mathrm{e}^{x}}{4}+\frac{5 \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{5 \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{33}{40}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{33}{40}=c_{1}+c_{2}+c_{3}+\frac{5}{4} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}+3 c_{3} \mathrm{e}^{3 x}+\frac{3 x \mathrm{e}^{x}}{4}+2 \mathrm{e}^{x}-\frac{\cos (x)}{10}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}+2 c_{2}+3 c_{3}+\frac{19}{10} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+4 c_{2} \mathrm{e}^{2 x}+9 c_{3} \mathrm{e}^{3 x}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{11 \mathrm{e}^{x}}{4}+\frac{\sin (x)}{10}
$$

substituting $y^{\prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+4 c_{2}+9 c_{3}+\frac{11}{4} \tag{3A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{7}{20} \\
& c_{2}=-\frac{31}{40} \\
& c_{3}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{7 \mathrm{e}^{-x}}{20}-\frac{31 \mathrm{e}^{2 x}}{40}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{5 \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{7 \mathrm{e}^{-x}}{20}-\frac{31 \mathrm{e}^{2 x}}{40}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{5 \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10} \tag{1}
\end{equation*}
$$

Figure 471: Solution plot

Verification of solutions

$$
y=\frac{7 \mathrm{e}^{-x}}{20}-\frac{31 \mathrm{e}^{2 x}}{40}+\frac{3 x \mathrm{e}^{x}}{4}+\frac{5 \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10}
$$

Verified OK.

11.39.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-4 y^{\prime \prime}+y^{\prime}+6 y=3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x), y(0)=\frac{33}{40},\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x)+4 y_{3}(x)-y_{2}(x)-6 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x)+4 y_{3}(x)-y_{2}(x)-6 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -1 & 4
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
3 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-\sin (x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -1 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{4} & \frac{\mathrm{e}^{3 x}}{9} \\
-\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{-x} & \mathrm{e}^{2 x} & \mathrm{e}^{3 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{4} & \frac{\mathrm{e}^{3 x}}{9} \\
-\mathrm{e}^{-x} & \mathrm{e}^{2 x} & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{-x} & \mathrm{e}^{2 x} & \mathrm{e}^{3 x}
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
1 & \frac{1}{4} & \frac{1}{9} \\
-1 & \frac{1}{2} & \frac{1}{3} \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-x}}{2}+\mathrm{e}^{2 x}-\frac{\mathrm{e}^{3 x}}{2} & -\frac{5 \mathrm{e}^{-x}}{12}+\frac{2 \mathrm{e}^{2 x}}{3}-\frac{\mathrm{e}^{3 x}}{4} & \frac{\mathrm{e}^{-x}}{12}-\frac{\mathrm{e}^{2 x}}{3}+\frac{\mathrm{e}^{3 x}}{4} \\
-\frac{\mathrm{e}^{-x}}{2}+2 \mathrm{e}^{2 x}-\frac{3 \mathrm{e}^{3 x}}{2} & \frac{5 \mathrm{e}^{-x}}{12}+\frac{4 \mathrm{e}^{2 x}}{3}-\frac{3 \mathrm{e}^{3 x}}{4} & -\frac{\mathrm{e}^{-x}}{12}-\frac{2 \mathrm{e}^{2 x}}{3}+\frac{3 \mathrm{e}^{3 x}}{4} \\
\frac{\mathrm{e}^{-x}}{2}+4 \mathrm{e}^{2 x}-\frac{9 \mathrm{e}^{3 x}}{2} & -\frac{5 \mathrm{e}^{-x}}{12}+\frac{8 \mathrm{e}^{2 x}}{3}-\frac{9 \mathrm{e}^{3 x}}{4} & \frac{\mathrm{e}^{-x}}{12}-\frac{4 \mathrm{e}^{2 x}}{3}+\frac{9 \mathrm{e}^{3 x}}{4}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$
$\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-x}}{16}-\frac{8 \mathrm{e}^{2 x}}{5}+\frac{33 \mathrm{e}^{3 x}}{80}+\frac{(3 x+5) \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10} \\
\frac{99 \mathrm{e}^{3 x}}{80}-\frac{16 \mathrm{e}^{2 x}}{5}+\frac{3 x \mathrm{e}^{x}}{4}+2 \mathrm{e}^{x}-\frac{\cos (x)}{10}+\frac{\mathrm{e}^{-x}}{16} \\
-\frac{\mathrm{e}^{-x}}{16}-\frac{32 \mathrm{e}^{2 x}}{5}+\frac{297 \mathrm{e}^{3 x}}{80}+\frac{(3 x+11) \mathrm{e}^{x}}{4}+\frac{\sin (x)}{10}
\end{array}\right]
$$

- Plug particular solution back into general solution $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}-\frac{\mathrm{e}^{-x}}{16}-\frac{8 \mathrm{e}^{2 x}}{5}+\frac{33 \mathrm{e}^{3 x}}{80}+\frac{(3 x+5) \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10} \\ \frac{99 \mathrm{e}^{3 x}}{80}-\frac{16 \mathrm{e}^{2 x}}{5}+\frac{3 x \mathrm{e}^{x}}{4}+2 \mathrm{e}^{x}-\frac{\cos (x)}{10}+\frac{\mathrm{e}^{-x}}{16} \\ -\frac{\mathrm{e}^{-x}}{16}-\frac{32 \mathrm{e}^{2 x}}{5}+\frac{297 \mathrm{e}^{3 x}}{80}+\frac{(3 x+11) \mathrm{e}^{x}}{4}+\frac{\sin (x)}{10}\end{array}\right]$
- First component of the vector is the solution to the ODE

$$
y=\frac{\left(720 c_{1}-45\right) \mathrm{e}^{-x}}{720}+\frac{\left(180 c_{2}-1152\right) \mathrm{e}^{2 x}}{720}+\frac{\left(80 c_{3}+297\right) \mathrm{e}^{3 x}}{720}+\frac{(540 x+900) \mathrm{e}^{x}}{720}-\frac{\sin (x)}{10}
$$

- Use the initial condition $y(0)=\frac{33}{40}$

$$
\frac{33}{40}=c_{1}+\frac{c_{2}}{4}+\frac{c_{3}}{9}
$$

- Calculate the 1st derivative of the solution

$$
y^{\prime}=-\frac{\left(720 c_{1}-45\right) \mathrm{e}^{-x}}{720}+\frac{\left(180 c_{2}-1152\right) \mathrm{e}^{2 x}}{360}+\frac{\left(80 c_{3}+297\right) \mathrm{e}^{3 x}}{240}+\frac{3 \mathrm{e}^{x}}{4}+\frac{(540 x+900) \mathrm{e}^{x}}{720}-\frac{\cos (x)}{10}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=-c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{3}
$$

- Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=\frac{\left(720 c_{1}-45\right) \mathrm{e}^{-x}}{720}+\frac{\left(180 c_{2}-1152\right) \mathrm{e}^{2 x}}{180}+\frac{\left(80 c_{3}+297\right) \mathrm{e}^{3 x}}{80}+\frac{3 \mathrm{e}^{x}}{2}+\frac{(540 x+900) \mathrm{e}^{x}}{720}+\frac{\sin (x)}{10}
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=0$

$$
0=c_{1}+c_{2}+c_{3}
$$

- \quad Solve for the unknown coefficients

$$
\left\{c_{1}=\frac{33}{80}, c_{2}=\frac{33}{10}, c_{3}=-\frac{297}{80}\right\}
$$

- \quad Solution to the IVP

$$
y=\frac{7 \mathrm{e}^{-x}}{20}-\frac{31 \mathrm{e}^{2 x}}{40}+\frac{(3 x+5) \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`

Solution by Maple
Time used: 0.031 (sec). Leaf size: 30

$$
\begin{aligned}
& \text { dsolve }([\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 3)-4 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+6 * \mathrm{y}(\mathrm{x})=3 * \mathrm{x} * \exp (\mathrm{x})+2 * \exp (\mathrm{x})-\sin (\mathrm{x}), \mathrm{y}(0) \\
& \qquad y(x)=\frac{7 \mathrm{e}^{-x}}{20}-\frac{31 \mathrm{e}^{2 x}}{40}+\frac{(3 x+5) \mathrm{e}^{x}}{4}-\frac{\sin (x)}{10}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.285 (sec). Leaf size: 38
DSolve[\{y' ' $[x]-4 * y$ ' ' $[x]+y$ ' $[x]+6 * y[x]==3 * x * \operatorname{Exp}[x]+2 * \operatorname{Exp}[x]-\operatorname{Sin}[x],\{y[0]==33 / 40, y$ ' $[0]==0, y$ '

$$
y(x) \rightarrow \frac{1}{40}\left(10 e^{x}(3 x+5)+14 e^{-x}-31 e^{2 x}-4 \sin (x)\right)
$$

11.40 problem 40

11.40.1 Maple step by step solution

2691
Internal problem ID [11814]
Internal file name [OUTPUT/11823_Thursday_April_11_2024_08_50_03_PM_30210734/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 40.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}-4 y=8 x^{2}+3-6 \mathrm{e}^{2 x}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=7, y^{\prime \prime}(0)=0\right]
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}-4 y=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+9 \lambda-4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{4 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{4 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}-4 y=8 x^{2}+3-6 \mathrm{e}^{2 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 x^{2}+3-6 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}, \mathrm{e}^{4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}+A_{2}+A_{3} x+A_{4} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{2 x}-12 A_{4}+9 A_{3}+18 A_{4} x-4 A_{2}-4 A_{3} x-4 A_{4} x^{2}=8 x^{2}+3-6 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=-15, A_{3}=-9, A_{4}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{2 x}-15-9 x-2 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{4 x} c_{3}\right)+\left(3 \mathrm{e}^{2 x}-15-9 x-2 x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{4 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 \mathrm{e}^{2 x}-15-9 x-2 x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{4 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 \mathrm{e}^{2 x}-15-9 x-2 x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-12+c_{3}+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=4 \mathrm{e}^{4 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{x}+6 \mathrm{e}^{2 x}-9-4 x
$$

substituting $y^{\prime}=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=-3+4 c_{3}+c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=16 \mathrm{e}^{4 x} c_{3}+\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+2 c_{2} \mathrm{e}^{x}+12 \mathrm{e}^{2 x}-4
$$

substituting $y^{\prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=8+16 c_{3}+c_{1}+2 c_{2} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{44}{3} \\
& c_{2}=2 \\
& c_{3}=-\frac{5}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-15-\frac{5 \mathrm{e}^{4 x}}{3}+2 x \mathrm{e}^{x}+\frac{44 \mathrm{e}^{x}}{3}+3 \mathrm{e}^{2 x}-9 x-2 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-15-\frac{5 \mathrm{e}^{4 x}}{3}+2 x \mathrm{e}^{x}+\frac{44 \mathrm{e}^{x}}{3}+3 \mathrm{e}^{2 x}-9 x-2 x^{2} \tag{1}
\end{equation*}
$$

Figure 472: Solution plot

Verification of solutions

$$
y=-15-\frac{5 \mathrm{e}^{4 x}}{3}+2 x \mathrm{e}^{x}+\frac{44 \mathrm{e}^{x}}{3}+3 \mathrm{e}^{2 x}-9 x-2 x^{2}
$$

Verified OK.

11.40.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}-4 y=8 x^{2}+3-6 \mathrm{e}^{2 x}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=7,\left.y^{\prime \prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=8 x^{2}-6 \mathrm{e}^{2 x}+6 y_{3}(x)-9 y_{2}(x)+4 y_{1}(x)+3$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=8 x^{2}-6 \mathrm{e}^{2 x}+6 y_{3}(x)-9 y_{2}(x)+4 y_{1}(x)+3\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -9 & 6
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
8 x^{2}+3-6 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
8 x^{2}+3-6 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -9 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- Simplify equation

$$
\lambda \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- \quad Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & -9 & 6
\end{array}\right]-1 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(x)=\left[\begin{array}{ccc}\mathrm{e}^{x} & \mathrm{e}^{x}(x-1) & \frac{\mathrm{e}^{4 x}}{16} \\ \mathrm{e}^{x} & x \mathrm{e}^{x} & \frac{\mathrm{e}^{4 x}}{4} \\ \mathrm{e}^{x} & x \mathrm{e}^{x} & \mathrm{e}^{4 x}\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{x}(x-1) & \frac{\mathrm{e}^{4 x}}{16} \\
\mathrm{e}^{x} & x \mathrm{e}^{x} & \frac{\mathrm{e}^{4 x}}{4} \\
\mathrm{e}^{x} & x \mathrm{e}^{x} & \mathrm{e}^{4 x}
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
1 & -1 & \frac{1}{16} \\
1 & 0 & \frac{1}{4} \\
1 & 0 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
-\mathrm{e}^{x}(x-1) & -\frac{\mathrm{e}^{4 x}}{12}+\frac{(15 x+1) \mathrm{e}^{x}}{12} & \frac{\mathrm{e}^{4 x}}{12}+\frac{(-3 x-1) \mathrm{e}^{x}}{12} \\
-x \mathrm{e}^{x} & \frac{4 \mathrm{e}^{x}}{3}+\frac{5 x \mathrm{e}^{x}}{4}-\frac{\mathrm{e}^{4 x}}{3} & \frac{\mathrm{e}^{4 x}}{3}+\frac{(-4-3 x) \mathrm{e}^{x}}{12} \\
-x \mathrm{e}^{x} & \frac{4 \mathrm{e}^{x}}{3}+\frac{5 x \mathrm{e}^{x}}{4}-\frac{4 \mathrm{e}^{4 x}}{3} & \frac{4 \mathrm{e}^{4 x}}{3}+\frac{(-4-3 x) \mathrm{e}^{x}}{12}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{45}{4}+\frac{9 \mathrm{e}^{2 x}}{4}-\frac{\mathrm{e}^{4 x}}{6}+\frac{5(22-15 x) \mathrm{e}^{x}}{12}-\frac{3 x^{2}}{2}-\frac{27 x}{4} \\
-\frac{27}{4}+\frac{9 \mathrm{e}^{2 x}}{2}-\frac{2 \mathrm{e}^{4 x}}{3}+\frac{5(7-15 x) \mathrm{e}^{x}}{12}-3 x \\
-\frac{31}{4}+\frac{15 \mathrm{e}^{2 x}}{2}-\frac{8 \mathrm{e}^{4 x}}{3}+\frac{5(7-15 x) \mathrm{e}^{x}}{12}-2 x^{2}-4 x
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{45}{4}+\frac{9 \mathrm{e}^{2 x}}{4}-\frac{\mathrm{e}^{4 x}}{6}+\frac{5(22-15 x) \mathrm{e}^{x}}{12}-\frac{3 x^{2}}{2}-\frac{27 x}{4} \\
-\frac{27}{4}+\frac{9 \mathrm{e}^{2 x}}{2}-\frac{2 \mathrm{e}^{4 x}}{3}+\frac{5(7-15 x) \mathrm{e}^{x}}{12}-3 x \\
-\frac{31}{4}+\frac{15 \mathrm{e}^{2 x}}{2}-\frac{8 \mathrm{e}^{4 x}}{3}+\frac{5\left(7-15 x \mathrm{e}^{x}\right.}{12}-2 x^{2}-4 x
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(3 c_{3}-8\right) \mathrm{e}^{4 x}}{48}+\frac{9 \mathrm{e}^{2 x}}{4}+\frac{\left(\left(48 c_{2}-300\right) x+48 c_{1}-48 c_{2}+440\right) \mathrm{e}^{x}}{48}-\frac{3 x^{2}}{2}-\frac{27 x}{4}-\frac{45}{4}
$$

- Use the initial condition $y(0)=1$
$1=\frac{c_{3}}{16}+c_{1}-c_{2}$
- Calculate the 1 st derivative of the solution
$y^{\prime}=\frac{\left(3 c_{3}-8\right) \mathrm{e}^{4 x}}{12}+\frac{9 \mathrm{e}^{2 x}}{2}+\frac{\left(48 c_{2}-300\right) \mathrm{e}^{x}}{48}+\frac{\left(\left(48 c_{2}-300\right) x+48 c_{1}-48 c_{2}+440\right) \mathrm{e}^{x}}{48}-3 x-\frac{27}{4}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=7$
$7=\frac{c_{3}}{4}+c_{1}$
- Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=\frac{\left(3 c_{3}-8\right) \mathrm{e}^{4 x}}{3}+9 \mathrm{e}^{2 x}+\frac{\left(48 c_{2}-300\right) \mathrm{e}^{x}}{24}+\frac{\left(\left(48 c_{2}-300\right) x+48 c_{1}-48 c_{2}+440\right) \mathrm{e}^{x}}{48}-3
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=0$

$$
0=c_{1}+c_{2}+c_{3}
$$

- \quad Solve for the unknown coefficients

$$
\left\{c_{1}=\frac{115}{9}, c_{2}=\frac{31}{3}, c_{3}=-\frac{208}{9}\right\}
$$

- \quad Solution to the IVP

$$
y=\frac{9 \mathrm{e}^{2 x}}{4}-\frac{29 \mathrm{e}^{4 x}}{18}+\frac{(147 x+418) \mathrm{e}^{x}}{36}-\frac{3 x^{2}}{2}-\frac{27 x}{4}-\frac{45}{4}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 35

```
dsolve([diff(y(x),x$3)-6*diff(y(x),x$2)+9*diff (y(x),x)-4*y(x)=8*x^2+3-6*exp(2*x),y(0) = 1, D
```

$$
y(x)=-2 x^{2}-9 x+3 \mathrm{e}^{2 x}-15+\frac{44 \mathrm{e}^{x}}{3}-\frac{5 \mathrm{e}^{4 x}}{3}+2 \mathrm{e}^{x} x
$$

\checkmark Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 42
DSolve[\{y'' ' $[x]-6 * y$ '' $[x]+9 * y$ ' $[x]-4 * y[x]==8 * x^{\wedge} 2+3-6 * \operatorname{Exp}[2 * x],\left\{y[0]==1, y^{\prime}[0]==7, y\right.$ ' ${ }^{[0]==0\}\}, y[~}$

$$
y(x) \rightarrow-2 x^{2}-9 x+3 e^{2 x}-\frac{5 e^{4 x}}{3}+e^{x}\left(2 x+\frac{44}{3}\right)-15
$$

11.41 problem 41

11.41.1 Solving as second order linear constant coeff ode 2697
11.41.2 Solving using Kovacic algorithm 2700
11.41.3 Maple step by step solution . 2705

Internal problem ID [11815]
Internal file name [OUTPUT/11824_Thursday_April_11_2024_08_50_03_PM_64035439/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-6 y^{\prime}+8 y=x^{3}+x+\mathrm{e}^{-2 x}
$$

11.41.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-6, C=8, f(x)=x^{3}+x+\mathrm{e}^{-2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=8$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+8 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(8)} \\
& =3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=3+1 \\
& \lambda_{2}=3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{3}+x+\mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\},\left\{1, x, x^{2}, x^{3}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x}, \mathrm{e}^{4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}+A_{2}+A_{3} x+A_{4} x^{2}+A_{5} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 24 A_{1} \mathrm{e}^{-2 x}+2 A_{4}+6 A_{5} x-6 A_{3}-12 A_{4} x-18 A_{5} x^{2}+8 A_{2}+8 A_{3} x+8 A_{4} x^{2}+8 A_{5} x^{3} \\
& \quad=x^{3}+x+\mathrm{e}^{-2 x}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{24}, A_{2}=\frac{69}{256}, A_{3}=\frac{29}{64}, A_{4}=\frac{9}{32}, A_{5}=\frac{1}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{2 x}\right)+\left(\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{2 x}+\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8} \tag{1}
\end{equation*}
$$

Figure 473: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{2 x}+\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}
$$

Verified OK.

11.41.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 409: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{3}+x+\mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\},\left\{1, x, x^{2}, x^{3}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{4 x}}{2}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}+A_{2}+A_{3} x+A_{4} x^{2}+A_{5} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 24 A_{1} \mathrm{e}^{-2 x}+2 A_{4}+6 A_{5} x-6 A_{3}-12 A_{4} x-18 A_{5} x^{2}+8 A_{2}+8 A_{3} x+8 A_{4} x^{2}+8 A_{5} x^{3} \\
& =x^{3}+x+\mathrm{e}^{-2 x}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{24}, A_{2}=\frac{69}{256}, A_{3}=\frac{29}{64}, A_{4}=\frac{9}{32}, A_{5}=\frac{1}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{2}\right)+\left(\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{2}+\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8} \tag{1}
\end{equation*}
$$

Figure 474: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\frac{c_{2} \mathrm{e}^{4 x}}{2}+\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}
$$

Verified OK.

11.41.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}+8 y=x^{3}+x+\mathrm{e}^{-2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-6 r+8=0
$$

- Factor the characteristic polynomial
$(r-2)(r-4)=0$
- Roots of the characteristic polynomial
$r=(2,4)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{4 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x^{3}+x+\mathrm{e}^{-2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{2 x} & \mathrm{e}^{4 x} \\ 2 \mathrm{e}^{2 x} & 4 \mathrm{e}^{4 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{6 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x}\left(x^{3}+x+\mathrm{e}^{-2 x}\right) d x\right)}{2}+\frac{\mathrm{e}^{4 x}\left(\int \mathrm{e}^{-4 x}\left(x^{3}+x+\mathrm{e}^{-2 x}\right) d x\right)}{2}$
- Compute integrals
$y_{p}(x)=\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{4 x}+\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

```
dsolve(diff(y(x),x$2)-6*diff(y(x),x)+8*y(x)=x^3+x+exp(-2*x),y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} \mathrm{e}^{4 x}}{2}+\frac{\mathrm{e}^{-2 x}}{24}+\frac{69}{256}+\frac{29 x}{64}+\frac{9 x^{2}}{32}+\frac{x^{3}}{8}+c_{2} \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.699 (sec). Leaf size: 50
DSolve[y''[x]-6*y'[x]+8*y[x]==x^3+x+Exp[-2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{256}\left(32 x^{3}+72 x^{2}+116 x+69\right)+\frac{e^{-2 x}}{24}+c_{1} e^{2 x}+c_{2} e^{4 x}
$$

11.42 problem 42

11.42.1 Solving as second order linear constant coeff ode 2708
11.42.2 Solving using Kovacic algorithm 2712
11.42.3 Maple step by step solution . 2717

Internal problem ID [11816]
Internal file name [OUTPUT/11825_Thursday_April_11_2024_08_50_04_PM_71030995/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)
$$

11.42.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 x}\right\},\left\{\mathrm{e}^{3 x}\right\},\left\{\mathrm{e}^{3 x} \cos (3 x), \mathrm{e}^{3 x} \sin (3 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{3 x}+A_{3} \mathrm{e}^{3 x} \cos (3 x)+A_{4} \mathrm{e}^{3 x} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 18 A_{1} \mathrm{e}^{-3 x}+18 A_{2} \mathrm{e}^{3 x}-18 A_{3} \mathrm{e}^{3 x} \sin (3 x)+18 A_{4} \mathrm{e}^{3 x} \cos (3 x) \\
& +9 A_{3} \mathrm{e}^{3 x} \cos (3 x)+9 A_{4} \mathrm{e}^{3 x} \sin (3 x)=\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{18}, A_{2}=\frac{1}{18}, A_{3}=-\frac{2}{45}, A_{4}=\frac{1}{45}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-3 x}}{18}+\frac{\mathrm{e}^{3 x}}{18}-\frac{2 \mathrm{e}^{3 x} \cos (3 x)}{45}+\frac{\mathrm{e}^{3 x} \sin (3 x)}{45}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(\frac{\mathrm{e}^{-3 x}}{18}+\frac{\mathrm{e}^{3 x}}{18}-\frac{2 \mathrm{e}^{3 x} \cos (3 x)}{45}+\frac{\mathrm{e}^{3 x} \sin (3 x)}{45}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\mathrm{e}^{-3 x}}{18}+\frac{\mathrm{e}^{3 x}}{18}-\frac{2 \mathrm{e}^{3 x} \cos (3 x)}{45}+\frac{\mathrm{e}^{3 x} \sin (3 x)}{45} \tag{1}
\end{equation*}
$$

Figure 475: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\mathrm{e}^{-3 x}}{18}+\frac{\mathrm{e}^{3 x}}{18}-\frac{2 \mathrm{e}^{3 x} \cos (3 x)}{45}+\frac{\mathrm{e}^{3 x} \sin (3 x)}{45}
$$

Verified OK.

11.42.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 411: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 x}\right\},\left\{\mathrm{e}^{3 x}\right\},\left\{\mathrm{e}^{3 x} \cos (3 x), \mathrm{e}^{3 x} \sin (3 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{3 x}+A_{3} \mathrm{e}^{3 x} \cos (3 x)+A_{4} \mathrm{e}^{3 x} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 18 A_{1} \mathrm{e}^{-3 x}+18 A_{2} \mathrm{e}^{3 x}-18 A_{3} \mathrm{e}^{3 x} \sin (3 x)+18 A_{4} \mathrm{e}^{3 x} \cos (3 x) \\
& +9 A_{3} \mathrm{e}^{3 x} \cos (3 x)+9 A_{4} \mathrm{e}^{3 x} \sin (3 x)=\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{18}, A_{2}=\frac{1}{18}, A_{3}=-\frac{2}{45}, A_{4}=\frac{1}{45}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-3 x}}{18}+\frac{\mathrm{e}^{3 x}}{18}-\frac{2 \mathrm{e}^{3 x} \cos (3 x)}{45}+\frac{\mathrm{e}^{3 x} \sin (3 x)}{45}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(\frac{\mathrm{e}^{-3 x}}{18}+\frac{\mathrm{e}^{3 x}}{18}-\frac{2 \mathrm{e}^{3 x} \cos (3 x)}{45}+\frac{\mathrm{e}^{3 x} \sin (3 x)}{45}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{\mathrm{e}^{-3 x}}{18}+\frac{\mathrm{e}^{3 x}}{18}-\frac{2 \mathrm{e}^{3 x} \cos (3 x)}{45}+\frac{\mathrm{e}^{3 x} \sin (3 x)}{45} \tag{1}
\end{equation*}
$$

Figure 476: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{\mathrm{e}^{-3 x}}{18}+\frac{\mathrm{e}^{3 x}}{18}-\frac{2 \mathrm{e}^{3 x} \cos (3 x)}{45}+\frac{\mathrm{e}^{3 x} \sin (3 x)}{45}
$$

Verified OK.

11.42.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (3 x)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int \sin (3 x)\left(\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)\right) d x\right)}{3}+\frac{\sin (3 x)\left(\int \cos (3 x)\left(\mathrm{e}^{3 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{3 x} \sin (3 x)\right) d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{(5-4 \cos (3 x)+2 \sin (3 x)) \mathrm{e}^{3 x}}{90}+\frac{\mathrm{e}^{-3 x}}{18}
$$

- Substitute particular solution into general solution to ODE

$$
y=\frac{(5-4 \cos (3 x)+2 \sin (3 x)) \mathrm{e}^{3 x}}{90}+c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\mathrm{e}^{-3 x}}{18}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

```
dsolve(diff(y(x),x$2)+9*y(x)=exp(3*x)+exp(-3*x)+exp(3*x)*sin}(3*x),y(x), singsol=all)
```

$$
y(x)=c_{2} \sin (3 x)+c_{1} \cos (3 x)+\frac{(2 \sin (3 x)-4 \cos (3 x)+5) \mathrm{e}^{3 x}}{90}+\frac{\mathrm{e}^{-3 x}}{18}
$$

\checkmark Solution by Mathematica
Time used: 0.997 (sec). Leaf size: 57
DSolve $[y$ ' ' $[x]+9 * y[x]==\operatorname{Exp}[3 * x]+\operatorname{Exp}[-3 * x]+\operatorname{Exp}[3 * x] * \operatorname{Sin}[3 * x], y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{90}\left(5 e^{-3 x}\left(e^{6 x}+1\right)+\left(-4 e^{3 x}+90 c_{1}\right) \cos (3 x)+2\left(e^{3 x}+45 c_{2}\right) \sin (3 x)\right)
$$

11.43 problem 43

11.43.1 Solving as second order linear constant coeff ode 2719
11.43.2 Solving using Kovacic algorithm 2722
11.43.3 Maple step by step solution . 2728

Internal problem ID [11817]
Internal file name [OUTPUT/11826_Thursday_April_11_2024_08_50_05_PM_73129953/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 43.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+5 y=\mathrm{e}^{-2 x}(\cos (x)+1)
$$

11.43.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=5, f(x)=\mathrm{e}^{-2 x}(\cos (x)+1)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(5)} \\
& =-2 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-2 x}(\cos (x)+1)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\},\left\{\cos (x) \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} \sin (x)\right\}
$$

Since $\cos (x) \mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-2 x}\right\},\left\{x \cos (x) \mathrm{e}^{-2 x}, x \mathrm{e}^{-2 x} \sin (x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}+A_{2} x \cos (x) \mathrm{e}^{-2 x}+A_{3} x \mathrm{e}^{-2 x} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-2 x}-2 A_{2} \sin (x) \mathrm{e}^{-2 x}+2 A_{3} \mathrm{e}^{-2 x} \cos (x)=\mathrm{e}^{-2 x}(\cos (x)+1)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=0, A_{3}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2} \tag{1}
\end{equation*}
$$

Figure 477: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2}
$$

Verified OK.

11.43.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 413: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{-2 x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{-2 x}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (x) \mathrm{e}^{-2 x} c_{1}+c_{2} \mathrm{e}^{-2 x} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-2 x}(\cos (x)+1)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\},\left\{\cos (x) \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} \sin (x)\right\}
$$

Since $\cos (x) \mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-2 x}\right\},\left\{x \cos (x) \mathrm{e}^{-2 x}, x \mathrm{e}^{-2 x} \sin (x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}+A_{2} x \cos (x) \mathrm{e}^{-2 x}+A_{3} x \mathrm{e}^{-2 x} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-2 x}-2 A_{2} \sin (x) \mathrm{e}^{-2 x}+2 A_{3} \mathrm{e}^{-2 x} \cos (x)=\mathrm{e}^{-2 x}(\cos (x)+1)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=0, A_{3}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) \mathrm{e}^{-2 x} c_{1}+c_{2} \mathrm{e}^{-2 x} \sin (x)\right)+\left(\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2} \tag{1}
\end{equation*}
$$

Figure 478: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}+\frac{x \mathrm{e}^{-2 x} \sin (x)}{2}
$$

Verified OK.

11.43.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+5 y=\mathrm{e}^{-2 x}(\cos (x)+1)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+5=0$
- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2-\mathrm{I},-2+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x) \mathrm{e}^{-2 x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x} \sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\cos (x) \mathrm{e}^{-2 x} c_{1}+c_{2} \mathrm{e}^{-2 x} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{-2 x}(\cos (x)+1)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x} \sin (x) \\
-\mathrm{e}^{-2 x} \sin (x)-2 \cos (x) \mathrm{e}^{-2 x} & -2 \mathrm{e}^{-2 x} \sin (x)+\cos (x) \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\cos (x)\left(\int \sin (x)(\cos (x)+1) d x\right)-\sin (x)\left(\int\left(\cos (x)^{2}+\cos (x)\right) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{(x \sin (x)+\cos (x)+2) \mathrm{e}^{-2 x}}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos (x) \mathrm{e}^{-2 x} c_{1}+c_{2} \mathrm{e}^{-2 x} \sin (x)+\frac{(x \sin (x)+\cos (x)+2) \mathrm{e}^{-2 x}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff(y(x), x$2)+4*\operatorname{diff}(y(x),x)+5*y(x)=exp(-2*x)*(1+\operatorname{cos}(x)),y(x), singsol=all)
```

$$
y(x)=\frac{\left(\left(2 c_{1}+1\right) \cos (x)+2+\left(2 c_{2}+x\right) \sin (x)\right) \mathrm{e}^{-2 x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.122 (sec). Leaf size: 35
DSolve $[y$ ' ' $[x]+4 * y$ ' $[x]+5 * y[x]==\operatorname{Exp}[-2 * x] *(1+\operatorname{Cos}[x]), y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{4} e^{-2 x}\left(\left(1+4 c_{2}\right) \cos (x)+2\left(x+2 c_{1}\right) \sin (x)+4\right)
$$

11.44 problem 44

11.44.1 Solving as second order linear constant coeff ode 2730
11.44.2 Solving as linear second order ode solved by an integrating factor ode
11.44.3 Solving using Kovacic algorithm 2736
11.44.4 Maple step by step solution 2741

Internal problem ID [11818]
Internal file name [OUTPUT/11827_Thursday_April_11_2024_08_50_05_PM_44040111/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 44.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_ccoeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-6 y^{\prime}+9 y=\mathrm{e}^{x} x^{4}+x^{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} x^{2}
$$

11.44.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-6, C=9, f(x)=\mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-6)^{2}-(4)(1)(9)} \\
& =3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{3 x} c_{2} x
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}, \mathrm{e}^{3 x}\right\},\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}, \mathrm{e}^{x} x^{4}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x}\right\}
$$

Since $\mathrm{e}^{3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{3 x}, x^{3} \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}\right\},\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}, \mathrm{e}^{x} x^{4}, \mathrm{e}^{x}\right\}\right]
$$

Since $x \mathrm{e}^{3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{3 x}, x^{4} \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}\right\},\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}, \mathrm{e}^{x} x^{4}, \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
\begin{aligned}
y_{p}= & A_{1} x^{3} \mathrm{e}^{3 x}+A_{2} x^{4} \mathrm{e}^{3 x}+A_{3} \mathrm{e}^{3 x} x^{2}+A_{4} x^{2} \mathrm{e}^{2 x}+A_{5} x^{3} \mathrm{e}^{2 x}+A_{6} \mathrm{e}^{2 x} x \\
& +A_{7} \mathrm{e}^{2 x}+A_{8} x \mathrm{e}^{x}+A_{9} x^{2} \mathrm{e}^{x}+A_{10} x^{3} \mathrm{e}^{x}+A_{11} \mathrm{e}^{x} x^{4}+A_{12} \mathrm{e}^{x}
\end{aligned}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}, A_{10}, A_{11}, A_{12}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -6 A_{5} x^{2} \mathrm{e}^{2 x}-8 A_{9} x \mathrm{e}^{x}-12 A_{10} x^{2} \mathrm{e}^{x}-16 A_{11} \mathrm{e}^{x} x^{3}+6 A_{1} x \mathrm{e}^{3 x}+12 A_{2} x^{2} \mathrm{e}^{3 x} \\
& +6 A_{5} x \mathrm{e}^{2 x}+6 A_{10} x \mathrm{e}^{x}+12 A_{11} \mathrm{e}^{x} x^{2}-4 A_{4} x \mathrm{e}^{2 x}-2 A_{6} \mathrm{e}^{2 x}-4 A_{8} \mathrm{e}^{x} \\
& +4 A_{11} \mathrm{e}^{x} x^{4}+A_{4} x^{2} \mathrm{e}^{2 x}+A_{5} x^{3} \mathrm{e}^{2 x}+A_{6} \mathrm{e}^{2 x} x+4 A_{8} x \mathrm{e}^{x}+4 A_{9} x^{2} \mathrm{e}^{x}+4 A_{10} x^{3} \mathrm{e}^{x} \\
& +4 A_{12} \mathrm{e}^{x}+A_{7} \mathrm{e}^{2 x}+2 A_{3} \mathrm{e}^{3 x}+2 A_{4} \mathrm{e}^{2 x}+2 A_{9} \mathrm{e}^{x}=\mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{12}, A_{3}=0, A_{4}=6, A_{5}=1, A_{6}=18, A_{7}=24, A_{8}=3, A_{9}=\frac{9}{4}, A_{10}=1, A_{11}=\frac{1}{4}, A_{12}=\frac{1}{8}\right.
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x+24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{x} x^{4}}{4}+\frac{15 \mathrm{e}^{x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{3 x} c_{2} x\right) \\
& +\left(\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x+24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{x} x^{4}}{4}+\frac{15 \mathrm{e}^{x}}{8}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & \mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x \\
& +24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{x} x^{4}}{4}+\frac{15 \mathrm{e}^{x}}{8}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & \mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x \\
& +24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{x} x^{4}}{4}+\frac{15 \mathrm{e}^{x}}{8}
\end{aligned}
$$

Figure 479: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x \\
& +24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{x} x^{4}}{4}+\frac{15 \mathrm{e}^{x}}{8}
\end{aligned}
$$

Verified OK.

11.44.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-6 d x} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{gathered}
(M(x) y)^{\prime \prime}=\mathrm{e}^{-3 x} \mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right) \\
\left(\mathrm{e}^{-3 x} y\right)^{\prime \prime}=\mathrm{e}^{-3 x} \mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right)
\end{gathered}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-3 x} y\right)^{\prime}=\frac{\left(-2 x^{4}-4 x^{3}-6 x^{2}-6 x-3\right) \mathrm{e}^{-2 x}}{4}+\left(-x^{3}-3 x^{2}-6 x-6\right) \mathrm{e}^{-x}+\frac{x^{3}}{3}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-3 x} y\right)=\frac{\left(2 x^{4}+8 x^{3}+18 x^{2}+24 x+15\right) \mathrm{e}^{-2 x}}{8}+\left(x^{3}+6 x^{2}+18 x+24\right) \mathrm{e}^{-x}+\frac{x^{4}}{12}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{\left(2 x^{4}+8 x^{3}+18 x^{2}+24 x+15\right) \mathrm{e}^{-2 x}}{8}+\left(x^{3}+6 x^{2}+18 x+24\right) \mathrm{e}^{-x}+\frac{x^{4}}{12}+c_{1} x+c_{2}}{\mathrm{e}^{-3 x}}
$$

Or

$$
\begin{aligned}
y= & \frac{x^{4} \mathrm{e}^{3 x}}{12}+c_{1} x \mathrm{e}^{3 x}+\frac{x^{4} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+x^{3} \mathrm{e}^{x} \\
& +6 x^{2} \mathrm{e}^{2 x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+18 \mathrm{e}^{2 x} x+3 x \mathrm{e}^{x}+24 \mathrm{e}^{2 x}+\frac{15 \mathrm{e}^{x}}{8}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{x^{4} \mathrm{e}^{3 x}}{12}+c_{1} x \mathrm{e}^{3 x}+\frac{x^{4} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+x^{3} \mathrm{e}^{x} \tag{1}\\
& +6 x^{2} \mathrm{e}^{2 x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+18 \mathrm{e}^{2 x} x+3 x \mathrm{e}^{x}+24 \mathrm{e}^{2 x}+\frac{15 \mathrm{e}^{x}}{8}
\end{align*}
$$

Figure 480: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \frac{x^{4} \mathrm{e}^{3 x}}{12}+c_{1} x \mathrm{e}^{3 x}+\frac{x^{4} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{2}+x^{3} \mathrm{e}^{x} \\
& +6 x^{2} \mathrm{e}^{2 x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+18 \mathrm{e}^{2 x} x+3 x \mathrm{e}^{x}+24 \mathrm{e}^{2 x}+\frac{15 \mathrm{e}^{x}}{8}
\end{aligned}
$$

Verified OK.

11.44.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 415: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x}\right)+c_{2}\left(\mathrm{e}^{3 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{3 x} c_{2} x
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}, \mathrm{e}^{3 x}\right\},\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}, x^{4} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x}\right\}
$$

Since $\mathrm{e}^{3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{3 x}, x^{3} \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}\right\},\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}, x^{4} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

Since $x \mathrm{e}^{3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{3 x}, x^{4} \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}\right\},\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}, x^{4} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
\begin{aligned}
y_{p}= & A_{1} x^{3} \mathrm{e}^{3 x}+A_{2} x^{4} \mathrm{e}^{3 x}+A_{3} \mathrm{e}^{3 x} x^{2}+A_{4} x^{2} \mathrm{e}^{2 x}+A_{5} x^{3} \mathrm{e}^{2 x}+A_{6} \mathrm{e}^{2 x} x \\
& +A_{7} \mathrm{e}^{2 x}+A_{8} x \mathrm{e}^{x}+A_{9} x^{2} \mathrm{e}^{x}+A_{10} x^{3} \mathrm{e}^{x}+A_{11} x^{4} \mathrm{e}^{x}+A_{12} \mathrm{e}^{x}
\end{aligned}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}, A_{10}, A_{11}, A_{12}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 2 A_{3} \mathrm{e}^{3 x}+2 A_{4} \mathrm{e}^{2 x}+2 A_{9} \mathrm{e}^{x}-2 A_{6} \mathrm{e}^{2 x}-4 A_{8} \mathrm{e}^{x}+A_{7} \mathrm{e}^{2 x}+4 A_{12} \mathrm{e}^{x}+A_{6} \mathrm{e}^{2 x} x \\
& +4 A_{8} x \mathrm{e}^{x}+4 A_{9} x^{2} \mathrm{e}^{x}+4 A_{10} x^{3} \mathrm{e}^{x}+4 A_{11} x^{4} \mathrm{e}^{x}+A_{4} x^{2} \mathrm{e}^{2 x}+A_{5} x^{3} \mathrm{e}^{2 x} \\
& -6 A_{5} x^{2} \mathrm{e}^{2 x}-8 A_{9} x \mathrm{e}^{x}-12 A_{10} x^{2} \mathrm{e}^{x}-16 A_{11} x^{3} \mathrm{e}^{x}+6 A_{1} x \mathrm{e}^{3 x}+12 A_{2} x^{3 x} \mathrm{e}^{x} \\
& +6 A_{5} x \mathrm{e}^{2 x}+6 A_{10} x \mathrm{e}^{x}+12 A_{11} x^{2} \mathrm{e}^{x}-4 A_{4} x \mathrm{e}^{2 x}=\mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{12}, A_{3}=0, A_{4}=6, A_{5}=1, A_{6}=18, A_{7}=24, A_{8}=3, A_{9}=\frac{9}{4}, A_{10}=1, A_{11}=\frac{1}{4}, A_{12}=\frac{1}{8}\right.
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x+24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{x^{4} \mathrm{e}^{x}}{4}+\frac{15 \mathrm{e}^{x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{3 x} c_{2} x\right) \\
& +\left(\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x+24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{x^{4} \mathrm{e}^{x}}{4}+\frac{15 \mathrm{e}^{x}}{8}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & \mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x \\
& +24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{x^{4} \mathrm{e}^{x}}{4}+\frac{15 \mathrm{e}^{x}}{8}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x \tag{1}\\
& +24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{x^{4} \mathrm{e}^{x}}{4}+\frac{15 \mathrm{e}^{x}}{8}
\end{align*}
$$

Figure 481: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{3 x}}{12}+6 x^{2} \mathrm{e}^{2 x}+x^{3} \mathrm{e}^{2 x}+18 \mathrm{e}^{2 x} x \\
& +24 \mathrm{e}^{2 x}+3 x \mathrm{e}^{x}+\frac{9 x^{2} \mathrm{e}^{x}}{4}+x^{3} \mathrm{e}^{x}+\frac{x^{4} \mathrm{e}^{x}}{4}+\frac{15 \mathrm{e}^{x}}{8}
\end{aligned}
$$

Verified OK.

11.44.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}+9 y=\mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-6 r+9=0
$$

- Factor the characteristic polynomial

$$
(r-3)^{2}=0
$$

- Root of the characteristic polynomial
$r=3$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{3 x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence
$y_{2}(x)=x \mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{3 x} c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{x} x^{2}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\ 3 \mathrm{e}^{3 x} & \mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{6 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{3 x}\left(-\left(\int x^{3} \mathrm{e}^{-2 x}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right) d x\right)+\left(\int x^{2} \mathrm{e}^{-2 x}\left(\mathrm{e}^{2 x}+x \mathrm{e}^{x}+x^{2}\right) d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{x}\left(\frac{45}{2}+\mathrm{e}^{2 x} x^{4}+12\left(x^{3}+6 x^{2}+18 x+24\right) \mathrm{e}^{x}+3 x^{4}+12 x^{3}+27 x^{2}+36 x\right)}{12}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{3 x} c_{2} x+\frac{\mathrm{e}^{x}\left(\frac{45}{2}+\mathrm{e}^{2 x} x^{4}+12\left(x^{3}+6 x^{2}+18 x+24\right) \mathrm{e}^{x}+3 x^{4}+12 x^{3}+27 x^{2}+36 x\right)}{12}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 62
dsolve (diff $(y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+9 * y(x)=x^{\wedge} 4 * \exp (x)+x^{\wedge} 3 * \exp (2 * x)+x^{\wedge} 2 * \exp (3 * x), y(x)$, sings

$$
\begin{aligned}
y(x)= & \left(x^{3}+6 x^{2}+18 x+24\right) \mathrm{e}^{2 x}+\frac{\left(x^{4}+12 c_{1} x+12 c_{2}\right) \mathrm{e}^{3 x}}{12} \\
& +\frac{\left(x^{4}+4 x^{3}+9 x^{2}+12 x+\frac{15}{2}\right) \mathrm{e}^{x}}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.391 (sec). Leaf size: 70
DSolve[y'' $[x]-6 * y$ ' $[x]+9 * y[x]==x^{\wedge} 4 * \operatorname{Exp}[x]+x^{\wedge} 3 * \operatorname{Exp}[2 * x]+x^{\wedge} 2 * \operatorname{Exp}[3 * x], y[x], x$, IncludeSingularSol
$y(x) \rightarrow e^{x}\left(\frac{x^{4}}{4}+e^{2 x}\left(\frac{x^{4}}{12}+c_{2} x+c_{1}\right)+x^{3}+\frac{9 x^{2}}{4}+e^{x}\left(x^{3}+6 x^{2}+18 x+24\right)+3 x+\frac{15}{8}\right)$

11.45 problem 45

11.45.1 Solving as second order linear constant coeff ode 2744
11.45.2 Solving using Kovacic algorithm 2750
11.45.3 Maple step by step solution . 2758

Internal problem ID [11819]
Internal file name [OUTPUT/11828_Thursday_April_11_2024_08_50_07_PM_24839565/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 45.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+13 y=x \mathrm{e}^{-3 x} \sin (2 x)+x^{2} \mathrm{e}^{-2 x} \sin (3 x)
$$

11.45.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=6, C=13, f(x)=x \mathrm{e}^{-2 x}\left(x \sin (3 x)+\mathrm{e}^{-x} \sin (2 x)\right)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(13)} \\
& =-3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \cos (2 x) \\
& y_{2}=\mathrm{e}^{-3 x} \sin (2 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} \cos (2 x) & \mathrm{e}^{-3 x} \sin (2 x) \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x} \cos (2 x)\right) & \frac{d}{d x}\left(\mathrm{e}^{-3 x} \sin (2 x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} \cos (2 x) & \mathrm{e}^{-3 x} \sin (2 x) \\
-3 \mathrm{e}^{-3 x} \cos (2 x)-2 \mathrm{e}^{-3 x} \sin (2 x) & -3 \mathrm{e}^{-3 x} \sin (2 x)+2 \mathrm{e}^{-3 x} \cos (2 x)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\mathrm{e}^{-3 x} \cos (2 x)\right)\left(-3 \mathrm{e}^{-3 x} \sin (2 x)+2 \mathrm{e}^{-3 x} \cos (2 x)\right) \\
& -\left(\mathrm{e}^{-3 x} \sin (2 x)\right)\left(-3 \mathrm{e}^{-3 x} \cos (2 x)-2 \mathrm{e}^{-3 x} \sin (2 x)\right)
\end{aligned}
$$

Which simplifies to

$$
W=2 \mathrm{e}^{-6 x} \cos (2 x)^{2}+2 \mathrm{e}^{-6 x} \sin (2 x)^{2}
$$

Which simplifies to

$$
W=2 \mathrm{e}^{-6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-3 x} \sin (2 x) x \mathrm{e}^{-2 x}\left(x \sin (3 x)+\mathrm{e}^{-x} \sin (2 x)\right)}{2 \mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x \sin (2 x)\left(\sin (3 x) x \mathrm{e}^{x}+\sin (2 x)\right)}{2} d x
$$

Hence

$$
\begin{aligned}
u_{1}= & -\frac{\left(\frac{x^{2}}{2}-\frac{1}{2}\right) \mathrm{e}^{x} \cos (x)}{4}+\frac{\left(-\frac{1}{2} x^{2}+x-\frac{1}{2}\right) \mathrm{e}^{x} \sin (x)}{4} \\
& +\frac{\left(\frac{1}{26} x^{2}+\frac{12}{169} x-\frac{37}{4394}\right) \mathrm{e}^{x} \cos (5 x)}{4}-\frac{\left(-\frac{5}{26} x^{2}+\frac{5}{169} x+\frac{55}{4394}\right) \mathrm{e}^{x} \sin (5 x)}{4} \\
& -2 x\left(-\frac{\cos (x) \sin (x)}{2}+\frac{x}{2}\right)+\frac{x^{2}}{8}-\frac{\sin (x)^{2}}{2} \\
& +2 x\left(-\frac{\left(\sin (x)^{3}+\frac{3 \sin (x)}{2}\right) \cos (x)}{4}+\frac{3 x}{8}\right)+\frac{\left(2 \cos (x)^{2}-5\right)^{2}}{32}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-3 x} \cos (2 x) x \mathrm{e}^{-2 x}\left(x \sin (3 x)+\mathrm{e}^{-x} \sin (2 x)\right)}{2 \mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x \cos (2 x)\left(\sin (3 x) x \mathrm{e}^{x}+\sin (2 x)\right)}{2} d x
$$

Hence

$$
\begin{aligned}
u_{2}= & \frac{\left(-\frac{5}{26} x^{2}+\frac{5}{169} x+\frac{55}{4394}\right) \mathrm{e}^{x} \cos (5 x)}{4}+\frac{\left(\frac{1}{26} x^{2}+\frac{12}{169} x-\frac{37}{4394}\right) \mathrm{e}^{x} \sin (5 x)}{4} \\
& +\frac{\left(-\frac{1}{2} x^{2}+x-\frac{1}{2}\right) \mathrm{e}^{x} \cos (x)}{4}+\frac{\left(\frac{x^{2}}{2}-\frac{1}{2}\right) \mathrm{e}^{x} \sin (x)}{4}-\frac{x \cos (x)^{4}}{2} \\
& +\frac{\left(\cos (x)^{3}+\frac{3 \cos (x)}{2}\right) \sin (x)}{8}-\frac{x}{16}+\frac{\cos (x)^{2} x}{2}-\frac{\cos (x) \sin (x)}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
u_{1}= & \frac{\mathrm{e}^{x}\left(x^{2}+\frac{24}{13} x-\frac{37}{169}\right) \cos (5 x)}{104}+\frac{5 \mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{11}{169}\right) \sin (5 x)}{104} \\
& -\frac{((1+x) \cos (x)+\sin (x)(x-1))(x-1) \mathrm{e}^{x}}{8}+\frac{\cos (x)^{4}}{8} \\
& -\frac{5 \cos (x)^{2}}{8}-\frac{x\left(\sin (x)^{2}-\frac{1}{2}\right) \sin (x) \cos (x)}{2}-\frac{x^{2}}{8}-\frac{\sin (x)^{2}}{2}+\frac{25}{32} \\
u_{2}= & -\frac{5 \mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{11}{169}\right) \cos (5 x)}{104}+\frac{\left(338 x^{2}+624 x-74\right) \mathrm{e}^{x} \sin (5 x)}{35152} \\
& -\frac{((x-1) \cos (x)-\sin (x)(1+x))(x-1) \mathrm{e}^{x}}{8}-\frac{x \cos (x)^{4}}{2} \\
& +\frac{\cos (x)^{3} \sin (x)}{8}+\frac{\cos (x)^{2} x}{2}-\frac{\cos (x) \sin (x)}{16}-\frac{x}{16}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{\mathrm{e}^{x}\left(x^{2}+\frac{24}{13} x-\frac{37}{169}\right) \cos (5 x)}{104}+\frac{5 \mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{11}{169}\right) \sin (5 x)}{104} \\
& -\frac{((1+x) \cos (x)+\sin (x)(x-1))(x-1) \mathrm{e}^{x}}{8}+\frac{\cos (x)^{4}}{8}-\frac{5 \cos (x)^{2}}{8} \\
& \left.-\frac{x\left(\sin (x)^{2}-\frac{1}{2}\right) \sin (x) \cos (x)}{2}-\frac{x^{2}}{8}-\frac{\sin (x)^{2}}{2}+\frac{25}{32}\right) \mathrm{e}^{-3 x} \cos (2 x) \\
& +\left(-\frac{5 \mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{11}{169}\right) \cos (5 x)}{104}+\frac{\left(338 x^{2}+624 x-74\right) \mathrm{e}^{x} \sin (5 x)}{35152}\right. \\
& -\frac{((x-1) \cos (x)-\sin (x)(1+x))(x-1) \mathrm{e}^{x}}{8}-\frac{x \cos (x)^{4}}{2}+\frac{\cos (x)^{3} \sin (x)}{8} \\
& \left.+\frac{\cos (x)^{2} x}{2}-\frac{\cos (x) \sin (x)}{16}-\frac{x}{16}\right) \mathrm{e}^{-3 x} \sin (2 x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x x \frac{563}{338}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{135}{169}\right) \mathrm{e}\right.\right.}{13}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right) \\
& +\left(-\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{338}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{13}{3}\right.\right.\right.}{13}\right.
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =\mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \\
& -\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{338}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{135}{169}\right) \mathrm{e}\right.\right.}{13}
\end{aligned}
$$

Figure 482: Slope field plot

Verification of solutions

$$
\begin{aligned}
y & =\mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \\
& -\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{338}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{135}{169}\right) \mathrm{e}\right.\right.}{13}
\end{aligned}
$$

Verified OK.

11.45.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 417: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-3 x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\frac{\mathrm{e}^{-3 x} \sin (2 x) c_{2}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \cos (2 x) \\
& y_{2}=\frac{\mathrm{e}^{-3 x} \sin (2 x)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} \cos (2 x) & \frac{\mathrm{e}^{-3 x} \sin (2 x)}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x} \cos (2 x)\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{-3 x} \sin (2 x)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} \cos (2 x) & \frac{\mathrm{e}^{-3 x} \sin (2 x)}{2} \\
-3 \mathrm{e}^{-3 x} \cos (2 x)-2 \mathrm{e}^{-3 x} \sin (2 x) & -\frac{3 \mathrm{e}^{-3 x} \sin (2 x)}{2}+\mathrm{e}^{-3 x} \cos (2 x)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\mathrm{e}^{-3 x} \cos (2 x)\right)\left(-\frac{3 \mathrm{e}^{-3 x} \sin (2 x)}{2}+\mathrm{e}^{-3 x} \cos (2 x)\right) \\
& -\left(\frac{\mathrm{e}^{-3 x} \sin (2 x)}{2}\right)\left(-3 \mathrm{e}^{-3 x} \cos (2 x)-2 \mathrm{e}^{-3 x} \sin (2 x)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x} \cos (2 x)^{2}+\mathrm{e}^{-6 x} \sin (2 x)^{2}
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-3 x} \sin (2 x) x \mathrm{e}^{-2 x}\left(x \sin (3 x)+\mathrm{e}^{-x} \sin (2 x)\right)}{2}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x \sin (2 x)\left(\sin (3 x) x \mathrm{e}^{x}+\sin (2 x)\right)}{2} d x
$$

Hence

$$
\begin{aligned}
u_{1}= & -\frac{\left(\frac{x^{2}}{2}-\frac{1}{2}\right) \mathrm{e}^{x} \cos (x)}{4}+\frac{\left(-\frac{1}{2} x^{2}+x-\frac{1}{2}\right) \mathrm{e}^{x} \sin (x)}{4} \\
& +\frac{\left(\frac{1}{26} x^{2}+\frac{12}{169} x-\frac{37}{4394}\right) \mathrm{e}^{x} \cos (5 x)}{4}-\frac{\left(-\frac{5}{26} x^{2}+\frac{5}{169} x+\frac{55}{4394}\right) \mathrm{e}^{x} \sin (5 x)}{4} \\
& -2 x\left(-\frac{\cos (x) \sin (x)}{2}+\frac{x}{2}\right)+\frac{x^{2}}{8}-\frac{\sin (x)^{2}}{2} \\
& +2 x\left(-\frac{\left(\sin (x)^{3}+\frac{3 \sin (x)}{2}\right) \cos (x)}{4}+\frac{3 x}{8}\right)+\frac{\left(2 \cos (x)^{2}-5\right)^{2}}{32}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-3 x} \cos (2 x) x \mathrm{e}^{-2 x}\left(x \sin (3 x)+\mathrm{e}^{-x} \sin (2 x)\right)}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int x \cos (2 x)\left(\sin (3 x) x \mathrm{e}^{x}+\sin (2 x)\right) d x
$$

Hence

$$
\begin{aligned}
u_{2}= & \frac{\left(-\frac{5}{26} x^{2}+\frac{5}{169} x+\frac{55}{4394}\right) \mathrm{e}^{x} \cos (5 x)}{2}+\frac{\left(\frac{1}{26} x^{2}+\frac{12}{169} x-\frac{37}{4394}\right) \mathrm{e}^{x} \sin (5 x)}{2} \\
& +\frac{\left(-\frac{1}{2} x^{2}+x-\frac{1}{2}\right) \mathrm{e}^{x} \cos (x)}{2}+\frac{\left(\frac{x^{2}}{2}-\frac{1}{2}\right) \mathrm{e}^{x} \sin (x)}{2}-x \cos (x)^{4} \\
& +\frac{\left(\cos (x)^{3}+\frac{3 \cos (x)}{2}\right) \sin (x)}{4}-\frac{x}{8}+\cos (x)^{2} x-\frac{\cos (x) \sin (x)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
u_{1}= & \frac{\mathrm{e}^{x}\left(x^{2}+\frac{24}{13} x-\frac{37}{169}\right) \cos (5 x)}{104}+\frac{5 \mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{11}{169}\right) \sin (5 x)}{104} \\
& -\frac{((1+x) \cos (x)+\sin (x)(x-1))(x-1) \mathrm{e}^{x}}{8}+\frac{\cos (x)^{4}}{8} \\
& -\frac{5 \cos (x)^{2}}{8}-\frac{x\left(\sin (x)^{2}-\frac{1}{2}\right) \sin (x) \cos (x)}{2}-\frac{x^{2}}{8}-\frac{\sin (x)^{2}}{2}+\frac{25}{32} \\
u_{2}= & -\frac{5 \mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{11}{169}\right) \cos (5 x)}{52}+\frac{\left(169 x^{2}+312 x-37\right) \mathrm{e}^{x} \sin (5 x)}{8788} \\
& -\frac{((x-1) \cos (x)-\sin (x)(1+x))(x-1) \mathrm{e}^{x}}{4}-x \cos (x)^{4} \\
& +\frac{\cos (x)^{3} \sin (x)}{4}+\cos (x)^{2} x-\frac{\cos (x) \sin (x)}{8}-\frac{x}{8}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
& y_{p}(x)=\left(\frac{\mathrm{e}^{x}\left(x^{2}+\frac{24}{13} x-\frac{37}{169}\right) \cos (5 x)}{104}+\frac{5 \mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{11}{169}\right) \sin (5 x)}{104}\right. \\
& -\frac{((1+x) \cos (x)+\sin (x)(x-1))(x-1) \mathrm{e}^{x}}{8}+\frac{\cos (x)^{4}}{8}-\frac{5 \cos (x)^{2}}{8} \\
& \\
& \left.\quad-\frac{x\left(\sin (x)^{2}-\frac{1}{2}\right) \sin (x) \cos (x)}{2}-\frac{x^{2}}{8}-\frac{\sin (x)^{2}}{2}+\frac{25}{32}\right) \mathrm{e}^{-3 x} \cos (2 x) \\
& +
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)= \\
& -\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{338}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{135}{169}\right) \mathrm{e}\right.\right.}{13}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\frac{\mathrm{e}^{-3 x} \sin (2 x) c_{2}}{2}\right) \\
& +\left(-\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{338}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{3}{3}\right.\right.\right.}{13}\right.
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\frac{\mathrm{e}^{-3 x} \sin (2 x) c_{2}}{2} \\
& -\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{388}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{135}{169}\right)\right.\right.}{13}
\end{aligned}
$$

Figure 483: Slope field plot

Verification of solutions

$$
\begin{aligned}
y & =c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\frac{\mathrm{e}^{-3 x} \sin (2 x) c_{2}}{2} \\
& -\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{338}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{135}{169}\right) \mathrm{e}^{2}\right.\right.}{13}
\end{aligned}
$$

Verified OK.

11.45.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+13 y=x \mathrm{e}^{-2 x}\left(x \sin (3 x)+\mathrm{e}^{-x} \sin (2 x)\right)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+13=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-6) \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-3-2 \mathrm{I},-3+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x} \cos (2 x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-3 x} \sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\mathrm{e}^{-3 x} \sin (2 x) c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{-2 x}\left(x \sin (3 x)+\mathrm{e}^{-x}\right.\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} \cos (2 x) & \mathrm{e}^{-3 x} \sin (2 x) \\
-3 \mathrm{e}^{-3 x} \cos (2 x)-2 \mathrm{e}^{-3 x} \sin (2 x) & -3 \mathrm{e}^{-3 x} \sin (2 x)+2 \mathrm{e}^{-3 x} \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{-6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-3 x}\left(\cos (2 x)\left(\int x \sin (2 x)\left(\sin (3 x) x \mathrm{e}^{x}+\sin (2 x)\right) d x\right)-\sin (2 x)\left(\int x \cos (2 x)\left(\sin (3 x) x \mathrm{e}^{x}+\sin (2 x)\right) d x\right)\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{338}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}+\left(\left(-\frac{3}{4} x^{2}+\frac{3}{26} x+\frac{135}{169}\right) \mathrm{e}^{x}-\frac{13 x \sin (x)}{48}\right) \mathrm{cc}\right.}{13}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\mathrm{e}^{-3 x} \sin (2 x) c_{2}-\frac{6\left(\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (x)^{3}+\left(\frac{2\left(x^{2}-\frac{41}{13} x+\frac{563}{38}\right) \sin (x) \mathrm{e}^{x}}{3}+\frac{13 x^{2}}{24}-\frac{39}{32}\right) \cos (x)^{2}\right.}{}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 68

```
dsolve(diff (y (x),x$2)+6*\operatorname{diff}(y(x),x)+13*y(x)=x*exp (-3*x)*\operatorname{sin}(2*x)+x^2*exp(-2*x)*\operatorname{sin}(3*x),y(x
```

$$
\begin{aligned}
& y(x)= \\
& -\frac{3\left(\left(\frac{13 x^{2}}{12}-\frac{26 c_{1}}{3}-\frac{39}{16}\right) \cos (2 x)+\mathrm{e}^{x}\left(x^{2}-\frac{2}{13} x-\frac{180}{169}\right) \cos (3 x)+\frac{2 \mathrm{e}^{x}\left(x^{2}-\frac{41}{13} x+\frac{563}{338}\right) \sin (3 x)}{3}-\frac{13 \sin (2 x)\left(x+16 c_{2}\right)}{24}\right.}{26}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.921 (sec). Leaf size: 82
DSolve $\left[y\right.$ ' $\quad[x]+6 * y$ ' $[x]+13 * y[x]==x * \operatorname{Exp}[-3 * x] * \operatorname{Sin}[2 * x]+x^{\wedge} 2 * \operatorname{Exp}[-2 * x] * \operatorname{Sin}[3 * x], y[x], x$, IncludeSin
$y(x)$
$\rightarrow \frac{e^{-3 x}\left(-32 e^{x}\left(338 x^{2}-1066 x+563\right) \sin (3 x)-96 e^{x}\left(169 x^{2}-26 x-180\right) \cos (3 x)-2197\left(8 x^{2}-1-64 c_{2}\right)\right.}{140608}$

11.46 problem 46

11.46.1 Maple step by step solution

Internal problem ID [11820]
Internal file name [OUTPUT/11829_Thursday_April_11_2024_08_51_25_PM_72330630/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 46.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}+2 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2 \\
& \lambda_{3}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{1, x, x^{2}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x, x^{2}, x^{3}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x, x^{2}, x^{3}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}\right\}\right]
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x\right\},\left\{x, x^{2}, x^{3}\right\},\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{2 x}+A_{2} \mathrm{e}^{2 x} x+A_{3} x+A_{4} x^{2}+A_{5} x^{3}+A_{6} x \mathrm{e}^{x}+A_{7} x^{2} \mathrm{e}^{x}+A_{8} x^{3} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 4 A_{1} x \mathrm{e}^{2 x}-2 A_{7} x \mathrm{e}^{x}-3 A_{8} x^{2} \mathrm{e}^{x}+2 A_{3}-6 A_{4}+6 A_{5}-18 A_{5} x+4 A_{4} x \\
& +6 A_{5} x^{2}+6 A_{8} \mathrm{e}^{x}+6 A_{1} \mathrm{e}^{2 x}+2 A_{2} \mathrm{e}^{2 x}-A_{6} \mathrm{e}^{x}=x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{4}, A_{2}=-\frac{9}{4}, A_{3}=\frac{35}{4}, A_{4}=\frac{15}{4}, A_{5}=\frac{5}{6}, A_{6}=-2, A_{7}=0, A_{8}=-\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 x^{2} \mathrm{e}^{2 x}}{4}-\frac{9 \mathrm{e}^{2 x} x}{4}+\frac{35 x}{4}+\frac{15 x^{2}}{4}+\frac{5 x^{3}}{6}-2 x \mathrm{e}^{x}-\frac{x^{3} \mathrm{e}^{x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}\right)+\left(\frac{3 x^{2} \mathrm{e}^{2 x}}{4}-\frac{9 \mathrm{e}^{2 x} x}{4}+\frac{35 x}{4}+\frac{15 x^{2}}{4}+\frac{5 x^{3}}{6}-2 x \mathrm{e}^{x}-\frac{x^{3} \mathrm{e}^{x}}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+\frac{3 x^{2} \mathrm{e}^{2 x}}{4}-\frac{9 \mathrm{e}^{2 x} x}{4}+\frac{35 x}{4}+\frac{15 x^{2}}{4}+\frac{5 x^{3}}{6}-2 x \mathrm{e}^{x}-\frac{x^{3} \mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+\frac{3 x^{2} \mathrm{e}^{2 x}}{4}-\frac{9 \mathrm{e}^{2 x} x}{4}+\frac{35 x}{4}+\frac{15 x^{2}}{4}+\frac{5 x^{3}}{6}-2 x \mathrm{e}^{x}-\frac{x^{3} \mathrm{e}^{x}}{3}
$$

Verified OK.

11.46.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}+3 y_{3}(x)-2 y_{2}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}+3 y_{3}(x)-2 y_{2}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & 3
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x^{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x} x+5 x^{2}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(x)=\left[\begin{array}{ccc}1 & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} \\ 0 & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\ 0 & \mathrm{e}^{x} & \mathrm{e}^{2 x}\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} \\
0 & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
0 & \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{lll}
1 & 1 & \frac{1}{4} \\
0 & 1 & \frac{1}{2} \\
0 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{3}{2}+2 \mathrm{e}^{x}-\frac{\mathrm{e}^{2 x}}{2} & \frac{1}{2}-\mathrm{e}^{x}+\frac{\mathrm{e}^{2 x}}{2} \\
0 & 2 \mathrm{e}^{x}-\mathrm{e}^{2 x} & -\mathrm{e}^{x}+\mathrm{e}^{2 x} \\
0 & 2 \mathrm{e}^{x}-2 \mathrm{e}^{2 x} & -\mathrm{e}^{x}+2 \mathrm{e}^{2 x}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$

$$
\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)
$$

- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{35}{4}+\frac{\left(3 x^{2}-9 x+17\right) \mathrm{e}^{2 x}}{4}+\frac{\left(-x^{3}-6 x-39\right) \mathrm{e}^{x}}{3}+\frac{5 x^{3}}{6}+\frac{15 x^{2}}{4}+\frac{35 x}{4} \\
\frac{35}{4}+\frac{\left(6 x^{2}-12 x+25\right) \mathrm{e}^{2 x}}{4}+\frac{\left(-x^{3}-3 x^{2}-6 x-45\right) \mathrm{e}^{x}}{3}+\frac{5 x^{2}}{2}+\frac{15 x}{2} \\
\frac{15}{2}+\frac{\left(6 x^{2}-6 x+19\right) \mathrm{e}^{2 x}}{2}+\frac{\left(-x^{3}-6 x^{2}-12 x-51 \mathrm{e}^{x}\right.}{3}+5 x
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\frac{35}{4}+\frac{\left(3 x^{2}-9 x+17\right) \mathrm{e}^{2 x}}{4}+\frac{\left(-x^{3}-6 x-39\right) \mathrm{e}^{x}}{3}+\frac{5 x^{3}}{6}+\frac{15 x^{2}}{4}+\frac{35 x}{4} \\
\frac{35}{4}+\frac{\left(6 x^{2}-12 x+25\right) \mathrm{e}^{2 x}}{4}+\frac{\left(-x^{3}-3 x^{2}-6 x-45\right) \mathrm{e}^{x}}{3}+\frac{5 x^{2}}{2}+\frac{15 x}{2} \\
\frac{15}{2}+\frac{\left(6 x^{2}-6 x+19\right) \mathrm{e}^{2 x}}{2}+\frac{\left(-x^{3}-6 x^{2}-12 x-51\right) \mathrm{e}^{x}}{3}+5 x
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{35}{4}+\frac{\left(3 x^{2}+c_{3}-9 x+17\right) \mathrm{e}^{2 x}}{4}+\frac{\left(-x^{3}+3 c_{2}-6 x-39\right) \mathrm{e}^{x}}{3}+\frac{5 x^{3}}{6}+\frac{15 x^{2}}{4}+\frac{35 x}{4}+c_{1}$

Maple trace

```
MMethods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = _a` 2*exp(_a)+3*exp(2*_a)*_a+5
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    <- double symmetry of the form [xi=0, eta=F(x)] successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 55

```
dsolve(diff(y(x),x$3)-3*diff(y(x),x$2)+2*diff (y(x),x)=x^2*exp(x)+3*x*exp(2*x)+5*x^2,y(x), si
```

$y(x)=\frac{\left(6 x^{2}+4 c_{1}-18 x+21\right) \mathrm{e}^{2 x}}{8}+\frac{\left(-x^{3}+3 c_{2}-6 x+6\right) \mathrm{e}^{x}}{3}+\frac{5 x^{3}}{6}+\frac{15 x^{2}}{4}+\frac{35 x}{4}+c_{3}$
\checkmark Solution by Mathematica
Time used: 0.885 (sec). Leaf size: 67
DSolve[y' ' ' $[\mathrm{x}]-3 * y$ ' ' $[\mathrm{x}]+2 * \mathrm{y}$ ' $[\mathrm{x}]==\mathrm{x}^{\wedge} 2 * \operatorname{Exp}[\mathrm{x}]+3 * x * \operatorname{Exp}[2 * x]+5 * x^{\wedge} 2, y[x], x$, IncludeSingularSolutio

$$
y(x) \rightarrow \frac{5 x^{3}}{6}+e^{x}\left(-\frac{x^{3}}{3}-2 x+c_{1}\right)+\frac{15 x^{2}}{4}+\frac{1}{8} e^{2 x}\left(6 x^{2}-18 x+21+4 c_{2}\right)+\frac{35 x}{4}+c_{3}
$$

11.47 problem 47

Internal problem ID [11821]
Internal file name [OUTPUT/11830_Thursday_April_11_2024_08_51_26_PM_89373344/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 47.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=\mathrm{e}^{2 x} x+\mathrm{e}^{3 x} x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=2 \\
& \lambda_{3}=2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x+x^{2} \mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{2 x} x \\
& y_{3}=x^{2} \mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=\mathrm{e}^{2 x} x+\mathrm{e}^{3 x} x^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{2 x} x+\mathrm{e}^{3 x} x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}, \mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x^{2} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x\right\},\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}, \mathrm{e}^{3 x}\right\}\right]
$$

Since $\mathrm{e}^{2 x} x$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}\right\},\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}, \mathrm{e}^{3 x}\right\}\right]
$$

Since $x^{2} \mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{2 x}, \mathrm{e}^{2 x} x^{4}\right\},\left\{x \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x^{2}, \mathrm{e}^{3 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC__set.

$$
y_{p}=A_{1} x^{3} \mathrm{e}^{2 x}+A_{2} \mathrm{e}^{2 x} x^{4}+A_{3} x \mathrm{e}^{3 x}+A_{4} \mathrm{e}^{3 x} x^{2}+A_{5} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& 6 A_{4} \mathrm{e}^{3 x} x+24 A_{2} \mathrm{e}^{2 x} x+A_{3} x \mathrm{e}^{3 x}+A_{4} \mathrm{e}^{3 x} x^{2}+A_{5} \mathrm{e}^{3 x}+3 A_{3} \mathrm{e}^{3 x}+6 A_{4} \mathrm{e}^{3 x}+6 A_{1} \mathrm{e}^{2 x} \\
& \quad=\mathrm{e}^{2 x} x+\mathrm{e}^{3 x} x^{2}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{24}, A_{3}=-6, A_{4}=1, A_{5}=12\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{2 x} x^{4}}{24}-6 x \mathrm{e}^{3 x}+\mathrm{e}^{3 x} x^{2}+12 \mathrm{e}^{3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x+x^{2} \mathrm{e}^{2 x} c_{3}\right)+\left(\frac{\mathrm{e}^{2 x} x^{4}}{24}-6 x \mathrm{e}^{3 x}+\mathrm{e}^{3 x} x^{2}+12 \mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x} x^{4}}{24}-6 x \mathrm{e}^{3 x}+\mathrm{e}^{3 x} x^{2}+12 \mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x} x^{4}}{24}-6 x \mathrm{e}^{3 x}+\mathrm{e}^{3 x} x^{2}+12 \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{2 x} x^{4}}{24}-6 x \mathrm{e}^{3 x}+\mathrm{e}^{3 x} x^{2}+12 \mathrm{e}^{3 x}
$$

Verified OK.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 41

```
dsolve(diff (y(x),x$3)-6*diff(y(x),x$2)+12*diff(y(x),x)-8*y(x)=x*exp(2*x)+x^2*exp(3*x),y(x),
```

$$
y(x)=\frac{\left(x^{4}+24 c_{3} x^{2}+24 c_{2} x+24 c_{1}\right) \mathrm{e}^{2 x}}{24}+\mathrm{e}^{3 x}\left(x^{2}-6 x+12\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 47
DSolve[y'' ' $[\mathrm{x}]-6 * y$ ' $[\mathrm{x}]+12 * \mathrm{y}$ ' $[\mathrm{x}]-8 * y[\mathrm{x}]==\mathrm{x} * \operatorname{Exp}[2 * x]+\mathrm{x}^{\wedge} 2 * \operatorname{Exp}[3 * x], y[\mathrm{x}], \mathrm{x}$, IncludeSingularSolut

$$
y(x) \rightarrow \frac{1}{24} e^{2 x}\left(x^{4}+24 e^{x}\left(x^{2}-6 x+12\right)+24 c_{3} x^{2}+24 c_{2} x+24 c_{1}\right)
$$

11.48 problem 48

11.48.1 Maple step by step solution 2780

Internal problem ID [11822]
Internal file name [OUTPUT/11831_Thursday_April_11_2024_08_51_27_PM_70264925/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 48.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}+4 y^{\prime \prime}+3 y^{\prime}+y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}+4 y^{\prime \prime}+3 y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}+3 \lambda^{3}+4 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=-1 \\
& \lambda_{4}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} \\
& y_{4}=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}+4 y^{\prime \prime}+3 y^{\prime}+y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}} & \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}(1-x) & -\frac{(1+i \sqrt{3}) \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{2} & \frac{(i \sqrt{3}-1) \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{2} \\
\mathrm{e}^{-x} & \mathrm{e}^{-x}(x-2) & \frac{(1+i \sqrt{3})^{2} \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{4} & \frac{(i \sqrt{3}-1)^{2} \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{4} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}(-x+3) & \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}} & \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}
\end{array}\right] \\
& |W|=i \mathrm{e}^{-2 x \sqrt{3} \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}} \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=i \sqrt{3} \mathrm{e}^{-3 x}
$$

Now we determine W_{i} for each U_{i}.

$$
\left.\left.\begin{array}{rl}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{ccc}
x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}} & \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}} \\
\mathrm{e}^{-x}(1-x) & -\frac{(1+i \sqrt{3}) \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{2} & \frac{(i \sqrt{3}-1) \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{2} \\
\mathrm{e}^{-x}(x-2) & \frac{(1+i \sqrt{3})^{2} \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{4} & \frac{(i \sqrt{3}-1)^{2} \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{4}
\end{array}\right] \\
& =i \sqrt{3} \mathrm{e}^{-2 x}(x-1) \\
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}} & \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}} \\
-\mathrm{e}^{-x} & -\frac{(1+i \sqrt{3}) \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{2} & \frac{(i \sqrt{3}-1) \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{2}
\end{array}\right] \\
\mathrm{e}^{-x} & \frac{(1+i \sqrt{3})^{2} \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{4}
\end{array}\right] \frac{(i \sqrt{3}-1)^{2} \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{4}\right] .
$$

$$
\begin{aligned}
& W_{3}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}(1-x) & \frac{(i \sqrt{3}-1) \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{2} \\
\mathrm{e}^{-x} & \mathrm{e}^{-x}(x-2) & \frac{(i \sqrt{3}-1)^{2} \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{4}
\end{array}\right] \\
& =\frac{\mathrm{e}^{\frac{x(i \sqrt{3}-5)}{2}}(i \sqrt{3}-1)}{2} \\
& W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}(1-x) & -\frac{(1+i \sqrt{3}) \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{2} \\
\mathrm{e}^{-x} & \mathrm{e}^{-x}(x-2) & \frac{(1+i \sqrt{3})^{2} \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{4}
\end{array}\right] \\
& =-\frac{\mathrm{e}^{-\frac{x(i \sqrt{3}+5)}{2}}(1+i \sqrt{3})}{2}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{\left(x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)\left(i \sqrt{3} \mathrm{e}^{-2 x}(x-1)\right)}{(1)\left(i \sqrt{3} \mathrm{e}^{-3 x}\right)} d x \\
& =-\int \frac{i\left(x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \sqrt{3} \mathrm{e}^{-2 x}(x-1)}{i \sqrt{3} \mathrm{e}^{-3 x}} d x \\
& =-\int\left((x-1)\left(3 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+x^{2}\right)\right) d x \\
& =-3\left(\frac{x}{2}+\frac{1}{2}\right) \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+3\left(-\frac{\sqrt{3} x}{2}+\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)-\frac{x^{4}}{4}+\frac{3 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{3 \sqrt{3} \mathrm{e}^{\frac{3}{2}}}{2} \\
& =-3\left(\frac{x}{2}+\frac{1}{2}\right) \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+3\left(-\frac{\sqrt{3} x}{2}+\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)-\frac{x^{4}}{4}+\frac{3 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{3 \sqrt{3} \mathrm{e}^{\frac{3}{3}}}{2}
\end{aligned}
$$

$$
\begin{aligned}
U_{2} & =(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)\left(i \sqrt{3} \mathrm{e}^{-2 x}\right)}{(1)\left(i \sqrt{3} \mathrm{e}^{-3 x}\right)} d x \\
& =\int \frac{i\left(x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \sqrt{3} \mathrm{e}^{-2 x}}{i \sqrt{3} \mathrm{e}^{-3 x}} d x \\
& =\int\left(3 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+x^{2}\right) d x \\
& =\frac{x^{3}}{3}+\frac{3 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{3 \sqrt{3} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}
\end{aligned}
$$

$$
U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x
$$

$$
=(-1)^{1} \int \frac{\left(x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)\left(\frac{\mathrm{e}^{\frac{x(i \sqrt{3}-5)}{2}}(i \sqrt{3}-1)}{2}\right)}{(1)\left(i \sqrt{3} \mathrm{e}^{-3 x}\right)} d x
$$

$$
=-\int \frac{\frac{\left(x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{\frac{x(i \sqrt{3}-5)}{2}}(i \sqrt{3}-1)}{2}}{i \sqrt{3} \mathrm{e}^{-3 x}} d x
$$

$$
=-\int\left(\frac{\sqrt{3} \mathrm{e}^{\frac{i \sqrt{3} x}{2}}(\sqrt{3}+i)\left(\mathrm{e}^{-\frac{x}{2}} x^{2}+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right)}{6}\right) d x
$$

$$
=-\frac{3 x}{4}-\frac{i \sqrt{3} x}{4}+\frac{i \mathrm{e}^{i \sqrt{3} x \sqrt{3}}}{4}-\frac{\mathrm{e}^{i \sqrt{3} x}}{4}+\frac{\left(i \sqrt{3} x+i \sqrt{3}+x^{2}+x-1\right)(1+i \sqrt{3}) \sqrt{3}(\sqrt{3}+i) \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{12}
$$

$$
=-\frac{3 x}{4}-\frac{i \sqrt{3} x}{4}+\frac{i \mathrm{e}^{i \sqrt{3} x \sqrt{3}}}{4}-\frac{\mathrm{e}^{i \sqrt{3} x}}{4}+\frac{\left(i \sqrt{3} x+i \sqrt{3}+x^{2}+x-1\right)(1+i \sqrt{3}) \sqrt{3}(\sqrt{3}+i) \mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{12}
$$

$$
\begin{aligned}
U_{4} & =(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)\left(-\frac{\mathrm{e}^{-\frac{x(i \sqrt{3}+5)}{2}}(1+i \sqrt{3})}{2}\right)}{(1)\left(i \sqrt{3} \mathrm{e}^{-3 x}\right)} d x \\
& =\int \frac{-\frac{\left(x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right) \mathrm{e}^{-\frac{x(i \sqrt{3}+5)}{2}}(1+i \sqrt{3})}{2}}{i \sqrt{3} \mathrm{e}^{-3 x}} d x \\
& =\int\left(-\frac{\sqrt{3} \mathrm{e}^{-\frac{i \sqrt{3} x}{2}}(-i+\sqrt{3})\left(\mathrm{e}^{-\frac{x}{2}} x^{2}+3 \cos \left(\frac{\sqrt{3} x}{2}\right)\right)}{6}\right) d x \\
& =-\frac{\left(-i \sqrt{3} x-i \sqrt{3}+x^{2}+x-1\right)(i \sqrt{3}-1) \sqrt{3}(-i+\sqrt{3}) \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{12}-\frac{3 x}{4}+\frac{i \sqrt{3} x}{4}-\frac{i \mathrm{e}^{-i \sqrt{3} x \sqrt{3}}}{4}- \\
& =-\frac{\left(-i \sqrt{3} x-i \sqrt{3}+x^{2}+x-1\right)(i \sqrt{3}-1) \sqrt{3}(-i+\sqrt{3}) \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{12}-\frac{3 x}{4}+\frac{i \sqrt{3} x}{4}-\frac{i \mathrm{e}^{-i \sqrt{3} x \sqrt{3}}}{4}-
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-3\left(\frac{x}{2}+\frac{1}{2}\right) \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+3\left(-\frac{\sqrt{3} x}{2}+\frac{\sqrt{3}}{2}\right) \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)-\frac{x^{4}}{4}+\frac{3 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{3 \sqrt{3}}{2}\right. \\
& +\left(\frac{x^{3}}{3}+\frac{3 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{3 \sqrt{3} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)\left(x \mathrm{e}^{-x}\right) \\
& +\left(-\frac{3 x}{4}-\frac{i \sqrt{3} x}{4}+\frac{i \mathrm{e}^{i \sqrt{3} x} \sqrt{3}}{4}-\frac{\mathrm{e}^{i \sqrt{3} x}}{4}+\frac{\left(i \sqrt{3} x+i \sqrt{3}+x^{2}+x-1\right)(1+i \sqrt{3}) \sqrt{3}(\sqrt{3}+i) \mathrm{e}^{\frac{(i \sqrt{3}-1)}{2}}}{12}\right. \\
& +\left(-\frac{\left(-i \sqrt{3} x-i \sqrt{3}+x^{2}+x-1\right)(i \sqrt{3}-1) \sqrt{3}(-i+\sqrt{3}) \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{12}-\frac{3 x}{4}+\frac{i \sqrt{3} x}{4}-\frac{i \mathrm{e}^{-i \sqrt{3} x} \sqrt{3}}{4}\right.
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{(-3 x-1) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sqrt{3} \mathrm{e}^{-\frac{x}{2}}(-5+x) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-x}\left(x^{4}+4 x^{3}-24 x-24\right)}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{4}\right)+\left(\frac{(-3 x-1) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}\right. \\
& \\
& \\
&
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}} c_{3}+\mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}} c_{4}+\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{(-3 x-1) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
& -\frac{\sqrt{3} \mathrm{e}^{-\frac{x}{2}}(-5+x) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-x}\left(x^{4}+4 x^{3}-24 x-24\right)}{12}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}} c_{3}+\mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}} c_{4}+\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{(-3 x-1) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2} \tag{1}\\
& -\frac{\sqrt{3} \mathrm{e}^{-\frac{x}{2}}(-5+x) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-x}\left(x^{4}+4 x^{3}-24 x-24\right)}{12}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}} c_{3}+\mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}} c_{4}+\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{(-3 x-1) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
& -\frac{\sqrt{3} \mathrm{e}^{-\frac{x}{2}}(-5+x) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-x}\left(x^{4}+4 x^{3}-24 x-24\right)}{12}
\end{aligned}
$$

Verified OK.

11.48.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}+4 y^{\prime \prime}+3 y^{\prime}+y=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
$$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-4 y_{3}(x)-3 y_{2}(x)-y_{1}(x)-3 y_{4}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-4 y_{3}(x)-3 y_{2}(\right.
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & -3 & -4 & -3
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
x^{2} \mathrm{e}^{-x}+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & -3 & -4 & -3
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{3}} \\
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{3}} \\
\frac{1}{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, a

$$
\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})
$$

- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & -3 & -4 & -3
\end{array}\right]-(-1) \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{3}} \\
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{3}} \\
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\sqrt{3} 3}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{3}} \\
\frac{1}{\left(-\frac{1}{2}-\frac{1 \sqrt{3} 3}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{1 \sqrt{3} 3}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{3}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\cos \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cccc}
-\mathrm{e}^{-x} & \mathrm{e}^{-x}(-x-1) & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
-\mathrm{e}^{-x} & -x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{x}{2}}\left(\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right.
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cccc}
-\mathrm{e}^{-x} & \mathrm{e}^{-x}(-x-1) & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
-\mathrm{e}^{-x} & -x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{x}{2}}\left(\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right.
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
(1+x) \mathrm{e}^{-x} & -\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3}+2 x \mathrm{e}^{-x}-\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\mathrm{e}^{-x} & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}+ \\
-x \mathrm{e}^{-x} & \frac{2 \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3}-2 x \mathrm{e}^{-x}+\mathrm{e}^{-x} & -\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+\mathrm{e}^{-} \\
x \mathrm{e}^{-x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3}+\mathrm{e}^{-x}(2 x-1) & 2 \mathrm{e}^{-\frac{x}{2}} \cos (\\
-x \mathrm{e}^{-x} & \mathrm{e}^{-x}-2 x \mathrm{e}^{-x}-\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-\frac{\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{3} & \mathrm{e}^{-x}-2 x \mathrm{e}^{-x}-\mathrm{e}^{-\frac{x}{2}} \mathrm{c}
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(x-\frac{17}{6}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)-\frac{3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-x}\left(x^{4}-12 x^{2}-42 x+18\right)}{12} \\
\frac{(-3 x+10) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(x-\frac{10}{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\mathrm{e}^{-x}\left(x^{4}-4 x^{3}-12 x^{2}-18 x+60\right)}{12} \\
\frac{(3 x-10) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\left(x+\frac{2}{3}\right) \sqrt{3} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{-x}\left(x^{4}-4 x^{3}+6 x+60\right)}{12} \\
-\sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(x-\frac{4}{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-\frac{\mathrm{e}^{-x}\left(x^{4}-4 x^{3}+12 x^{2}+6 x+36\right)}{12}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
-\sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(x-\frac{17}{6}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)-\frac{3 \mathrm{e}^{-\frac{x}{2}} \cos (1)}{2} \\
\frac{(-3 x+10) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(x-\frac{10}{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{(3 x-10) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\left(x+\frac{2}{3}\right) \sqrt{3} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3}}{2}\right.}{2} \\
-\sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(x-\frac{4}{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)+3 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3}}{}\right.
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=-\left(\left(x-\frac{17}{6}\right) \sqrt{3}+c_{4}\right) \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+\frac{\left(12 c_{3}-18\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{12}+\frac{\left(x^{4}-12 x^{2}+\left(-12 c_{2}-42\right) x-12 c_{1}-12 c_{2}+18\right.}{12}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 73
dsolve (diff $(y(x), x \$ 4)+3 * \operatorname{diff}(y(x), x \$ 3)+4 * \operatorname{diff}(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+y(x)=x-2 * \exp (-x)+3 * \operatorname{ex}$

$$
\begin{aligned}
y(x)= & -\frac{3 \mathrm{e}^{-\frac{x}{2}}\left(x-\frac{2 c_{3}}{3}+\frac{1}{3}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{x}{2}}\left((x-5) \sqrt{3}-2 c_{4}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
& +\frac{\left(-24+x^{4}+4 x^{3}+12\left(-2+c_{2}\right) x+12 c_{1}\right) \mathrm{e}^{-x}}{12}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.054 (sec). Leaf size: 104
DSolve $\left[y\right.$ '' ' ' $[\mathrm{x}]+3 * y$ ' ' $\quad[\mathrm{x}]+4 * \mathrm{y}$ ' $'[\mathrm{x}]+3 * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==\mathrm{x}^{\wedge} 2 * \operatorname{Exp}[-\mathrm{x}]+3 * \operatorname{Exp}[-\mathrm{x} / 2] * \operatorname{Cos}[$ Sqrt $[3] / 2 * x], y[$

$$
\begin{aligned}
y(x) \rightarrow \frac{1}{12} e^{-x}\left(x^{4}+4 x^{3}-\right. & 24 x+12 c_{4} x-6 e^{x / 2}\left(3 x+1-2 c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right) \\
& \left.-6 e^{x / 2}\left(\sqrt{3} x-5 \sqrt{3}-2 c_{1}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)-24+12 c_{3}\right)
\end{aligned}
$$

11.49 problem 49

11.49.1 Maple step by step solution

2794
Internal problem ID [11823]
Internal file name [OUTPUT/11832_Thursday_April_11_2024_08_51_29_PM_74065651/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 49.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}-16 y=x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-16 y=0
$$

The characteristic equation is

$$
\lambda^{4}-16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=2 i \\
& \lambda_{4}=-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{2 i x} \\
& y_{4}=\mathrm{e}^{-2 i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-16 y=x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x} & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
4 \mathrm{e}^{-2 x} & 4 \mathrm{e}^{2 x} & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x} \\
-8 \mathrm{e}^{-2 x} & 8 \mathrm{e}^{2 x} & -8 i \mathrm{e}^{2 i x} & 8 i \mathrm{e}^{-2 i x}
\end{array}\right] \\
&|W|=-1024 i \mathrm{e}^{-2 x} \mathrm{e}^{2 x} \mathrm{e}^{2 i x} \mathrm{e}^{-2 i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=-1024 i
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{2 x} & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
2 \mathrm{e}^{2 x} & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
4 \mathrm{e}^{2 x} & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =-32 i \mathrm{e}^{2 x}
\end{aligned}
$$

$$
\begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
-2 \mathrm{e}^{-2 x} & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
4 \mathrm{e}^{-2 x} & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =-32 i \mathrm{e}^{-2 x}
\end{aligned}
$$

$$
\begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} & \mathrm{e}^{-2 i x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x} & -2 i \mathrm{e}^{-2 i x} \\
4 \mathrm{e}^{-2 x} & 4 \mathrm{e}^{2 x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =-32 \mathrm{e}^{-2 i x}
\end{aligned}
$$

$$
W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} & \mathrm{e}^{2 i x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x} & 2 i \mathrm{e}^{2 i x} \\
4 \mathrm{e}^{-2 x} & 4 \mathrm{e}^{2 x} & -4 \mathrm{e}^{2 i x}
\end{array}\right]
$$

$$
=-32 \mathrm{e}^{2 i x}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
& U_{1}=(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
&=(-1)^{3} \int \frac{\left(x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}\right)\left(-32 \mathrm{e}^{2 x}\right)}{(1)(-1024 i)} d x \\
&=-\int \frac{-32 i\left(x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}\right) \mathrm{e}^{2 x}}{-1024 i} d x \\
&=-\int\left(\frac{x^{2}\left(x^{2} \mathrm{e}^{2 x}+\sin (2 x)\right) \mathrm{e}^{2 x}}{32}\right) d x \\
&=-\frac{x^{4} \mathrm{e}^{4 x}}{128}+\frac{x^{3} \mathrm{e}^{4 x}}{128}-\frac{3 x^{2} \mathrm{e}^{4 x}}{512}+\frac{3 x \mathrm{e}^{4 x}}{1024}-\frac{3 \mathrm{e}^{4 x}}{4096}-\frac{\left(-2 x^{2}+2 x-\frac{1}{2}\right) \mathrm{e}^{2 x} \cos (2 x)}{256}-\frac{\left(2 x^{2}-\frac{1}{2}\right) \mathrm{e}^{2 x} \sin (2 x)}{256} \\
&=-\frac{x^{4} \mathrm{e}^{4 x}}{128}+\frac{x^{3} \mathrm{e}^{4 x}}{128}-\frac{3 x^{2} \mathrm{e}^{4 x}}{512}+\frac{3 x \mathrm{e}^{4 x}}{1024}-\frac{3 \mathrm{e}^{4 x}}{4096}-\frac{\left(-2 x^{2}+2 x-\frac{1}{2}\right) \mathrm{e}^{2 x} \cos (2 x)}{256}-\frac{\left(2 x^{2}-\frac{1}{2}\right) \mathrm{e}^{2 x} \sin (2 x)}{256} \\
&=(-1)^{2} \int \frac{\left(x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}\right)\left(-32 i \mathrm{e}^{-2 x}\right)}{(1)(-1024 i)} d x \\
&=\int \frac{-32 i\left(x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}\right) \mathrm{e}^{-2 x}}{-1024 i} d x \\
&=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
&\left.=\int \frac{x^{2}\left(x^{2}+\mathrm{e}^{-2 x} \sin (2 x)\right)}{32}\right) d x \\
&=\frac{x^{5}}{160}+\frac{\left(-\frac{1}{4} x^{2}-\frac{1}{4} x-\frac{1}{16}\right) \mathrm{e}^{-2 x} \cos (2 x)}{32}+\frac{\left(-\frac{x^{2}}{4}+\frac{1}{16}\right) \mathrm{e}^{-2 x} \sin (2 x)}{32} \\
&=\frac{x^{5}}{160}+\frac{\left(-\frac{1}{4} x^{2}-\frac{1}{4} x-\frac{1}{16}\right) \mathrm{e}^{-2 x} \cos (2 x)}{32}+\frac{\left(-\frac{x^{2}}{4}+\frac{1}{16}\right) \mathrm{e}^{-2 x} \sin (2 x)}{32}
\end{aligned}
$$

$$
\begin{aligned}
U_{3} & =(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}\right)\left(-32 \mathrm{e}^{-2 i x}\right)}{(1)(-1024 i)} d x \\
& =-\int \frac{-32\left(x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}\right) \mathrm{e}^{-2 i x}}{-1024 i} d x \\
& =-\int\left(-\frac{i x^{2}\left(x^{2} \mathrm{e}^{2 x}+\sin (2 x)\right) \mathrm{e}^{-2 i x}}{32}\right) d x \\
& =\left(-\frac{1}{1024}+\frac{i}{1024}\right)\left(8 x^{4}-8 i x^{3}-8 x^{3}+12 i x^{2}-6 i x+6 x-3\right) \mathrm{e}^{(2-2 i) x}+\frac{x^{3}}{192}-\frac{i\left(8 x^{2}-4 i x-1\right) \mathrm{e}^{-4}}{2048} \\
& =\left(-\frac{1}{1024}+\frac{i}{1024}\right)\left(8 x^{4}-8 i x^{3}-8 x^{3}+12 i x^{2}-6 i x+6 x-3\right) \mathrm{e}^{(2-2 i) x}+\frac{x^{3}}{192}-\frac{i\left(8 x^{2}-4 i x-1\right) \mathrm{e}^{-4}}{2048} \\
& =(-1)^{0} \int \frac{\left(x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}\right)\left(-32 \mathrm{e}^{2 i x}\right)}{(1)(-1024 i)} d x \\
U_{4} & =(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =\int \frac{-32\left(x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}\right) \mathrm{e}^{2 i x}}{-1024 i} d x \\
& =\int\left(-\frac{i x^{2}\left(x^{2} \mathrm{e}^{2 x}+\sin (2 x)\right) \mathrm{e}^{2 i x}}{32}\right) d x \\
& =\frac{x^{3}}{192}-\frac{i\left(\frac{1}{64}-\frac{1}{16} i x-\frac{1}{8} x^{2}\right) \mathrm{e}^{4 i x}}{32}+\left(-\frac{1}{1024}-\frac{i}{1024}\right)\left(8 x^{4}+8 i x^{3}-8 x^{3}-12 i x^{2}+6 i x+6 x-3\right) \mathrm{e}^{(2+} \\
& =\frac{x^{3}}{192}-\frac{i\left(\frac{1}{64}-\frac{1}{16} i x-\frac{1}{8} x^{2}\right) \mathrm{e}^{4 i x}}{32}+\left(-\frac{1}{1024}-\frac{i}{1024}\right)\left(8 x^{4}+8 i x^{3}-8 x^{3}-12 i x^{2}+6 i x+6 x-3\right) \mathrm{e}^{(2+}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-\frac{x^{4} \mathrm{e}^{4 x}}{128}+\frac{x^{3} \mathrm{e}^{4 x}}{128}-\frac{3 x^{2} \mathrm{e}^{4 x}}{512}+\frac{3 x \mathrm{e}^{4 x}}{1024}-\frac{3 \mathrm{e}^{4 x}}{4096}-\frac{\left(-2 x^{2}+2 x-\frac{1}{2}\right) \mathrm{e}^{2 x} \cos (2 x)}{256}-\frac{\left(2 x^{2}-\frac{1}{2}\right) \mathrm{e}^{2 x} \sin (2 x}{256}\right. \\
& +\left(\frac{x^{5}}{160}+\frac{\left(-\frac{1}{4} x^{2}-\frac{1}{4} x-\frac{1}{16}\right) \mathrm{e}^{-2 x} \cos (2 x)}{32}+\frac{\left(-\frac{x^{2}}{4}+\frac{1}{16}\right) \mathrm{e}^{-2 x} \sin (2 x)}{32}\right)\left(\mathrm{e}^{2 x}\right) \\
& +\left(\left(-\frac{1}{1024}+\frac{i}{1024}\right)\left(8 x^{4}-8 i x^{3}-8 x^{3}+12 i x^{2}-6 i x+6 x-3\right) \mathrm{e}^{(2-2 i) x}+\frac{x^{3}}{192}-\frac{i\left(8 x^{2}-4 i x-1\right) \mathrm{e}^{-}}{2048}\right. \\
& +\left(\frac{x^{3}}{192}-\frac{i\left(\frac{1}{64}-\frac{1}{16} i x-\frac{1}{8} x^{2}\right) \mathrm{e}^{4 i x}}{32}+\left(-\frac{1}{1024}-\frac{i}{1024}\right)\left(8 x^{4}+8 i x^{3}-8 x^{3}-12 i x^{2}+6 i x+6 x-3\right) \mathrm{e}^{(2}\right.
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+60 x+105\right) \mathrm{e}^{2 x}}{20480}+\frac{\left(8 x^{3}-15 x\right) \cos (2 x)}{768}+\frac{\left(-24 x^{2}+5\right) \sin (2 x)}{1024}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}\right) \\
& +\left(\frac{\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+60 x+105\right) \mathrm{e}^{2 x}}{20480}+\frac{\left(8 x^{3}-15 x\right) \cos (2 x)}{768}\right. \\
& \left.+\frac{\left(-24 x^{2}+5\right) \sin (2 x)}{1024}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4} \\
& +\frac{\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+60 x+105\right) \mathrm{e}^{2 x}}{20480} \tag{1}\\
& +\frac{\left(8 x^{3}-15 x\right) \cos (2 x)}{768}+\frac{\left(-24 x^{2}+5\right) \sin (2 x)}{1024}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}+\frac{\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+60 x+105\right) \mathrm{e}^{2 x}}{20480} \\
& +\frac{\left(8 x^{3}-15 x\right) \cos (2 x)}{768}+\frac{\left(-24 x^{2}+5\right) \sin (2 x)}{1024}
\end{aligned}
$$

Verified OK.

11.49.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-16 y=x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}
$$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=\mathrm{e}^{2 x} x^{4}+x^{2} \sin (2 x)+16 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=\mathrm{e}^{2 x} x^{4}+x^{2} \sin (2 x)+16 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
x^{2} \sin (2 x)+\mathrm{e}^{2 x} x^{4}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos
$(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}-\frac{\mathrm{I}}{8} \\ -\frac{1}{4} \\ \frac{\mathrm{I}}{2} \\ 1\end{array}\right]$
- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$

$\square \quad$ Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cccc}
-\frac{\mathrm{e}^{-2 x}}{8} & \frac{\mathrm{e}^{2 x}}{8} & -\frac{\sin (2 x)}{8} & -\frac{\cos (2 x)}{8} \\
\frac{\mathrm{e}^{-2 x}}{4} & \frac{\mathrm{e}^{2 x}}{4} & -\frac{\cos (2 x)}{4} & \frac{\sin (2 x)}{4} \\
-\frac{\mathrm{e}^{-2 x}}{2} & \frac{\mathrm{e}^{2 x}}{2} & \frac{\sin (2 x)}{2} & \frac{\cos (2 x)}{2} \\
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} & \cos (2 x) & -\sin (2 x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cccc}
-\frac{\mathrm{e}^{-2 x}}{8} & \frac{\mathrm{e}^{2 x}}{8} & -\frac{\sin (2 x)}{8} & -\frac{\cos (2 x)}{8} \\
\frac{\mathrm{e}^{-2 x}}{4} & \frac{\mathrm{e}^{2 x}}{4} & -\frac{\cos (2 x)}{4} & \frac{\sin (2 x)}{4} \\
-\frac{\mathrm{e}^{-2 x}}{2} & \frac{\mathrm{e}^{2 x}}{2} & \frac{\sin (2 x)}{2} & \frac{\cos (2 x)}{2} \\
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} & \cos (2 x) & -\sin (2 x)
\end{array}\right] \cdot \frac{4}{\left[\begin{array}{cccc}
-\frac{1}{8} & \frac{1}{8} & 0 & -\frac{1}{8} \\
\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} \\
1 & 1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix
$\Phi(x)=\left[\begin{array}{cccc}\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4}+\frac{\cos (2 x)}{2} & -\frac{\mathrm{e}^{-2 x}}{8}+\frac{\mathrm{e}^{2 x}}{8}+\frac{\sin (2 x)}{4} & \frac{\mathrm{e}^{-2 x}}{16}+\frac{\mathrm{e}^{2 x}}{16}-\frac{\cos (2 x)}{8} & -\frac{\mathrm{e}^{-2 x}}{32}+ \\ -\frac{\mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{2 x}}{2}-\sin (2 x) & \frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4}+\frac{\cos (2 x)}{2} & -\frac{\mathrm{e}^{-2 x}}{8}+\frac{\mathrm{e}^{2 x}}{8}+\frac{\sin (2 x)}{4} & \frac{\mathrm{e}^{-2 x}}{16}+ \\ \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}-2 \cos (2 x) & -\frac{\mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{2 x}}{2}-\sin (2 x) & \frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4}+\frac{\cos (2 x)}{2} & -\frac{\mathrm{e}^{-2 x}}{8}+ \\ -2 \mathrm{e}^{-2 x}+2 \mathrm{e}^{2 x}+4 \sin (2 x) & \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}-2 \cos (2 x) & -\frac{\mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{2 x}}{2}-\sin (2 x) & \frac{\mathrm{e}^{-2 x}}{4}+\end{array}\right.$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{3}{512}+\frac{\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+60 x+145\right) \mathrm{e}^{2 x}}{20480}-\frac{5 \mathrm{e}^{-2 x}}{4096}+\frac{\left(16 x^{3}-30 x-9\right) \cos (x)^{2}}{768}-\frac{3 x^{2} \cos (x) \sin \left(x^{-}\right.}{64} \\
\frac{5}{256}+\frac{\left(128 x^{5}-160 x^{4}-160 x^{3}+600 x^{2}-540 x+175\right) \mathrm{e}^{2 x}}{10240}+\frac{5 \mathrm{e}^{-2 x}}{2048}+\frac{\left(-4 x^{2}-5\right) \cos (x)^{2}}{128}+\frac{\left(-16 x^{3}-6 x+9\right) \sin }{884} \\
-\frac{3}{128}+\frac{\left(128 x^{5}+160 x^{4}-480 x^{3}+360 x^{2}+60 x-95\right) \mathrm{e}^{2 x}}{5120}-\frac{5 \mathrm{e}^{-2 x}}{1024}+\frac{\left(-16 x^{3}-18 x+9\right) \cos (x)^{2}}{192}+\frac{\left(-x^{2}+1\right) \sin (x)}{16} \\
-\frac{1}{64}+\frac{\left(128 x^{5}+480 x^{4}-160 x^{3}-360 x^{2}+420 x-65\right) \mathrm{e}^{2 x}}{2560}+\frac{5 \mathrm{e}^{-2 x}}{512}+\frac{\left(-12 x^{2}+1\right) \cos (x)^{2}}{32}+\frac{\left(16 x^{3}+6 x-9\right) \sin }{96}
\end{array}\right.
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
\frac{3}{512}+\frac{\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+60 x+145\right) \mathrm{e}^{2 x}}{20480}-\frac{5 \mathrm{e}^{-2}}{4096} \\
\frac{5}{256}+\frac{\left(128 x^{5}-160 x^{4}-160 x^{3}+600 x^{2}-540 x+175\right) \mathrm{e}^{2 x}}{10240}+\frac{5 \mathrm{e}^{-}}{204} \\
-\frac{3}{128}+\frac{\left(128 x^{5}+160 x^{4}-480 x^{3}+360 x^{2}+60 x-95\right) \mathrm{e}^{2 x}}{5120}-\frac{5 \mathrm{e}^{-2 x}}{1024} \\
-\frac{1}{64}+\frac{\left(128 x^{5}+480 x^{4}-160 x^{3}-360 x^{2}+420 x-65\right) \mathrm{e}^{2 x}}{2560}+\frac{5 \mathrm{e}^{-2}}{512}
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{3}{512}+\frac{\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+2560 c_{2}+60 x+145\right) \mathrm{e}^{2 x}}{20480}+\frac{\left(-5-512 c_{1}\right) \mathrm{e}^{-2 x}}{4096}+\frac{\left(16 x^{3}-192 c_{4}-30 x-9\right) \cos (x)^{2}}{768}-\frac{3 s}{}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 79

```
dsolve(diff(y(x),x$4)-16*y(x)=x^2*sin(2*x)+x^4*exp(2*x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & \frac{\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+20480 c_{3}+60 x+105\right) \mathrm{e}^{2 x}}{20480} \\
& +\frac{\left(8 x^{3}+768 c_{1}-15 x\right) \cos (2 x)}{768}+\frac{\left(-6 x^{2}+256 c_{4}-11\right) \sin (2 x)}{256}+\mathrm{e}^{-2 x} c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.562 (sec). Leaf size: 92
DSolve [y'''' $[x]-16 * y[x]==x \wedge 2 * \operatorname{Sin}[2 * x]+x \wedge 4 * \operatorname{Exp}[2 * x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
y(x) \rightarrow & \frac{1}{768}\left(8 x^{3}-15 x+768 c_{2}\right) \cos (2 x)-\frac{1}{512}\left(24 x^{2}-5-1024 c_{4}\right) \sin (x) \cos (x) \\
& +\frac{e^{2 x}\left(128 x^{5}-480 x^{4}+800 x^{3}-600 x^{2}+60 x+105+20480 c_{1}\right)}{20480}+c_{3} e^{-2 x}
\end{aligned}
$$

11.50 problem 50

Internal problem ID [11824]
Internal file name [OUTPUT/11833_Thursday_April_11_2024_08_52_05_PM_42327415/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 50.
ODE order: 6.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_y]]

$$
y^{(6)}+2 y^{(5)}+5 y^{\prime \prime \prime \prime}=x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{(6)}+2 y^{(5)}+5 y^{\prime \prime \prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{6}+2 \lambda^{5}+5 \lambda^{4}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=0 \\
& \lambda_{5}=-1+2 i \\
& \lambda_{6}=-1-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=x^{3} c_{4}+c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{(-1-2 i) x} c_{5}+\mathrm{e}^{(-1+2 i) x} c_{6}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2} \\
& y_{4}=x^{3} \\
& y_{5}=\mathrm{e}^{(-1-2 i) x} \\
& y_{6}=\mathrm{e}^{(-1+2 i) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{(6)}+2 y^{(5)}+5 y^{\prime \prime \prime \prime}=x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}+U_{5} y_{5}+U_{6} y_{6}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccccc}
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} & y_{5}^{\prime} & y_{6}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} & y_{5}^{\prime \prime} & y_{6}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime} & y_{5}^{\prime \prime \prime} & y_{6}^{\prime \prime \prime} \\
y_{1}^{\prime \prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime} & y_{5}^{\prime \prime \prime} & y_{6}^{\prime \prime \prime} \\
y_{1}^{\prime \prime \prime \prime \prime} & y_{2}^{\prime \prime \prime \prime \prime} & y_{3}^{\prime \prime \prime \prime} & y_{4}^{\prime \prime \prime \prime \prime} & y_{5}^{\prime \prime \prime \prime} & y_{6}^{\prime \prime \prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccccc}
1 & x & x^{2} & x^{3} & \mathrm{e}^{(-1-2 i) x} & \mathrm{e}^{(-1+2 i) x} \\
0 & 1 & 2 x & 3 x^{2} & (-1-2 i) \mathrm{e}^{(-1-2 i) x} & (-1+2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 2 & 6 x & (-3+4 i) \mathrm{e}^{(-1-2 i) x} & (-3-4 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & 6 & (11+2 i) \mathrm{e}^{(-1-2 i) x} & (11-2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & 0 & (-7-24 i) \mathrm{e}^{(-1-2 i) x} & (-7+24 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & 0 & (-41+38 i) \mathrm{e}^{(-1-2 i) x} & (-41-38 i) \mathrm{e}^{(-1+2 i) x}
\end{array}\right] \\
& |W|=30000 i \mathrm{e}^{(-1-2 i) x} \mathrm{e}^{(-1+2 i) x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=30000 i \mathrm{e}^{-2 x}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{ccccc}
x & x^{2} & x^{3} & \mathrm{e}^{(-1-2 i) x} & \mathrm{e}^{(-1+2 i) x} \\
1 & 2 x & 3 x^{2} & (-1-2 i) \mathrm{e}^{(-1-2 i) x} & (-1+2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 2 & 6 x & (-3+4 i) \mathrm{e}^{(-1-2 i) x} & (-3-4 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 6 & (11+2 i) \mathrm{e}^{(-1-2 i) x} & (11-2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & (-7-24 i) \mathrm{e}^{(-1-2 i) x} & (-7+24 i) \mathrm{e}^{(-1+2 i) x}
\end{array}\right] \\
& =8 i \mathrm{e}^{-2 x}\left(125 x^{3}+150 x^{2}-30 x-72\right)
\end{aligned}
$$

$$
\begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccccc}
1 & x^{2} & x^{3} & \mathrm{e}^{(-1-2 i) x} & \mathrm{e}^{(-1+2 i) x} \\
0 & 2 x & 3 x^{2} & (-1-2 i) \mathrm{e}^{(-1-2 i) x} & (-1+2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 2 & 6 x & (-3+4 i) \mathrm{e}^{(-1-2 i) x} & (-3-4 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 6 & (11+2 i) \mathrm{e}^{(-1-2 i) x} & (11-2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & (-7-24 i) \mathrm{e}^{(-1-2 i) x} & (-7+24 i) \mathrm{e}^{(-1+2 i) x}
\end{array}\right] \\
& =120 i \mathrm{e}^{-2 x}\left(25 x^{2}+20 x-2\right)
\end{aligned}
$$

$$
\begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ccccc}
1 & x & x^{3} & \mathrm{e}^{(-1-2 i) x} & \mathrm{e}^{(-1+2 i) x} \\
0 & 1 & 3 x^{2} & (-1-2 i) \mathrm{e}^{(-1-2 i) x} & (-1+2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 6 x & (-3+4 i) \mathrm{e}^{(-1-2 i) x} & (-3-4 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 6 & (11+2 i) \mathrm{e}^{(-1-2 i) x} & (11-2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & (-7-24 i) \mathrm{e}^{(-1-2 i) x} & (-7+24 i) \mathrm{e}^{(-1+2 i) x}
\end{array}\right] \\
& =600 i \mathrm{e}^{-2 x}(2+5 x)
\end{aligned}
$$

$$
\begin{aligned}
W_{4}(x) & =\operatorname{det}\left[\begin{array}{ccccc}
1 & x & x^{2} & \mathrm{e}^{(-1-2 i) x} & \mathrm{e}^{(-1+2 i) x} \\
0 & 1 & 2 x & (-1-2 i) \mathrm{e}^{(-1-2 i) x} & (-1+2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 2 & (-3+4 i) \mathrm{e}^{(-1-2 i) x} & (-3-4 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & (11+2 i) \mathrm{e}^{(-1-2 i) x} & (11-2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & (-7-24 i) \mathrm{e}^{(-1-2 i) x} & (-7+24 i) \mathrm{e}^{(-1+2 i) x}
\end{array}\right] \\
& =1000 i \mathrm{e}^{-2 x}
\end{aligned}
$$

$$
\begin{aligned}
W_{5}(x) & =\operatorname{det}\left[\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & \mathrm{e}^{(-1+2 i) x} \\
0 & 1 & 2 x & 3 x^{2} & (-1+2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 2 & 6 x & (-3-4 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & 6 & (11-2 i) \mathrm{e}^{(-1+2 i) x} \\
0 & 0 & 0 & 0 & (-7+24 i) \mathrm{e}^{(-1+2 i) x}
\end{array}\right] \\
& =(-84+288 i) \mathrm{e}^{(-1+2 i) x}
\end{aligned}
$$

$$
\begin{aligned}
W_{6}(x) & =\operatorname{det}\left[\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & \mathrm{e}^{(-1-2 i) x} \\
0 & 1 & 2 x & 3 x^{2} & (-1-2 i) \mathrm{e}^{(-1-2 i) x} \\
0 & 0 & 2 & 6 x & (-3+4 i) \mathrm{e}^{(-1-2 i) x} \\
0 & 0 & 0 & 6 & (11+2 i) \mathrm{e}^{(-1-2 i) x} \\
0 & 0 & 0 & 0 & (-7-24 i) \mathrm{e}^{(-1-2 i) x}
\end{array}\right] \\
& =(-84-288 i) \mathrm{e}^{(-1-2 i) x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
& U_{1}=(-1)^{6-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{5} \int \frac{\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right)\left(8 i \mathrm{e}^{-2 x}\left(125 x^{3}+150 x^{2}-30 x-72\right)\right)}{(1)\left(30000 i \mathrm{e}^{-2 x}\right)} d x \\
& =-\int \frac{8 i\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right) \mathrm{e}^{-2 x}\left(125 x^{3}+150 x^{2}-30 x-72\right)}{30000 i \mathrm{e}^{-2 x}} d x \\
& =-\int\left(\frac{\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right)\left(125 x^{3}+150 x^{2}-30 x-72\right)}{3750}\right) d x \\
& =\frac{3 x^{4}}{625}+\frac{12 \mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{3125}+\frac{3046 \mathrm{e}^{-x}}{625}+\frac{31 x^{4} \mathrm{e}^{-x}}{150}+\frac{307 x^{3} \mathrm{e}^{-x}}{375}+\frac{x^{5}}{625}+\frac{3046 x \mathrm{e}^{-x}}{625}-\frac{x^{6}}{150} \\
& U_{2}=(-1)^{6-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{4} \int \frac{\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right)\left(120 i \mathrm{e}^{-2 x}\left(25 x^{2}+20 x-2\right)\right)}{(1)\left(30000 i \mathrm{e}^{-2 x}\right)} d x \\
& =\int \frac{120 i\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right) \mathrm{e}^{-2 x}\left(25 x^{2}+20 x-2\right)}{30000 i \mathrm{e}^{-2 x}} d x \\
& =\int\left(\frac{\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right)\left(25 x^{2}+20 x-2\right)}{250}\right) d x \\
& =\frac{x^{6}}{60}+\frac{2 x^{5}}{125}-\frac{x^{4}}{500}-\frac{x^{4} \mathrm{e}^{-x}}{10}-\frac{12 x^{3} \mathrm{e}^{-x}}{25}-\frac{179 x^{2} \mathrm{e}^{-x}}{125}-\frac{358 x \mathrm{e}^{-x}}{125}-\frac{358 \mathrm{e}^{-x}}{125}+\frac{\left(-\frac{2}{5} x^{2}-\frac{8}{25} x+\frac{4}{125}\right) \mathrm{e}^{-x}}{10} \\
& U_{3}=(-1)^{6-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right)\left(600 i \mathrm{e}^{-2 x}(2+5 x)\right)}{(1)\left(30000 i \mathrm{e}^{-2 x}\right)} d x \\
& =-\int \frac{600 i\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right) \mathrm{e}^{-2 x}(2+5 x)}{30000 i \mathrm{e}^{-2 x}} d x \\
& =-\int\left(\frac{\left(\left(x^{2}+\sin (2 x)\right) \mathrm{e}^{-x}+x^{3}\right)\left(\frac{2}{5}+x\right)}{10}\right) d x \\
& =-\frac{x^{4}}{100}-\frac{x^{5}}{50}+\frac{17 x^{2} \mathrm{e}^{-x}}{50}+\frac{17 x \mathrm{e}^{-x}}{25}+\frac{17 \mathrm{e}^{-x}}{25}+\frac{x^{3} \mathrm{e}^{-x}}{10}-\frac{\mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{125}-\frac{\left(-\frac{2 x}{5}-\frac{4}{25}\right) \mathrm{e}}{10} \\
& =-\frac{x^{4}}{100}-\frac{x^{5}}{50}+\frac{17 x^{2} \mathrm{e}^{-x}}{50}+\frac{17 x \mathrm{e}^{-x}}{25}+\frac{17 \mathrm{e}^{-x}}{25}+\frac{x^{3} \mathrm{e}^{-x}}{10}-\frac{\mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{125}-\frac{\left(-\frac{2 x}{5}-\frac{4}{25}\right) \mathrm{e}}{10}
\end{aligned}
$$

$$
\begin{aligned}
& U_{4}=(-1)^{6-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
&=(-1)^{2} \int \frac{\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right)\left(1000 i \mathrm{e}^{-2 x}\right)}{(1)\left(30000 \mathrm{e}^{-2 x}\right)} d x \\
&=\int \frac{1000 i\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right) \mathrm{e}^{-2 x}}{30000 \mathrm{e}^{-2 x}} d x \\
&=\int\left(\frac{\left(x^{2}+\sin (2 x)\right) \mathrm{e}^{-x}}{30}+\frac{x^{3}}{30}\right) d x \\
&=\frac{x^{4}}{120}-\frac{x^{2} \mathrm{e}^{-x}}{30}-\frac{x \mathrm{e}^{-x}}{15}-\frac{\mathrm{e}^{-x}}{15}+\frac{\mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{150} \\
&=\frac{x^{4}}{120}-\frac{x^{2} \mathrm{e}^{-x}}{30}-\frac{x \mathrm{e}^{-x}}{15}-\frac{\mathrm{e}^{-x}}{15}+\frac{\mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{150} \\
& U_{5}=(-1)^{6-5} \int \frac{F(x) W_{5}(x)}{a W(x)} d x \\
&=(-1)^{1} \int \frac{\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right)\left((-84+288 i) \mathrm{e}^{(-1+2 i) x}\right)}{(1)\left(30000 i \mathrm{e}^{-2 x}\right)} d x \\
&=-\int \frac{(-84+288 i)\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right) \mathrm{e}^{(-1+2 i) x}}{30000 i \mathrm{e}^{-2 x}} d x \\
&=-\int\left(\left(\frac{6}{625}+\frac{7 i}{2500}\right)\left(\left(x^{2}+\sin (2 x)\right) \mathrm{e}^{-x}+x^{3}\right) \mathrm{e}^{(1+2 i) x}\right) d x \\
&=\left(-\frac{6}{625}-\frac{7 i}{2500}\right)\left((- \frac { 7 } { 6 2 5 } + \frac { 2 4 i } { 6 2 5 }) \left((-11-2 i) \mathrm{e}^{(1+2 i) x} x^{3}+(9-12 i) \mathrm{e}^{(1+2 i) x} x^{2}+(6+12 i) x \mathrm{e}^{(1+2 i)}\right.\right. \\
&=\left(-\frac{6}{625}-\frac{7 i}{2500}\right)\left((- \frac { 7 } { 6 2 5 } + \frac { 2 4 i } { 6 2 5 }) \left((-11-2 i) \mathrm{e}^{(1+2 i) x} x^{3}+(9-12 i) \mathrm{e}^{(1+2 i) x} x^{2}+(6+12 i) x \mathrm{e}^{(1+2 i)}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
U_{6} & =(-1)^{6-6} \int \frac{F(x) W_{6}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right)\left((-84-288 i) \mathrm{e}^{(-1-2 i) x}\right)}{(1)\left(30000 i \mathrm{e}^{-2 x}\right)} d x \\
& =\int \frac{(-84-288 i)\left(x^{3}+x^{2} \mathrm{e}^{-x}+\mathrm{e}^{-x} \sin (2 x)\right) \mathrm{e}^{(-1-2 i) x}}{30000 i \mathrm{e}^{-2 x}} d x \\
& =\int\left(\left(-\frac{6}{625}+\frac{7 i}{2500}\right)\left(\left(x^{2}+\sin (2 x)\right) \mathrm{e}^{-x}+x^{3}\right) \mathrm{e}^{(1-2 i) x}\right) d x \\
& =\left(-\frac{6}{625}+\frac{7 i}{2500}\right)\left((- \frac { 7 } { 6 2 5 } - \frac { 2 4 i } { 6 2 5 }) \left((-11+2 i) \mathrm{e}^{(1-2 i) x} x^{3}+(9+12 i) \mathrm{e}^{(1-2 i) x} x^{2}+(6-12 i) x \mathrm{e}^{(1-2 i)}\right.\right. \\
& =\left(-\frac{6}{625}+\frac{7 i}{2500}\right)\left((- \frac { 7 } { 6 2 5 } - \frac { 2 4 i } { 6 2 5 }) \left((-11+2 i) \mathrm{e}^{(1-2 i) x} x^{3}+(9+12 i) \mathrm{e}^{(1-2 i) x} x^{2}+(6-12 i) x \mathrm{e}^{(1-2 i)}\right.\right.
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}+U_{5} y_{5}+U_{6} y_{6}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{3 x^{4}}{625}+\frac{12 \mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{3125}+\frac{3046 \mathrm{e}^{-x}}{625}+\frac{31 x^{4} \mathrm{e}^{-x}}{150}+\frac{307 x^{3} \mathrm{e}^{-x}}{375}+\frac{x^{5}}{625}+\frac{3046 x \mathrm{e}^{-x}}{625}-\frac{x}{1!}\right. \\
& +\left(\frac{x^{6}}{60}+\frac{2 x^{5}}{125}-\frac{x^{4}}{500}-\frac{x^{4} \mathrm{e}^{-x}}{10}-\frac{12 x^{3} \mathrm{e}^{-x}}{25}-\frac{179 x^{2} \mathrm{e}^{-x}}{125}-\frac{358 x \mathrm{e}^{-x}}{125}-\frac{358 \mathrm{e}^{-x}}{125}+\frac{\left(-\frac{2}{5} x^{2}-\frac{8}{25} x+\frac{4}{125}\right) \mathrm{e}^{-}}{10}\right. \\
& +\left(-\frac{x^{4}}{100}-\frac{x^{5}}{50}+\frac{17 x^{2} \mathrm{e}^{-x}}{50}+\frac{17 x \mathrm{e}^{-x}}{25}+\frac{17 \mathrm{e}^{-x}}{25}+\frac{x^{3} \mathrm{e}^{-x}}{10}-\frac{\mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{125}-\frac{\left(-\frac{2 x}{5}-\frac{4}{25}\right)}{1}\right. \\
& +\left(\frac{x^{4}}{120}-\frac{x^{2} \mathrm{e}^{-x}}{30}-\frac{x \mathrm{e}^{-x}}{15}-\frac{\mathrm{e}^{-x}}{15}+\frac{\mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{150}\right)\left(x^{3}\right) \\
& +\left((- \frac { 6 } { 6 2 5 } - \frac { 7 i } { 2 5 0 0 }) \left((- \frac { 7 } { 6 2 5 } + \frac { 2 4 i } { 6 2 5 }) \left((-11-2 i) \mathrm{e}^{(1+2 i) x} x^{3}+(9-12 i) \mathrm{e}^{(1+2 i) x} x^{2}+(6+12 i) x \mathrm{e}^{(1+2}\right.\right.\right. \\
& +\left((- \frac { 6 } { 6 2 5 } + \frac { 7 i } { 2 5 0 0 }) \left((- \frac { 7 } { 6 2 5 } - \frac { 2 4 i } { 6 2 5 }) \left((-11+2 i) \mathrm{e}^{(1-2 i) x} x^{3}+(9+12 i) \mathrm{e}^{(1-2 i) x} x^{2}+(6-12 i) x \mathrm{e}^{(1-2}\right.\right.\right.
\end{aligned}
$$

Therefore the particular solution is
$y_{p}=-\frac{1008}{390625}+\frac{(-448-339 i+(70-240 i) x) \mathrm{e}^{(-1-2 i) x}}{50000}+\frac{(-448+339 i+(70+240 i) x) \mathrm{e}^{(-1+2 i) x}}{50000}+\frac{\left(2 x^{2}-\right.}{}$
Which simplifies to
$y_{p}=\frac{\left((183750 x-1176000) \cos (2 x)+(-630000 x-889875) \sin (2 x)+16406250 x^{2}+131250000 x+3199\right.}{65625000}$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(x^{3} c_{4}+c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{(-1-2 i) x} c_{5}+\mathrm{e}^{(-1+2 i) x} c_{6}\right) \\
& +\left(\frac{\left((183750 x-1176000) \cos (2 x)+(-630000 x-889875) \sin (2 x)+16406250 x^{2}+131250000 x+31\right.}{65625000}\right. \\
& \left.\quad+\frac{x^{7}}{4200}-\frac{x^{6}}{1500}-\frac{x^{5}}{2500}+\frac{3 x^{4}}{625}-\frac{19 x^{3}}{3125}-\frac{66 x^{2}}{15625}+\frac{834 x}{78125}-\frac{1008}{390625}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y & =x^{3} c_{4}+c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{(-1-2 i) x} c_{5}+\mathrm{e}^{(-1+2 i) x} c_{6} \\
& +\frac{\left((183750 x-1176000) \cos (2 x)+(-630000 x-889875) \sin (2 x)+16406250 x^{2}+131250000 x+3199\right.}{65625000} \\
& +\frac{x^{7}}{4200}-\frac{x^{6}}{1500}-\frac{x^{5}}{2500}+\frac{3 x^{4}}{625}-\frac{19 x^{3}}{3125}-\frac{66 x^{2}}{15625}+\frac{834 x}{78125}-\frac{1008}{390625}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y & =x^{3} c_{4}+c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{(-1-2 i) x} c_{5}+\mathrm{e}^{(-1+2 i) x} c_{6} \\
& +\frac{\left((183750 x-1176000) \cos (2 x)+(-630000 x-889875) \sin (2 x)+16406250 x^{2}+131250000 x+3199\right.}{65625000} \\
& +\frac{x^{7}}{4200}-\frac{x^{6}}{1500}-\frac{x^{5}}{2500}+\frac{3 x^{4}}{625}-\frac{19 x^{3}}{3125}-\frac{66 x^{2}}{15625}+\frac{834 x}{78125}-\frac{1008}{390625}
\end{aligned}
$$

Verified OK.

Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 6; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, $\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad\right.\right.$ a), _a) = _a^2*exp(-_a)+_a^3+exp(-_a)*s
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 6; linear nonhomogeneous with symmetry [0,1] successful-

\checkmark Solution by Maple

Time used: 0.031 (sec). Leaf size: 91

```
dsolve(diff(y(x),x$6)+2*diff(y(x),x$5)+5*diff(y(x),x$4)=x^3+\mp@subsup{x}{}{\wedge}2*\operatorname{exp}(-x)+\operatorname{exp}(-x)*\operatorname{sin}(2*x),y(x
```

$$
\begin{aligned}
& y(x)=c_{5} x+c_{6} \\
& \quad+\frac{\left(\int \left(\left(\left(-330 x+1320 c_{1}+240 c_{2}+69\right) \cos (2 x)+\left(60 x-240 c_{1}+1320 c_{2}+567\right) \sin (2 x)-3750 x^{2}-22\right.\right.\right.}{15000}
\end{aligned}
$$

Solution by Mathematica
Time used: 11.809 (sec). Leaf size: 119

$$
\begin{aligned}
& y(x) \rightarrow c_{6} x^{3}+c_{5} x^{2} \\
& \quad+\frac{e^{-x}\left(10\left(25 e^{x} x^{7}-70 e^{x} x^{6}-42 e^{x} x^{5}+504 e^{x} x^{4}+26250 x^{2}+210000 x+511875\right)+84(35 x-2(97+24(\right.}{1050000}
\end{aligned}
$$

11.51 problem 51

Internal problem ID [11825]
Internal file name [OUTPUT/11834_Thursday_April_11_2024_08_52_41_PM_58692852/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 51.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=\cos (x) x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{2}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i \\
\lambda_{3} & =i \\
\lambda_{4} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i x} \\
& y_{2}=x \mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=x \mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=\cos (x) x^{2}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} & \mathrm{e}^{-i x} & x \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & \mathrm{e}^{i x}(i x+1) & -i \mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-i x+1) \\
-\mathrm{e}^{i x} & \mathrm{e}^{i x}(2 i-x) & -\mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-2 i-x) \\
-i \mathrm{e}^{i x} & -\mathrm{e}^{i x}(i x+3) & i \mathrm{e}^{-i x} & \mathrm{e}^{-i x}(i x-3)
\end{array}\right] \\
&|W|=16 \mathrm{e}^{2 i x} \mathrm{e}^{-2 i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=16
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{ccc}
x \mathrm{e}^{i x} & \mathrm{e}^{-i x} & x \mathrm{e}^{-i x} \\
\mathrm{e}^{i x}(i x+1) & -i \mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-i x+1) \\
\mathrm{e}^{i x}(2 i-x) & -\mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-2 i-x)
\end{array}\right] \\
& =-4 \mathrm{e}^{-i x}(x-i) \\
& W_{2}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & \mathrm{e}^{-i x} & x \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-i x+1) \\
-\mathrm{e}^{i x} & -\mathrm{e}^{-i x} & \mathrm{e}^{-i x}(-2 i-x)
\end{array}\right] \\
& =-4 \mathrm{e}^{-i x} \\
& W_{3}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} & x \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & \mathrm{e}^{i x}(i x+1) & \mathrm{e}^{-i x}(-i x+1) \\
-\mathrm{e}^{i x} & \mathrm{e}^{i x}(2 i-x) & \mathrm{e}^{-i x}(-2 i-x)
\end{array}\right] \\
& =-4 \mathrm{e}^{i x}(x+i) \\
& W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & \mathrm{e}^{i x}(i x+1) & -i \mathrm{e}^{-i x} \\
-\mathrm{e}^{i x} & \mathrm{e}^{i x}(2 i-x) & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =-4 \mathrm{e}^{i x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{\left(\cos (x) x^{2}\right)\left(-4 \mathrm{e}^{-i x}(x-i)\right)}{(1)(16)} d x \\
& =-\int \frac{-4 \cos (x) x^{2} \mathrm{e}^{-i x}(x-i)}{16} d x \\
& =-\int\left(-\frac{\cos (x) x^{2} \mathrm{e}^{-i x}(x-i)}{4}\right) d x \\
& =-\left(\int-\frac{\cos (x) x^{2} \mathrm{e}^{-i x}(x-i)}{4} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
U_{2} & =(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(\cos (x) x^{2}\right)\left(-4 \mathrm{e}^{-i x}\right)}{(1)(16)} d x \\
& =\int \frac{-4 \cos (x) x^{2} \mathrm{e}^{-i x}}{16} d x \\
& =\int\left(-\frac{\cos (x) x^{2} \mathrm{e}^{-i x}}{4}\right) d x \\
& =\int-\frac{\cos (x) x^{2} \mathrm{e}^{-i x}}{4} d x
\end{aligned}
$$

$$
\begin{aligned}
U_{3} & =(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(\cos (x) x^{2}\right)\left(-4 \mathrm{e}^{i x}(x+i)\right)}{(1)(16)} d x \\
& =-\int \frac{-4 \cos (x) x^{2} \mathrm{e}^{i x}(x+i)}{16} d x \\
& =-\int\left(-\frac{\cos (x) x^{2} \mathrm{e}^{i x}(x+i)}{4}\right) d x \\
& =\frac{x^{4}}{32}+\frac{i x^{3}}{24}-\frac{i\left(4 x^{3}+10 i x^{2}-10 x-5 i\right) \mathrm{e}^{2 i x}}{64}
\end{aligned}
$$

$$
U_{4}=(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x
$$

$$
=(-1)^{0} \int \frac{\left(\cos (x) x^{2}\right)\left(-4 \mathrm{e}^{i x}\right)}{(1)(16)} d x
$$

$$
=\int \frac{-4 \cos (x) x^{2} \mathrm{e}^{i x}}{16} d x
$$

$$
=\int\left(-\frac{\cos (x) x^{2} \mathrm{e}^{i x}}{4}\right) d x
$$

$$
=-\frac{x^{3}}{24}+\frac{i\left(2 x^{2}+2 i x-1\right) \mathrm{e}^{2 i x}}{32}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-\left(\int-\frac{\cos (x) x^{2} \mathrm{e}^{-i x}(x-i)}{4} d x\right)\right)\left(\mathrm{e}^{i x}\right) \\
& +\left(\int-\frac{\cos (x) x^{2} \mathrm{e}^{-i x}}{4} d x\right)\left(x \mathrm{e}^{i x}\right) \\
& +\left(\frac{x^{4}}{32}+\frac{i x^{3}}{24}-\frac{i\left(4 x^{3}+10 i x^{2}-10 x-5 i\right) \mathrm{e}^{2 i x}}{64}\right)\left(\mathrm{e}^{-i x}\right) \\
& +\left(-\frac{x^{3}}{24}+\frac{i\left(2 x^{2}+2 i x-1\right) \mathrm{e}^{2 i x}}{32}\right)\left(x \mathrm{e}^{-i x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{\cos (x)\left(-4 x^{4}+36 x^{2}+6 i x-45\right)}{192}-\frac{5 \sin (x)\left(-\frac{16}{15} x^{3}+i+\frac{18}{5} x\right)}{64}
$$

Which simplifies to

$$
y_{p}=\frac{\cos (x)\left(-4 x^{4}+36 x^{2}+6 i x-45\right)}{192}-\frac{5 \sin (x)\left(-\frac{16}{15} x^{3}+i+\frac{18}{5} x\right)}{64}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{i x} c_{1}+x \mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{-i x} c_{4}\right) \\
& +\left(\frac{\cos (x)\left(-4 x^{4}+36 x^{2}+6 i x-45\right)}{192}-\frac{5 \sin (x)\left(-\frac{16}{15} x^{3}+i+\frac{18}{5} x\right)}{64}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & \left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x} \\
& +\frac{\cos (x)\left(-4 x^{4}+36 x^{2}+6 i x-45\right)}{192}-\frac{5 \sin (x)\left(-\frac{16}{15} x^{3}+i+\frac{18}{5} x\right)}{64}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x} \\
& +\frac{\cos (x)\left(-4 x^{4}+36 x^{2}+6 i x-45\right)}{192}-\frac{5 \sin (x)\left(-\frac{16}{15} x^{3}+i+\frac{18}{5} x\right)}{64} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(c_{4} x+c_{3}\right) \mathrm{e}^{-i x}+\left(c_{2} x+c_{1}\right) \mathrm{e}^{i x} \\
& +\frac{\cos (x)\left(-4 x^{4}+36 x^{2}+6 i x-45\right)}{192}-\frac{5 \sin (x)\left(-\frac{16}{15} x^{3}+i+\frac{18}{5} x\right)}{64}
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 46

```
dsolve(diff(y(x),x$4)+2*diff(y(x),x$2)+y(x)=x^2*cos(x),y(x), singsol=all)
y(x)=\frac{(-4\mp@subsup{x}{}{4}+192\mp@subsup{c}{4}{}x+36\mp@subsup{x}{}{2}+192\mp@subsup{c}{1}{}-21)\operatorname{cos}(x)}{192}+\frac{(\mp@subsup{x}{}{3}+(12\mp@subsup{c}{3}{}-3)x+12\mp@subsup{c}{2}{})\operatorname{sin}(x)}{12}
```

\checkmark Solution by Mathematica
Time used: 0.138 (sec). Leaf size: 56
DSolve[y''''[x]+2*y''[x]+y[x]==x^2*Cos[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{12}\left(x^{3}+3\left(-1+4 c_{4}\right) x+12 c_{3}\right) \sin (x)+\left(-\frac{x^{4}}{48}+\frac{3 x^{2}}{16}+c_{2} x-\frac{5}{32}+c_{1}\right) \cos (x)
$$

11.52 problem 52

11.52.1 Maple step by step solution . 2822

Internal problem ID [11826]
Internal file name [OUTPUT/11835_Thursday_April_11_2024_08_52_43_PM_27972420/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 52 .
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime \prime}+16 y=x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{4}+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=\sqrt{2}+i \sqrt{2} \\
& \lambda_{2}=-\sqrt{2}+i \sqrt{2} \\
& \lambda_{3}=-\sqrt{2}-i \sqrt{2} \\
& \lambda_{4}=\sqrt{2}-i \sqrt{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(\sqrt{2}-i \sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(\sqrt{2}-i \sqrt{2}) x} \\
& y_{2}=\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} \\
& y_{3}=\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} \\
& y_{4}=\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+16 y=x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{array}{r}
W=\left[\begin{array}{cccc}
\mathrm{e}^{(1-i) \sqrt{2} x} & \mathrm{e}^{(-1+i) \sqrt{2} x} & \mathrm{e}^{(-1-i) \sqrt{2} x} & \mathrm{e}^{(1+i) \sqrt{2} x} \\
(1-i) \sqrt{2} \mathrm{e}^{(1-i) \sqrt{2} x} & (-1+i) \sqrt{2} \mathrm{e}^{(-1+i) \sqrt{2} x} & (-1-i) \sqrt{2} \mathrm{e}^{(-1-i) \sqrt{2} x} & (1+i) \sqrt{2} \mathrm{e}^{(1+i) \sqrt{2} x} \\
-4 i \mathrm{e}^{(1-i) \sqrt{2} x} & -4 i \mathrm{e}^{(-1+i) \sqrt{2} x} & 4 i \mathrm{e}^{(-1-i) \sqrt{2} x} & 4 i \mathrm{e}^{(1+i) \sqrt{2} x} \\
(-4-4 i) \sqrt{2} \mathrm{e}^{(1-i) \sqrt{2} x} & (4+4 i) \sqrt{2} \mathrm{e}^{(-1+i) \sqrt{2} x} & (4-4 i) \sqrt{2} \mathrm{e}^{(-1-i) \sqrt{2} x} & (-4+4 i) \sqrt{2} \mathrm{e}^{(1+i) \sqrt{2} x}
\end{array}\right. \\
|W|=1024 \mathrm{e}^{(1-i) \sqrt{2} x} \mathrm{e}^{(-1+i) \sqrt{2} x} \mathrm{e}^{(-1-i) \sqrt{2} x} \mathrm{e}^{(1+i) \sqrt{2} x}
\end{array}
$$

The determinant simplifies to

$$
|W|=1024
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{(-1+i) \sqrt{2} x} & \mathrm{e}^{(-1-i) \sqrt{2} x} & \mathrm{e}^{(1+i) \sqrt{2} x} \\
(-1+i) \sqrt{2} \mathrm{e}^{(-1+i) \sqrt{2} x} & (-1-i) \sqrt{2} \mathrm{e}^{(-1-i) \sqrt{2} x} & (1+i) \sqrt{2} \mathrm{e}^{(1+i) \sqrt{2} x} \\
-4 i \mathrm{e}^{(-1+i) \sqrt{2} x} & 4 i \mathrm{e}^{(-1-i) \sqrt{2} x} & 4 i \mathrm{e}^{(1+i) \sqrt{2} x}
\end{array}\right] \\
& =(16-16 i) \sqrt{2} \mathrm{e}^{(-1+i) \sqrt{2} x} \\
& W_{2}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{(1-i) \sqrt{2} x} & \mathrm{e}^{(-1-i) \sqrt{2} x} & \mathrm{e}^{(1+i) \sqrt{2} x} \\
(1-i) \sqrt{2} \mathrm{e}^{(1-i) \sqrt{2} x} & (-1-i) \sqrt{2} \mathrm{e}^{(-1-i) \sqrt{2} x} & (1+i) \sqrt{2} \mathrm{e}^{(1+i) \sqrt{2} x} \\
-4 i \mathrm{e}^{(1-i) \sqrt{2} x} & 4 i \mathrm{e}^{(-1-i) \sqrt{2} x} & 4 i \mathrm{e}^{(1+i) \sqrt{2} x}
\end{array}\right] \\
& =(16-16 i) \sqrt{2} \mathrm{e}^{(1-i) \sqrt{2} x} \\
& W_{3}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{(1-i) \sqrt{2} x} & \mathrm{e}^{(-1+i) \sqrt{2} x} & \mathrm{e}^{(1+i) \sqrt{2} x} \\
(1-i) \sqrt{2} \mathrm{e}^{(1-i) \sqrt{2} x} & (-1+i) \sqrt{2} \mathrm{e}^{(-1+i) \sqrt{2} x} & (1+i) \sqrt{2} \mathrm{e}^{(1+i) \sqrt{2} x} \\
-4 i \mathrm{e}^{(1-i) \sqrt{2} x} & -4 i \mathrm{e}^{(-1+i) \sqrt{2} x} & 4 i \mathrm{e}^{(1+i) \sqrt{2} x}
\end{array}\right] \\
& =(-16-16 i) \sqrt{2} \mathrm{e}^{(1+i) \sqrt{2} x} \\
& W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{(1-i) \sqrt{2} x} & \mathrm{e}^{(-1+i) \sqrt{2} x} & \mathrm{e}^{(-1-i) \sqrt{2} x} \\
(1-i) \sqrt{2} \mathrm{e}^{(1-i) \sqrt{2} x} & (-1+i) \sqrt{2} \mathrm{e}^{(-1+i) \sqrt{2} x} & (-1-i) \sqrt{2} \mathrm{e}^{(-1-i) \sqrt{2} x} \\
-4 i \mathrm{e}^{(1-i) \sqrt{2} x} & -4 i \mathrm{e}^{(-1+i) \sqrt{2} x} & 4 i \mathrm{e}^{(-1-i) \sqrt{2} x}
\end{array}\right] \\
& =(-16-16 i) \sqrt{2} \mathrm{e}^{(-1-i) \sqrt{2} x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
& U_{1}=(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{\left(x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\right)\left((16-16 i) \sqrt{2} \mathrm{e}^{(-1+i) \sqrt{2} x}\right)}{(1)(1024)} d x \\
& =-\int \frac{(16-16 i)\left(x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\right) \sqrt{2} \mathrm{e}^{(-1+i) \sqrt{2} x}}{1024} d x \\
& =-\int\left(\left(\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{(-2+i) \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right)\right) d x \\
& =-\left(\int\left(\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{(-2+i) \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right) d x\right) \\
& U_{2}=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\right)\left((16-16 i) \sqrt{2} \mathrm{e}^{(1-i) \sqrt{2} x}\right)}{(1)(1024)} d x \\
& =\int \frac{(16-16 i)\left(x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\right) \sqrt{2} \mathrm{e}^{(1-i) \sqrt{2} x}}{1024} d x \\
& =\int\left(\left(\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{-i \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right)\right) d x \\
& =\int\left(\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{-i \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right) d x \\
& U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\right)\left((-16-16 i) \sqrt{2} \mathrm{e}^{(1+i) \sqrt{2} x}\right)}{(1)(1024)} d x \\
& =-\int \frac{(-16-16 i)\left(x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\right) \sqrt{2} \mathrm{e}^{(1+i) \sqrt{2} x}}{1024} d x \\
& =-\int\left(\left(-\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{i \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right)\right) d x \\
& =\frac{\sqrt{2} x}{128}+\frac{i \sqrt{2} x}{128}+\frac{\mathrm{e}^{2 i \sqrt{2} x}}{256}-\frac{i \mathrm{e}^{2 i \sqrt{2} x}}{256}+\left(-\frac{1}{8192}-\frac{i}{8192}\right) \sqrt{2}(\sqrt{2}+i \sqrt{2})\left(i \sqrt{2} \mathrm{e}^{2 i \sqrt{2} x}-\sqrt{2} \mathrm{e}^{2 i \sqrt{2} x}+\right. \\
& =\frac{\sqrt{2} x}{128}+\frac{i \sqrt{2} x}{128}+\frac{\mathrm{e}^{2 i \sqrt{2} x}}{256}-\frac{i \mathrm{e}^{2 i \sqrt{2} x}}{256}+\left(-\frac{1}{8192}-\frac{i}{8192}\right) \sqrt{2}(\sqrt{2}+i \sqrt{2})\left(i \sqrt{2} \mathrm{e}^{2 i \sqrt{2} x}-\sqrt{2} \mathrm{e}^{2 i \sqrt{2} x}+\right.
\end{aligned}
$$

$$
\begin{aligned}
U_{4} & =(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\right)\left((-16-16 i) \sqrt{2} \mathrm{e}^{(-1-i) \sqrt{2} x}\right)}{(1)(1024)} d x \\
& =\int \frac{(-16-16 i)\left(x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\right) \sqrt{2} \mathrm{e}^{(-1-i) \sqrt{2} x}}{1024} d x \\
& =\int\left(\left(-\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{(-2-i) \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right)\right) d x \\
& =\int\left(-\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{(-2-i) \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right) d x
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-\left(\int\left(\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{(-2+i) \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right) d x\right)\right)\left(\mathrm{e}^{(\sqrt{2}-i \sqrt{2}) x}\right) \\
& +\left(\int\left(\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{-i \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right) d x\right)\left(\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x}\right) \\
& +\left(\frac{\sqrt{2} x}{128}+\frac{i \sqrt{2} x}{128}+\frac{\mathrm{e}^{2 i \sqrt{2} x}}{256}-\frac{i \mathrm{e}^{2 i \sqrt{2} x}}{256}+\left(-\frac{1}{8192}-\frac{i}{8192}\right) \sqrt{2}(\sqrt{2}+i \sqrt{2})\left(i \sqrt{2} \mathrm{e}^{2 i \sqrt{2} x}-\sqrt{2} \mathrm{e}^{2 i \sqrt{2} x}\right.\right. \\
& +\left(\int\left(-\frac{1}{64}-\frac{i}{64}\right) \sqrt{2} \mathrm{e}^{(-2-i) \sqrt{2} x}\left(x \mathrm{e}^{2 \sqrt{2} x} \sin (\sqrt{2} x)+\cos (\sqrt{2} x)\right) d x\right)\left(\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{\mathrm{e}^{-\sqrt{2} x}((4 \sqrt{2} x-1+i) \sin (\sqrt{2} x)+\cos (\sqrt{2} x)(4 \sqrt{2} x+7+i))}{256}-\frac{\left(\left(\sqrt{2} x^{2}-3 x+\frac{7 \sqrt{2}}{8}\right) \sin (\sqrt{2} x)\right.}{1}
$$

Which simplifies to
$y_{p}=\frac{\mathrm{e}^{-\sqrt{2} x}((4 \sqrt{2} x-1+i) \sin (\sqrt{2} x)+\cos (\sqrt{2} x)(4 \sqrt{2} x+7+i))}{256}-\frac{\left(\left(\sqrt{2} x^{2}-3 x+\frac{7 \sqrt{2}}{8}\right) \sin (\sqrt{2} x)\right.}{1}$
Therefore the general solution is

$$
y=y_{h}+y_{p}
$$

$$
\begin{aligned}
= & \left(\mathrm{e}^{(\sqrt{2}-i \sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4}\right) \\
& +\left(\frac{\mathrm{e}^{-\sqrt{2} x}((4 \sqrt{2} x-1+i) \sin (\sqrt{2} x)+\cos (\sqrt{2} x)(4 \sqrt{2} x+7+i))}{256}\right. \\
& \left.\quad-\frac{\left(\left(\sqrt{2} x^{2}-3 x+\frac{7 \sqrt{2}}{8}\right) \sin (\sqrt{2} x)+\cos (\sqrt{2} x) \sqrt{2}\left(x^{2}-\frac{3}{8}\right)\right) \mathrm{e}^{\sqrt{2} x}}{128}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y= & \mathrm{e}^{(1-i) \sqrt{2} x} c_{1}+\mathrm{e}^{(-1+i) \sqrt{2} x} c_{2}+\mathrm{e}^{(-1-i) \sqrt{2} x} c_{3}+\mathrm{e}^{(1+i) \sqrt{2} x} c_{4} \\
& +\frac{\mathrm{e}^{-\sqrt{2} x}((4 \sqrt{2} x-1+i) \sin (\sqrt{2} x)+\cos (\sqrt{2} x)(4 \sqrt{2} x+7+i))}{256} \\
& -\frac{\left(\left(\sqrt{2} x^{2}-3 x+\frac{7 \sqrt{2}}{8}\right) \sin (\sqrt{2} x)+\cos (\sqrt{2} x) \sqrt{2}\left(x^{2}-\frac{3}{8}\right)\right) \mathrm{e}^{\sqrt{2} x}}{128}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{(1-i) \sqrt{2} x} c_{1}+\mathrm{e}^{(-1+i) \sqrt{2} x} c_{2}+\mathrm{e}^{(-1-i) \sqrt{2} x} c_{3}+\mathrm{e}^{(1+i) \sqrt{2} x} c_{4} \\
& +\frac{\mathrm{e}^{-\sqrt{2} x}((4 \sqrt{2} x-1+i) \sin (\sqrt{2} x)+\cos (\sqrt{2} x)(4 \sqrt{2} x+7+i))}{256} \tag{1}\\
& -\frac{\left(\left(\sqrt{2} x^{2}-3 x+\frac{7 \sqrt{2}}{8}\right) \sin (\sqrt{2} x)+\cos (\sqrt{2} x) \sqrt{2}\left(x^{2}-\frac{3}{8}\right)\right) \mathrm{e}^{\sqrt{2} x}}{128}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{(1-i) \sqrt{2} x} c_{1}+\mathrm{e}^{(-1+i) \sqrt{2} x} c_{2}+\mathrm{e}^{(-1-i) \sqrt{2} x} c_{3}+\mathrm{e}^{(1+i) \sqrt{2} x} c_{4} \\
& +\frac{\mathrm{e}^{-\sqrt{2} x}((4 \sqrt{2} x-1+i) \sin (\sqrt{2} x)+\cos (\sqrt{2} x)(4 \sqrt{2} x+7+i))}{256} \\
& -\frac{\left(\left(\sqrt{2} x^{2}-3 x+\frac{7 \sqrt{2}}{8}\right) \sin (\sqrt{2} x)+\cos (\sqrt{2} x) \sqrt{2}\left(x^{2}-\frac{3}{8}\right)\right) \mathrm{e}^{\sqrt{2} x}}{128}
\end{aligned}
$$

Verified OK.

11.52.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}+16 y=x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)
$$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)-16 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)-1\right.
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ x \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x)+\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\sqrt{2}-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\sqrt{2}-\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-\sqrt{2} x} \cdot(\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)) \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\mathrm{e}^{-\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
-\frac{\sin (\sqrt{2} x)}{4} \\
-\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
\cos (\sqrt{2} x)
\end{array}\right], \vec{y}_{2}(x)=\mathrm{e}^{-\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}-\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
-\frac{\cos (\sqrt{2} x)}{4} \\
\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
-\sin (\sqrt{2} x)
\end{array}\right]\right.
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\sqrt{2}-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{ })^{2}} \\
\frac{1}{\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(\sqrt{2}-\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{\sqrt{2} x} \cdot(\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)) \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{(\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)}{\sqrt{2}-\mathrm{I} \sqrt{2}} \\
\cos (\sqrt{2} x)-\mathrm{I} \sin (\sqrt{2} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{\sqrt{2} x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
\frac{\sin (\sqrt{2} x)}{4} \\
\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
\cos (\sqrt{2} x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{\sqrt{2} x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16} \\
\frac{\cos (\sqrt{2} x)}{4} \\
\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}-\frac{\sin (\sqrt{2} x) \sqrt{2}}{4} \\
-\sin (\sqrt{2} x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-\sqrt{2} x}\left(\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16}\right) & \mathrm{e}^{-\sqrt{2} x}\left(\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}-\frac{\sin (\sqrt{2} x) \sqrt{2}}{16}\right) & \mathrm{e}^{\sqrt{2} x}\left(-\frac{\cos (\sqrt{2}}{1}\right. \\
-\frac{\mathrm{e}^{-\sqrt{2} x} \sin (\sqrt{2} x)}{4} & -\frac{\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)}{4} & \frac{\mathrm{e}^{\sqrt{2}}}{4} \\
\mathrm{e}^{-\sqrt{2} x}\left(-\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4}\right) & \mathrm{e}^{-\sqrt{2} x}\left(\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4}\right) & \mathrm{e}^{\sqrt{2} x}\left(\frac{\cos (\sqrt{2}}{4}\right. \\
\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x) & -\mathrm{e}^{-\sqrt{2} x} \sin (\sqrt{2} x) & \mathrm{e}^{\sqrt{2} x}
\end{array}\right.
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-\sqrt{2} x}\left(\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{16}\right) & \mathrm{e}^{-\sqrt{2} x}\left(\frac{\cos (\sqrt{2} x) \sqrt{2}}{16}-\frac{\sin (\sqrt{2} x) \sqrt{2}}{16}\right) & \mathrm{e}^{\sqrt{2} x}\left(-\frac{\cos (\sqrt{ }}{1}\right. \\
-\frac{\mathrm{e}^{-\sqrt{2} x} \sin (\sqrt{2} x)}{4} & -\frac{\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)}{4} & \mathrm{e}^{\sqrt{2}} \\
\mathrm{e}^{-\sqrt{2} x}\left(-\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4}\right) & \mathrm{e}^{-\sqrt{2} x}\left(\frac{\cos (\sqrt{2} x) \sqrt{2}}{4}+\frac{\sin (\sqrt{2} x) \sqrt{2}}{4}\right) & \mathrm{e}^{\sqrt{2} x}\left(\frac{\cos (\sqrt{2}}{4}\right. \\
\mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x) & -\mathrm{e}^{-\sqrt{2} x} \sin (\sqrt{2} x) & \mathrm{e}^{\sqrt{2} x}
\end{array}\right.
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cc}
\frac{\cos (\sqrt{2} x)\left(\mathrm{e}^{-\sqrt{2} x}+\mathrm{e}^{\sqrt{2} x}\right)}{2} \\
\frac{\left((-\cos (\sqrt{2} x)-\sin (\sqrt{2} x)) \mathrm{e}^{-\sqrt{2} x}+\mathrm{e}^{\sqrt{2} x}(-\sin (\sqrt{2} x)+\cos (\sqrt{2} x))\right) \sqrt{2}}{2} \\
-2 \sin (\sqrt{2} x)\left(-\mathrm{e}^{-\sqrt{2} x}+\mathrm{e}^{\sqrt{2} x}\right) \\
-2 \sqrt{2}\left(\mathrm{e}^{-\sqrt{2} x}(-\cos (\sqrt{2} x)+\sin (\sqrt{2} x))+\mathrm{e}^{\sqrt{2} x}(\cos (\sqrt{2} x)+\sin (\sqrt{2} x))\right)
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$
$\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution $\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)$
- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\left((8+(16 x+1) \sqrt{2}) \sin (\sqrt{2} x)+16 \cos (\sqrt{2} x)\left(1+\left(x-\frac{3}{16}\right) \sqrt{2}\right)\right) \mathrm{e}^{-\sqrt{2} x}}{1024}-\frac{\left(\left(\sqrt{2} x^{2}-3 x+\frac{7 \sqrt{2}}{8}-1\right) \sin (\sqrt{2} x)+\cos \right.}{128} \\
-\frac{\mathrm{e}^{-\sqrt{2} x}\left(\left(\left(\frac{1}{4}+\frac{(1-x) \sqrt{2}}{4}+x^{2}\right) \cos (\sqrt{2} x)-\frac{\left(\frac{1}{2}+(x+3) \sqrt{2}\right) \sin (\sqrt{2} x)}{4}\right) \mathrm{e}^{2 \sqrt{2} x}+\frac{(-\sqrt{2}-1) \cos (\sqrt{2} x)}{4}+2(x+\right.}{32} \\
\frac{\left((-8+(-16 x-1) \sqrt{2}) \cos (\sqrt{2} x)+16 \sin (\sqrt{2} x)\left(-1+\left(x-\frac{3}{16}\right) \sqrt{2}\right)\right) \mathrm{e}^{-\sqrt{2} x}}{256}-\frac{\left(\left(\sqrt{2} x^{2}+x-\frac{\sqrt{2}}{8}-1\right) \cos (\sqrt{2} x)-(\right.}{32} \\
\frac{((16 x-6 \sqrt{2}-1) \cos (\sqrt{2} x)+(10 \sqrt{2}+2) \sin (\sqrt{2} x)) \mathrm{e}^{-\sqrt{2} x}}{64}+\frac{\mathrm{e}^{\sqrt{2} x}\left(\left(\frac{1}{8}+\left(-\frac{3 x}{4}+\frac{3}{4}\right) \sqrt{2}\right) \cos (\sqrt{2} x)+\left(\left(\frac{3 x}{4}+\right.\right.\right.}{8}
\end{array}\right.
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
\frac{\left((8+(16 x+1) \sqrt{2}) \sin (\sqrt{2} x)+16 \cos (\sqrt{2} x)\left(1+\left(x-\frac{3}{16}\right)\right.\right.}{1024} \\
\begin{array}{c}
-\frac{\mathrm{e}^{-\sqrt{2} x}\left(\left(\left(\frac{1}{4}+\frac{(1-x) \sqrt{2}}{4}+x^{2}\right) \cos (\sqrt{2} x)-\frac{\left(\frac{1}{2}\right.}{2}\right.\right.}{} \\
\frac{((-8+(-16 x-1) \sqrt{2}) \cos (\sqrt{2} x)+16 \sin (\sqrt{2} x)(-1+(x-}{256} \\
\frac{((16 x-6 \sqrt{2}-1) \cos (\sqrt{2} x)+(10 \sqrt{2}+2) \sin (\sqrt{2} x))}{64}
\end{array}
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(\left(8+\left(16 x+64 c_{1}-64 c_{2}+1\right) \sqrt{2}\right) \sin (\sqrt{2} x)+16\left(1+\left(x+4 c_{1}+4 c_{2}-\frac{3}{16}\right) \sqrt{2}\right) \cos (\sqrt{2} x)\right) \mathrm{e}^{-\sqrt{2} x}}{1024}-\frac{\mathrm{e}^{\sqrt{2} x}\left(\left(\left(x^{2}-8 c_{3}-8 c_{4}+\frac{7}{8}\right) \sqrt{ }\right.\right.}{}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 108
dsolve $(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 4)+16 * \mathrm{y}(\mathrm{x})=\mathrm{x} * \exp (\operatorname{sqrt}(2) * \mathrm{x}) * \sin (\operatorname{sqrt}(2) * \mathrm{x})+\exp (-\operatorname{sqrt}(2) * \mathrm{x}) * \cos (\operatorname{sqrt}(2) * x)$

$$
\begin{aligned}
& y(x)=\frac{\left(\left(2 x \sqrt{2}+128 c_{3}+3\right) \cos (x \sqrt{2})+2 \sin (x \sqrt{2})\left(x \sqrt{2}+64 c_{4}\right)\right) \mathrm{e}^{-x \sqrt{2}}}{128} \\
& -\frac{\left(\left(x^{2} \sqrt{2}-128 c_{1}-\frac{5 \sqrt{2}}{8}\right) \cos (x \sqrt{2})+\sin (x \sqrt{2})\left(x^{2} \sqrt{2}-3 x-128 c_{2}+\frac{5 \sqrt{2}}{8}\right)\right) \mathrm{e}^{x \sqrt{2}}}{128}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 2.857 (sec). Leaf size: 140

```
DSolve[y''''[x]+16*y[x]==x*Exp[Sqrt[2]*x]*Sin[Sqrt [2]*x] Exp[-Sqrt[2]*x]*Cos[Sqrt[2]*x],y[x]
```

$y(x)$
$\rightarrow \frac{e^{-\sqrt{2} x}\left(\left(e^{2 \sqrt{2} x}\left(-8 \sqrt{2} x^{2}+5 \sqrt{2}+1024 c_{1}\right)+8\left(2 \sqrt{2} x+3+128 c_{2}\right)\right) \cos (\sqrt{2} x)-\left(e^{2 \sqrt{2} x}\left(8 \sqrt{2} x^{2}-24 x\right.\right.\right.}{1024}$

11.53 problem 53

11.53.1 Maple step by step solution . 2835

Internal problem ID [11827]
Internal file name [OUTPUT/11836_Thursday_April_11_2024_08_52_46_PM_21129270/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 53 .
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime}-4 y=\cos (x)^{2}-\cosh (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime}-4 y=0
$$

The characteristic equation is

$$
\lambda^{4}+3 \lambda^{2}-4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i \\
& \lambda_{3}=1 \\
& \lambda_{4}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 i x} \\
& y_{4}=\mathrm{e}^{-2 i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime}-4 y=\cos (x)^{2}-\cosh (x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -8 i \mathrm{e}^{2 i x} & 8 i \mathrm{e}^{-2 i x}
\end{array}\right] \\
&|W|=-200 i \mathrm{e}^{-x} \mathrm{e}^{x} \mathrm{e}^{2 i x} \mathrm{e}^{-2 i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=-200 i
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
\mathrm{e}^{x} & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
\mathrm{e}^{x} & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =-20 i \mathrm{e}^{x}
\end{aligned}
$$

$$
\begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} \\
-\mathrm{e}^{-x} & 2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} \\
\mathrm{e}^{-x} & -4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =-20 i \mathrm{e}^{-x}
\end{aligned}
$$

$$
\begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{-2 i x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -2 i \mathrm{e}^{-2 i x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =-10 \mathrm{e}^{-2 i x}
\end{aligned}
$$

$$
\begin{aligned}
W_{4}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{2 i x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & 2 i \mathrm{e}^{2 i x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -4 \mathrm{e}^{2 i x}
\end{array}\right] \\
& =-10 \mathrm{e}^{2 i x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{\left(\cos (x)^{2}-\cosh (x)\right)\left(-20 i \mathrm{e}^{x}\right)}{(1)(-200 i)} d x \\
& =-\int \frac{-20 i\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{x}}{-200 i} d x \\
& =-\int\left(\frac{\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{x}}{10}\right) d x \\
& =\frac{x}{20}-\frac{(\cos (x)+2 \sin (x)) \mathrm{e}^{x} \cos (x)}{50}-\frac{\mathrm{e}^{x}}{25}+\frac{\mathrm{e}^{2 x}}{40}
\end{aligned}
$$

$$
\begin{aligned}
& U_{2}=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(\cos (x)^{2}-\cosh (x)\right)\left(-20 i \mathrm{e}^{-x}\right)}{(1)(-200 i)} d x \\
& =\int \frac{-20 i\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{-x}}{-200 i} d x \\
& =\int\left(\frac{\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{-x}}{10}\right) d x \\
& =\frac{(-\cos (x)+2 \sin (x)) \mathrm{e}^{-x} \cos (x)}{50}-\frac{\mathrm{e}^{-x}}{25}-\frac{x}{20}+\frac{\mathrm{e}^{-2 x}}{40} \\
& U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(\cos (x)^{2}-\cosh (x)\right)\left(-10 \mathrm{e}^{-2 i x}\right)}{(1)(-200 i)} d x \\
& =-\int \frac{-10\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{-2 i x}}{-200 i} d x \\
& =-\int\left(-\frac{i\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{-2 i x}}{20}\right) d x \\
& =\frac{i \mathrm{e}^{(-1-2 i) x}}{200}-\frac{\mathrm{e}^{-2 i x}}{80}+\frac{\mathrm{e}^{(1-2 i) x}}{100}+\frac{\mathrm{e}^{(-1-2 i) x}}{100}-\frac{i \mathrm{e}^{(1-2 i) x}}{200}+\frac{i x}{80}-\frac{\mathrm{e}^{-4 i x}}{320} \\
& U_{4}=(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(\cos (x)^{2}-\cosh (x)\right)\left(-10 \mathrm{e}^{2 i x}\right)}{(1)(-200 i)} d x \\
& =\int \frac{-10\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{2 i x}}{-200 i} d x \\
& =\int\left(-\frac{i\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{2 i x}}{20}\right) d x \\
& =\int-\frac{i\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{2 i x}}{20} d x
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{x}{20}-\frac{(\cos (x)+2 \sin (x)) \mathrm{e}^{x} \cos (x)}{50}-\frac{\mathrm{e}^{x}}{25}+\frac{\mathrm{e}^{2 x}}{40}\right)\left(\mathrm{e}^{-x}\right) \\
& +\left(\frac{(-\cos (x)+2 \sin (x)) \mathrm{e}^{-x} \cos (x)}{50}-\frac{\mathrm{e}^{-x}}{25}-\frac{x}{20}+\frac{\mathrm{e}^{-2 x}}{40}\right)\left(\mathrm{e}^{x}\right) \\
& +\left(\frac{i \mathrm{e}^{(-1-2 i) x}}{200}-\frac{\mathrm{e}^{-2 i x}}{80}+\frac{\mathrm{e}^{(1-2 i) x}}{100}+\frac{\mathrm{e}^{(-1-2 i) x}}{100}-\frac{i \mathrm{e}^{(1-2 i) x}}{200}+\frac{i x}{80}-\frac{\mathrm{e}^{-4 i x}}{320}\right)\left(\mathrm{e}^{2 i x}\right) \\
& +\left(\int-\frac{i\left(\cos (x)^{2}-\cosh (x)\right) \mathrm{e}^{2 i x}}{20} d x\right)\left(\mathrm{e}^{-2 i x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=-\frac{1}{8}+\frac{(9+10 x) \mathrm{e}^{-x}}{200}-\frac{\sin (2 x)(8 x+i)}{320}-\frac{37 \cos (2 x)}{1600}+\frac{(9-10 x) \mathrm{e}^{x}}{200}
$$

Which simplifies to

$$
y_{p}=-\frac{1}{8}+\frac{(9+10 x) \mathrm{e}^{-x}}{200}-\frac{\sin (2 x)(8 x+i)}{320}-\frac{37 \cos (2 x)}{1600}+\frac{(9-10 x) \mathrm{e}^{x}}{200}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}\right) \\
& +\left(-\frac{1}{8}+\frac{(9+10 x) \mathrm{e}^{-x}}{200}-\frac{\sin (2 x)(8 x+i)}{320}-\frac{37 \cos (2 x)}{1600}+\frac{(9-10 x) \mathrm{e}^{x}}{200}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}-\frac{1}{8}+\frac{(9+10 x) \mathrm{e}^{-x}}{200} \tag{1}\\
& -\frac{\sin (2 x)(8 x+i)}{320}-\frac{37 \cos (2 x)}{1600}+\frac{(9-10 x) \mathrm{e}^{x}}{200}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}-\frac{1}{8}+\frac{(9+10 x) \mathrm{e}^{-x}}{200} \\
& -\frac{\sin (2 x)(8 x+i)}{320}-\frac{37 \cos (2 x)}{1600}+\frac{(9-10 x) \mathrm{e}^{x}}{200}
\end{aligned}
$$

Verified OK.

11.53.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}+3 y^{\prime \prime}-4 y=\cos (x)^{2}-\cosh (x)$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=\cos (x)^{2}-\cosh (x)-3 y_{3}(x)+4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=\cos (x)^{2}-\cosh (x)-3 y_{3}(x)+4 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -3 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cos (x)^{2}-\cosh (x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cos (x)^{2}-\cosh (x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -3 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
$\left[-2 \mathrm{I},\left[\begin{array}{c}-\frac{\mathrm{I}}{8} \\ -\frac{1}{4} \\ \frac{\mathrm{I}}{2} \\ 1\end{array}\right]\right]$
- Solution from eigenpair
$\mathrm{e}^{-2 \mathrm{II} x} \cdot\left[\begin{array}{c}-\frac{\mathrm{I}}{8} \\ -\frac{1}{4} \\ \frac{\mathrm{I}}{2} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of \sin and \cos
$(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}-\frac{\mathrm{I}}{8} \\ -\frac{1}{4} \\ \frac{\mathrm{I}}{2} \\ 1\end{array}\right]$
- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$

$\square \quad$ Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cccc}
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -\frac{\sin (2 x)}{8} & -\frac{\cos (2 x)}{8} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\frac{\cos (2 x)}{4} & \frac{\sin (2 x)}{4} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\sin (2 x)}{2} & \frac{\cos (2 x)}{2} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \cos (2 x) & -\sin (2 x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cccc}
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -\frac{\sin (2 x)}{8} & -\frac{\cos (2 x)}{8} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\frac{\cos (2 x)}{4} & \frac{\sin (2 x)}{4} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\sin (2 x)}{2} & \frac{\cos (2 x)}{2} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \cos (2 x) & -\sin (2 x)
\end{array}\right] \cdot \frac{4}{\left[\begin{array}{cccc}
-1 & 1 & 0 & -\frac{1}{8} \\
1 & 1 & -\frac{1}{4} & 0 \\
-1 & 1 & 0 & \frac{1}{2} \\
1 & 1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cccc}
\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{x}}{5}+\frac{\cos (2 x)}{5} & -\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{x}}{5}+\frac{\sin (2 x)}{10} & \frac{\mathrm{e}^{-x}}{10}+\frac{\mathrm{e}^{x}}{10}-\frac{\cos (2 x)}{5} & -\frac{\mathrm{e}^{-x}}{10}+\frac{\mathrm{e}^{x}}{10}-\frac{\operatorname{si}}{10} \\
-\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{x}}{5}-\frac{2 \sin (2 x)}{5} & \frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{x}}{5}+\frac{\cos (2 x)}{5} & -\frac{\mathrm{e}^{-x}}{10}+\frac{\mathrm{e}^{x}}{10}+\frac{2 \sin (2 x)}{5} & \frac{\mathrm{e}^{-x}}{10}+\frac{\mathrm{e}^{x}}{10}-\frac{\cos }{5} \\
\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{x}}{5}-\frac{4 \cos (2 x)}{5} & -\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{x}}{5}-\frac{2 \sin (2 x)}{5} & \frac{\mathrm{e}^{-x}}{10}+\frac{\mathrm{e}^{x}}{10}+\frac{4 \cos (2 x)}{5} & -\frac{\mathrm{e}^{-x}}{10}+\frac{\mathrm{e}^{x}}{10}+\frac{2 \mathrm{~s}}{5} \\
-\frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{x}}{5}+\frac{8 \sin (2 x)}{5} & \frac{2 \mathrm{e}^{-x}}{5}+\frac{2 \mathrm{e}^{x}}{5}-\frac{4 \cos (2 x)}{5} & -\frac{\mathrm{e}^{-x}}{10}+\frac{\mathrm{e}^{x}}{10}-\frac{8 \sin (2 x)}{5} & \frac{\mathrm{e}^{-x}}{10}+\frac{\mathrm{e}^{x}}{10}+\frac{4 \operatorname{co}}{}
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{(5 x+8) \mathrm{e}^{-x}}{100}-\frac{7 \cos (x)^{2}}{100}-\frac{\sin (x) \cos (x) x}{20}-\frac{9}{100}+\frac{(-5 x+8) \mathrm{e}^{x}}{100} \\
\frac{(-5 x-3) \mathrm{e}^{-x}}{100}-\frac{\cos (x)^{2} x}{10}+\frac{9 \cos (x) \sin (x)}{100}+\frac{(-5 x+3) \mathrm{e}^{x}}{100}+\frac{x}{20} \\
\frac{(5 x-2) \mathrm{e}^{-x}}{100}+\frac{2 \cos (x)^{2}}{25}+\frac{\sin (x) \cos (x) x}{5}-\frac{1}{25}+\frac{(-5 x-2) \mathrm{e}^{x}}{100} \\
\frac{(-5 x+7) \mathrm{e}^{-x}}{100}+\frac{x \cos (2 x)}{5}+\frac{\sin (2 x)}{50}+\frac{(-5 x-7) \mathrm{e}^{x}}{100}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
\frac{(5 x+8) \mathrm{e}^{-x}}{100}-\frac{7 \cos (x)^{2}}{100}-\frac{\sin (x) \cos (x) x}{20}-\frac{9}{100}+\frac{(-5 x+8) \mathrm{e}^{x}}{100} \\
\frac{(-5 x-3) \mathrm{e}^{-x}}{100}-\frac{\cos (x)^{2} x}{10}+\frac{9 \cos (x) \sin (x)}{100}+\frac{(-5 x+3) \mathrm{e}^{x}}{100}+\frac{x}{20} \\
\frac{(5 x-2) \mathrm{e}^{-x}}{100}+\frac{2 \cos (x)^{2}}{25}+\frac{\sin (x) \cos (x) x}{5}-\frac{1}{25}+\frac{(-5 x-2) \mathrm{e}^{x}}{100} \\
\frac{(-5 x+7) \mathrm{e}^{-x}}{100}+\frac{x \cos (2 x)}{5}+\frac{\sin (2 x)}{50}+\frac{(-5 x-7) \mathrm{e}^{x}}{100}
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{9}{100}+\frac{\left(8+5 x-100 c_{1}\right) \mathrm{e}^{-x}}{100}+\frac{\left(-7-25 c_{4}\right) \cos (x)^{2}}{100}-\frac{\sin (x)\left(x+5 c_{3}\right) \cos (x)}{20}+\frac{\left(8-5 x+100 c_{2}\right) \mathrm{e}^{x}}{100}+\frac{c_{4}}{8}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 56
dsolve($\operatorname{diff}(y(x), x \$ 4)+3 * \operatorname{diff}(y(x), x \$ 2)-4 * y(x)=\cos (x)^{\wedge} 2-\cosh (x), y(x), \quad$ singsol=all)

$$
\begin{aligned}
y(x)= & -\frac{1}{8}+\frac{\left(10 x+200 c_{3}+9\right) \mathrm{e}^{-x}}{200}+\frac{\left(200 c_{2}-9\right) \cos (2 x)}{200} \\
& +\frac{\left(-x+40 c_{4}\right) \sin (2 x)}{40}+\frac{\left(-10 x+200 c_{1}+9\right) \mathrm{e}^{x}}{200}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 75
DSolve[y''''[x]+3*y''[x]-4*y[x]==Cos[x]~2-Cosh[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & \frac{1}{400} e^{-x}\left(\left(-13+400 c_{1}\right) e^{x} \cos (2 x)\right. \\
& \left.+2\left(10 x-25 e^{x}+e^{2 x}\left(-10 x+9+200 c_{4}\right)-5 e^{x}\left(x-40 c_{2}\right) \sin (2 x)+9+200 c_{3}\right)\right)
\end{aligned}
$$

11.54 problem 54

11.54.1 Maple step by step solution . 2847

Internal problem ID [11828]
Internal file name [OUTPUT/11837_Thursday_April_11_2024_08_52_48_PM_71487248/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.3. The method of undetermined coefficients. Exercises page 151
Problem number: 54.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime \prime}+10 y^{\prime \prime}+9 y=\sin (x) \sin (2 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+10 y^{\prime \prime}+9 y=0
$$

The characteristic equation is

$$
\lambda^{4}+10 \lambda^{2}+9=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i \\
& \lambda_{3}=i \\
& \lambda_{4}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{i x} c_{1}+\mathrm{e}^{3 i x} c_{2}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{-3 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i x} \\
& y_{2}=\mathrm{e}^{3 i x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=\mathrm{e}^{-3 i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+10 y^{\prime \prime}+9 y=\sin (x) \sin (2 x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{i x} & \mathrm{e}^{3 i x} & \mathrm{e}^{-i x} & \mathrm{e}^{-3 i x} \\
i \mathrm{e}^{i x} & 3 i \mathrm{e}^{3 i x} & -i \mathrm{e}^{-i x} & -3 i \mathrm{e}^{-3 i x} \\
-\mathrm{e}^{i x} & -9 \mathrm{e}^{3 i x} & -\mathrm{e}^{-i x} & -9 \mathrm{e}^{-3 i x} \\
-i \mathrm{e}^{i x} & -27 i \mathrm{e}^{3 i x} & i \mathrm{e}^{-i x} & 27 i \mathrm{e}^{-3 i x}
\end{array}\right] \\
&|W|=768 \mathrm{e}^{i x} \mathrm{e}^{3 i x} \mathrm{e}^{-i x} \mathrm{e}^{-3 i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=768
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{3 i x} & \mathrm{e}^{-i x} & \mathrm{e}^{-3 i x} \\
3 i \mathrm{e}^{3 i x} & -i \mathrm{e}^{-i x} & -3 i \mathrm{e}^{-3 i x} \\
-9 \mathrm{e}^{3 i x} & -\mathrm{e}^{-i x} & -9 \mathrm{e}^{-3 i x}
\end{array}\right] \\
& =48 i \mathrm{e}^{-i x} \\
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & \mathrm{e}^{-i x} & \mathrm{e}^{-3 i x} \\
i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} & -3 i \mathrm{e}^{-3 i x} \\
-\mathrm{e}^{i x} & -\mathrm{e}^{-i x} & -9 \mathrm{e}^{-3 i x}
\end{array}\right] \\
& =16 i \mathrm{e}^{-3 i x} \\
& =-48 i \mathrm{e}^{i x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & \mathrm{e}^{3 i x} & \mathrm{e}^{-3 i x} \\
i \mathrm{e}^{i x} & 3 i \mathrm{e}^{3 i x} & -3 i \mathrm{e}^{-3 i x} \\
-9 \mathrm{e}^{3 i x} & -9 \mathrm{e}^{-3 i x}
\end{array}\right] \\
W_{4}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & \mathrm{e}^{3 i x} & \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & 3 i \mathrm{e}^{3 i x} & -i \mathrm{e}^{-i x} \\
-\mathrm{e}^{i x} & -9 \mathrm{e}^{3 i x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =-16 i \mathrm{e}^{3 i x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{(\sin (x) \sin (2 x))\left(48 i \mathrm{e}^{-i x}\right)}{(1)(768)} d x \\
& =-\int \frac{48 i \sin (x) \sin (2 x) \mathrm{e}^{-i x}}{768} d x \\
& =-\int\left(\frac{i \sin (x) \sin (2 x) \mathrm{e}^{-i x}}{16}\right) d x \\
& =-\left(\int \frac{i \sin (x) \sin (2 x) \mathrm{e}^{-i x}}{16} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
& U_{2}=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(\sin (x) \sin (2 x))\left(16 i \mathrm{e}^{-3 i x}\right)}{(1)(768)} d x \\
& =\int \frac{16 i \sin (x) \sin (2 x) \mathrm{e}^{-3 i x}}{768} d x \\
& =\int\left(\frac{i \sin (x) \sin (2 x) \mathrm{e}^{-3 i x}}{48}\right) d x \\
& =\int \frac{i \sin (x) \sin (2 x) \mathrm{e}^{-3 i x}}{48} d x \\
& U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(\sin (x) \sin (2 x))\left(-48 i \mathrm{e}^{i x}\right)}{(1)(768)} d x \\
& =-\int \frac{-48 i \sin (x) \sin (2 x) \mathrm{e}^{i x}}{768} d x \\
& =-\int\left(-\frac{i \sin (x) \sin (2 x) \mathrm{e}^{i x}}{16}\right) d x \\
& =-\left(\int-\frac{i \sin (x) \sin (2 x) \mathrm{e}^{i x}}{16} d x\right) \\
& U_{4}=(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{(\sin (x) \sin (2 x))\left(-16 i \mathrm{e}^{3 i x}\right)}{(1)(768)} d x \\
& =\int \frac{-16 i \sin (x) \sin (2 x) \mathrm{e}^{3 i x}}{768} d x \\
& =\int\left(-\frac{i \sin (x) \sin (2 x) \mathrm{e}^{3 i x}}{48}\right) d x \\
& =\int-\frac{i \sin (x) \sin (2 x) \mathrm{e}^{3 i x}}{48} d x
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-\left(\int \frac{i \sin (x) \sin (2 x) \mathrm{e}^{-i x}}{16} d x\right)\right)\left(\mathrm{e}^{i x}\right) \\
& +\left(\int \frac{i \sin (x) \sin (2 x) \mathrm{e}^{-3 i x}}{48} d x\right)\left(\mathrm{e}^{3 i x}\right) \\
& +\left(-\left(\int-\frac{i \sin (x) \sin (2 x) \mathrm{e}^{i x}}{16} d x\right)\right)\left(\mathrm{e}^{-i x}\right) \\
& +\left(\int-\frac{i \sin (x) \sin (2 x) \mathrm{e}^{3 i x}}{48} d x\right)\left(\mathrm{e}^{-3 i x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{i\left(\left(\int \sin (x) \sin (2 x) \mathrm{e}^{-3 i x} d x\right) \mathrm{e}^{3 i x}-3\left(\int \sin (x) \sin (2 x) \mathrm{e}^{-i x} d x\right) \mathrm{e}^{i x}+3\left(\int \sin (x) \sin (2 x) \mathrm{e}^{i x} d x\right) \mathrm{e}^{-i x}-\right.}{48}
$$

Which simplifies to
$y_{p}=\frac{\left(\int \sin (x) \sin (2 x) \sin (3 x) d x\right) \cos (3 x)}{24}-\frac{\left(\int \sin (x) \sin (2 x) \cos (3 x) d x\right) \sin (3 x)}{24}-\frac{\left(\int \sin (x)^{2} \sin (2 x)\right.}{8}$
Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{i x} c_{1}+\mathrm{e}^{3 i x} c_{2}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{-3 i x} c_{4}\right) \\
& +\left(\frac{\left(\int \sin (x) \sin (2 x) \sin (3 x) d x\right) \cos (3 x)}{24}-\frac{\left(\int \sin (x) \sin (2 x) \cos (3 x) d x\right) \sin (3 x)}{24}\right. \\
& \left.-\frac{\left(\int \sin (x)^{2} \sin (2 x) d x\right) \cos (x)}{8}+\frac{\left(\int(1-\cos (4 x)) d x\right) \sin (x)}{32}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{i x} c_{1}+\mathrm{e}^{3 i x} c_{2}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{-3 i x} c_{4}+\frac{\left(\int \sin (x) \sin (2 x) \sin (3 x) d x\right) \cos (3 x)}{24} \\
& -\frac{\left(\int \sin (x) \sin (2 x) \cos (3 x) d x\right) \sin (3 x)}{24} \tag{1}\\
& -\frac{\left(\int \sin (x)^{2} \sin (2 x) d x\right) \cos (x)}{8}+\frac{\left(\int(1-\cos (4 x)) d x\right) \sin (x)}{32}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{i x} c_{1}+\mathrm{e}^{3 i x} c_{2}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{-3 i x} c_{4}+\frac{\left(\int \sin (x) \sin (2 x) \sin (3 x) d x\right) \cos (3 x)}{24} \\
& -\frac{\left(\int \sin (x) \sin (2 x) \cos (3 x) d x\right) \sin (3 x)}{24} \\
& -\frac{\left(\int \sin (x)^{2} \sin (2 x) d x\right) \cos (x)}{8}+\frac{\left(\int(1-\cos (4 x)) d x\right) \sin (x)}{32}
\end{aligned}
$$

Verified OK.

11.54.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}+10 y^{\prime \prime}+9 y=\sin (x) \sin (2 x)$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=\sin (x) \sin (2 x)-10 y_{3}(x)-9 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=\sin (x) \sin (2 x)-10 y_{3}(x)-9 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-9 & 0 & -10 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\sin (x) \sin (2 x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\sin (x) \sin (2 x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-9 & 0 & -10 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{27} \\
-\frac{1}{9} \\
\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right],\left[3 \mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{27} \\
-\frac{1}{9} \\
-\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{27} \\
-\frac{1}{9} \\
\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-3 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{27} \\
-\frac{1}{9} \\
\frac{\mathrm{I}}{3} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (3 x)-I \sin (3 x)) \cdot\left[\begin{array}{c}
-\frac{I}{27} \\
-\frac{1}{9} \\
\frac{I}{3} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{27}(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
-\frac{\cos (3 x)}{9}+\frac{\mathrm{I} \sin (3 x)}{9} \\
\frac{\mathrm{I}}{3}(\cos (3 x)-\mathrm{I} \sin (3 x)) \\
\cos (3 x)-\mathrm{I} \sin (3 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\left[\begin{array}{c}
-\frac{\sin (3 x)}{27} \\
-\frac{\cos (3 x)}{9} \\
\frac{\sin (3 x)}{3} \\
\cos (3 x)
\end{array}\right], \vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (3 x)}{27} \\
\frac{\sin (3 x)}{9} \\
\frac{\cos (3 x)}{3} \\
-\sin (3 x)
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cccc}
-\frac{\sin (3 x)}{27} & -\frac{\cos (3 x)}{27} & -\sin (x) & -\cos (x) \\
-\frac{\cos (3 x)}{9} & \frac{\sin (3 x)}{9} & -\cos (x) & \sin (x) \\
\frac{\sin (3 x)}{3} & \frac{\cos (3 x)}{3} & \sin (x) & \cos (x) \\
\cos (3 x) & -\sin (3 x) & \cos (x) & -\sin (x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cccc}
-\frac{\sin (3 x)}{27} & -\frac{\cos (3 x)}{27} & -\sin (x) & -\cos (x) \\
-\frac{\cos (3 x)}{9} & \frac{\sin (3 x)}{9} & -\cos (x) & \sin (x) \\
\frac{\sin (3 x)}{3} & \frac{\cos (3 x)}{3} & \sin (x) & \cos (x) \\
\cos (3 x) & -\sin (3 x) & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cccc}
0 & -\frac{1}{27} & 0 & -1 \\
-\frac{1}{9} & 0 & -1 & 0 \\
0 & \frac{1}{3} & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cccc}
-\frac{\cos (x)^{3}}{2}+\frac{3 \cos (x)}{2} & -\frac{\sin (3 x)}{24}+\frac{9 \sin (x)}{8} & \frac{\sin (x)^{2} \cos (x)}{2} & \frac{\sin (x)^{3}}{6} \\
-\frac{3 \sin (x)^{3}}{2} & -\frac{\cos (x)^{3}}{2}+\frac{3 \cos (x)}{2} & \frac{3 \sin (3 x)}{8}-\frac{\sin (x)}{8} & \frac{\sin (x)^{2} \cos (x)}{2} \\
-\frac{9 \sin (x)^{2} \cos (x)}{2} & -\frac{3 \sin (x)^{3}}{2} & \frac{9 \cos (x)^{3}}{2}-\frac{7 \cos (x)}{2} & \frac{3 \sin (3 x)}{8}-\frac{\sin (x)}{8} \\
-\frac{27 \sin (3 x)}{8}+\frac{9 \sin (x)}{8} & -\frac{9 \sin (x)^{2} \cos (x)}{2} & -\frac{27 \sin (3 x)}{8}+\frac{\sin (x)}{8} & \frac{9 \cos (x)^{3}}{2}-\frac{7 \cos (x)}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution $\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\sin (x)\left(2 \cos (x)^{2} x-3 \cos (x) \sin (x)+x\right)}{48} \\
-\frac{7 \cos (x)^{2} \sin (x)}{48}+\frac{\sin (x)}{12}+\frac{\cos (x)^{3} x}{8}-\frac{\cos (x) x}{16} \\
-\frac{3 \cos (x)^{2} \sin (x) x}{8}+\frac{5 \sin (x)^{2} \cos (x)}{16}+\frac{x \sin (x)}{16} \\
\frac{9 \cos (x)^{2} \sin (x)}{16}-\frac{\sin (x)}{4}-\frac{9 \cos (x)^{3} x}{8}+\frac{13 \cos (x) x}{16}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
\frac{\sin (x)\left(2 \cos (x)^{2} x-3 \cos (x) \sin (x)+x\right)}{48} \\
-\frac{7 \cos (x)^{2} \sin (x)}{48}+\frac{\sin (x)}{12}+\frac{\cos (x)^{3} x}{8}-\frac{\cos (x) x}{16} \\
-\frac{3 \cos (x)^{2} \sin (x) x}{8}+\frac{5 \sin (x)^{2} \cos (x)}{16}+\frac{x \sin (x)}{16} \\
\frac{9 \cos (x)^{2} \sin (x)}{16}-\frac{\sin (x)}{4}-\frac{9 \cos (x)^{3} x}{8}+\frac{13 \cos (x) x}{16}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{c_{2} \cos (3 x)}{27}-\frac{c_{1} \sin (3 x)}{27}-\frac{\sin (x)^{2} \cos (x)}{16}+\frac{\left(2 \cos (x)^{2} x+x-48 c_{3}\right) \sin (x)}{48}-c_{4} \cos (x)$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 45

```
dsolve(diff(y(x),x$4)+10*diff(y(x),x$2)+9*y(x)=\operatorname{sin}(x)*\operatorname{sin}(2*x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & \frac{\left(11+1152 c_{3}\right) \cos (3 x)}{1152}+\frac{\left(x+96 c_{4}\right) \sin (3 x)}{96} \\
& +\frac{\left(-1+64 c_{1}\right) \cos (x)}{64}+\frac{\sin (x)\left(x+32 c_{2}\right)}{32}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.079 (sec). Leaf size: 54

```
DSolve[y''''[x]+10*y''[x]+9*y[x]==Sin[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
y(x) \rightarrow & \frac{1}{32} x \sin (x)+\frac{1}{96} x \sin (3 x)+\left(-\frac{1}{64}+c_{3}\right) \cos (x) \\
& +\left(\frac{13}{576}+c_{1}\right) \cos (3 x)+c_{4} \sin (x)+c_{2} \sin (3 x)
\end{aligned}
$$

12 Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
12.1 problem 1 2855
12.2 problem 2 2868
12.3 problem 3 2881
12.4 problem 4 2894
12.5 problem 5 2907
12.6 problem 6 2920
12.7 problem 7 2933
12.8 problem 8 2946
12.9 problem 9 2959
12.10problem 10 2974
12.11 problem 11 2989
12.12problem 12 3002
12.13problem 13 3016
12.14problem 14 3028
12.15problem 15 3040
12.16problem 16 3053
12.17 problem 17 3068
12.18problem 18 3080
12.19problem 19 3095
12.20problem 20 3123
12.21problem 21 3146
12.22problem 22 3165
12.23problem 23 3183
12.24problem 24 3200
12.25problem 25 3225
12.26problem 26 3231

12.1 problem 1

12.1.1 Solving as second order linear constant coeff ode 2855
12.1.2 Solving using Kovacic algorithm 2860
12.1.3 Maple step by step solution . 2865

Internal problem ID [11829]
Internal file name [OUTPUT/11838_Thursday_April_11_2024_08_52_50_PM_83565124/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\cot (x)
$$

12.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\cot (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \cot (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \cos (x) d x
$$

Hence

$$
u_{1}=-\sin (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \cot (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (x) \cot (x) d x
$$

Hence

$$
u_{2}=\cos (x)+\ln (\csc (x)-\cot (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\cos (x) \sin (x)+(\cos (x)+\ln (\csc (x)-\cot (x))) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=\sin (x) \ln (\csc (x)-\cot (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\sin (x) \ln (\csc (x)-\cot (x)))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\sin (x) \ln (\csc (x)-\cot (x)) \tag{1}
\end{equation*}
$$

Figure 484: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\sin (x) \ln (\csc (x)-\cot (x))
$$

Verified OK.

12.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 425: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \cot (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \cos (x) d x
$$

Hence

$$
u_{1}=-\sin (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \cot (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (x) \cot (x) d x
$$

Hence

$$
u_{2}=\cos (x)+\ln (\csc (x)-\cot (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\cos (x) \sin (x)+(\cos (x)+\ln (\csc (x)-\cot (x))) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=\sin (x) \ln (\csc (x)-\cot (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\sin (x) \ln (\csc (x)-\cot (x)))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\sin (x) \ln (\csc (x)-\cot (x)) \tag{1}
\end{equation*}
$$

Figure 485: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\sin (x) \ln (\csc (x)-\cot (x))
$$

Verified OK.

12.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\cot (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (x)$
- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cot (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \cos (x) d x\right)+\sin (x)\left(\int \cos (x) \cot (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\sin (x) \ln (\csc (x)-\cot (x))
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+\sin (x) \ln (\csc (x)-\cot (x))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve($\operatorname{diff}(y(x), x \$ 2)+y(x)=\cot (x), y(x)$, singsol=all)

$$
y(x)=\sin (x) c_{2}+c_{1} \cos (x)+\sin (x) \ln (\csc (x)-\cot (x))
$$

\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 33
DSolve[y''[x]+y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} \cos (x)+\sin (x)\left(\log \left(\sin \left(\frac{x}{2}\right)\right)-\log \left(\cos \left(\frac{x}{2}\right)\right)+c_{2}\right)
$$

12.2 problem 2

12.2.1 Solving as second order linear constant coeff ode 2868
12.2.2 Solving using Kovacic algorithm 2873
12.2.3 Maple step by step solution . 2879

Internal problem ID [11830]
Internal file name [OUTPUT/11839_Thursday_April_11_2024_08_52_51_PM_66482266/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\tan (x)^{2}
$$

12.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\tan (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (x) \tan (x)^{2} d x
$$

Hence

$$
u_{1}=-\frac{\sin (x)^{4}}{\cos (x)}-\left(2+\sin (x)^{2}\right) \cos (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \tan (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) \tan (x) d x
$$

Hence

$$
u_{2}=-\sin (x)+\ln (\sec (x)+\tan (x))
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\cos (x)-\sec (x) \\
& u_{2}=-\sin (x)+\ln (\sec (x)+\tan (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\cos (x)-\sec (x)) \cos (x)+(-\sin (x)+\ln (\sec (x)+\tan (x))) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=-2+\sin (x) \ln (\sec (x)+\tan (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-2+\sin (x) \ln (\sec (x)+\tan (x)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-2+\sin (x) \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
$$

Figure 486: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-2+\sin (x) \ln (\sec (x)+\tan (x))
$$

Verified OK.

12.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 427: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (x) \tan (x)^{2} d x
$$

Hence

$$
u_{1}=-\frac{\sin (x)^{4}}{\cos (x)}-\left(2+\sin (x)^{2}\right) \cos (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \tan (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) \tan (x) d x
$$

Hence

$$
u_{2}=-\sin (x)+\ln (\sec (x)+\tan (x))
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\cos (x)-\sec (x) \\
& u_{2}=-\sin (x)+\ln (\sec (x)+\tan (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\cos (x)-\sec (x)) \cos (x)+(-\sin (x)+\ln (\sec (x)+\tan (x))) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=-2+\sin (x) \ln (\sec (x)+\tan (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-2+\sin (x) \ln (\sec (x)+\tan (x)))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-2+\sin (x) \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
$$

Figure 487: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-2+\sin (x) \ln (\sec (x)+\tan (x))
$$

Verified OK.

12.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\tan (x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+1=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (x)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x) \tan (x)^{2} d x\right)+\sin (x)\left(\int \sin (x) \tan (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-2+\sin (x) \ln (\sec (x)+\tan (x))
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-2+\sin (x) \ln (\sec (x)+\tan (x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+y(x)=tan(x)^2,y(x), singsol=all)
```

$$
y(x)=\sin (x) c_{2}+c_{1} \cos (x)-2+\sin (x) \ln (\sec (x)+\tan (x))
$$

\checkmark Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 23

```
DSolve[y''[x]+y[x]==Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \sin (x) \operatorname{arctanh}(\sin (x))+c_{1} \cos (x)+c_{2} \sin (x)-2
$$

12.3 problem 3

12.3.1 Solving as second order linear constant coeff ode 2881
12.3.2 Solving using Kovacic algorithm 2885
12.3.3 Maple step by step solution . 2891

Internal problem ID [11831]
Internal file name [OUTPUT/11840_Thursday_April_11_2024_08_52_52_PM_64402138/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\sec (x)
$$

12.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+x \sin (x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x) \tag{1}
\end{equation*}
$$

Figure 488: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Verified OK.

12.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 429: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+x \sin (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x) \tag{1}
\end{equation*}
$$

Figure 489: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Verified OK.

12.3.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+y=\sec (x)$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \tan (x) d x\right)+\sin (x)\left(\int 1 d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+x \sin (x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+x \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)
```

$$
y(x)=-\ln (\sec (x)) \cos (x)+c_{1} \cos (x)+\sin (x)\left(c_{2}+x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 22
DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow\left(x+c_{2}\right) \sin (x)+\cos (x)\left(\log (\cos (x))+c_{1}\right)
$$

12.4 problem 4

12.4.1 Solving as second order linear constant coeff ode 2894
12.4.2 Solving using Kovacic algorithm 2899
12.4.3 Maple step by step solution . 2904

Internal problem ID [11832]
Internal file name [OUTPUT/11841_Thursday_April_11_2024_08_52_53_PM_17409633/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\sec (x)^{3}
$$

12.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x)^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) \sec (x)^{2} d x
$$

Hence

$$
u_{1}=-\frac{\sec (x)^{2}}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sec (x)^{2} d x
$$

Hence

$$
u_{2}=\tan (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\sec (x)^{2} \cos (x)}{2}+\sin (x) \tan (x)
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x)+\frac{\sec (x)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\cos (x)+\frac{\sec (x)}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x)+\frac{\sec (x)}{2} \tag{1}
\end{equation*}
$$

Figure 490: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x)+\frac{\sec (x)}{2}
$$

Verified OK.

12.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 431: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) \sec (x)^{2} d x
$$

Hence

$$
u_{1}=-\frac{\sec (x)^{2}}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sec (x)^{2} d x
$$

Hence

$$
u_{2}=\tan (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\sec (x)^{2} \cos (x)}{2}+\sin (x) \tan (x)
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x)+\frac{\sec (x)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\cos (x)+\frac{\sec (x)}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x)+\frac{\sec (x)}{2} \tag{1}
\end{equation*}
$$

Figure 491: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x)+\frac{\sec (x)}{2}
$$

Verified OK.

12.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\sec (x)^{3}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)^{3}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \tan (x) \sec (x)^{2} d x\right)+\sin (x)\left(\int \sec (x)^{2} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\cos (x)+\frac{\sec (x)}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x)+\frac{\sec (x)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$2)+y(x)=sec(x)^3,y(x), singsol=all)
```

$$
y(x)=\left(-1+c_{1}\right) \cos (x)+\sin (x) c_{2}+\frac{\sec (x)}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 25
DSolve[y''[x]+y[x]==Sec[x]^3,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{\sec (x)}{2}+c_{1} \cos (x)+\sin (x)\left(\tan (x)+c_{2}\right)
$$

12.5 problem 5

12.5.1 Solving as second order linear constant coeff ode 2907
12.5.2 Solving using Kovacic algorithm 2912
12.5.3 Maple step by step solution . 2918

Internal problem ID [11833]
Internal file name [OUTPUT/11842_Thursday_April_11_2024_08_52_55_PM_82310885/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\sec (x)^{2}
$$

12.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\sec (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\sin (2 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}(\sin (2 x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x))(2 \cos (2 x))-(\sin (2 x))(-2 \sin (2 x))
$$

Which simplifies to

$$
W=2 \cos (2 x)^{2}+2 \sin (2 x)^{2}
$$

Which simplifies to

$$
W=2
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (2 x) \sec (x)^{2}}{2} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 x) \sec (x)^{2}}{2} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (2 x) \sec (x)^{2}}{2} d x
$$

Hence

$$
u_{2}=x-\frac{\tan (x)}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (2 x)+\left(x-\frac{\tan (x)}{2}\right) \sin (2 x)
$$

Which simplifies to

$$
y_{p}(x)=\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}$

Figure 492: Slope field plot

Verification of solutions

$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}$
Verified OK.

12.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 433: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\frac{\sin (2 x)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}\left(\frac{\sin (2 x)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
-2 \sin (2 x) & \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x))(\cos (2 x))-\left(\frac{\sin (2 x)}{2}\right)(-2 \sin (2 x))
$$

Which simplifies to

$$
W=\sin (2 x)^{2}+\cos (2 x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (2 x) \sec (x)^{2}}{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 x) \sec (x)^{2}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (2 x) \sec (x)^{2} d x
$$

Hence

$$
u_{2}=2 x-\tan (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (2 x)+\frac{(2 x-\tan (x)) \sin (2 x)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right) \tag{1}\\
& +2 \sin (x) \cos (x) x-\sin (x)^{2}
\end{align*}
$$

Figure 493: Slope field plot

Verification of solutions

$y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}$
Verified OK.

12.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=\sec (x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (2 x)\left(\int \tan (x) d x\right)+\frac{\sin (2 x)\left(\int \cos (2 x) \sec (x)^{2} d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\ln (\cos (x))\left(2 \cos (x)^{2}-1\right)+2 \sin (x) \cos (x) x-\sin (x)^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

```
dsolve(diff (y (x),x$2)+4*y(x)=sec(x)^2,y(x), singsol=all)
```

$y(x)=\left(-2 \cos (x)^{2}+1\right) \ln (\sec (x))+2 \cos (x)^{2} c_{1}+2 \sin (x)\left(c_{2}+x\right) \cos (x)-\sin (x)^{2}-c_{1}$
\checkmark Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 33

```
DSolve[y''[x]+4*y[x]==Sec[x]~2,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \cos (2 x)\left(\log (\cos (x))+c_{1}\right)+\sin (x)\left(-\sin (x)+2\left(x+c_{2}\right) \cos (x)\right)
$$

12.6 problem 6

12.6.1 Solving as second order linear constant coeff ode 2920
12.6.2 Solving using Kovacic algorithm 2925
12.6.3 Maple step by step solution . 2930

Internal problem ID [11834]
Internal file name [OUTPUT/11843_Thursday_April_11_2024_08_52_56_PM_90341025/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\sec (x) \tan (x)
$$

12.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x) \tan (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x)^{2} d x
$$

Hence

$$
u_{1}=-\tan (x)+x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \tan (x) d x
$$

Hence

$$
u_{2}=-\ln (\cos (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\tan (x)+x) \cos (x)-\ln (\cos (x)) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x \tag{1}
\end{equation*}
$$

Figure 494: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x
$$

Verified OK.

12.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 435: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x)^{2} d x
$$

Hence

$$
u_{1}=-\tan (x)+x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \tan (x) d x
$$

Hence

$$
u_{2}=-\ln (\cos (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\tan (x)+x) \cos (x)-\ln (\cos (x)) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x \tag{1}
\end{equation*}
$$

Figure 495: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x
$$

Verified OK.

12.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\sec (x) \tan (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- 1st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x) \tan (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \tan (x)^{2} d x\right)+\sin (x)\left(\int \tan (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\cos (x)) \sin (x)-\sin (x)+\cos (x) x$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+y(x)=tan(x)*sec(x),y(x), singsol=all)
```

$$
y(x)=\ln (\sec (x)) \sin (x)+\left(c_{2}-1\right) \sin (x)+\cos (x)\left(c_{1}+x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 29
DSolve[y'' $[x]+y[x]==T a n[x] * \operatorname{Sec}[x], y[x], x$, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \cos (x) \arctan (\tan (x))+c_{1} \cos (x)+\sin (x)\left(-\log (\cos (x))-1+c_{2}\right)
$$

12.7 problem 7

12.7.1 Solving as second order linear constant coeff ode 2933
12.7.2 Solving using Kovacic algorithm 2937
12.7.3 Maple step by step solution . 2944

Internal problem ID [11835]
Internal file name [OUTPUT/11844_Thursday_April_11_2024_08_52_58_PM_35052809/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+5 y=\mathrm{e}^{-2 x} \sec (x)
$$

12.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=5, f(x)=\mathrm{e}^{-2 x} \sec (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(5)} \\
& =-2 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-2 x} \sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x} \sin (x) \\
\frac{d}{d x}\left(\cos (x) \mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x} \sin (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x} \sin (x) \\
-\mathrm{e}^{-2 x} \sin (x)-2 \cos (x) \mathrm{e}^{-2 x} & -2 \mathrm{e}^{-2 x} \sin (x)+\cos (x) \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\cos (x) \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x} \sin (x)+\cos (x) \mathrm{e}^{-2 x}\right) \\
& -\left(\mathrm{e}^{-2 x} \sin (x)\right)\left(-\mathrm{e}^{-2 x} \sin (x)-2 \cos (x) \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x} \cos (x)^{2}+\mathrm{e}^{-4 x} \sin (x)^{2}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-4 x} \sin (x) \sec (x)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \mathrm{e}^{-4 x} \sec (x)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x) \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x)) \tag{1}
\end{equation*}
$$

Figure 496: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))
$$

Verified OK.

12.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 437: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{-2 x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{-2 x}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-2 x} \cos (x) c_{1}+c_{2} \mathrm{e}^{-2 x} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-2 x} \sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x} \sin (x) \\
\frac{d}{d x}\left(\cos (x) \mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x} \sin (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x} \sin (x) \\
-\mathrm{e}^{-2 x} \sin (x)-2 \cos (x) \mathrm{e}^{-2 x} & -2 \mathrm{e}^{-2 x} \sin (x)+\cos (x) \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\cos (x) \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x} \sin (x)+\cos (x) \mathrm{e}^{-2 x}\right) \\
& -\left(\mathrm{e}^{-2 x} \sin (x)\right)\left(-\mathrm{e}^{-2 x} \sin (x)-2 \cos (x) \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x} \cos (x)^{2}+\mathrm{e}^{-4 x} \sin (x)^{2}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-4 x} \sin (x) \sec (x)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \mathrm{e}^{-4 x} \sec (x)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x) \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 x} \cos (x) c_{1}+c_{2} \mathrm{e}^{-2 x} \sin (x)\right)+\left(\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x)) \tag{1}
\end{equation*}
$$

Figure 497: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))
$$

Verified OK.

12.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+5 y=\mathrm{e}^{-2 x} \sec (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2-\mathrm{I},-2+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (x) \mathrm{e}^{-2 x}$
- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x} \sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{-2 x} \cos (x) c_{1}+c_{2} \mathrm{e}^{-2 x} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{-2 x} \sec (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x} \sin (x) \\
-\mathrm{e}^{-2 x} \sin (x)-2 \cos (x) \mathrm{e}^{-2 x} & -2 \mathrm{e}^{-2 x} \sin (x)+\cos (x) \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\cos (x)\left(\int \tan (x) d x\right)-\sin (x)\left(\int 1 d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{-2 x} \cos (x) c_{1}+c_{2} \mathrm{e}^{-2 x} \sin (x)+\mathrm{e}^{-2 x}(\ln (\cos (x)) \cos (x)+x \sin (x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff (y (x),x$2)+4*\operatorname{diff}(y(x),x)+5*y(x)=exp(-2*x)*sec(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x}\left(-\ln (\sec (x)) \cos (x)+c_{1} \cos (x)+\sin (x)\left(c_{2}+x\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 28
DSolve[y' $\quad[\mathrm{x}]+4 * \mathrm{y}$ ' $[\mathrm{x}]+5 * \mathrm{y}[\mathrm{x}]==\operatorname{Exp}[-2 * \mathrm{x}] * \operatorname{Sec}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow e^{-2 x}\left(\left(x+c_{1}\right) \sin (x)+\cos (x)\left(\log (\cos (x))+c_{2}\right)\right)
$$

12.8 problem 8

12.8.1 Solving as second order linear constant coeff ode 2946
12.8.2 Solving using Kovacic algorithm 2951
12.8.3 Maple step by step solution . 2957

Internal problem ID [11836]
Internal file name [OUTPUT/11845_Thursday_April_11_2024_08_52_59_PM_69790256/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+5 y=\mathrm{e}^{x} \tan (2 x)
$$

12.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=5, f(x)=\mathrm{e}^{x} \tan (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(5)} \\
& =1 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \cos (2 x) \\
& y_{2}=\mathrm{e}^{x} \sin (2 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} \cos (2 x) & \mathrm{e}^{x} \sin (2 x) \\
\frac{d}{d x}\left(\mathrm{e}^{x} \cos (2 x)\right) & \frac{d}{d x}\left(\mathrm{e}^{x} \sin (2 x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} \cos (2 x) & \mathrm{e}^{x} \sin (2 x) \\
\mathrm{e}^{x} \cos (2 x)-2 \mathrm{e}^{x} \sin (2 x) & \mathrm{e}^{x} \sin (2 x)+2 \mathrm{e}^{x} \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x} \cos (2 x)\right)\left(\mathrm{e}^{x} \sin (2 x)+2 \mathrm{e}^{x} \cos (2 x)\right)-\left(\mathrm{e}^{x} \sin (2 x)\right)\left(\mathrm{e}^{x} \cos (2 x)-2 \mathrm{e}^{x} \sin (2 x)\right)
$$

Which simplifies to

$$
W=2 \mathrm{e}^{2 x} \sin (2 x)^{2}+2 \mathrm{e}^{2 x} \cos (2 x)^{2}
$$

Which simplifies to

$$
W=2 \mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{2 x} \sin (2 x) \tan (2 x)}{2 \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 x) \tan (2 x)}{2} d x
$$

Hence

$$
u_{1}=\frac{\sin (2 x)}{4}-\frac{\ln (\sec (2 x)+\tan (2 x))}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} \cos (2 x) \tan (2 x)}{2 \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sin (2 x)}{2} d x
$$

Hence

$$
u_{2}=-\frac{\cos (2 x)}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{\sin (2 x)}{4}-\frac{\ln (\sec (2 x)+\tan (2 x))}{4}\right) \mathrm{e}^{x} \cos (2 x)-\frac{\cos (2 x) \mathrm{e}^{x} \sin (2 x)}{4}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4} \tag{1}
\end{equation*}
$$

Figure 498: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
$$

Verified OK.

12.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 439: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} \cos (2 x) c_{1}+\frac{\mathrm{e}^{x} \sin (2 x) c_{2}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \cos (2 x) \\
& y_{2}=\frac{\mathrm{e}^{x} \sin (2 x)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} \cos (2 x) & \frac{\mathrm{e}^{x} \sin (2 x)}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{x} \cos (2 x)\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x} \sin (2 x)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} \cos (2 x) & \frac{\mathrm{e}^{x} \sin (2 x)}{2} \\
\mathrm{e}^{x} \cos (2 x)-2 \mathrm{e}^{x} \sin (2 x) & \frac{\mathrm{e}^{x} \sin (2 x)}{2}+\mathrm{e}^{x} \cos (2 x)
\end{array}\right|
$$

Therefore
$W=\left(\mathrm{e}^{x} \cos (2 x)\right)\left(\frac{\mathrm{e}^{x} \sin (2 x)}{2}+\mathrm{e}^{x} \cos (2 x)\right)-\left(\frac{\mathrm{e}^{x} \sin (2 x)}{2}\right)\left(\mathrm{e}^{x} \cos (2 x)-2 \mathrm{e}^{x} \sin (2 x)\right)$

Which simplifies to

$$
W=\mathrm{e}^{2 x} \sin (2 x)^{2}+\mathrm{e}^{2 x} \cos (2 x)^{2}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x} \sin (2 x) \tan (2 x)}{2}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 x) \tan (2 x)}{2} d x
$$

Hence

$$
u_{1}=\frac{\sin (2 x)}{4}-\frac{\ln (\sec (2 x)+\tan (2 x))}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} \cos (2 x) \tan (2 x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (2 x) d x
$$

Hence

$$
u_{2}=-\frac{\cos (2 x)}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{\sin (2 x)}{4}-\frac{\ln (\sec (2 x)+\tan (2 x))}{4}\right) \mathrm{e}^{x} \cos (2 x)-\frac{\cos (2 x) \mathrm{e}^{x} \sin (2 x)}{4}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
= & \left(\mathrm{e}^{x} \cos (2 x) c_{1}+\frac{\mathrm{e}^{x} \sin (2 x) c_{2}}{2}\right)+\left(-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} \cos (2 x) c_{1}+\frac{\mathrm{e}^{x} \sin (2 x) c_{2}}{2}-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4} \tag{1}
\end{equation*}
$$

Figure 499: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} \cos (2 x) c_{1}+\frac{\mathrm{e}^{x} \sin (2 x) c_{2}}{2}-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
$$

Verified OK.

12.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+5 y=\mathrm{e}^{x} \tan (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-2 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(1-2 \mathrm{I}, 1+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{x} \cos (2 x)$
- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x} \sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} \cos (2 x) c_{1}+\mathrm{e}^{x} \sin (2 x) c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{x} \tan (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} \cos (2 x) & \mathrm{e}^{x} \sin (2 x) \\
\mathrm{e}^{x} \cos (2 x)-2 \mathrm{e}^{x} \sin (2 x) & \mathrm{e}^{x} \sin (2 x)+2 \mathrm{e}^{x} \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{2 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\mathrm{e}^{x}\left(-\cos (2 x)\left(\int \sin (2 x) \tan (2 x) d x\right)+\sin (2 x)\left(\int \sin (2 x) d x\right)\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} \sin (2 x) c_{2}-\frac{\mathrm{e}^{x} \cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}+\mathrm{e}^{x} \cos (2 x) c_{1}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve(diff(y(x),x$2)-2*\operatorname{diff}(y(x),x)+5*y(x)=exp(x)*\operatorname{tan}(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}\left(4 c_{2} \sin (2 x)-\ln (\sec (2 x)+\tan (2 x)) \cos (2 x)+4 \cos (2 x) c_{1}\right)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 42
DSolve[y''[x]-2*y'[x]+5*y[x]==Exp[x]*Tan[2*x],y[x],x,IncludeSingularSolutions True]

$$
y(x) \rightarrow-\frac{1}{4} e^{x}\left(\cos (2 x) \operatorname{arctanh}(\sin (2 x))-4 c_{2} \cos (2 x)+\left(1-4 c_{1}\right) \sin (2 x)\right)
$$

12.9 problem 9

12.9.1 Solving as second order linear constant coeff ode

2959
12.9.2 $\begin{aligned} & \text { Solving as linear second order ode solved by an integrating factor } \\ & \\ & \text { ode . } 2963\end{aligned}$
12.9.3 Solving using Kovacic algorithm 2965
12.9.4 Maple step by step solution . 2971

Internal problem ID [11837]
Internal file name [OUTPUT/11846_Thursday_April_11_2024_08_53_00_PM_2401944/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+9 y=\frac{\mathrm{e}^{-3 x}}{x^{3}}
$$

12.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=6, C=9, f(x)=\frac{\mathrm{e}^{-3 x}}{x^{3}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=x \mathrm{e}^{-3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-3 x}\right)\left(\mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}\right)-\left(x \mathrm{e}^{-3 x}\right)\left(-3 \mathrm{e}^{-3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-6 x}}{x^{2}}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{1}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-6 x}}{x^{3}}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{1}{2 x^{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(\frac{\mathrm{e}^{-3 x}}{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{-3 x}}{2 x} \tag{1}
\end{equation*}
$$

Figure 500: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Verified OK.

12.9.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{3 x} \mathrm{e}^{-3 x}}{x^{3}} \\
\left(\mathrm{e}^{3 x} y\right)^{\prime \prime} & =\frac{\mathrm{e}^{3 x} \mathrm{e}^{-3 x}}{x^{3}}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{3 x} y\right)^{\prime}=-\frac{1}{2 x^{2}}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{3 x} y\right)=c_{1} x+\frac{1}{2 x}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+\frac{1}{2 x}+c_{2}}{\mathrm{e}^{3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}+\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}+\frac{\mathrm{e}^{-3 x}}{2 x} \tag{1}
\end{equation*}
$$

Figure 501: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}+\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Verified OK.

12.9.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =6 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 441: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=x \mathrm{e}^{-3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-3 x}\right)\left(\mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}\right)-\left(x \mathrm{e}^{-3 x}\right)\left(-3 \mathrm{e}^{-3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-6 x}}{x^{2}}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{1}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-6 x}}{x^{3}}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{1}{2 x^{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(\frac{\mathrm{e}^{-3 x}}{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{-3 x}}{2 x} \tag{1}
\end{equation*}
$$

Figure 502: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Verified OK.

12.9.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+9 y=\frac{\mathrm{e}^{-3 x}}{x^{3}}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+9=0
$$

- Factor the characteristic polynomial

$$
(r+3)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-3
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-3 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+y_{p}(x)
$$Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{\mathrm{e}^{-3 x}}{x^{3}}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{-3 x}\left(-\left(\int \frac{1}{x^{2}} d x\right)+\left(\int \frac{1}{x^{3}} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{-3 x}}{2 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+\frac{\mathrm{e}^{-3 x}}{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)+6*diff(y(x),x)+9*y(x)=exp(-3*x)/x^3,y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{-3 x}\left(2 c_{1} x^{2}+2 c_{2} x+1\right)}{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 31

```
DSolve[y''[x]+6*y'[x]+9*y[x]==Exp[-3*x]/x^3,y[x],x,IncludeSingularSolutions ->> True]
```

$$
y(x) \rightarrow \frac{e^{-3 x}\left(2 c_{2} x^{2}+2 c_{1} x+1\right)}{2 x}
$$

12.10 problem 10

12.10.1 Solving as second order linear constant coeff ode 2974
12.10.2 Solving as linear second order ode solved by an integrating factor
ode . 2978
12.10.3 Solving using Kovacic algorithm 2980
12.10.4 Maple step by step solution . 2986

Internal problem ID [11838]
Internal file name [OUTPUT/11847_Thursday_April_11_2024_08_53_01_PM_44895357/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=x \mathrm{e}^{x} \ln (x)
$$

12.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=1, f(x)=x \mathrm{e}^{x} \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2} \mathrm{e}^{2 x} \ln (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x^{2} \ln (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{3} \ln (x)}{3}+\frac{x^{3}}{9}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} x \ln (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int x \ln (x) d x
$$

Hence

$$
u_{2}=\frac{x^{2} \ln (x)}{2}-\frac{x^{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{3}(3 \ln (x)-1)}{9} \\
& u_{2}=\frac{x^{2}(-1+2 \ln (x))}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{3}(3 \ln (x)-1) \mathrm{e}^{x}}{9}+\frac{x^{3}(-1+2 \ln (x)) \mathrm{e}^{x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36} \tag{1}
\end{equation*}
$$

Figure 503: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}
$$

Verified OK.
12.10.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\mathrm{e}^{-x} x \mathrm{e}^{x} \ln (x) \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =\mathrm{e}^{-x} x \mathrm{e}^{x} \ln (x)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=\frac{x^{2}(-1+2 \ln (x))}{4}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=-\frac{5 x^{3}}{36}+\frac{x^{3} \ln (x)}{6}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{-\frac{5 x^{3}}{36}+\frac{x^{3} \ln (x)}{6}+c_{1} x+c_{2}}{\mathrm{e}^{-x}}
$$

Or

$$
y=\frac{x^{3} \mathrm{e}^{x} \ln (x)}{6}-\frac{5 x^{3} \mathrm{e}^{x}}{36}+c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3} \mathrm{e}^{x} \ln (x)}{6}-\frac{5 x^{3} \mathrm{e}^{x}}{36}+c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 504: Slope field plot

Verification of solutions

$$
y=\frac{x^{3} \mathrm{e}^{x} \ln (x)}{6}-\frac{5 x^{3} \mathrm{e}^{x}}{36}+c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}
$$

Verified OK.

12.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 443: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2} \mathrm{e}^{2 x} \ln (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x^{2} \ln (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{3} \ln (x)}{3}+\frac{x^{3}}{9}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} x \ln (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int x \ln (x) d x
$$

Hence

$$
u_{2}=\frac{x^{2} \ln (x)}{2}-\frac{x^{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{3}(3 \ln (x)-1)}{9} \\
& u_{2}=\frac{x^{2}(-1+2 \ln (x))}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{3}(3 \ln (x)-1) \mathrm{e}^{x}}{9}+\frac{x^{3}(-1+2 \ln (x)) \mathrm{e}^{x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36} \tag{1}
\end{equation*}
$$

Figure 505: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}
$$

Verified OK.

12.10.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+y=x \mathrm{e}^{x} \ln (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
$$Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{x} \ln (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{x}\left(-\left(\int x^{2} \ln (x) d x\right)+\left(\int x \ln (x) d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\frac{x^{3} \mathrm{e}^{x}(-5+6 \ln (x))}{36}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=x*exp(x)*ln(x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(\ln (x) x^{3}-\frac{5 x^{3}}{6}+6 c_{1} x+6 c_{2}\right) \mathrm{e}^{x}}{6}
$$

Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 32

```
DSolve[y''[x]-2*y'[x]+y[x]==x*Exp[x]*Log[x],y[x],x,IncludeSingularSolutions ->> True]
```

$$
y(x) \rightarrow \frac{1}{36} e^{x}\left(x^{3}(6 \log (x)-5)+36 c_{2} x+36 c_{1}\right)
$$

12.11 problem 11

12.11.1 Solving as second order linear constant coeff ode 2989
12.11.2 Solving using Kovacic algorithm 2993
12.11.3 Maple step by step solution . 2999

Internal problem ID [11839]
Internal file name [OUTPUT/11848_Saturday_April_13_2024_01_12_48_AM_19754612/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\sec (x) \csc (x)
$$

12.11.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x) \csc (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x) \csc (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sec (x) d x
$$

Hence

$$
u_{1}=-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x) \csc (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \csc (x) d x
$$

Hence

$$
u_{2}=-\ln (\csc (x)+\cot (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x)
$$

Figure 506: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x)
$$

Verified OK.

12.11.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 445: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x) \csc (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sec (x) d x
$$

Hence

$$
u_{1}=-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \sec (x) \csc (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \csc (x) d x
$$

Hence

$$
u_{2}=-\ln (\csc (x)+\cot (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x)
$$

Figure 507: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x)
$$

Verified OK.

12.11.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\sec (x) \csc (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x) \csc (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sec (x) d x\right)+\sin (x)\left(\int \csc (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x)
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x)-\ln (\csc (x)+\cot (x)) \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$2)+y(x)=sec(x)*csc(x),y(x), singsol=all)
```

$y(x)=\sin (x) c_{2}+c_{1} \cos (x)+\sin (x) \ln (\csc (x)-\cot (x))-\cos (x) \ln (\sec (x)+\tan (x))$
\checkmark Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 30
DSolve[y'' $[x]+y[x]==\operatorname{Sec}[x] * \operatorname{Csc}[x], y[x], x$, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\sin (x) \operatorname{arctanh}(\cos (x))+c_{1} \cos (x)+c_{2} \sin (x)+\cos (x)\left(-\operatorname{coth}^{-1}(\sin (x))\right)
$$

12.12 problem 12

12.12.1 Solving as second order linear constant coeff ode 3002
12.12.2 Solving using Kovacic algorithm 3007
12.12.3 Maple step by step solution . 3013

Internal problem ID [11840]
Internal file name [OUTPUT/11849_Saturday_April_13_2024_01_12_50_AM_16619352/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\tan (x)^{3}
$$

12.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\tan (x)^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (x) \tan (x)^{3} d x
$$

Hence

$$
u_{1}=-\frac{\sin (x)^{5}}{2 \cos (x)^{2}}-\frac{\sin (x)^{3}}{2}-\frac{3 \sin (x)}{2}+\frac{3 \ln (\sec (x)+\tan (x))}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \tan (x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) \tan (x)^{2} d x
$$

Hence

$$
u_{2}=\frac{\sin (x)^{4}}{\cos (x)}+\left(2+\sin (x)^{2}\right) \cos (x)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\sin (x)+\frac{3 \ln (\sec (x)+\tan (x))}{2}-\frac{\sec (x) \tan (x)}{2} \\
& u_{2}=\cos (x)+\sec (x)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\sin (x)+\frac{3 \ln (\sec (x)+\tan (x))}{2}-\frac{\sec (x) \tan (x)}{2}\right) \cos (x) \\
& +(\cos (x)+\sec (x)) \sin (x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2} \tag{1}
\end{equation*}
$$

Figure 508: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2}
$$

Verified OK.

12.12.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 447: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (x) \tan (x)^{3} d x
$$

Hence

$$
u_{1}=-\frac{\sin (x)^{5}}{2 \cos (x)^{2}}-\frac{\sin (x)^{3}}{2}-\frac{3 \sin (x)}{2}+\frac{3 \ln (\sec (x)+\tan (x))}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \tan (x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) \tan (x)^{2} d x
$$

Hence

$$
u_{2}=\frac{\sin (x)^{4}}{\cos (x)}+\left(2+\sin (x)^{2}\right) \cos (x)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\sin (x)+\frac{3 \ln (\sec (x)+\tan (x))}{2}-\frac{\sec (x) \tan (x)}{2} \\
& u_{2}=\cos (x)+\sec (x)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\sin (x)+\frac{3 \ln (\sec (x)+\tan (x))}{2}-\frac{\sec (x) \tan (x)}{2}\right) \cos (x) \\
& +(\cos (x)+\sec (x)) \sin (x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2} \tag{1}
\end{equation*}
$$

Figure 509: Slope field plot

Verification of solutions

$y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2}$
Verified OK.

12.12.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\tan (x)^{3}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (x)^{3}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x) \tan (x)^{3} d x\right)+\sin (x)\left(\int \sin (x) \tan (x)^{2} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \ln (\sec (x)+\tan (x)) \cos (x)}{2}+\frac{\tan (x)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff (y(x),x$2)+y(x)=tan(x)^3,y(x), singsol=all)
```

$$
y(x)=\sin (x) c_{2}+c_{1} \cos (x)+\frac{\tan (x)}{2}+\frac{3 \cos (x) \ln (\sec (x)+\tan (x))}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 39
DSolve[y'' $[x]+y[x]==T a n[x] \wedge 3, y[x], x$, IncludeSingularSolutions \rightarrow True]
$y(x) \rightarrow \frac{1}{2} \sec (x)\left(3 \cos ^{2}(x) \operatorname{arctanh}(\sin (x))+\sin (x)+c_{1} \cos (2 x)+c_{2} \sin (2 x)+c_{1}\right)$

12.13 problem 13

12.13.1 Solving as second order linear constant coeff ode 3016
12.13.2 Solving using Kovacic algorithm 3020
12.13.3 Maple step by step solution . 3025

Internal problem ID [11841]
Internal file name [OUTPUT/11850_Saturday_April_13_2024_01_12_51_AM_33949059/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{\mathrm{e}^{x}+1}
$$

12.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=3, C=2, f(x)=\frac{1}{\mathrm{e}^{x}+1}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-2 x} \\
-\mathrm{e}^{-x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=-\mathrm{e}^{-x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=-\mathrm{e}^{-3 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-2 x}}{\mathrm{e}^{x}+1}}{-\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1} d x
$$

Hence

$$
u_{1}=\ln \left(\mathrm{e}^{x}+1\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-x}}{\mathrm{e}^{x}+1}}{-\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{x}+1} d x
$$

Hence

$$
u_{2}=-\mathrm{e}^{x}+\ln \left(\mathrm{e}^{x}+1\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln \left(\mathrm{e}^{x}+1\right) \mathrm{e}^{-x}+\left(-\mathrm{e}^{x}+\ln \left(\mathrm{e}^{x}+1\right)\right) \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x}
$$

Verified OK.

12.13.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 449: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(-\mathrm{e}^{-x}\right)-\left(\mathrm{e}^{-x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-3 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-x}}{\mathrm{e}^{x}+1}}{\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{x}+1} d x
$$

Hence

$$
u_{1}=-\mathrm{e}^{x}+\ln \left(\mathrm{e}^{x}+1\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-2 x}}{\mathrm{e}^{x}+1}}{\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1} d x
$$

Hence

$$
u_{2}=\ln \left(\mathrm{e}^{x}+1\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln \left(\mathrm{e}^{x}+1\right) \mathrm{e}^{-x}+\left(-\mathrm{e}^{x}+\ln \left(\mathrm{e}^{x}+1\right)\right) \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x}
$$

Verified OK.

12.13.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{\mathrm{e}^{x}+1}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+3 r+2=0
$$

- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE $y_{1}(x)=\mathrm{e}^{-2 x}$
- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{\mathrm{e}^{x}+1}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\int \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{x}+1} d x\right)+\mathrm{e}^{-x}\left(\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-x}\right) \ln \left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{-x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36
dsolve (diff $(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+2 * y(x)=1 /(1+\exp (x)), y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-2 x}\left(\ln \left(\mathrm{e}^{x}+1\right)\left(\mathrm{e}^{x}+1\right)-\ln \left(\mathrm{e}^{x}\right) \mathrm{e}^{x}+\left(c_{2}+x\right) \mathrm{e}^{x}-c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 34
DSolve[y'' $[x]+3 * y$ ' $[x]+2 * y[x]==1 /(1+\operatorname{Exp}[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x}\left(\left(e^{x}+1\right) \log \left(e^{x}+1\right)+\left(-1+c_{2}\right) e^{x}+c_{1}\right)
$$

12.14 problem 14

12.14.1 Solving as second order linear constant coeff ode 3028
12.14.2 Solving using Kovacic algorithm 3032
12.14.3 Maple step by step solution . 3037

Internal problem ID [11842]
Internal file name [OUTPUT/11851_Saturday_April_13_2024_01_12_52_AM_47237680/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{\mathrm{e}^{2 x}+1}
$$

12.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=3, C=2, f(x)=\frac{1}{\mathrm{e}^{2 x}+1}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-2 x} \\
-\mathrm{e}^{-x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=-\mathrm{e}^{-x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=-\mathrm{e}^{-3 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+1}}{-\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+1} d x
$$

Hence

$$
u_{1}=\arctan \left(\mathrm{e}^{x}\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-x}}{\mathrm{e}^{2 x}+1}}{-\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1} d x
$$

Hence

$$
u_{2}=-\frac{\ln \left(\mathrm{e}^{2 x}+1\right)}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2}
$$

Verified OK.

12.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 451: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(-\mathrm{e}^{-x}\right)-\left(\mathrm{e}^{-x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-3 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-x}}{\mathrm{e}^{2 x} x 1}}{\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1} d x
$$

Hence

$$
u_{1}=-\frac{\ln \left(\mathrm{e}^{2 x}+1\right)}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+1}}{\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+1} d x
$$

Hence

$$
u_{2}=\arctan \left(\mathrm{e}^{x}\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2}
$$

Verified OK.

12.14.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{\mathrm{e}^{2 x}+1}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE $y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{\mathrm{e}^{2 x}+1}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\int \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1} d x\right)+\mathrm{e}^{-x}\left(\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+1} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\arctan \left(\mathrm{e}^{x}\right) \mathrm{e}^{-x}-\frac{\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 38
dsolve(diff $(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+2 * y(x)=1 /(1+\exp (2 * x)), y(x)$, singsol=all)

$$
y(x)=-\frac{\left(\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-x}+2 c_{1} \mathrm{e}^{-x}-2 \arctan \left(\mathrm{e}^{x}\right)-2 c_{2}\right) \mathrm{e}^{-x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 45
DSolve $[y$ '' $[x]+3 * y$ ' $[x]+2 * y[x]==1 /(1+\operatorname{Exp}[2 * x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} e^{-2 x}\left(2 e^{x} \arctan \left(e^{x}\right)-\log \left(e^{2 x}+1\right)+2\left(c_{2} e^{x}+c_{1}\right)\right)
$$

12.15 problem 15

12.15.1 Solving as second order linear constant coeff ode 3040
12.15.2 Solving using Kovacic algorithm 3045
12.15.3 Maple step by step solution . 3050

Internal problem ID [11843]
Internal file name [OUTPUT/11852_Saturday_April_13_2024_01_12_52_AM_53610816/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\frac{1}{1+\sin (x)}
$$

12.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\frac{1}{1+\sin (x)}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (x)}{1+\sin (x)}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (x)}{1+\sin (x)} d x
$$

Hence

$$
u_{1}=-\frac{2}{\tan \left(\frac{x}{2}\right)+1}-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x)}{1+\sin (x)}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (x)}{1+\sin (x)} d x
$$

Hence

$$
u_{2}=\ln (1+\sin (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{2}{\tan \left(\frac{x}{2}\right)+1}-x\right) \cos (x)+\ln (1+\sin (x)) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1(1)
$$

Figure 510: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1
$$

Verified OK.

12.15.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 453: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (x)}{1+\sin (x)}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (x)}{1+\sin (x)} d x
$$

Hence

$$
u_{1}=-\frac{2}{\tan \left(\frac{x}{2}\right)+1}-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x)}{1+\sin (x)}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (x)}{1+\sin (x)} d x
$$

Hence

$$
u_{2}=\ln (1+\sin (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{2}{\tan \left(\frac{x}{2}\right)+1}-x\right) \cos (x)+\ln (1+\sin (x)) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1(1)
$$

Figure 511: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1
$$

Verified OK.

12.15.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\frac{1}{1+\sin (x)}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{ }-4)}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{1+\sin (x)}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \frac{\sin (x)}{1+\sin (x)} d x\right)+\sin (x)\left(\int \frac{\cos (x)}{1+\sin (x)} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\ln (1+\sin (x)) \sin (x)+(-x-1) \cos (x)+\sin (x)-1
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$2)+y(x)=1/(1+\operatorname{sin}(x)),y(x), singsol=all)
```

$$
y(x)=\ln (1+\sin (x)) \sin (x)+\left(-x+c_{1}-1\right) \cos (x)-1+\left(c_{2}+1\right) \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 40
DSolve[y''[x]+y[x]==1/(1+Sin[x]),y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow\left(-x+1+c_{1}\right) \cos (x)+\sin (x)\left(2 \log \left(\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)\right)+1+c_{2}\right)-1
$$

12.16 problem 16

12.16.1 Solving as second order linear constant coeff ode 3053
12.16.2 Solving as linear second order ode solved by an integrating factor ode 3057
12.16.3 Solving using Kovacic algorithm 3059
12.16.4 Maple step by step solution . 3065

Internal problem ID [11844]
Internal file name [OUTPUT/11853_Saturday_April_13_2024_01_12_54_AM_97141954/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=\mathrm{e}^{x} \arcsin (x)
$$

12.16.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=1, f(x)=\mathrm{e}^{x} \arcsin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x \mathrm{e}^{2 x} \arcsin (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \arcsin (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{2} \arcsin (x)}{2}-\frac{\sqrt{-x^{2}+1} x}{4}+\frac{\arcsin (x)}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} \arcsin (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \arcsin (x) d x
$$

Hence

$$
u_{2}=x \arcsin (x)+\sqrt{-x^{2}+1}
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=\left(-\frac{x^{2} \arcsin (x)}{2}-\frac{\sqrt{-x^{2}+1} x}{4}+\frac{\arcsin (x)}{4}\right) \mathrm{e}^{x}+\left(x \arcsin (x)+\sqrt{-x^{2}+1}\right) x \mathrm{e}^{x}$
Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4} \tag{1}
\end{equation*}
$$

Figure 512: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}
$$

Verified OK.
12.16.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\mathrm{e}^{-x} \mathrm{e}^{x} \arcsin (x) \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =\mathrm{e}^{-x} \mathrm{e}^{x} \arcsin (x)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=x \arcsin (x)+\sqrt{-x^{2}+1}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=c_{1} x+\frac{3 \sqrt{-x^{2}+1} x}{4}+\frac{\arcsin (x)}{4}+\frac{x^{2} \arcsin (x)}{2}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+\frac{3 \sqrt{-x^{2}+1} x}{4}+\frac{\arcsin (x)}{4}+\frac{x^{2} \arcsin (x)}{2}+c_{2}}{\mathrm{e}^{-x}}
$$

Or

$$
y=\frac{x^{2} \arcsin (x) \mathrm{e}^{x}}{2}+c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+\frac{3 \sqrt{-x^{2}+1} x \mathrm{e}^{x}}{4}+\frac{\arcsin (x) \mathrm{e}^{x}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2} \arcsin (x) \mathrm{e}^{x}}{2}+c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+\frac{3 \sqrt{-x^{2}+1} x \mathrm{e}^{x}}{4}+\frac{\arcsin (x) \mathrm{e}^{x}}{4} \tag{1}
\end{equation*}
$$

Figure 513: Slope field plot

Verification of solutions

$$
y=\frac{x^{2} \arcsin (x) \mathrm{e}^{x}}{2}+c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+\frac{3 \sqrt{-x^{2}+1} x \mathrm{e}^{x}}{4}+\frac{\arcsin (x) \mathrm{e}^{x}}{4}
$$

Verified OK.

12.16.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 455: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x \mathrm{e}^{2 x} \arcsin (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \arcsin (x) d x
$$

Hence

$$
u_{1}=-\frac{x^{2} \arcsin (x)}{2}-\frac{\sqrt{-x^{2}+1} x}{4}+\frac{\arcsin (x)}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 x} \arcsin (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \arcsin (x) d x
$$

Hence

$$
u_{2}=x \arcsin (x)+\sqrt{-x^{2}+1}
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=\left(-\frac{x^{2} \arcsin (x)}{2}-\frac{\sqrt{-x^{2}+1} x}{4}+\frac{\arcsin (x)}{4}\right) \mathrm{e}^{x}+\left(x \arcsin (x)+\sqrt{-x^{2}+1}\right) x \mathrm{e}^{x}$
Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4} \tag{1}
\end{equation*}
$$

Figure 514: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}
$$

Verified OK.

12.16.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+y=\arcsin (x) \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
$$Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\arcsin (x) \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{x}\left(-\left(\int x \arcsin (x) d x\right)+\left(\int \arcsin (x) d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 \sqrt{-x^{2}+1} x+\arcsin (x)\right)}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 37

```
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=exp(x)*arcsin(x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}\left(2 x^{2} \arcsin (x)+3 x \sqrt{-x^{2}+1}+4 c_{1} x+\arcsin (x)+4 c_{2}\right)}{4}
$$

Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 45
\square
DSolve[y'' $[x]-2 * y$ ' $[x]+y[x]==\operatorname{Exp}[x] * \operatorname{ArcSin}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{4} e^{x}\left(2 x^{2} \arcsin (x)+\arcsin (x)+3 \sqrt{1-x^{2}} x+4 c_{2} x+4 c_{1}\right)
$$

12.17 problem 17

12.17.1 Solving as second order linear constant coeff ode 3068
12.17.2 Solving using Kovacic algorithm 3072
12.17.3 Maple step by step solution . 3078

Internal problem ID [11845]
Internal file name [OUTPUT/11854_Saturday_April_13_2024_01_12_55_AM_35752472/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{\mathrm{e}^{-x}}{x}
$$

12.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=3, C=2, f(x)=\frac{\mathrm{e}^{-x}}{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-2 x} \\
-\mathrm{e}^{-x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=-\mathrm{e}^{-x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=-\mathrm{e}^{-3 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-2 x} \mathrm{e}^{-x}}{x}}{-\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{1}{x} d x
$$

Hence

$$
u_{1}=\ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-2 x}}{x}}{-\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{x}}{x} d x
$$

Hence

$$
u_{2}=\exp \operatorname{Integral}_{1}(-x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (x) \mathrm{e}^{-x}+\exp \operatorname{Integral}_{1}(-x) \mathrm{e}^{-2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\ln (x) \mathrm{e}^{-x}+\exp \operatorname{Integral}_{1}(-x) \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\ln (x) \mathrm{e}^{-x}+\exp \text { Integral }_{1}(-x) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 515: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+\ln (x) \mathrm{e}^{-x}+\exp \operatorname{Integral}_{1}(-x) \mathrm{e}^{-2 x}
$$

Verified OK.

12.17.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 457: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(-\mathrm{e}^{-x}\right)-\left(\mathrm{e}^{-x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-3 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-2 x}}{x}}{\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{x}}{x} d x
$$

Hence

$$
u_{1}=\exp \operatorname{Integral}_{1}(-x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-2 x} \mathrm{e}^{-x}}{x}}{\mathrm{e}^{-3 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x} d x
$$

Hence

$$
u_{2}=\ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (x) \mathrm{e}^{-x}+\exp \operatorname{Integral}_{1}(-x) \mathrm{e}^{-2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(\ln (x) \mathrm{e}^{-x}+\operatorname{expIntegral}_{1}(-x) \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\ln (x) \mathrm{e}^{-x}+\exp \operatorname{Integral}_{1}(-x) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 516: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\ln (x) \mathrm{e}^{-x}+\exp \text { Integral }_{1}(-x) \mathrm{e}^{-2 x}
$$

Verified OK.

12.17.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\frac{\mathrm{e}^{-x}}{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial

$$
(r+2)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{\mathrm{e}^{-x}}{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-3 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\int \frac{\mathrm{e}^{x}}{x} d x\right)+\mathrm{e}^{-x}\left(\int \frac{1}{x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\ln (x) \mathrm{e}^{-x}+\mathrm{Ei}_{1}(-x) \mathrm{e}^{-2 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+\ln (x) \mathrm{e}^{-x}+\mathrm{Ei}_{1}(-x) \mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff (y (x),x$2)+3*\operatorname{diff}(y(x),x)+2*y(x)=exp(-x)/x,y(x), singsol=all)
```

$$
y(x)=\left(-\left(\int \mathrm{e}^{-x}\left(\exp \operatorname{Integral}_{1}(-x)-c_{1}\right) d x\right)+c_{2}\right) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 30
DSolve[y''[x]+3*y'[x]+2*y[x]==Exp[-x]/x,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-2 x}\left(-\operatorname{ExpIntegralEi}(x)+e^{x} \log (x)+c_{2} e^{x}+c_{1}\right)
$$

12.18 problem 18

12.18.1 Solving as second order linear constant coeff ode
12.18.2 Solving as linear second order ode solved by an integrating factor ode
12.18.3 Solving using Kovacic algorithm 3086
12.18.4 Maple step by step solution . 3092

Internal problem ID [11846]
Internal file name [OUTPUT/11855_Saturday_April_13_2024_01_12_55_AM_46328560/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=x \ln (x)
$$

12.18.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=1, f(x)=x \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2} \mathrm{e}^{x} \ln (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x^{2} \ln (x) \mathrm{e}^{-x} d x
$$

Hence

$$
u_{1}=-\left(-x^{2}-2 x-2\right) \mathrm{e}^{-x} \ln (x)+2 \exp \operatorname{Integral}_{1}(x)+x \mathrm{e}^{-x}+3 \mathrm{e}^{-x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x \mathrm{e}^{x} \ln (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int x \ln (x) \mathrm{e}^{-x} d x
$$

Hence

$$
u_{2}=(-x-1) \mathrm{e}^{-x} \ln (x)-\exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(\left(x^{2}+2 x+2\right) \ln (x)+x+3\right) \mathrm{e}^{-x}+2 \exp \operatorname{Integral}_{1}(x) \\
& u_{2}=(-1+\ln (x)(-x-1)) \mathrm{e}^{-x}-\exp \text { Integral }_{1}(x)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\left(\left(x^{2}+2 x+2\right) \ln (x)+x+3\right) \mathrm{e}^{-x}+2 \exp \operatorname{Integral}_{1}(x)\right) \mathrm{e}^{x} \\
& +\left((-1+\ln (x)(-x-1)) \mathrm{e}^{-x}-\exp \operatorname{Integral}_{1}(x)\right) x \mathrm{e}^{x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-\mathrm{e}^{x}(x-2) \operatorname{expIntegral}{ }_{1}(x)+3+(x+2) \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(-\mathrm{e}^{x}(x-2) \exp \text { Integral }_{1}(x)+3+(x+2) \ln (x)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\mathrm{e}^{x}(x-2) \exp \text { Integral }_{1}(x)+3+(x+2) \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\mathrm{e}^{x}(x-2) \exp \operatorname{Integral}_{1}(x)+3+(x+2) \ln (x) \tag{1}
\end{equation*}
$$

Figure 517: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\mathrm{e}^{x}(x-2) \exp \text { Integral }_{1}(x)+3+(x+2) \ln (x)
$$

Verified OK.
12.18.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =x \ln (x) \mathrm{e}^{-x} \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =x \ln (x) \mathrm{e}^{-x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=(-1+\ln (x)(-x-1)) \mathrm{e}^{-x}-\exp \text { Integral }_{1}(x)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=(3+(x+2) \ln (x)) \mathrm{e}^{-x}+(-x+2) \exp \operatorname{Integral}_{1}(x)+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{(3+(x+2) \ln (x)) \mathrm{e}^{-x}+(-x+2) \exp \operatorname{Integral}_{1}(x)+c_{1} x+c_{2}}{\mathrm{e}^{-x}}
$$

Or
$y=c_{1} x \mathrm{e}^{x}-x \exp$ Integral $_{1}(x) \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+x \ln (x)+2 \exp$ Integral $_{1}(x) \mathrm{e}^{x}+2 \ln (x)+3$

Summary
The solution(s) found are the following
$y=c_{1} x \mathrm{e}^{x}-x \exp \operatorname{Integral}_{1}(x) \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+x \ln (x)+2 \exp$ Integral $_{1}(x) \mathrm{e}^{x}+2 \ln (x)+3$

Figure 518: Slope field plot

Verification of solutions

$y=c_{1} x \mathrm{e}^{x}-x \exp \operatorname{Integral}_{1}(x) \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+x \ln (x)+2 \exp \operatorname{Integral}_{1}(x) \mathrm{e}^{x}+2 \ln (x)+3$ Verified OK.

12.18.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 459: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2} \mathrm{e}^{x} \ln (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int x^{2} \ln (x) \mathrm{e}^{-x} d x
$$

Hence

$$
u_{1}=-\left(-x^{2}-2 x-2\right) \mathrm{e}^{-x} \ln (x)+2 \exp \operatorname{Integral}_{1}(x)+x \mathrm{e}^{-x}+3 \mathrm{e}^{-x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x \mathrm{e}^{x} \ln (x)}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int x \ln (x) \mathrm{e}^{-x} d x
$$

Hence

$$
u_{2}=(-x-1) \mathrm{e}^{-x} \ln (x)-\operatorname{expIntegral}{ }_{1}(x)-\mathrm{e}^{-x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(\left(x^{2}+2 x+2\right) \ln (x)+x+3\right) \mathrm{e}^{-x}+2 \exp \operatorname{Integral}_{1}(x) \\
& u_{2}=(-1+\ln (x)(-x-1)) \mathrm{e}^{-x}-\exp \text { Integral }_{1}(x)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\left(\left(x^{2}+2 x+2\right) \ln (x)+x+3\right) \mathrm{e}^{-x}+2 \exp \operatorname{Integral}_{1}(x)\right) \mathrm{e}^{x} \\
& +\left((-1+\ln (x)(-x-1)) \mathrm{e}^{-x}-\exp \operatorname{Integral}_{1}(x)\right) x \mathrm{e}^{x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-\mathrm{e}^{x}(x-2) \exp \operatorname{Integral}_{1}(x)+3+(x+2) \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}\right)+\left(-\mathrm{e}^{x}(x-2) \exp \text { Integral }_{1}(x)+3+(x+2) \ln (x)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\mathrm{e}^{x}(x-2) \exp \operatorname{Integral}_{1}(x)+3+(x+2) \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\mathrm{e}^{x}(x-2) \exp \text { Integral }_{1}(x)+3+(x+2) \ln (x) \tag{1}
\end{equation*}
$$

Figure 519: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)-\mathrm{e}^{x}(x-2) \exp \text { Integral }_{1}(x)+3+(x+2) \ln (x)
$$

Verified OK.

12.18.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+y=x \ln (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \ln (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{x}\left(-\left(\int x^{2} \ln (x) \mathrm{e}^{-x} d x\right)+\left(\int x \ln (x) \mathrm{e}^{-x} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\mathrm{e}^{x}(x-2) \mathrm{Ei}_{1}(x)+3+(x+2) \ln (x)
$$

- Substitute particular solution into general solution to ODE $y=\mathrm{e}^{x} c_{1}+c_{2} x \mathrm{e}^{x}-\mathrm{e}^{x}(x-2) \mathrm{Ei}_{1}(x)+3+(x+2) \ln (x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=x*\operatorname{ln}(x),y(x), singsol=all)
```

$$
y(x)=-(x-2) \mathrm{e}^{x} \exp \operatorname{Integral}_{1}(x)+\left(c_{1} x+c_{2}\right) \mathrm{e}^{x}+3+(x+2) \ln (x)
$$

\checkmark Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 37
DSolve[y''[x]-2*y'[x]+y[x]==x*Log[x],y[x],x,IncludeSingularSolutions -> True]
$y(x) \rightarrow e^{x}(x-2)$ ExpIntegralEi $(-x)+(x+2) \log (x)+c_{1} e^{x}+c_{2} e^{x} x+3$

12.19 problem 19

12.19.1 Solving as second order euler ode ode 3095
12.19.2 Solving as second order change of variable on x method 2 ode . 3099
12.19.3 Solving as second order change of variable on x method 1 ode . 3104
12.19.4 Solving as second order change of variable on y method 2 ode . 3109
12.19.5 Solving using Kovacic algorithm 3114

Internal problem ID [11847]
Internal file name [OUTPUT/11856_Saturday_April_13_2024_01_12_56_AM_67587560/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change_of__variable_on_x_method_2", "second_order_change__of_variable_on_y_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=3 x^{4}+6 x^{3}
$$

12.19.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-6 x, C=10, f(x)=3 x^{4}+6 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-6 x r x^{r-1}+10 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-6 r x^{r}+10 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-6 r+10=0
$$

Or

$$
\begin{equation*}
r^{2}-7 r+10=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=5
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{5}+c_{1} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=3 x^{4}+6 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{5}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{5} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{5}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{5} \\
2 x & 5 x^{4}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(5 x^{4}\right)-\left(x^{5}\right)(2 x)
$$

Which simplifies to

$$
W=3 x^{6}
$$

Which simplifies to

$$
W=3 x^{6}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{5}\left(3 x^{4}+6 x^{3}\right)}{3 x^{8}} d x
$$

Which simplifies to

$$
u_{1}=-\int(x+2) d x
$$

Hence

$$
u_{1}=-\frac{1}{2} x^{2}-2 x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}\left(3 x^{4}+6 x^{3}\right)}{3 x^{8}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x+2}{x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x^{2}}-\frac{1}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{1}{2} x^{2}-2 x\right) x^{2}+\left(-\frac{1}{x^{2}}-\frac{1}{x}\right) x^{5}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{3 x^{3}(x+2)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =-\frac{3}{2} x^{4}-3 x^{3}+c_{2} x^{5}+c_{1} x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{2} x^{4}-3 x^{3}+c_{2} x^{5}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{3}{2} x^{4}-3 x^{3}+c_{2} x^{5}+c_{1} x^{2}
$$

Verified OK.

12.19.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{6}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{6}{x} d x\right)} d x \\
& =\int e^{6 \ln (x)} d x \\
& =\int x^{6} d x \\
& =\frac{x^{7}}{7} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{10}{x^{2}}}{x^{12}} \\
& =\frac{10}{x^{14}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{10 y(\tau)}{x^{14}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{10}{x^{14}}=\frac{10}{49 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{10 y(\tau)}{49 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
49\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+10 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
49 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+10 \tau^{r}=0
$$

Simplifying gives

$$
49 r(r-1) \tau^{r}+0 \tau^{r}+10 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
49 r(r-1)+0+10=0
$$

Or

$$
\begin{equation*}
49 r^{2}-49 r+10=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{7} \\
& r_{2}=\frac{5}{7}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{7}}+c_{2} \tau^{\frac{5}{7}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 7^{\frac{5}{7}}\left(x^{7}\right)^{\frac{2}{7}}}{7}+\frac{c_{2} 7^{\frac{2}{7}}\left(x^{7}\right)^{\frac{5}{7}}}{7}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 7^{\frac{5}{7}}\left(x^{7}\right)^{\frac{2}{7}}}{7}+\frac{c_{2} 7^{\frac{2}{7}}\left(x^{7}\right)^{\frac{5}{7}}}{7}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{7}\right)^{\frac{2}{7}} \\
& y_{2}=\left(x^{7}\right)^{\frac{5}{7}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{7}\right)^{\frac{2}{7}} & \left(x^{7}\right)^{\frac{5}{7}} \\
\frac{d}{d x}\left(\left(x^{7}\right)^{\frac{2}{7}}\right) & \frac{d}{d x}\left(\left(x^{7}\right)^{\frac{5}{7}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{7}\right)^{\frac{2}{7}} & \left(x^{7}\right)^{\frac{5}{7}} \\
\frac{2 x^{6}}{\left(x^{7}\right)^{\frac{5}{7}}} & \frac{5 x^{6}}{\left(x^{7}\right)^{\frac{2}{7}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{7}\right)^{\frac{2}{7}}\right)\left(\frac{5 x^{6}}{\left(x^{7}\right)^{\frac{2}{7}}}\right)-\left(\left(x^{7}\right)^{\frac{5}{7}}\right)\left(\frac{2 x^{6}}{\left(x^{7}\right)^{\frac{5}{7}}}\right)
$$

Which simplifies to

$$
W=3 x^{6}
$$

Which simplifies to

$$
W=3 x^{6}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{7}\right)^{\frac{5}{7}}\left(3 x^{4}+6 x^{3}\right)}{3 x^{8}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{7}\right)^{\frac{5}{7}}(x+2)}{x^{5}} d x
$$

Hence

$$
u_{1}=-\frac{(x+4)\left(x^{7}\right)^{\frac{5}{7}}}{2 x^{4}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{7}\right)^{\frac{2}{7}}\left(3 x^{4}+6 x^{3}\right)}{3 x^{8}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{7}\right)^{\frac{2}{7}}(x+2)}{x^{5}} d x
$$

Hence

$$
u_{2}=-\frac{(1+x)\left(x^{7}\right)^{\frac{2}{7}}}{x^{4}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{3}(x+4)}{2}-(1+x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{3}{2} x^{4}-3 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 7^{\frac{5}{7}}\left(x^{7}\right)^{\frac{2}{7}}}{7}+\frac{c_{2} 7^{\frac{2}{7}}\left(x^{7}\right)^{\frac{5}{7}}}{7}\right)+\left(-\frac{3}{2} x^{4}-3 x^{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 7^{\frac{5}{7}}\left(x^{7}\right)^{\frac{2}{7}}}{7}+\frac{c_{2} 7^{\frac{2}{7}}\left(x^{7}\right)^{\frac{5}{7}}}{7}-\frac{3 x^{4}}{2}-3 x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 7^{\frac{5}{7}}\left(x^{7}\right)^{\frac{2}{7}}}{7}+\frac{c_{2} 7^{\frac{2}{7}}\left(x^{7}\right)^{\frac{5}{7}}}{7}-\frac{3 x^{4}}{2}-3 x^{3}
$$

Verified OK.

12.19.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-6 x, C=10, f(x)=3 x^{4}+6 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{6}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{10}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{10}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{6}{x} \frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{7 c \sqrt{10}}{10}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{7 c \sqrt{10}\left(\frac{d}{d \tau} y(\tau)\right)}{10}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{7 \sqrt{10} c \tau}{20}}\left(c_{1} \cosh \left(\frac{3 \sqrt{10} c \tau}{20}\right)+i c_{2} \sinh \left(\frac{3 \sqrt{10} c \tau}{20}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{10} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{7}{2}}\left(c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=3 x^{4}+6 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{7}\right)^{\frac{2}{7}} \\
& y_{2}=\left(x^{7}\right)^{\frac{5}{7}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{7}\right)^{\frac{2}{7}} & \left(x^{7}\right)^{\frac{5}{7}} \\
\frac{d}{d x}\left(\left(x^{7}\right)^{\frac{2}{7}}\right) & \frac{d}{d x}\left(\left(x^{7}\right)^{\frac{5}{7}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{7}\right)^{\frac{2}{7}} & \left(x^{7}\right)^{\frac{5}{7}} \\
\frac{2 x^{6}}{\left(x^{7}\right)^{\frac{5}{7}}} & \frac{5 x^{6}}{\left(x^{7}\right)^{\frac{2}{7}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{7}\right)^{\frac{2}{7}}\right)\left(\frac{5 x^{6}}{\left(x^{7}\right)^{\frac{2}{7}}}\right)-\left(\left(x^{7}\right)^{\frac{5}{7}}\right)\left(\frac{2 x^{6}}{\left(x^{7}\right)^{\frac{5}{7}}}\right)
$$

Which simplifies to

$$
W=3 x^{6}
$$

Which simplifies to

$$
W=3 x^{6}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{7}\right)^{\frac{5}{7}}\left(3 x^{4}+6 x^{3}\right)}{3 x^{8}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{7}\right)^{\frac{5}{7}}(x+2)}{x^{5}} d x
$$

Hence

$$
u_{1}=-\frac{(x+4)\left(x^{7}\right)^{\frac{5}{7}}}{2 x^{4}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{7}\right)^{\frac{2}{7}}\left(3 x^{4}+6 x^{3}\right)}{3 x^{8}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{7}\right)^{\frac{2}{7}}(x+2)}{x^{5}} d x
$$

Hence

$$
u_{2}=-\frac{(1+x)\left(x^{7}\right)^{\frac{2}{7}}}{x^{4}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{3}(x+4)}{2}-(1+x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{3}{2} x^{4}-3 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{\frac{7}{2}}\left(c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)\right)\right)+\left(-\frac{3}{2} x^{4}-3 x^{3}\right) \\
& =-\frac{3 x^{4}}{2}-3 x^{3}+x^{\frac{7}{2}}\left(c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=i \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{7}{2}} c_{2}+\cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{7}{2}} c_{1}-\frac{3 x^{4}}{2}-3 x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=i \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{7}{2}} c_{2}+\cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{7}{2}} c_{1}-\frac{3 x^{4}}{2}-3 x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{7}{2}} c_{2}+\cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{7}{2}} c_{1}-\frac{3 x^{4}}{2}-3 x^{3}
$$

Verified OK.

12.19.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-6 x, C=10, f(x)=3 x^{4}+6 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{6}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{6 n}{x^{2}}+\frac{10}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=5 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{4 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{4 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{4 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{4 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{4}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{4}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{4}{x} d x \\
\ln (u) & =-4 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-4 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{4}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x^{5} \\
& =c_{2} x^{5}-\frac{1}{3} c_{1} x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=3 x^{4}+6 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{5}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{5} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{5}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{5} \\
2 x & 5 x^{4}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(5 x^{4}\right)-\left(x^{5}\right)(2 x)
$$

Which simplifies to

$$
W=3 x^{6}
$$

Which simplifies to

$$
W=3 x^{6}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{5}\left(3 x^{4}+6 x^{3}\right)}{3 x^{8}} d x
$$

Which simplifies to

$$
u_{1}=-\int(x+2) d x
$$

Hence

$$
u_{1}=-\frac{1}{2} x^{2}-2 x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}\left(3 x^{4}+6 x^{3}\right)}{3 x^{8}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x+2}{x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x^{2}}-\frac{1}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{1}{2} x^{2}-2 x\right) x^{2}+\left(-\frac{1}{x^{2}}-\frac{1}{x}\right) x^{5}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{3 x^{3}(x+2)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x^{5}\right)+\left(-\frac{3 x^{3}(x+2)}{2}\right) \\
& =-\frac{3 x^{3}(x+2)}{2}+\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x^{5}
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{x^{2}\left(-6 c_{2} x^{3}+9 x^{2}+2 c_{1}+18 x\right)}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}\left(-6 c_{2} x^{3}+9 x^{2}+2 c_{1}+18 x\right)}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x^{2}\left(-6 c_{2} x^{3}+9 x^{2}+2 c_{1}+18 x\right)}{6}
$$

Verified OK.

12.19.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-6 x \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 461: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{2}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{2}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{2}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	2	-1

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(0) \\
& =-\frac{1}{x} \\
& =-\frac{1}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{x}\right)(0)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}\right)^{2}-\left(\frac{2}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6 x}{x^{2}} d x} \\
& =z_{1} e^{3 \ln (x)} \\
& =z_{1}\left(x^{3}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{3}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}\left(\frac{x^{3}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-6 y^{\prime} x+10 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{2}+\frac{1}{3} c_{2} x^{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =x^{2} \\
y_{2} & =\frac{x^{5}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \frac{x^{5}}{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\frac{x^{5}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \frac{x^{5}}{3} \\
2 x & \frac{5 x^{4}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(\frac{5 x^{4}}{3}\right)-\left(\frac{x^{5}}{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{6}
$$

Which simplifies to

$$
W=x^{6}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{5}\left(3 x^{4}+6 x^{3}\right)}{3}}{x^{8}} d x
$$

Which simplifies to

$$
u_{1}=-\int(x+2) d x
$$

Hence

$$
u_{1}=-\frac{1}{2} x^{2}-2 x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}\left(3 x^{4}+6 x^{3}\right)}{x^{8}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{3 x+6}{x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{3}{x^{2}}-\frac{3}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{1}{2} x^{2}-2 x\right) x^{2}+\frac{\left(-\frac{3}{x^{2}}-\frac{3}{x}\right) x^{5}}{3}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{3 x^{3}(x+2)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}+\frac{1}{3} c_{2} x^{5}\right)+\left(-\frac{3 x^{3}(x+2)}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+\frac{c_{2} x^{5}}{3}-\frac{3 x^{3}(x+2)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+\frac{c_{2} x^{5}}{3}-\frac{3 x^{3}(x+2)}{2}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-6 * x * \operatorname{diff}(y(x), x)+10 * y(x)=3 * x^{\wedge} 4+6 * x^{\wedge} 3, y(x)$, singsol=all)

$$
y(x)=-\frac{3}{2} x^{4}-3 x^{3}+\frac{1}{3} c_{1} x^{5}+c_{2} x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 28
DSolve[x^2*y''[x]-6*x*y'[x]+10*y[x]==3*x^4+6*x^3,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{2} x^{5}-\frac{3}{2}(x+2) x^{3}+c_{1} x^{2}
$$

12.20 problem 20

12.20.1 Solving as linear second order ode solved by an integrating factor
ode . 3123]
12.20.2 Solving as second order change of variable on x method 2 ode . 3125
12.20.3 Solving as second order change of variable on x method 1 ode . 3130
12.20.4 Solving as second order ode non constant coeff transformation on B ode

3135
12.20.5 Solving using Kovacic algorithm 3139

Internal problem ID [11848]
Internal file name [OUTPUT/11857_Saturday_April_13_2024_01_12_59_AM_10005007/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_crariable_on_x_method_1", "second_order_change_of_cvariable_on_x_method_2", "linear_second_order_ode_solved__by__an_integrating_factor", "second__order__ode_non_constant_coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(1+x)^{2} y^{\prime \prime}-2(1+x) y^{\prime}+2 y=1
$$

12.20.1 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{2}{1+x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{2}{1+x} d x} \\
& =\frac{1}{1+x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
& (M(x) y)^{\prime \prime}=\frac{1}{(1+x)^{3}} \\
& \left(\frac{y}{1+x}\right)^{\prime \prime}=\frac{1}{(1+x)^{3}}
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{1+x}\right)^{\prime}=-\frac{1}{2(1+x)^{2}}+c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{1+x}\right)=c_{1} x+\frac{1}{2+2 x}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+\frac{1}{2+2 x}+c_{2}}{\frac{1}{1+x}}
$$

Or

$$
y=\left(x^{2}+x\right) c_{1}+(x+1) c_{2}+\frac{x}{2 x+2}+\frac{1}{2 x+2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2}+x\right) c_{1}+(x+1) c_{2}+\frac{x}{2 x+2}+\frac{1}{2 x+2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(x^{2}+x\right) c_{1}+(x+1) c_{2}+\frac{x}{2 x+2}+\frac{1}{2 x+2}
$$

Verified OK.

12.20.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
(x+1)^{2} y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
(x+1)^{2} y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x+1} \\
& q(x)=\frac{2}{(x+1)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{2}{x+1} d x\right)} d x \\
& =\int e^{2 \ln (x+1)} d x \\
& =\int(x+1)^{2} d x \\
& =\frac{(x+1)^{3}}{3} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{(x+1)^{2}}}{(x+1)^{4}} \\
& =\frac{2}{(x+1)^{6}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{(x+1)^{6}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{2}{(x+1)^{6}}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
r_{1} & =\frac{1}{3} \\
r_{2} & =\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left((x+1)^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left((x+1)^{3}\right)^{\frac{2}{3}}}{3}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 3^{\frac{2}{3}}\left((x+1)^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left((x+1)^{3}\right)^{\frac{2}{3}}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}} & \left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}} & \left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}} \\
\frac{3 x^{2}+6 x+3}{3\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}} & \frac{2 x^{2}+4 x+2}{\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}\right)\left(\frac{2 x^{2}+4 x+2}{\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}}\right) \\
& -\left(\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}\right)\left(\frac{3 x^{2}+6 x+3}{3\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=x^{2}+2 x+1
$$

Which simplifies to

$$
W=(x+1)^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}}{(x+1)^{4}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left((x+1)^{3}\right)^{\frac{2}{3}}}{(x+1)^{4}} d x
$$

Hence

$$
u_{1}=\frac{\left((x+1)^{3}\right)^{\frac{2}{3}}}{(x+1)^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}}{(x+1)^{4}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left((x+1)^{3}\right)^{\frac{1}{3}}}{(x+1)^{4}} d x
$$

Hence

$$
u_{2}=-\frac{\left((x+1)^{3}\right)^{\frac{1}{3}}}{2(x+1)^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left((x+1)^{3}\right)^{\frac{2}{3}}\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}}{(x+1)^{3}}-\frac{\left((x+1)^{3}\right)^{\frac{1}{3}}\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}}{2(x+1)^{3}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 3^{\frac{2}{3}}\left((x+1)^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left((x+1)^{3}\right)^{\frac{2}{3}}}{3}\right)+\left(\frac{1}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left((x+1)^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left((x+1)^{3}\right)^{\frac{2}{3}}}{3}+\frac{1}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left((x+1)^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left((x+1)^{3}\right)^{\frac{2}{3}}}{3}+\frac{1}{2}
$$

Verified OK.

12.20.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=(x+1)^{2}, B=-2 x-2, C=2, f(x)=1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
(x+1)^{2} y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
(x+1)^{2} y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{2}{x+1} \\
q(x) & =\frac{2}{(x+1)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{(x+1)^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{(x+1)^{2}}}(x+1)^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{(x+1)^{2}}}(x+1)^{3}}-\frac{2}{x+1} \frac{\sqrt{2} \sqrt{\frac{1}{(x+1)^{2}}}}{c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{(x+1)^{2}}}}{c}\right)^{2}} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2}}{2} c \tau}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{(x+1)^{2}}} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{(x+1)^{2}}}(x+1) \ln (x+1)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=(x+1)^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x+1)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x+1)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
(x+1)^{2} y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=1
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}} & \left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}} & \left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}} \\
\frac{3 x^{2}+6 x+3}{3\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}} & \frac{2 x^{2}+4 x+2}{\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}\right)\left(\frac{2 x^{2}+4 x+2}{\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}}\right) \\
& -\left(\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}\right)\left(\frac{3 x^{2}+6 x+3}{3\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=x^{2}+2 x+1
$$

Which simplifies to

$$
W=(x+1)^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}}{(x+1)^{4}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left((x+1)^{3}\right)^{\frac{2}{3}}}{(x+1)^{4}} d x
$$

Hence

$$
u_{1}=\frac{\left((x+1)^{3}\right)^{\frac{2}{3}}}{(x+1)^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}}{(x+1)^{4}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left((x+1)^{3}\right)^{\frac{1}{3}}}{(x+1)^{4}} d x
$$

Hence

$$
u_{2}=-\frac{\left((x+1)^{3}\right)^{\frac{1}{3}}}{2(x+1)^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left((x+1)^{3}\right)^{\frac{2}{3}}\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{1}{3}}}{(x+1)^{3}}-\frac{\left((x+1)^{3}\right)^{\frac{1}{3}}\left(x^{3}+3 x^{2}+3 x+1\right)^{\frac{2}{3}}}{2(x+1)^{3}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left((x+1)^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x+1)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x+1)}{2}\right)\right)\right)+\left(\frac{1}{2}\right) \\
& =\frac{1}{2}+(x+1)^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x+1)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x+1)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{1}{2}+(x+1)^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x+1)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x+1)}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2}+(x+1)^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x+1)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x+1)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{2}+(x+1)^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x+1)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x+1)}{2}\right)\right)
$$

Verified OK.

12.20.4 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=(x+1)^{2} \\
& B=-2 x-2 \\
& C=2 \\
& F=1
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left((x+1)^{2}\right)(0)+(-2 x-2)(-2)+(2)(-2 x-2) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-2(x+1)^{3} v^{\prime \prime}+(0) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-2(x+1)^{3} u^{\prime}(x)=0
$$

Which is now solved for u. Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int c_{1} \mathrm{~d} x \\
& =c_{1} x+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(-2 x-2)\left(c_{1} x+c_{2}\right) \\
& =-2(x+1)\left(c_{1} x+c_{2}\right)
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=-2 x-2 \\
& y_{2}=-2 x^{2}-2 x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
-2 x-2 & -2 x^{2}-2 x \\
\frac{d}{d x}(-2 x-2) & \frac{d}{d x}\left(-2 x^{2}-2 x\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
-2 x-2 & -2 x^{2}-2 x \\
-2 & -4 x-2
\end{array}\right|
$$

Therefore

$$
W=(-2 x-2)(-4 x-2)-\left(-2 x^{2}-2 x\right)(-2)
$$

Which simplifies to

$$
W=4 x^{2}+8 x+4
$$

Which simplifies to

$$
W=4(x+1)^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-2 x^{2}-2 x}{4(x+1)^{4}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{x}{2(x+1)^{3}} d x
$$

Hence

$$
u_{1}=-\frac{1}{2(x+1)}+\frac{1}{4(x+1)^{2}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-2 x-2}{4(x+1)^{4}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{1}{2(x+1)^{3}} d x
$$

Hence

$$
u_{2}=\frac{1}{4(x+1)^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{-2 x-1}{4(x+1)^{2}} \\
& u_{2}=\frac{1}{4(x+1)^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{(-2 x-1)(-2 x-2)}{4(x+1)^{2}}+\frac{-2 x^{2}-2 x}{4(x+1)^{2}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{2}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-2(x+1)\left(c_{1} x+c_{2}\right)\right)+\left(\frac{1}{2}\right) \\
& =\frac{1}{2}-2 c_{1} x^{2}+2\left(-c_{1}-c_{2}\right) x-2 c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2}-2 c_{1} x^{2}+2\left(-c_{1}-c_{2}\right) x-2 c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{2}-2 c_{1} x^{2}+2\left(-c_{1}-c_{2}\right) x-2 c_{2}
$$

Verified OK.

12.20.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
(x+1)^{2} y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=(x+1)^{2} \\
& B=-2 x-2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 462: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x-2}{(x+1)^{2}} d x} \\
& =z_{1} e^{\ln (x+1)} \\
& =z_{1}(x+1)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x+1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x-2}{(x+1)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 \ln (x+1)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x+1)+c_{2}(x+1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
(x+1)^{2} y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}(x+1)+c_{2} x(x+1)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x+1 \\
& y_{2}=x(x+1)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x+1 & x(x+1) \\
\frac{d}{d x}(x+1) & \frac{d}{d x}(x(x+1))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x+1 & x(x+1) \\
1 & 2 x+1
\end{array}\right|
$$

Therefore

$$
W=(x+1)(2 x+1)-(x(x+1))(1)
$$

Which simplifies to

$$
W=x^{2}+2 x+1
$$

Which simplifies to

$$
W=(x+1)^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x(x+1)}{(x+1)^{4}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x}{(x+1)^{3}} d x
$$

Hence

$$
u_{1}=\frac{1}{x+1}-\frac{1}{2(x+1)^{2}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x+1}{(x+1)^{4}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{(x+1)^{3}} d x
$$

Hence

$$
u_{2}=-\frac{1}{2(x+1)^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{2 x+1}{2(x+1)^{2}} \\
& u_{2}=-\frac{1}{2(x+1)^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{2 x+1}{2 x+2}-\frac{x}{2(x+1)}
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}(x+1)+c_{2} x(x+1)\right)+\left(\frac{1}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=(x+1)\left(c_{2} x+c_{1}\right)+\frac{1}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=(x+1)\left(c_{2} x+c_{1}\right)+\frac{1}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(x+1)\left(c_{2} x+c_{1}\right)+\frac{1}{2}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve((x+1)^2*diff (y(x), x$2)-2*(x+1)*diff (y(x), x)+2*y(x)=1,y(x), singsol=all)
```

$$
y(x)=(1+x)^{2} c_{1}+c_{2} x+c_{2}+\frac{1}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 23
DSolve $[(x+1) \sim 2 * y$ ' $\quad[x]-2 *(x+1) * y$ ' $[x]+2 * y[x]==1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2}(x+1)^{2}+c_{1}(x+1)+\frac{1}{2}
$$

12.21 problem 21

12.21.1 Solving as second order change of variable on y method 2 ode . 3146
12.21.2 Solving as second order ode non constant coeff transformation on B ode
12.21.3 Solving using Kovacic algorithm 3155

Internal problem ID [11849]
Internal file name [OUTPUT/11858_Saturday_April_13_2024_01_13_01_AM_84043608/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+2 x\right) y^{\prime \prime}-2(x+1) y^{\prime}+2 y=(x+2)^{2}
$$

12.21.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}+2 x, B=-2 x-2, C=2, f(x)=(x+2)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
\left(x^{2}+2 x\right) y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
\left(x^{2}+2 x\right) y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{-2 x-2}{x(x+2)} \\
q(x) & =\frac{2}{x(x+2)}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n(-2 x-2)}{x^{2}(x+2)}+\frac{2}{x(x+2)}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4}{x}+\frac{-2 x-2}{x(x+2)}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(2 x+6) v^{\prime}(x)}{x(x+2)} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(2 x+6) u(x)}{x(x+2)}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u(x+3)}{x(x+2)}
\end{aligned}
$$

Where $f(x)=-\frac{2(x+3)}{x(x+2)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2(x+3)}{x(x+2)} d x \\
\int \frac{1}{u} d u & =\int-\frac{2(x+3)}{x(x+2)} d x \\
\ln (u) & =-3 \ln (x)+\ln (x+2)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+\ln (x+2)+c_{1}} \\
& =c_{1} \mathrm{e}^{-3 \ln (x)+\ln (x+2)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(\frac{1}{x^{2}}+\frac{2}{x^{3}}\right)
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1}\left(-\frac{1}{x^{2}}-\frac{1}{x}\right)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1}\left(-\frac{1}{x^{2}}-\frac{1}{x}\right)+c_{2}\right) x^{2} \\
& =(-x-1) c_{1}+c_{2} x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
\left(x^{2}+2 x\right) y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=(x+2)^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=-x-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & -x-1 \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}(-x-1)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & -x-1 \\
2 x & -1
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(-1)-(-x-1)(2 x)
$$

Which simplifies to

$$
W=x^{2}+2 x
$$

Which simplifies to

$$
W=x^{2}+2 x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{(-x-1)(x+2)^{2}}{\left(x^{2}+2 x\right)^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{-x-1}{x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{1}{x}+\ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}(x+2)^{2}}{\left(x^{2}+2 x\right)^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{1}{x}+\ln (x)\right) x^{2}+(-x-1) x
$$

Which simplifies to

$$
y_{p}(x)=x(x \ln (x)-x-2)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1}\left(-\frac{1}{x^{2}}-\frac{1}{x}\right)+c_{2}\right) x^{2}\right)+(x(x \ln (x)-x-2)) \\
& =x(x \ln (x)-x-2)+\left(c_{1}\left(-\frac{1}{x^{2}}-\frac{1}{x}\right)+c_{2}\right) x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2} \ln (x)+c_{2} x^{2}-c_{1} x-x^{2}-c_{1}-2 x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \ln (x)+c_{2} x^{2}-c_{1} x-x^{2}-c_{1}-2 x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2} \ln (x)+c_{2} x^{2}-c_{1} x-x^{2}-c_{1}-2 x
$$

Verified OK.

12.21.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2}+2 x \\
& B=-2 x-2 \\
& C=2 \\
& F=(x+2)^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}+2 x\right)(0)+(-2 x-2)(-2)+(2)(-2 x-2) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-2 x(x+2)(x+1) v^{\prime \prime}+(4) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(-2 x^{3}-6 x^{2}-4 x\right) u^{\prime}(x)+4 u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u}{x\left(x^{2}+3 x+2\right)}
\end{aligned}
$$

Where $f(x)=\frac{2}{x\left(x^{2}+3 x+2\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{x\left(x^{2}+3 x+2\right)} d x \\
\int \frac{1}{u} d u & =\int \frac{2}{x\left(x^{2}+3 x+2\right)} d x \\
\ln (u) & =-2 \ln (x+1)+\ln (x)+\ln (x+2)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x+1)+\ln (x)+\ln (x+2)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x+1)+\ln (x)+\ln (x+2)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(\frac{x^{2}}{(x+1)^{2}}+\frac{2 x}{(x+1)^{2}}\right)
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(\frac{x^{2}}{(x+1)^{2}}+\frac{2 x}{(x+1)^{2}}\right)
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1} x(x+2)}{(x+1)^{2}} \mathrm{~d} x \\
& =c_{1}\left(x+\frac{1}{x+1}\right)+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(-2 x-2)\left(c_{1}\left(x+\frac{1}{x+1}\right)+c_{2}\right) \\
& =\left(-2 x^{2}-2 x-2\right) c_{1}-2(x+1) c_{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=-2 x-2 \\
& y_{2}=-2 x^{2}-2 x-2
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
-2 x-2 & -2 x^{2}-2 x-2 \\
\frac{d}{d x}(-2 x-2) & \frac{d}{d x}\left(-2 x^{2}-2 x-2\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
-2 x-2 & -2 x^{2}-2 x-2 \\
-2 & -4 x-2
\end{array}\right|
$$

Therefore

$$
W=(-2 x-2)(-4 x-2)-\left(-2 x^{2}-2 x-2\right)(-2)
$$

Which simplifies to

$$
W=4 x^{2}+8 x
$$

Which simplifies to

$$
W=4 x^{2}+8 x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-2 x^{2}-2 x-2\right)(x+2)^{2}}{\left(x^{2}+2 x\right)\left(4 x^{2}+8 x\right)} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{-x^{2}-x-1}{2 x^{2}} d x
$$

Hence

$$
u_{1}=\frac{x}{2}-\frac{1}{2 x}+\frac{\ln (x)}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(-2 x-2)(x+2)^{2}}{\left(x^{2}+2 x\right)\left(4 x^{2}+8 x\right)} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-x-1}{2 x^{2}} d x
$$

Hence

$$
u_{2}=\frac{1}{2 x}-\frac{\ln (x)}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\frac{x}{2}-\frac{1}{2 x}+\frac{\ln (x)}{2}\right)(-2 x-2)+\left(\frac{1}{2 x}-\frac{\ln (x)}{2}\right)\left(-2 x^{2}-2 x-2\right)
$$

Which simplifies to

$$
y_{p}(x)=x(x \ln (x)-x-2)
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(\left(-2 x^{2}-2 x-2\right) c_{1}-2(x+1) c_{2}\right)+(x(x \ln (x)-x-2)) \\
& =x^{2} \ln (x)+\left(-2 c_{1}-1\right) x^{2}+\left(-2 c_{1}-2 c_{2}-2\right) x-2 c_{1}-2 c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2} \ln (x)+\left(-2 c_{1}-1\right) x^{2}+\left(-2 c_{1}-2 c_{2}-2\right) x-2 c_{1}-2 c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2} \ln (x)+\left(-2 c_{1}-1\right) x^{2}+\left(-2 c_{1}-2 c_{2}-2\right) x-2 c_{1}-2 c_{2}
$$

Verified OK.

12.21.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(x^{2}+2 x\right) y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}+2 x \\
& B=-2 x-2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{\left(x^{2}+2 x\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=\left(x^{2}+2 x\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{\left(x^{2}+2 x\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 463: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=\left(x^{2}+2 x\right)^{2}$. There is a pole at $x=0$ of order 2 . There is a pole at $x=-2$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 4 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}+\frac{3}{4(x+2)^{2}}+\frac{3}{4(x+2)}-\frac{3}{4 x}
$$

For the pole at $x=-2$ let b be the coefficient of $\frac{1}{(x+2)^{2}}$ in the partial fractions decom-
position of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $4>2$ then

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{\left(x^{2}+2 x\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
-2	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
4	0	0	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(x+2)}+\frac{3}{2 x}+(-)(0) \\
& =-\frac{1}{2(x+2)}+\frac{3}{2 x} \\
& =\frac{x+3}{x(x+2)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2(x+2)}+\frac{3}{2 x}\right)(0)+\left(\left(\frac{1}{2(x+2)^{2}}-\frac{3}{2 x^{2}}\right)+\left(-\frac{1}{2(x+2)}+\frac{3}{2 x}\right)^{2}-\left(\frac{3}{\left(x^{2}+2 x\right)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(x+2)}+\frac{3}{2 x}\right) d x} \\
& =\frac{x^{\frac{3}{2}}}{\sqrt{x+2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x-2}{x^{2}+2 x} d x} \\
& =z_{1} e^{\frac{\ln (x(x+2))}{2}} \\
& =z_{1}(\sqrt{x(x+2)})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x-2}{x^{2}+2 x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x(x+2))}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{-x-1}{x^{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}}\right)+c_{2}\left(\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}}\left(\frac{-x-1}{x^{2}}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\left(x^{2}+2 x\right) y^{\prime \prime}+(-2 x-2) y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1} x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}}+\frac{c_{2} \sqrt{x(x+2)}(-x-1)}{\sqrt{x} \sqrt{x+2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}} \\
& y_{2}=\frac{\sqrt{x(x+2)}(-x-1)}{\sqrt{x} \sqrt{x+2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}} & \frac{\sqrt{x(x+2)}(-x-1)}{\sqrt{x} \sqrt{x+2}} \\
\frac{d}{d x}\left(\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}}\right) & \frac{d}{d x}\left(\frac{\sqrt{x(x+2)}(-x-1)}{\sqrt{x} \sqrt{x+2}}\right)
\end{array}\right|
$$

Which gives
$W=\left\lvert\, \begin{array}{cc}\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}} & \frac{\sqrt{x(x+2)}(-x-1)}{\sqrt{x} \sqrt{x+2}} \\ \frac{3 \sqrt{x} \sqrt{x(x+2)}}{2 \sqrt{x+2}}-\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{2(x+2)^{\frac{3}{2}}}+\frac{x^{\frac{3}{2}}(2 x+2)}{2 \sqrt{x+2} \sqrt{x(x+2)}}-\frac{\sqrt{x(x+2)}(-x-1)}{2 x^{\frac{3}{2}} \sqrt{x+2}}-\frac{\sqrt{x(x+2)}(-x-1)}{2 \sqrt{x}(x+2)^{\frac{3}{2}}}+\frac{(-x-1)(2 x+2)}{2 \sqrt{x} \sqrt{x+2} \sqrt{x(x+2)}}-\frac{\sqrt{x}}{\sqrt{x}}\end{array}\right.$
Therefore

$$
\begin{aligned}
W= & \left(\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}}\right)\left(-\frac{\sqrt{x(x+2)}(-x-1)}{2 x^{\frac{3}{2}} \sqrt{x+2}}-\frac{\sqrt{x(x+2)}(-x-1)}{2 \sqrt{x}(x+2)^{\frac{3}{2}}}\right. \\
& \left.+\frac{(-x-1)(2 x+2)}{2 \sqrt{x} \sqrt{x+2} \sqrt{x(x+2)}}-\frac{\sqrt{x(x+2)}}{\sqrt{x} \sqrt{x+2}}\right) \\
& -\left(\frac{\sqrt{x(x+2)}(-x-1)}{\sqrt{x} \sqrt{x+2}}\right)\left(\frac{3 \sqrt{x} \sqrt{x(x+2)}}{2 \sqrt{x+2}}-\frac{x^{\frac{3}{2}} \sqrt{x(x+2)}}{2(x+2)^{\frac{3}{2}}}\right. \\
& \left.+\frac{x^{\frac{3}{2}}(2 x+2)}{2 \sqrt{x+2} \sqrt{x(x+2)}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=x(x+2)
$$

Which simplifies to

$$
W=x(x+2)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{(x+2)^{\frac{3}{2}} \sqrt{x(x+2)}(-x-1)}{\sqrt{x}}}{\left(x^{2}+2 x\right) x(x+2)} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{(-x-1) \sqrt{x(x+2)}}{\sqrt{x+2} x^{\frac{5}{2}}} d x
$$

Hence

$$
u_{1}=\frac{\sqrt{x(x+2)}(x \ln (x)-1)}{\sqrt{x+2} x^{\frac{3}{2}}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{\frac{3}{2}}(x+2)^{\frac{3}{2}} \sqrt{x(x+2)}}{\left(x^{2}+2 x\right) x(x+2)} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{x(x+2)}}{\sqrt{x} \sqrt{x+2}} d x
$$

Hence

$$
u_{2}=\frac{\sqrt{x} \sqrt{x(x+2)}}{\sqrt{x+2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=x(x \ln (x)-1)+(-x-1) x
$$

Which simplifies to

$$
y_{p}(x)=x(x \ln (x)-x-2)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x^{\frac{3}{2}} \sqrt{x(x+2)}}{\sqrt{x+2}}+\frac{c_{2} \sqrt{x(x+2)}(-x-1)}{\sqrt{x} \sqrt{x+2}}\right)+(x(x \ln (x)-x-2))
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\sqrt{x(x+2)}\left((-x-1) c_{2}+c_{1} x^{2}\right)}{\sqrt{x+2} \sqrt{x}}+x(x \ln (x)-x-2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x(x+2)}\left((-x-1) c_{2}+c_{1} x^{2}\right)}{\sqrt{x+2} \sqrt{x}}+x(x \ln (x)-x-2) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{x(x+2)}\left((-x-1) c_{2}+c_{1} x^{2}\right)}{\sqrt{x+2} \sqrt{x}}+x(x \ln (x)-x-2)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve((x^2+2*x)*diff(y(x),x$2)-2*(x+1)*diff(y(x),x)+2*y(x)=(x+2)^2,y(x), singsol=all)
```

$$
y(x)=\ln (x) x^{2}+\left(c_{2}-1\right) x^{2}+\left(-2+c_{1}\right) x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 31
DSolve $\left[\left(x^{\wedge} 2+2 * x\right) * y{ }^{\prime} '[x]-2 *(x+1) * y^{\prime}[x]+2 * y[x]==(x+2) \wedge 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow x^{2} \log (x)+\left(-1+c_{1}\right) x^{2}-\left(2+c_{2}\right) x-c_{2}
$$

12.22 problem 22

12.22.1 Solving as second order change of variable on y method 1 ode . 3165
12.22.2 Solving as second order change of variable on y method 2 ode . 3172
12.22.3 Solving using Kovacic algorithm 3176

Internal problem ID [11850]
Internal file name [OUTPUT/11859_Saturday_April_13_2024_01_13_03_AM_82095675/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_criable_on_y_method_1", "second_order_change_of__variable_on_y_method_2"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=x^{3}
$$

12.22.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-2 x\right) y^{\prime}+(x+2) y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-x^{2}-2 x}{x^{2}} \\
& q(x)=\frac{x+2}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{x+2}{x^{2}}-\frac{\left(\frac{-x^{2}-2 x}{x^{2}}\right)^{\prime}}{2}-\frac{\left(\frac{-x^{2}-2 x}{x^{2}}\right)^{2}}{4} \\
& =\frac{x+2}{x^{2}}-\frac{\left(\frac{-2 x-2}{x^{2}}-\frac{2\left(-x^{2}-2 x\right)}{x^{3}}\right)}{2}-\frac{\left(\frac{\left(-x^{2}-2 x\right)^{2}}{x^{4}}\right)}{4} \\
& =\frac{x+2}{x^{2}}-\left(\frac{-2 x-2}{2 x^{2}}-\frac{-x^{2}-2 x}{x^{3}}\right)-\frac{\left(-x^{2}-2 x\right)^{2}}{4 x^{4}} \\
& =-\frac{1}{4}
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-x^{2}-2 x}{x^{2}}} \\
& =\mathrm{e}^{\frac{x}{2}} x \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \mathrm{e}^{\frac{x}{2}} x \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
\mathrm{e}^{\frac{x}{2}}\left(4 v^{\prime \prime}(x)-v(x)\right)=4
$$

Which is now solved for $v(x)$ Simplyfing the ode gives

$$
v^{\prime \prime}(x)-\frac{v(x)}{4}=\mathrm{e}^{-\frac{x}{2}}
$$

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)
$$

Where $A=1, B=0, C=-\frac{1}{4}, f(x)=\mathrm{e}^{-\frac{x}{2}}$. Let the solution be

$$
v(x)=v_{h}+v_{p}
$$

Where v_{h} is the solution to the homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0$, and v_{p} is a particular solution to the non-homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)$. v_{h} is the solution to

$$
v^{\prime \prime}(x)-\frac{v(x)}{4}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=-\frac{1}{4}$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\frac{\mathrm{e}^{\lambda x}}{4}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\frac{1}{4}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-\frac{1}{4}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(-\frac{1}{4}\right)} \\
& = \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =+\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& v(x)=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{\left(-\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
v(x)=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Therefore the homogeneous solution v_{h} is

$$
v_{h}=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-\frac{x}{2}}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-\frac{x}{2}}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}}, \mathrm{e}^{\frac{x}{2}}\right\}
$$

Since $\mathrm{e}^{-\frac{x}{2}}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-\frac{x}{2}}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
v_{p}=A_{1} x \mathrm{e}^{-\frac{x}{2}}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution v_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{-\frac{x}{2}}=\mathrm{e}^{-\frac{x}{2}}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1\right]
$$

Substituting the above back in the above trial solution v_{p}, gives the particular solution

$$
v_{p}=-x \mathrm{e}^{-\frac{x}{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
v & =v_{h}+v_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}\right)+\left(-x \mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}-x \mathrm{e}^{-\frac{x}{2}}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\mathrm{e}^{\frac{x}{2}} x
$$

Hence (7) becomes

$$
y=\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}-x \mathrm{e}^{-\frac{x}{2}}\right) \mathrm{e}^{\frac{x}{2}} x
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}-x \mathrm{e}^{-\frac{x}{2}}\right) \mathrm{e}^{\frac{x}{2}} x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}} x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x \mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}} x \\
\frac{d}{d x}\left(x \mathrm{e}^{x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}} x\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x \mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}} x \\
x \mathrm{e}^{x}+\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}}\right)-\left(\mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}} x\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=-\mathrm{e}^{\frac{3 x}{2}} \mathrm{e}^{-\frac{x}{2}} x^{2}
$$

Which simplifies to

$$
W=-x^{2} \mathrm{e}^{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}} x^{4}}{-x^{4} \mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{-x} d x
$$

Hence

$$
u_{1}=-\mathrm{e}^{-x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4} \mathrm{e}^{x}}{-x^{4} \mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{2}=\int(-1) d x
$$

Hence

$$
u_{2}=-x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\mathrm{e}^{-x} \mathrm{e}^{x} x-x^{2} \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{\frac{x}{2}}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2}-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}-x \mathrm{e}^{-\frac{x}{2}}\right) \mathrm{e}^{\frac{x}{2}} x\right)+\left(-x^{2}-x\right)
\end{aligned}
$$

Which simplifies to

$$
y=x\left(\mathrm{e}^{x} c_{1}+c_{2}-x\right)-x^{2}-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\mathrm{e}^{x} c_{1}+c_{2}-x\right)-x^{2}-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(\mathrm{e}^{x} c_{1}+c_{2}-x\right)-x^{2}-x
$$

Verified OK.

12.22.2 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-x^{2}-2 x, C=x+2, f(x)=x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-2 x\right) y^{\prime}+(x+2) y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\left(-x^{2}-2 x\right) y^{\prime}+(x+2) y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-x-2}{x} \\
& q(x)=\frac{x+2}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n(-x-2)}{x^{2}}+\frac{x+2}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2}{x}+\frac{-x-2}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)-v^{\prime}(x) & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)-u(x)=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{u} d u & =x+c_{1} \\
\ln (u) & =x+c_{1} \\
u & =\mathrm{e}^{x+c_{1}} \\
u & =\mathrm{e}^{x} c_{1}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\mathrm{e}^{x} c_{1}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2}\right) x \\
& =\left(\mathrm{e}^{x} c_{1}+c_{2}\right) x
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-2 x\right) y^{\prime}+(x+2) y=x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & x \mathrm{e}^{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & x \mathrm{e}^{x} \\
1 & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(x)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
W=x^{2} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=x^{2} \mathrm{e}^{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4} \mathrm{e}^{x}}{x^{4} \mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4}}{x^{4} \mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-x} d x
$$

Hence

$$
u_{2}=-\mathrm{e}^{-x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x^{2}-\mathrm{e}^{-x} \mathrm{e}^{x} x
$$

Which simplifies to

$$
y_{p}(x)=-x^{2}-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\mathrm{e}^{x} c_{1}+c_{2}\right) x\right)+\left(-x^{2}-x\right) \\
& =-x^{2}-x+\left(\mathrm{e}^{x} c_{1}+c_{2}\right) x
\end{aligned}
$$

Which simplifies to

$$
y=x\left(\mathrm{e}^{x} c_{1}+c_{2}-x-1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\mathrm{e}^{x} c_{1}+c_{2}-x-1\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(\mathrm{e}^{x} c_{1}+c_{2}-x-1\right)
$$

Verified OK.

12.22.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+\left(-x^{2}-2 x\right) y^{\prime}+(x+2) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-x^{2}-2 x \tag{3}\\
& C=x+2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 464: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x^{2}-2 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{x}{2}+\ln (x)} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}} x\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x^{2}-2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x+2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}\left(x\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-2 x\right) y^{\prime}+(x+2) y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & x \mathrm{e}^{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & x \mathrm{e}^{x} \\
1 & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)(1)
$$

Which simplifies to

$$
W=x^{2} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=x^{2} \mathrm{e}^{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4} \mathrm{e}^{x}}{x^{4} \mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4}}{x^{4} \mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-x} d x
$$

Hence

$$
u_{2}=-\mathrm{e}^{-x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-x^{2}-\mathrm{e}^{-x} \mathrm{e}^{x} x
$$

Which simplifies to

$$
y_{p}(x)=-x^{2}-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x+c_{2} x \mathrm{e}^{x}\right)+\left(-x^{2}-x\right)
\end{aligned}
$$

Which simplifies to

$$
y=x\left(c_{1}+c_{2} \mathrm{e}^{x}\right)-x^{2}-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(c_{1}+c_{2} \mathrm{e}^{x}\right)-x^{2}-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(c_{1}+c_{2} \mathrm{e}^{x}\right)-x^{2}-x
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x$2)-x*(x+2)*diff(y(x),x)+(x+2)*y(x)=x^3,y(x), singsol=all)
```

$$
y(x)=x\left(-x+c_{1} \mathrm{e}^{x}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 2 * y^{\prime} '[x]-x *(x+2) * y\right.$ ' $[x]+(x+2) * y[x]==x^{\wedge} 3, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x\left(x-c_{2} e^{x}+1-c_{1}\right)
$$

12.23 problem 23

12.23.1 Solving as second order change of variable on y method 2 ode . 3183
12.23.2 Solving using Kovacic algorithm 3188

Internal problem ID [11851]
Internal file name [OUTPUT/11860_Saturday_April_13_2024_01_13_04_AM_25656480/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi.
2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
x(x-2) y^{\prime \prime}-\left(x^{2}-2\right) y^{\prime}+2 y(x-1)=3 x^{2}(x-2)^{2} \mathrm{e}^{x}
$$

12.23.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}-2 x, B=-x^{2}+2, C=2 x-2, f(x)=3 x^{2}(x-2)^{2} \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
\left(x^{2}-2 x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(2 x-2) y=0
$$

In normal form the ode

$$
\begin{equation*}
\left(x^{2}-2 x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(2 x-2) y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{-x^{2}+2}{x(x-2)} \\
q(x) & =\frac{2 x-2}{x(x-2)}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(-x^{2}+2\right)}{x^{2}(x-2)}+\frac{2 x-2}{x(x-2)}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4}{x}+\frac{-x^{2}+2}{x(x-2)}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{\left(-x^{2}+4 x-6\right) v^{\prime}(x)}{x(x-2)} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{\left(-x^{2}+4 x-6\right) u(x)}{x(x-2)}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{2}-4 x+6\right)}{x(x-2)}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}-4 x+6}{x(x-2)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{2}-4 x+6}{x(x-2)} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{2}-4 x+6}{x(x-2)} d x \\
\ln (u) & =x+\ln (x-2)-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{x+\ln (x-2)-3 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{x+\ln (x-2)-3 \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(\frac{\mathrm{e}^{x}}{x^{2}}-\frac{2 \mathrm{e}^{x}}{x^{3}}\right)
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{\mathrm{e}^{x} c_{1}}{x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{\mathrm{e}^{x} c_{1}}{x^{2}}+c_{2}\right) x^{2} \\
& =c_{2} x^{2}+\mathrm{e}^{x} c_{1}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
\left(x^{2}-2 x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(2 x-2) y=3 x^{2}(x-2)^{2} \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \mathrm{e}^{x} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \mathrm{e}^{x} \\
2 x & \mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(\mathrm{e}^{x}\right)-\left(\mathrm{e}^{x}\right)(2 x)
$$

Which simplifies to

$$
W=x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}
$$

Which simplifies to

$$
W=\mathrm{e}^{x}(x-2) x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{3 \mathrm{e}^{2 x}(x-2)^{2} x^{2}}{\left(x^{2}-2 x\right) \mathrm{e}^{x}(x-2) x} d x
$$

Which simplifies to

$$
u_{1}=-\int 3 \mathrm{e}^{x} d x
$$

Hence

$$
u_{1}=-3 \mathrm{e}^{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{3 x^{4}(x-2)^{2} \mathrm{e}^{x}}{\left(x^{2}-2 x\right) \mathrm{e}^{x}(x-2) x} d x
$$

Which simplifies to

$$
u_{2}=\int 3 x^{2} d x
$$

Hence

$$
u_{2}=x^{3}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-3 x^{2} \mathrm{e}^{x}+x^{3} \mathrm{e}^{x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{x} x^{2}(x-3)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{\mathrm{e}^{x} c_{1}}{x^{2}}+c_{2}\right) x^{2}\right)+\left(\mathrm{e}^{x} x^{2}(x-3)\right) \\
& =\mathrm{e}^{x} x^{2}(x-3)+\left(\frac{\mathrm{e}^{x} c_{1}}{x^{2}}+c_{2}\right) x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=\left(x^{3}-3 x^{2}+c_{1}\right) \mathrm{e}^{x}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{3}-3 x^{2}+c_{1}\right) \mathrm{e}^{x}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(x^{3}-3 x^{2}+c_{1}\right) \mathrm{e}^{x}+c_{2} x^{2}
$$

Verified OK.

12.23.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
\left(x^{2}-2 x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(2 x-2) y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2}-2 x \\
& B=-x^{2}+2 \tag{3}\\
& C=2 x-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{x^{4}-8 x^{3}+24 x^{2}-24 x+12}{4\left(x^{2}-2 x\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=x^{4}-8 x^{3}+24 x^{2}-24 x+12 \\
& t=4\left(x^{2}-2 x\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{4}-8 x^{3}+24 x^{2}-24 x+12}{4\left(x^{2}-2 x\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 465: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-4 \\
& =0
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(x^{2}-2 x\right)^{2}$. There is a pole at $x=2$ of order 2 . There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{1}{4}+\frac{3}{4 x^{2}}-\frac{1}{4(x-2)}+\frac{3}{4(x-2)^{2}}-\frac{3}{4 x}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

For the pole at $x=2$ let b be the coefficient of $\frac{1}{(x-2)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=0$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving x^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $x^{v}=x^{0}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{1}{x}+\frac{2}{x^{3}}+\frac{11}{x^{4}}+\frac{42}{x^{5}}+\frac{132}{x^{6}}+\frac{348}{x^{7}}+\frac{711}{x^{8}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=0$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $x^{v-1}=x^{-1}=\frac{1}{x}$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
$$

This shows that the coefficient of $\frac{1}{x}$ in the above is 0 . Now we need to find the coefficient of $\frac{1}{x}$ in r. How this is done depends on if $v=0$ or not. Since $v=0$ then starting from $r=\frac{s}{t}$ and doing long division in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of $\frac{1}{x}$ in r will be the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{4}-8 x^{3}+24 x^{2}-24 x+12}{4 x^{4}-16 x^{3}+16 x^{2}} \\
& =Q+\frac{R}{4 x^{4}-16 x^{3}+16 x^{2}} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-4 x^{3}+20 x^{2}-24 x+12}{4 x^{4}-16 x^{3}+16 x^{2}}\right) \\
& =\frac{1}{4}+\frac{-4 x^{3}+20 x^{2}-24 x+12}{4 x^{4}-16 x^{3}+16 x^{2}}
\end{aligned}
$$

Since the degree of t is 4 , then we see that the coefficient of the term x^{3} in the remainder R is -4 . Dividing this by leading coefficient in t which is 4 gives -1 . Now b can be found.

$$
\begin{aligned}
b & =(-1)-(0) \\
& =-1
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-1}{\frac{1}{2}}-0\right)=-1 \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-1}{\frac{1}{2}}-0\right)=1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{x^{4}-8 x^{3}+24 x^{2}-24 x+12}{4\left(x^{2}-2 x\right)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
2	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
0	$\frac{1}{2}$	-1	1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((-)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{-}}{x-c_{2}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}-\frac{1}{2(x-2)}+\left(\frac{1}{2}\right) \\
& =-\frac{1}{2 x}-\frac{1}{2(x-2)}+\frac{1}{2} \\
& =-\frac{1}{2 x}-\frac{1}{2 x-4}+\frac{1}{2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives
$(0)+2\left(-\frac{1}{2 x}-\frac{1}{2(x-2)}+\frac{1}{2}\right)(0)+\left(\left(\frac{1}{2 x^{2}}+\frac{1}{2(x-2)^{2}}\right)+\left(-\frac{1}{2 x}-\frac{1}{2(x-2)}+\frac{1}{2}\right)^{2}-\left(\frac{x^{4}-8 x^{3}+}{4(}\right.\right.$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 x}-\frac{1}{2(x-2)}+\frac{1}{2}\right) d x} \\
& =\frac{\mathrm{e}^{\frac{x}{2}}}{\sqrt{x} \sqrt{x-2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x^{2}+2}{x^{2}-2 x} d x} \\
& =z_{1} e^{\frac{x}{2}+\frac{\ln (x-2)}{2}+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\sqrt{x} \sqrt{x-2} \mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x^{2}+2}{x^{2}-2 x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x+\ln (x-2)+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-x^{2} \mathrm{e}^{-x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}\right)+c_{2}\left(\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}\left(-x^{2} \mathrm{e}^{-x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\left(x^{2}-2 x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(2 x-2) y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1} \mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}-\frac{c_{2} x^{\frac{5}{2}} \sqrt{x-2}}{\sqrt{x(x-2)}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}} \\
& y_{2}=-\frac{x^{\frac{5}{2}} \sqrt{x-2}}{\sqrt{x(x-2)}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}} & -\frac{x^{\frac{5}{2} \sqrt{x-2}}}{\sqrt{x(x-2)}} \\
\frac{d}{d x}\left(\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}\right) & \frac{d}{d x}\left(-\frac{x^{\frac{5}{2} \sqrt{x-2}}}{\sqrt{x(x-2)}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left\lvert\, \begin{array}{cc}
\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}} & -\frac{x^{\frac{5}{2} \sqrt{x-2}}}{\sqrt{x(x-2)}} \\
\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}-\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}(2 x-2)}{2(x(x-2))^{\frac{3}{2}}}+\frac{\mathrm{e}^{x} \sqrt{x-2}}{2 \sqrt{x(x-2)} \sqrt{x}}+\frac{\mathrm{e}^{x} \sqrt{x}}{2 \sqrt{x(x-2)} \sqrt{x-2}} & -\frac{5 x^{\frac{3}{2}} \sqrt{x-2}}{2 \sqrt{x(x-2)}}-\frac{x^{\frac{5}{2}}}{2 \sqrt{x-2} \sqrt{x(x-2)}}+\frac{x^{\frac{5}{2}} \sqrt{x-2}(2 x-}{2(x(x-2))^{\frac{3}{3}}}
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
W= & \left(\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}\right)\left(-\frac{5 x^{\frac{3}{2}} \sqrt{x-2}}{2 \sqrt{x(x-2)}}-\frac{x^{\frac{5}{2}}}{2 \sqrt{x-2} \sqrt{x(x-2)}}+\frac{x^{\frac{5}{2}} \sqrt{x-2}(2 x-2)}{2(x(x-2))^{\frac{3}{2}}}\right) \\
& -\left(-\frac{x^{\frac{5}{2}} \sqrt{x-2}}{\sqrt{x(x-2)}}\right)\left(\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}-\frac{\mathrm{e}^{x} \sqrt{x} \sqrt{x-2}(2 x-2)}{2(x(x-2))^{\frac{3}{2}}}+\frac{\mathrm{e}^{x} \sqrt{x-2}}{2 \sqrt{x(x-2)} \sqrt{x}}\right. \\
& \left.+\frac{\mathrm{e}^{x} \sqrt{x}}{2 \sqrt{x(x-2)} \sqrt{x-2}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{x}(x-2) x
$$

Which simplifies to

$$
W=\mathrm{e}^{x}(x-2) x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{3 x^{\frac{9}{2}}(x-2)^{\frac{5}{2}} \mathrm{e}^{x}}{\sqrt{x(x-2)}}}{\left(x^{2}-2 x\right) \mathrm{e}^{x}(x-2) x} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{3 x^{\frac{5}{2}} \sqrt{x-2}}{\sqrt{x(x-2)}} d x
$$

Hence

$$
u_{1}=\frac{x^{\frac{7}{2}} \sqrt{x-2}}{\sqrt{x(x-2)}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{3 \mathrm{e}^{2 x} x^{\frac{5}{2}}(x-2)^{\frac{5}{2}}}{\sqrt{x(x-2)}}}{\left(x^{2}-2 x\right) \mathrm{e}^{x}(x-2) x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{3 \mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}} d x
$$

Hence

$$
u_{2}=\frac{3 \mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-3 x^{2} \mathrm{e}^{x}+x^{3} \mathrm{e}^{x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{x} x^{2}(x-3)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \mathrm{e}^{x} \sqrt{x} \sqrt{x-2}}{\sqrt{x(x-2)}}-\frac{c_{2} x^{\frac{5}{2}} \sqrt{x-2}}{\sqrt{x(x-2)}}\right)+\left(\mathrm{e}^{x} x^{2}(x-3)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\sqrt{x} \sqrt{x-2}\left(-c_{2} x^{2}+\mathrm{e}^{x} c_{1}\right)}{\sqrt{x(x-2)}}+\mathrm{e}^{x} x^{2}(x-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{x} \sqrt{x-2}\left(-c_{2} x^{2}+\mathrm{e}^{x} c_{1}\right)}{\sqrt{x(x-2)}}+\mathrm{e}^{x} x^{2}(x-3) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{x} \sqrt{x-2}\left(-c_{2} x^{2}+\mathrm{e}^{x} c_{1}\right)}{\sqrt{x(x-2)}}+\mathrm{e}^{x} x^{2}(x-3)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

 Solution by Maple
 Time used: 0.0 (sec). Leaf size: 23

```
dsolve(x*(x-2)*diff (y (x),x$2)-(x^2-2)*diff (y (x), x)+2*(x-1)*y(x)=3*x^2*(x-2)^2*exp (x),y(x),
```

$$
y(x)=\left(x^{3}-3 x^{2}+c_{1}\right) \mathrm{e}^{x}+c_{2} x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 27
DSolve $\left[x *(x-2) * y^{\prime} '[x]-\left(x^{\wedge} 2-2\right) * y '[x]+2 *(x-1) * y[x]==3 * x^{\wedge} 2 *(x-2) \wedge 2 * \operatorname{Exp}[x], y[x], x\right.$, IncludeSingula

$$
y(x) \rightarrow c_{2} x^{2}+e^{x}\left(x^{3}-3 x^{2}+c_{1}\right)
$$

12.24 problem 24

12.24.1 Solving as second order change of variable on y method 2 ode . 3200
12.24.2 Solving as second order integrable as is ode 3206
12.24.3 Solving as second order ode non constant coeff transformation
on B ode . 3207
12.24.4 Solving as type second_order_integrable_as_is (not using ABC
version) . 3212
12.24.5 Solving using Kovacic algorithm 3214
12.24.6 Solving as exact linear second order ode ode 3221

Internal problem ID [11852]
Internal file name [OUTPUT/11861_Saturday_April_13_2024_01_13_06_AM_59685877/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_change_of__variable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
(2 x+1)(x+1) y^{\prime \prime}+2 y^{\prime} x-2 y=(2 x+1)^{2}
$$

12.24.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=2 x^{2}+3 x+1, B=2 x, C=-2, f(x)=4\left(x+\frac{1}{2}\right)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
y^{\prime \prime}\left(2 x^{2}+3 x+1\right)+2 y^{\prime} x-2 y=0
$$

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}\left(2 x^{2}+3 x+1\right)+2 y^{\prime} x-2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{2 x}{2 x^{2}+3 x+1} \\
q(x) & =-\frac{2}{2 x^{2}+3 x+1}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{2 x^{2}+3 x+1}-\frac{2}{2 x^{2}+3 x+1}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}+\frac{2 x}{2 x^{2}+3 x+1}\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\left(\frac{2}{x}+\frac{2 x}{2 x^{2}+3 x+1}\right) v^{\prime}(x)=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\left(\frac{2}{x}+\frac{2 x}{2 x^{2}+3 x+1}\right) u(x)=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u\left(3 x^{2}+3 x+1\right)}{x\left(2 x^{2}+3 x+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{2\left(3 x^{2}+3 x+1\right)}{x\left(2 x^{2}+3 x+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2\left(3 x^{2}+3 x+1\right)}{x\left(2 x^{2}+3 x+1\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{2\left(3 x^{2}+3 x+1\right)}{x\left(2 x^{2}+3 x+1\right)} d x \\
\ln (u) & =-2 \ln (x+1)-2 \ln (x)+\ln (2 x+1)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x+1)-2 \ln (x)+\ln (2 x+1)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x+1)-2 \ln (x)+\ln (2 x+1)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(\frac{2}{(x+1)^{2} x}+\frac{1}{(x+1)^{2} x^{2}}\right)
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1}\left(\frac{1}{x+1}-\frac{1}{x}\right)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1}\left(\frac{1}{x+1}-\frac{1}{x}\right)+c_{2}\right) x \\
& =\frac{\left(x^{2}+x\right) c_{2}-c_{1}}{x+1}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
y^{\prime \prime}\left(2 x^{2}+3 x+1\right)+2 y^{\prime} x-2 y=4\left(x+\frac{1}{2}\right)^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{x}{x+1}-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \frac{x}{x+1}-1 \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\frac{x}{x+1}-1\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \frac{x}{x+1}-1 \\
1 & \frac{1}{x+1}-\frac{x}{(x+1)^{2}}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(\frac{1}{x+1}-\frac{x}{(x+1)^{2}}\right)-\left(\frac{x}{x+1}-1\right)(1)
$$

Which simplifies to

$$
W=\frac{2 x+1}{(x+1)^{2}}
$$

Which simplifies to

$$
W=\frac{2 x+1}{(x+1)^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(\frac{x}{x+1}-1\right)\left(x+\frac{1}{2}\right)^{2}}{\frac{\left(2 x^{2}+3 x+1\right)(2 x+1)}{(x+1)^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-1) d x
$$

Hence

$$
u_{1}=x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 x\left(x+\frac{1}{2}\right)^{2}}{\frac{\left(2 x^{2}+3 x+1\right)(2 x+1)}{(x+1)^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int x(x+1) d x
$$

Hence

$$
u_{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=x^{2}+\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right)\left(\frac{x}{x+1}-1\right)
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}(4 x+3)}{6 x+6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1}\left(\frac{1}{x+1}-\frac{1}{x}\right)+c_{2}\right) x\right)+\left(\frac{x^{2}(4 x+3)}{6 x+6}\right) \\
& =\frac{x^{2}(4 x+3)}{6 x+6}+\left(c_{1}\left(\frac{1}{x+1}-\frac{1}{x}\right)+c_{2}\right) x
\end{aligned}
$$

Which simplifies to

$$
y=\frac{4 x^{3}+\left(6 c_{2}+3\right) x^{2}+6 c_{2} x-6 c_{1}}{6 x+6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 x^{3}+\left(6 c_{2}+3\right) x^{2}+6 c_{2} x-6 c_{1}}{6 x+6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{4 x^{3}+\left(6 c_{2}+3\right) x^{2}+6 c_{2} x-6 c_{1}}{6 x+6}
$$

Verified OK.

12.24.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}\left(2 x^{2}+3 x+1\right)+2 y^{\prime} x-2 y\right) d x=\int 4\left(x+\frac{1}{2}\right)^{2} d x \\
(-2 x-3) y+\left(2 x^{2}+3 x+1\right) y^{\prime}=\frac{4\left(x+\frac{1}{2}\right)^{3}}{3}+c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3+2 x}{2 x^{2}+3 x+1} \\
& q(x)=\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(3+2 x) y}{2 x^{2}+3 x+1}=\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3+2 x}{2 x^{2}+3 x+1} d x} \\
& =\mathrm{e}^{\ln (x+1)-2 \ln (2 x+1)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{x+1}{(2 x+1)^{2}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x+1) y}{(2 x+1)^{2}}\right) & =\left(\frac{x+1}{(2 x+1)^{2}}\right)\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}\right) \\
\mathrm{d}\left(\frac{(x+1) y}{(2 x+1)^{2}}\right) & =\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{6(2 x+1)^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{(x+1) y}{(2 x+1)^{2}}=\int \frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{6(2 x+1)^{3}} \mathrm{~d} x \\
& \frac{(x+1) y}{(2 x+1)^{2}}=\frac{x}{6}-\frac{c_{1}}{4(2 x+1)^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{x+1}{(2 x+1)^{2}}$ results in

$$
y=\frac{(2 x+1)^{2}\left(\frac{x}{6}-\frac{c_{1}}{4(2 x+1)^{2}}\right)}{x+1}+\frac{c_{2}(2 x+1)^{2}}{x+1}
$$

which simplifies to

$$
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12}
$$

Verified OK.

12.24.3 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=2 x^{2}+3 x+1 \\
& B=2 x \\
& C=-2 \\
& F=4\left(x+\frac{1}{2}\right)^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(2 x^{2}+3 x+1\right)(0)+(2 x)(2)+(-2)(2 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
4 x^{3}+6 x^{2}+2 x v^{\prime \prime}+\left(12 x^{2}+12 x+4\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(4 x^{3}+6 x^{2}+2 x\right) u^{\prime}(x)+12 u(x)\left(x^{2}+x+\frac{1}{3}\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u\left(3 x^{2}+3 x+1\right)}{x\left(2 x^{2}+3 x+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{2\left(3 x^{2}+3 x+1\right)}{x\left(2 x^{2}+3 x+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2\left(3 x^{2}+3 x+1\right)}{x\left(2 x^{2}+3 x+1\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{2\left(3 x^{2}+3 x+1\right)}{x\left(2 x^{2}+3 x+1\right)} d x \\
\ln (u) & =-2 \ln (x+1)-2 \ln (x)+\ln (2 x+1)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x+1)-2 \ln (x)+\ln (2 x+1)+c_{1}} \\
& =c_{1} \mathrm{e}^{-2 \ln (x+1)-2 \ln (x)+\ln (2 x+1)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=c_{1}\left(\frac{2}{(x+1)^{2} x}+\frac{1}{(x+1)^{2} x^{2}}\right)
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(\frac{2}{(x+1)^{2} x}+\frac{1}{(x+1)^{2} x^{2}}\right)
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}(2 x+1)}{x^{2}(x+1)^{2}} \mathrm{~d} x \\
& =c_{1}\left(\frac{1}{x+1}-\frac{1}{x}\right)+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(2 x)\left(c_{1}\left(\frac{1}{x+1}-\frac{1}{x}\right)+c_{2}\right) \\
& =\frac{2 c_{2} x^{2}+2 c_{2} x-2 c_{1}}{x+1}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x+1} \\
& y_{2}=\frac{2 x^{2}}{x+1}+\frac{2 x}{x+1}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x+1} & \frac{2 x^{2}}{x+1}+\frac{2 x}{x+1} \\
\frac{d}{d x}\left(\frac{1}{x+1}\right) & \frac{d}{d x}\left(\frac{2 x^{2}}{x+1}+\frac{2 x}{x+1}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x+1} & \frac{2 x^{2}}{x+1}+\frac{2 x}{x+1} \\
-\frac{1}{(x+1)^{2}} & -\frac{2 x^{2}}{(x+1)^{2}}+\frac{4 x}{x+1}+\frac{2}{x+1}-\frac{2 x}{(x+1)^{2}}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\frac{1}{x+1}\right)\left(-\frac{2 x^{2}}{(x+1)^{2}}+\frac{4 x}{x+1}+\frac{2}{x+1}-\frac{2 x}{(x+1)^{2}}\right) \\
& -\left(\frac{2 x^{2}}{x+1}+\frac{2 x}{x+1}\right)\left(-\frac{1}{(x+1)^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{4 x+2}{(x+1)^{2}}
$$

Which simplifies to

$$
W=\frac{4 x+2}{(x+1)^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(\frac{2 x^{2}}{x+1}+\frac{2 x}{x+1}\right)\left(x+\frac{1}{2}\right)^{2}}{\frac{\left(2 x^{2}+3 x+1\right)(4 x+2)}{(x+1)^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int x(x+1) d x
$$

Hence

$$
u_{1}=-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4\left(x+\frac{1}{2}\right)^{2}}{x+1}}{\frac{\left(2 x^{2}+3 x+1\right)(4 x+2)}{(x+1)^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{2} d x
$$

Hence

$$
u_{2}=\frac{x}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}}{x+1}+\frac{x\left(\frac{2 x^{2}}{x+1}+\frac{2 x}{x+1}\right)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}(4 x+3)}{6 x+6}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(\frac{2 c_{2} x^{2}+2 c_{2} x-2 c_{1}}{x+1}\right)+\left(\frac{x^{2}(4 x+3)}{6 x+6}\right) \\
& =\frac{4 x^{3}+\left(12 c_{2}+3\right) x^{2}+12 c_{2} x-12 c_{1}}{6 x+6}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 x^{3}+\left(12 c_{2}+3\right) x^{2}+12 c_{2} x-12 c_{1}}{6 x+6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{4 x^{3}+\left(12 c_{2}+3\right) x^{2}+12 c_{2} x-12 c_{1}}{6 x+6}
$$

Verified OK.

12.24.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}\left(2 x^{2}+3 x+1\right)+2 y^{\prime} x-2 y=4\left(x+\frac{1}{2}\right)^{2}
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}\left(2 x^{2}+3 x+1\right)+2 y^{\prime} x-2 y\right) d x=\int 4\left(x+\frac{1}{2}\right)^{2} d x \\
(-2 x-3) y+\left(2 x^{2}+3 x+1\right) y^{\prime}=\frac{4\left(x+\frac{1}{2}\right)^{3}}{3}+c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3+2 x}{2 x^{2}+3 x+1} \\
& q(x)=\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(3+2 x) y}{2 x^{2}+3 x+1}=\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3+2 x}{2 x^{2}+3 x+1} d x} \\
& =\mathrm{e}^{\ln (x+1)-2 \ln (2 x+1)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{x+1}{(2 x+1)^{2}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x+1) y}{(2 x+1)^{2}}\right) & =\left(\frac{x+1}{(2 x+1)^{2}}\right)\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}\right) \\
\mathrm{d}\left(\frac{(x+1) y}{(2 x+1)^{2}}\right) & =\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{6(2 x+1)^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{(x+1) y}{(2 x+1)^{2}} & =\int \frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{6(2 x+1)^{3}} \mathrm{~d} x \\
\frac{(x+1) y}{(2 x+1)^{2}} & =\frac{x}{6}-\frac{c_{1}}{4(2 x+1)^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{x+1}{(2 x+1)^{2}}$ results in

$$
y=\frac{(2 x+1)^{2}\left(\frac{x}{6}-\frac{c_{1}}{4(2 x+1)^{2}}\right)}{x+1}+\frac{c_{2}(2 x+1)^{2}}{x+1}
$$

which simplifies to

$$
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12}
$$

Verified OK.

12.24.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}\left(2 x^{2}+3 x+1\right)+2 y^{\prime} x-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 x^{2}+3 x+1 \\
& B=2 x \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{(2 x+1)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=(2 x+1)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{(2 x+1)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 466: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=(2 x+1)^{2}$. There is a pole at $x=-\frac{1}{2}$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4\left(x+\frac{1}{2}\right)^{2}}
$$

For the pole at $x=-\frac{1}{2}$ let b be the coefficient of $\frac{1}{\left(x+\frac{1}{2}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{(2 x+1)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{(2 x+1)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
$-\frac{1}{2}$	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2\left(x+\frac{1}{2}\right)}+(-)(0) \\
& =-\frac{1}{2\left(x+\frac{1}{2}\right)} \\
& =-\frac{1}{2 x+1}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2\left(x+\frac{1}{2}\right)}\right)(0)+\left(\left(\frac{1}{2\left(x+\frac{1}{2}\right)^{2}}\right)+\left(-\frac{1}{2\left(x+\frac{1}{2}\right)}\right)^{2}-\left(\frac{3}{(2 x+1)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2\left(x+\frac{1}{2}\right)} d x} \\
& =\frac{1}{\sqrt{2 x+1}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x}{2 x^{2}+3 x+1} d x} \\
& =z_{1} e^{-\ln (x+1)+\frac{\ln (2 x+1)}{2}} \\
& =z_{1}\left(\frac{\sqrt{2 x+1}}{x+1}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x+1}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{2 x^{2}+3 x+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x+1)+\ln (2 x+1)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x(x+1))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x+1}\right)+c_{2}\left(\frac{1}{x+1}(x(x+1))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}\left(2 x^{2}+3 x+1\right)+2 y^{\prime} x-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x+1}+c_{2} x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x+1} \\
& y_{2}=x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x+1} & x \\
\frac{d}{d x}\left(\frac{1}{x+1}\right) & \frac{d}{d x}(x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x+1} & x \\
-\frac{1}{(x+1)^{2}} & 1
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x+1}\right)(1)-(x)\left(-\frac{1}{(x+1)^{2}}\right)
$$

Which simplifies to

$$
W=\frac{2 x+1}{(x+1)^{2}}
$$

Which simplifies to

$$
W=\frac{2 x+1}{(x+1)^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 x\left(x+\frac{1}{2}\right)^{2}}{\frac{\left(2 x^{2}+3 x+1\right)(2 x+1)}{(x+1)^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int x(x+1) d x
$$

Hence

$$
u_{1}=-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4\left(x+\frac{1}{2}\right)^{2}}{x+1}}{\frac{\left(2 x^{2}+3 x+1\right)(2 x+1)}{(x+1)^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}}{x+1}+x^{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}(4 x+3)}{6 x+6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x+1}+c_{2} x\right)+\left(\frac{x^{2}(4 x+3)}{6 x+6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x+1}+c_{2} x+\frac{x^{2}(4 x+3)}{6 x+6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x+1}+c_{2} x+\frac{x^{2}(4 x+3)}{6 x+6}
$$

Verified OK.

12.24.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=2 x^{2}+3 x+1 \\
& q(x)=2 x \\
& r(x)=-2 \\
& s(x)=4\left(x+\frac{1}{2}\right)^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =4 \\
q^{\prime}(x) & =2
\end{aligned}
$$

Therefore (1) becomes

$$
4-(2)+(-2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
(-2 x-3) y+\left(2 x^{2}+3 x+1\right) y^{\prime}=\int 4\left(x+\frac{1}{2}\right)^{2} d x
$$

We now have a first order ode to solve which is

$$
(-2 x-3) y+\left(2 x^{2}+3 x+1\right) y^{\prime}=\frac{4\left(x+\frac{1}{2}\right)^{3}}{3}+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3+2 x}{2 x^{2}+3 x+1} \\
& q(x)=\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(3+2 x) y}{2 x^{2}+3 x+1}=\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3+2 x}{2 x^{2}+3 x+1} d x} \\
& =\mathrm{e}^{\ln (x+1)-2 \ln (2 x+1)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{x+1}{(2 x+1)^{2}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(x+1) y}{(2 x+1)^{2}}\right) & =\left(\frac{x+1}{(2 x+1)^{2}}\right)\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{12 x^{2}+18 x+6}\right) \\
\mathrm{d}\left(\frac{(x+1) y}{(2 x+1)^{2}}\right) & =\left(\frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{6(2 x+1)^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{(x+1) y}{(2 x+1)^{2}} & =\int \frac{8 x^{3}+12 x^{2}+6 c_{1}+6 x+1}{6(2 x+1)^{3}} \mathrm{~d} x \\
\frac{(x+1) y}{(2 x+1)^{2}} & =\frac{x}{6}-\frac{c_{1}}{4(2 x+1)^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{x+1}{(2 x+1)^{2}}$ results in

$$
y=\frac{(2 x+1)^{2}\left(\frac{x}{6}-\frac{c_{1}}{4(2 x+1)^{2}}\right)}{x+1}+\frac{c_{2}(2 x+1)^{2}}{x+1}
$$

which simplifies to

$$
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{8 x^{3}+\left(48 c_{2}+8\right) x^{2}+\left(48 c_{2}+2\right) x-3 c_{1}+12 c_{2}}{12 x+12}
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable <- high order exact linear fully integrable successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 43
dsolve $((2 * x+1) *(x+1) * \operatorname{diff}(y(x), x \$ 2)+2 * x * \operatorname{diff}(y(x), x)-2 * y(x)=(2 * x+1) \sim 2, y(x)$, singsol=all)

$$
y(x)=\frac{4 x^{3}+\left(6 c_{1}+24 c_{2}+4\right) x^{2}+\left(6 c_{1}+24 c_{2}+1\right) x+6 c_{2}}{6 x+6}
$$

\checkmark Solution by Mathematica
Time used: 1.049 (sec). Leaf size: 72
DSolve $\left[(2 * x+1) *(x+1) * y\right.$ ' $\quad[x]+2 * x * y$ ' $[x]-2 * y[x]==(2 * x+1)^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->~ T$

$$
y(x) \rightarrow \frac{\sqrt{-2 x-1}(4 x+3) x^{2}-6 c_{2}(x+1) \sqrt{2 x+1} x+6 c_{1} \sqrt{2 x+1}}{6 \sqrt{-2 x-1}(x+1)}
$$

12.25 problem 25

12.25.1 Solving as second order change of variable on y method 1 ode . 3225

Internal problem ID [11853]
Internal file name [OUTPUT/11862_Saturday_April_13_2024_01_13_09_AM_37230/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_y_method_1"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
\sin (x)^{2} y^{\prime \prime}-2 \sin (x) \cos (x) y^{\prime}+\left(\cos (x)^{2}+1\right) y=\sin (x)^{3}
$$

12.25.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
\sin (x)^{2} y^{\prime \prime}-y^{\prime} \sin (2 x)+\left(\cos (x)^{2}+1\right) y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{\sin (2 x)}{\sin (x)^{2}} \\
& q(x)=\frac{\cos (x)^{2}+1}{\sin (x)^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{\cos (x)^{2}+1}{\sin (x)^{2}}-\frac{\left(-\frac{\sin (2 x)}{\sin (x)^{2}}\right)^{\prime}}{2}-\frac{\left(-\frac{\sin (2 x)}{\sin (x)^{2}}\right)^{2}}{4} \\
& =\frac{\cos (x)^{2}+1}{\sin (x)^{2}}-\frac{\left(\frac{2 \sin (2 x) \cos (x)}{\sin (x)^{3}}-\frac{2 \cos (2 x)}{\sin (x)^{2}}\right)}{2}-\frac{\left(\frac{\sin (2 x)^{2}}{\sin (x)^{4}}\right)}{4} \\
& =\frac{\cos (x)^{2}+1}{\sin (x)^{2}}-\left(\frac{\sin (2 x) \cos (x)}{\sin (x)^{3}}-\frac{\cos (2 x)}{\sin (x)^{2}}\right)-\frac{\sin (2 x)^{2}}{4 \sin (x)^{4}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{\sin (2 x)}{\sin (x)^{2}}}{2}} \\
& =\sin (x) \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \sin (x) \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=1
$$

Which is now solved for $v(x)$ The ODE can be written as

$$
v^{\prime \prime}(x)=1
$$

Integrating once gives

$$
v^{\prime}(x)=x+c_{1}
$$

Integrating again gives

$$
v(x)=\frac{x^{2}}{2}+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(\frac{1}{2} x^{2}+c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\sin (x)
$$

Hence (7) becomes

$$
y=\left(\frac{1}{2} x^{2}+c_{1} x+c_{2}\right) \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(\frac{1}{2} x^{2}+c_{1} x+c_{2}\right) \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sin (x) \\
& y_{2}=x \sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sin (x) & x \sin (x) \\
\frac{d}{d x}(\sin (x)) & \frac{d}{d x}(x \sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sin (x) & x \sin (x) \\
\cos (x) & \sin (x)+\cos (x) x
\end{array}\right|
$$

Therefore

$$
W=(\sin (x))(\sin (x)+\cos (x) x)-(x \sin (x))(\cos (x))
$$

Which simplifies to

$$
W=\sin (x)^{2}
$$

Which simplifies to

$$
W=\sin (x)^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x \sin (x)^{4}}{\sin (x)^{4}} d x
$$

Which simplifies to

$$
u_{1}=-\int x d x
$$

Hence

$$
u_{1}=-\frac{x^{2}}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (x)^{4}}{\sin (x)^{4}} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sin (x) x^{2}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{1}{2} x^{2}+c_{1} x+c_{2}\right) \sin (x)\right)+\left(\frac{\sin (x) x^{2}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{1}{2} x^{2}+c_{1} x+c_{2}\right) \sin (x)+\frac{\sin (x) x^{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{1}{2} x^{2}+c_{1} x+c_{2}\right) \sin (x)+\frac{\sin (x) x^{2}}{2}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
-> Try solving first the homogeneous part of the ODE
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve $\left(\sin (x) \wedge 2 * \operatorname{diff}(y(x), x \$ 2)-2 * \sin (x) * \cos (x) * \operatorname{diff}(y(x), x)+\left(\cos (x)^{\wedge} 2+1\right) * y(x)=\sin (x) \wedge 3, y(x)\right.$,

$$
y(x)=\sin (x)\left(c_{2}+c_{1} x+\frac{1}{2} x^{2}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.092 (sec). Leaf size: 24
DSolve $[\operatorname{Sin}[x] \sim 2 * y$ ' $[\mathrm{x}]-2 * \operatorname{Sin}[\mathrm{x}] * \operatorname{Cos}[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]+(\operatorname{Cos}[\mathrm{x}] \sim 2+1) * \mathrm{y}[\mathrm{x}]==\operatorname{Sin}[\mathrm{x}] \sim 3, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingu

$$
y(x) \rightarrow \frac{1}{2}\left(x^{2}+2 c_{2} x+2 c_{1}\right) \sin (x)
$$

12.26 problem 26

12.26.1 Maple step by step solution

Internal problem ID [11854]
Internal file name [OUTPUT/11863_Saturday_April_13_2024_01_13_10_AM_74535894/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.4. Variation of parameters. Exercises page 162
Problem number: 26.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2} \mathrm{e}^{x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}-\lambda+3=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2} \mathrm{e}^{x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2} \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}, \mathrm{e}^{3 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, x^{3} \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} x^{2} \mathrm{e}^{x}+A_{3} x^{3} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-8 A_{2} x \mathrm{e}^{x}-12 A_{3} x^{2} \mathrm{e}^{x}-4 A_{1} \mathrm{e}^{x}+6 A_{3} \mathrm{e}^{x}=x^{2} \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{8}, A_{2}=0, A_{3}=-\frac{1}{12}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \mathrm{e}^{x}}{8}-\frac{x^{3} \mathrm{e}^{x}}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}\right)+\left(-\frac{x \mathrm{e}^{x}}{8}-\frac{x^{3} \mathrm{e}^{x}}{12}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}-\frac{x \mathrm{e}^{x}}{8}-\frac{x^{3} \mathrm{e}^{x}}{12} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{3 x}-\frac{x \mathrm{e}^{x}}{8}-\frac{x^{3} \mathrm{e}^{x}}{12}
$$

Verified OK.

12.26.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=x^{2} \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x^{2} \mathrm{e}^{x}+3 y_{3}(x)+y_{2}(x)-3 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x^{2} \mathrm{e}^{x}+3 y_{3}(x)+y_{2}(x)-3 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & 1 & 3
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
x^{2} \mathrm{e}^{x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x^{2} \mathrm{e}^{x}\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & 1 & 3\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair $\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{9} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{3 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{9} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{3 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 1 & \frac{1}{9} \\
-1 & 1 & \frac{1}{3} \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{3 \mathrm{e}^{-x}}{8}+\frac{3 \mathrm{e}^{x}}{4}-\frac{\mathrm{e}^{3 x}}{8} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{8}-\frac{\mathrm{e}^{x}}{4}+\frac{\mathrm{e}^{3 x}}{8} \\
-\frac{3 \mathrm{e}^{-x}}{8}+\frac{3 \mathrm{e}^{x}}{4}-\frac{3 \mathrm{e}^{3 x}}{8} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{8}-\frac{\mathrm{e}^{x}}{4}+\frac{3 \mathrm{e}^{3 x}}{8} \\
\frac{3 \mathrm{e}^{-x}}{8}+\frac{3 \mathrm{e}^{x}}{4}-\frac{9 \mathrm{e}^{3 x}}{8} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{8}-\frac{\mathrm{e}^{x}}{4}+\frac{9 \mathrm{e}^{3 x}}{8}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution $\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)$
- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-x}}{32}+\frac{\mathrm{e}^{3 x}}{32}+\frac{\left(-2 x^{3}-3 x\right) \mathrm{e}^{x}}{24} \\
\frac{\mathrm{e}^{-x}}{32}+\frac{3 \mathrm{e}^{3 x}}{32}+\frac{\left(-2 x^{3}-6 x^{2}-3 x-3\right) \mathrm{e}^{x}}{24} \\
-\frac{\mathrm{e}^{-x}}{32}+\frac{9 \mathrm{e}^{3 x}}{32}+\frac{\left(-2 x^{3}-12 x^{2}-15 x-6\right) \mathrm{e}^{x}}{24}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{\mathrm{e}^{-x}}{32}+\frac{\mathrm{e}^{3 x}}{32}+\frac{\left(-2 x^{3}-3 x\right) \mathrm{e}^{x}}{24} \\
\frac{\mathrm{e}^{-x}}{32}+\frac{3 \mathrm{e}^{3 x}}{32}+\frac{\left(-2 x^{3}-6 x^{2}-3 x-3\right) \mathrm{e}^{x}}{24} \\
-\frac{\mathrm{e}^{-x}}{32}+\frac{9 \mathrm{e}^{3 x}}{32}+\frac{\left(-2 x^{3}-12 x^{2}-15 x-6\right) \mathrm{e}^{x}}{24}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(-1+32 c_{1}\right) \mathrm{e}^{-x}}{32}+\frac{\left(32 c_{3}+9\right) \mathrm{e}^{3 x}}{288}-\frac{\mathrm{e}^{x}\left(x^{3}+\frac{3}{2} x-12 c_{2}\right)}{12}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff(y(x),x$3)-3*diff(y(x),x$2)-diff(y(x),x)+3*y(x)=\mp@subsup{x}{~}{~}2*exp(x),y(x), singsol=all)
```

$$
y(x)=c_{2} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{3 x}-\frac{\left(x^{3}+\frac{3}{2} x-12 c_{1}\right) \mathrm{e}^{x}}{12}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 41
DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x]==x^2*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{x}\left(-\frac{x^{3}}{12}-\frac{x}{8}+c_{2}\right)+c_{1} e^{-x}+c_{3} e^{3 x}
$$

13 Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169

13.1 problem 1 3240
13.2 problem 2 3259
13.3 problem 3 3275
13.4 problem 4 3292
13.5 problem 5 3308
13.6 problem 6 3325
13.7 problem 7 3342
13.8 problem 8 3359
13.9 problem 9 3376
13.10problem 10 3392
13.11problem 11 3409
13.12problem 12 3416
13.13problem 13 3423
13.14problem 14 3430
13.15problem 15 3460
13.16problem 16 3487
13.17 problem 17 3524
13.18problem 18 3554
13.19problem 19 3582
13.20problem 20 3589
13.21 problem 21 3609
13.22problem 22 3635
13.23problem 23 3665
13.24problem 24 3690
13.25problem 25 3731
13.26problem 26 3759
13.27problem 27 3793
13.28problem 28 3809
13.29problem 29 3823

13.1 problem 1

13.1.1 Solving as second order euler ode ode 3241
13.1.2 Solving as second order change of variable on x method 2 ode . 3242
13.1.3 Solving as second order change of variable on x method 1 ode . 3244
13.1.4 Solving as second order change of variable on y method 2 ode . 3246
13.1.5 Solving as second order ode non constant coeff transformation on B ode

3248
13.1.6 Solving using Kovacic algorithm 3251
13.1.7 Maple step by step solution 3256

Internal problem ID [11855]
Internal file name [OUTPUT/11864_Saturday_April_13_2024_01_13_10_AM_73858456/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2", "second_order_ode__non_constant_coeff_transformation__on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+3 y=0
$$

13.1.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+3 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+3 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+3=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x^{3}+c_{1} x
$$

Verified OK.
13.1.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{3}{x^{2}}}{x^{6}} \\
& =\frac{3}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{3}{x^{8}}=\frac{3}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+3 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+3 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+3 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+3=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=\frac{3}{4}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{4}}+c_{2} \tau^{\frac{3}{4}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2}\left(x^{4}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{x^{4}}+2 c_{1}\right)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2}\left(x^{4}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{x^{4}}+2 c_{1}\right)}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2}\left(x^{4}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{x^{4}}+2 c_{1}\right)}{4}
$$

Verified OK.
13.1.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{3}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{3}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{4 c \sqrt{3}}{3}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{4 c \sqrt{3}\left(\frac{d}{d \tau} y(\tau)\right)}{3}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{2 \sqrt{3} c \tau}{3}}\left(c_{1} \cosh \left(\frac{\sqrt{3} c \tau}{3}\right)+i c_{2} \sinh \left(\frac{\sqrt{3} c \tau}{3}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{3} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{x\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right)}{2}
$$

Verified OK.

13.1.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{3}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{3} \\
& =c_{2} x^{3}-\frac{1}{2} c_{1} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{3}
$$

Verified OK.

13.1.5 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
A & =x^{2} \\
B & =-3 x \\
C & =3 \\
F & =0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(-3 x)(-3)+(3)(-3 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-3 x^{3} v^{\prime \prime}+\left(3 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-3 x^{2}\left(u^{\prime}(x) x-u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{1}{x} d x \\
\ln (u) & =\ln (x)+c_{1} \\
u & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} x
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int c_{1} x \mathrm{~d} x \\
& =\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(-3 x)\left(\frac{c_{1} x^{2}}{2}+c_{2}\right) \\
& =-\frac{3 x\left(c_{1} x^{2}+2 c_{2}\right)}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3 x\left(c_{1} x^{2}+2 c_{2}\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{3 x\left(c_{1} x^{2}+2 c_{2}\right)}{2}
$$

Verified OK.

13.1.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 468: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}\left(x\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+\frac{1}{2} c_{2} x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{1}{2} c_{2} x^{3}
$$

Verified OK.

13.1.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-3 y^{\prime} x+3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{3 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{3 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-3 y^{\prime} x+3 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), x^{2}-3 \frac{d}{d t} y(t)+3 y(t)=0\right.
$$

- Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+3 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4 r+3=0$
- Factor the characteristic polynomial

$$
(r-1)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(1,3)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{3 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=c_{2} x^{3}+c_{1} x
$$

- \quad Simplify

$$
y=x\left(c_{2} x^{2}+c_{1}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x\left(c_{2} x^{2}+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 16
DSolve[$x^{\wedge} 2 * y$ '' $[x]-3 * x * y$ ' $[x]+3 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x\left(c_{2} x^{2}+c_{1}\right)
$$

13.2 problem 2

13.2.1 Solving as second order euler ode ode 3259
13.2.2 Solving as second order change of variable on x method 2 ode . 3260
13.2.3 Solving as second order change of variable on x method 1 ode . 3263
13.2.4 Solving as second order change of variable on y method 2 ode . 3265
13.2.5 Solving using Kovacic algorithm 3267
13.2.6 Maple step by step solution . 3272

Internal problem ID [11856]
Internal file name [OUTPUT/11865_Saturday_April_13_2024_01_13_12_AM_22950223/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F( x)]•]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x-4 y=0
$$

13.2.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-4=0
$$

Or

$$
\begin{equation*}
r^{2}-4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Verified OK.

13.2.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
$$

Verified OK.

13.2.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{2}{c \sqrt{-\frac{1}{x^{2}}}} x^{3}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
$$

Verified OK.

13.2.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{x} d x \\
\ln (u) & =-5 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{5}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{4 x^{4}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \\
& =\frac{4 c_{2} x^{4}-c_{1}}{4 x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}
$$

Verified OK.

13.2.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{15}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=15 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 470: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{15}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{15}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{15}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+(-)(0) \\
& =-\frac{3}{2 x} \\
& =-\frac{3}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(-\frac{3}{2 x}\right)^{2}-\left(\frac{15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{4}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}
$$

Verified OK.

13.2.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{4 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{4 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}+y^{\prime} x-4 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+\frac{d}{d t} y(t)-4 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4=0$
- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve( (x^2*diff(y(x),x$2)+x*\operatorname{diff}(y(x),x)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{x^{4} c_{1}+c_{2}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 18

```
DSolve[x^2*y''[x]+x*y'[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{c_{2} x^{4}+c_{1}}{x^{2}}
$$

13.3 problem 3

$$
\text { 13.3.1 Solving as second order euler ode ode } 3276
$$

13.3.2 Solving as linear second order ode solved by an integrating factor ode 3277
13.3.3 Solving as second order change of variable on x method 2 ode 3278
13.3.4 Solving as second order change of variable on x method 1 ode 3280
13.3.5 Solving as second order change of variable on y method 1 ode 3282
13.3.6 Solving as second order change of variable on y method 2 ode 3284
13.3.7 Solving using Kovacic algorithm 3286
13.3.8 Maple step by step solution 3289

Internal problem ID [11857]
Internal file name [OUTPUT/11866_Saturday_April_13_2024_01_13_13_AM_53292417/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second_order_change_of_cvariable_on_y_method_2", "linear_second__order__ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]
```

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

13.3.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
4 x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+3 x^{r}=0
$$

Simplifying gives

$$
4 r(r-1) x^{r}-4 r x^{r}+3 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
4 r(r-1)-4 r+3=0
$$

Or

$$
\begin{equation*}
4 r^{2}-8 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{3}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{1} \sqrt{x}+c_{2} x^{\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x}+c_{2} x^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x}+c_{2} x^{\frac{3}{2}}
$$

Verified OK.

13.3.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{1}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{1}{x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{\sqrt{x}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{\sqrt{x}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{\sqrt{x}}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{\sqrt{x}}}
$$

Or

$$
y=c_{1} x^{\frac{3}{2}}+c_{2} \sqrt{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{\frac{3}{2}}+c_{2} \sqrt{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{\frac{3}{2}}+c_{2} \sqrt{x}
$$

Verified OK.

13.3.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{\ln (x)} d x \\
& =\int x d x \\
& =\frac{x^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{3}{4 x^{2}}}{x^{2}} \\
& =\frac{3}{4 x^{4}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{4 x^{4}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{3}{4 x^{4}}=\frac{3}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+3 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+3 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+3 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+3=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=\frac{3}{4}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{4}}+c_{2} \tau^{\frac{3}{4}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 2^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}}}{2}+\frac{c_{2} 2^{\frac{1}{4}}\left(x^{2}\right)^{\frac{3}{4}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 2^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}}}{2}+\frac{c_{2} 2^{\frac{1}{4}}\left(x^{2}\right)^{\frac{3}{4}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 2^{\frac{3}{4}}\left(x^{2}\right)^{\frac{1}{4}}}{2}+\frac{c_{2} 2^{\frac{1}{4}}\left(x^{2}\right)^{\frac{3}{4}}}{2}
$$

Verified OK.

13.3.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{2 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{3}}{2 c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{3}}{2 c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{1}{x} \frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{2 c}}{\left(\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{2 c}\right)^{2}} \\
& =-\frac{4 c \sqrt{3}}{3}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{4 c \sqrt{3}\left(\frac{d}{d \tau} y(\tau)\right)}{3}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{2 \sqrt{3} c \tau}{3}}\left(c_{1} \cosh \left(\frac{\sqrt{3} c \tau}{3}\right)+i c_{2} \sinh \left(\frac{\sqrt{3} c \tau}{3}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{2} d x}{c} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Verified OK.

13.3.5 Solving as second order change of variable on y method 1 ode

 In normal form the given ode is written as$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{3}{4 x^{2}}-\frac{\left(-\frac{1}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{1}{x}\right)^{2}}{4} \\
& =\frac{3}{4 x^{2}}-\frac{\left(\frac{1}{x^{2}}\right)}{2}-\frac{\left(\frac{1}{x^{2}}\right)}{4} \\
& =\frac{3}{4 x^{2}}-\left(\frac{1}{2 x^{2}}\right)-\frac{1}{4 x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-1}{x}} \\
& =\sqrt{x} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) \sqrt{x} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
4 x^{\frac{5}{2}} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\sqrt{x}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) \sqrt{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) \sqrt{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} x+c_{2}\right) \sqrt{x}
$$

Verified OK.

13.3.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x^{2}}+\frac{3}{4 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=\frac{3}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x} & =0 \\
v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}} \\
& =\left(c_{2} x-c_{1}\right) \sqrt{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{\frac{3}{2}}
$$

Verified OK.

13.3.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 x^{2} \\
& B=-4 x \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 472: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{4 x^{2}} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\sqrt{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{4 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\sqrt{x})+c_{2}(\sqrt{x}(x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x}+c_{2} x^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x}+c_{2} x^{\frac{3}{2}}
$$

Verified OK.

13.3.8 Maple step by step solution

Let's solve
$4 y^{\prime \prime} x^{2}-4 y^{\prime} x+3 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{x}-\frac{3 y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{3 y}{4 x^{2}}=0$
- Multiply by denominators of the ODE

$$
4 y^{\prime \prime} x^{2}-4 y^{\prime} x+3 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE
$4\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-4 \frac{d}{d t} y(t)+3 y(t)=0$

- Simplify
$4 \frac{d^{2}}{d t^{2}} y(t)-8 \frac{d}{d t} y(t)+3 y(t)=0$
- Isolate 2nd derivative
$\frac{d^{2}}{d t^{2}} y(t)=2 \frac{d}{d t} y(t)-\frac{3 y(t)}{4}$
- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)+\frac{3 y(t)}{4}=0$
- Characteristic polynomial of ODE
$r^{2}-2 r+\frac{3}{4}=0$
- Factor the characteristic polynomial
$\frac{(2 r-1)(2 r-3)}{4}=0$
- Roots of the characteristic polynomial

$$
r=\left(\frac{1}{2}, \frac{3}{2}\right)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{\frac{t}{2}}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(t)=\mathrm{e}^{\frac{3 t}{2}}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{3 t}{2}}$
- Change variables back using $t=\ln (x)$
$y=c_{1} \sqrt{x}+c_{2} x^{\frac{3}{2}}$
- \quad Simplify
$y=\sqrt{x}\left(c_{2} x+c_{1}\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

```
dsolve(4*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\sqrt{x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18
DSolve[4*x^2*y' ' $[x]-4 * x * y$ ' $[x]+3 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \sqrt{x}\left(c_{2} x+c_{1}\right)
$$

13.4 problem 4

13.4.1 Solving as second order euler ode ode 3292
13.4.2 Solving as second order change of variable on x method 2 ode . 3293
13.4.3 Solving as second order change of variable on x method 1 ode . 3296
13.4.4 Solving as second order change of variable on y method 2 ode . 3298
13.4.5 Solving using Kovacic algorithm 3300
13.4.6 Maple step by step solution . 3305

Internal problem ID [11858]
Internal file name [OUTPUT/11867_Saturday_April_13_2024_01_13_15_AM_60726113/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]
```

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

13.4.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Verified OK.

13.4.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{6}} \\
& =\frac{4}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{x^{8}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Verified OK.

13.4.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

13.4.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \ln (x)+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \ln (x)+c_{2}\right) x^{2}
$$

Verified OK.

13.4.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 474: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(\ln (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Verified OK.

13.4.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-3 y^{\prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{4 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}-3 y^{\prime} x+4 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), x^{2}-3 \frac{d}{d t} y(t)+4 y(t)=0\right.
$$

- Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+4 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4 r+4=0$
- Factor the characteristic polynomial

$$
(r-2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=2
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{2 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} t \mathrm{e}^{2 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

- Simplify

$$
y=x^{2}\left(c_{1}+\ln (x) c_{2}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve(x^2*diff(y(x),x$2)-3*x*diff (y(x),x)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{1}+c_{2} \ln (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 18
DSolve[$x^{\wedge} 2 * y^{\prime \prime}$ ' $[\mathrm{x}]-3 * x * y$ ' $[x]+4 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(2 c_{2} \log (x)+c_{1}\right)
$$

13.5 problem 5

13.5.1 Solving as second order euler ode ode 3308
13.5.2 Solving as second order change of variable on x method 2 ode . 3310
13.5.3 Solving as second order change of variable on x method 1 ode . 3312
13.5.4 Solving as second order change of variable on y method 2 ode . 3314
13.5.5 Solving using Kovacic algorithm 3317
13.5.6 Maple step by step solution . 3322

Internal problem ID [11859]
Internal file name [OUTPUT/11868_Saturday_April_13_2024_01_13_16_AM_62882544/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F( x)]•]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

13.5.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+4=0
$$

Or

$$
\begin{equation*}
r^{2}+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 i \\
& r_{2}=2 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-2$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-2$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-2 i \ln (x)}+c_{2} e^{2 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

13.5.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

13.5.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

13.5.4 Solving as second order change of variable on y method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+4 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+4 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-4 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-4 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-4 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-4 i}{x} d x \\
\ln (u) & =(-1-4 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-4 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-4 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-4 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-4 i}}{4}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i} \\
& =x^{2 i} c_{2}+\frac{i x^{-2 i} c_{1}}{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i}
$$

Verified OK.

13.5.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-17}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-17 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{17}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 476: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{17}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{17}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{17}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-2 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-2 i-\left(\frac{1}{2}-2 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-2 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-2 i}{x} \\
& =\frac{\frac{1}{2}-2 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-2 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+2 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-2 i}{x}\right)^{2}-\left(-\frac{17}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-2 i} x d x \\
& =x^{\frac{1}{2}-2 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-2 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{4 i}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-2 i}\right)+c_{2}\left(x^{-2 i}\left(-\frac{i x^{4 i}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}
$$

Verified OK.

13.5.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+y^{\prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}-\frac{4 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{4 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}+y^{\prime} x+4 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d d^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+\frac{d}{d t} y(t)+4 y(t)=0
$$

- Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+4 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions
$y(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)$
- Change variables back using $t=\ln (x)$
$y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x^2*diff (y (x),x$2)+x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (2 \ln (x))+c_{2} \cos (2 \ln (x))
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 22
DSolve[x^2*y' ' $[x]+x * y$ ' $[x]+4 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos (2 \log (x))+c_{2} \sin (2 \log (x))
$$

13.6 problem 6

13.6.1 Solving as second order euler ode ode 3325
13.6.2 Solving as second order change of variable on x method 2 ode . 3327
13.6.3 Solving as second order change of variable on x method 1 ode . 3330
13.6.4 Solving as second order change of variable on y method 2 ode . 3332
13.6.5 Solving using Kovacic algorithm 3334
13.6.6 Maple step by step solution . 3339

Internal problem ID [11860]
Internal file name [OUTPUT/11869_Saturday_April_13_2024_01_13_17_AM_55471947/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+13 y=0
$$

13.6.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+13 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+13 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+13=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+13=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2-3 i \\
& r_{2}=2+3 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=2$ and $\beta=-3$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=2, \beta=-3$, the above becomes

$$
y=x^{2}\left(c_{1} e^{-3 i \ln (x)}+c_{2} e^{3 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
$$

Verified OK.

13.6.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{13}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{13}{x^{2}}}{x^{6}} \\
& =\frac{13}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{13 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{13}{x^{8}}=\frac{13}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{13 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+13 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+13 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+13 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+13=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+13=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{3 i}{4} \\
& r_{2}=\frac{1}{2}+\frac{3 i}{4}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{3}{4}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{3}{4}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{3 i \ln (\tau)}{4}}+c_{2} e^{\frac{3 i \ln (\tau)}{4}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{3 \ln (\tau)}{4}\right)+c_{2} \sin \left(\frac{3 \ln (\tau)}{4}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)\right) x^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)\right) x^{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)\right) x^{2}}{2}
$$

Verified OK.

13.6.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{3}{x} \\
q(x) & =\frac{13}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{13} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{13}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{13}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{\sqrt{13} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{13} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{4 c \sqrt{13}}{13}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{4 c \sqrt{13}\left(\frac{d}{d \tau} y(\tau)\right)}{13}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{2 \sqrt{13} c \tau}{13}}\left(c_{1} \cos \left(\frac{3 \sqrt{13} c \tau}{13}\right)+c_{2} \sin \left(\frac{3 \sqrt{13} c \tau}{13}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{13} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{13} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
$$

Verified OK.

13.6.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{13}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{13}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2+3 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4+6 i}{x}-\frac{3}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+6 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+6 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-6 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-6 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-6 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-6 i}{x} d x \\
\ln (u) & =(-1-6 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-6 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-6 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-6 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-6 i}}{6}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{2+3 i} \\
& =c_{2} x^{2+3 i}+\frac{i c_{1} x^{2-3 i}}{6}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{2+3 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{2+3 i}
$$

Verified OK.

13.6.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}-3 y^{\prime} x+13 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-37}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-37 \\
t & =4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{37}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,2\},\{1,3\},\{2\},\{3\},\{3,	
3	$\{1,\{1,2\}$	$\{2\} .5\}$

Table 478: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{37}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{37}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{37}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-3 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-3 i-\left(\frac{1}{2}-3 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-3 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-3 i}{x} \\
& =\frac{\frac{1}{2}-3 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-3 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+3 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-3 i}{x}\right)^{2}-\left(-\frac{37}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-3 i} x d x \\
& =x^{\frac{1}{2}-3 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2-3 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{6 i}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2-3 i}\right)+c_{2}\left(x^{2-3 i}\left(-\frac{i x^{6 i}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2-3 i}-\frac{i c_{2} x^{2+3 i}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2-3 i}-\frac{i c_{2} x^{2+3 i}}{6}
$$

Verified OK.

13.6.6 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}-3 y^{\prime} x+13 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{13 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{13 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-3 y^{\prime} x+13 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-3 \frac{d}{d t} y(t)+13 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+13 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{4 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(2-3 \mathrm{I}, 2+3 \mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{2 t} \cos (3 t)$
- 2nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{2 t} \sin (3 t)$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t} \cos (3 t)+c_{2} \mathrm{e}^{2 t} \sin (3 t)$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} x^{2} \cos (3 \ln (x))+c_{2} x^{2} \sin (3 \ln (x))$
- \quad Simplify
$y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)-3*x*\operatorname{diff}(y(x),x)+13*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{1} \sin (3 \ln (x))+c_{2} \cos (3 \ln (x))\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 26
DSolve $\left[x^{\wedge} 2 * y^{\prime \prime}\right.$ ' $[x]-3 * x * y$ ' $[x]+13 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x^{2}\left(c_{2} \cos (3 \log (x))+c_{1} \sin (3 \log (x))\right)
$$

13.7 problem 7

13.7.1 Solving as second order euler ode ode 3342
13.7.2 Solving as second order change of variable on x method 2 ode . 3343
13.7.3 Solving as second order change of variable on x method 1 ode . 3346
13.7.4 Solving as second order change of variable on y method 2 ode . 3348
13.7.5 Solving using Kovacic algorithm 3350
13.7.6 Maple step by step solution . 3356

Internal problem ID [11861]
Internal file name [OUTPUT/11870_Saturday_April_13_2024_01_13_19_AM_34740163/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F( x)]•]
```

$$
3 x^{2} y^{\prime \prime}-4 y^{\prime} x+2 y=0
$$

13.7.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
3 x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+2 x^{r}=0
$$

Simplifying gives

$$
3 r(r-1) x^{r}-4 r x^{r}+2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
3 r(r-1)-4 r+2=0
$$

Or

$$
\begin{equation*}
3 r^{2}-7 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=\frac{1}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{1} x^{2}+c_{2} x^{\frac{1}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{\frac{1}{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x^{\frac{1}{3}}
$$

Verified OK.

13.7.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
3 x^{2} y^{\prime \prime}-4 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{3 x} \\
& q(x)=\frac{2}{3 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{3 x} d x\right)} d x \\
& =\int e^{\frac{4 \ln (x)}{3}} d x \\
& =\int x^{\frac{4}{3}} d x \\
& =\frac{3 x^{\frac{7}{3}}}{7} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{3 x^{2}}}{x^{\frac{8}{3}}} \\
& =\frac{2}{3 x^{\frac{14}{3}}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
& \frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau)=0 \\
& \frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{3 x^{\frac{14}{3}}}=0
\end{aligned}
$$

But in terms of τ

$$
\frac{2}{3 x^{\frac{14}{3}}}=\frac{6}{49 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{49 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
49\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
49 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
49 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
49 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
49 r^{2}-49 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{7} \\
& r_{2}=\frac{6}{7}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{7}}+c_{2} \tau^{\frac{6}{7}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{1}{7}} 7^{\frac{6}{7}}\left(x^{\frac{7}{3}}\right)^{\frac{1}{7}}}{7}+\frac{c_{2} 3^{\frac{6}{7}} 7^{\frac{1}{7}}\left(x^{\frac{7}{3}}\right)^{\frac{6}{7}}}{7}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{1}{7}} 7^{\frac{6}{7}}\left(x^{\frac{7}{3}}\right)^{\frac{1}{7}}}{7}+\frac{c_{2} 3^{\frac{6}{7}} 7^{\frac{1}{7}}\left(x^{\frac{7}{3}}\right)^{\frac{6}{7}}}{7} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 3^{\frac{1}{7}} 7^{\frac{6}{7}}\left(x^{\frac{7}{3}}\right)^{\frac{1}{7}}}{7}+\frac{c_{2} 3^{\frac{6}{7}} 7^{\frac{1}{7}}\left(x^{\frac{7}{3}}\right)^{\frac{6}{7}}}{7}
$$

Verified OK.

13.7.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
3 x^{2} y^{\prime \prime}-4 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{3 x} \\
& q(x)=\frac{2}{3 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{3 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{3 c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{3 c \sqrt{\frac{1}{x^{2}} x^{3}}-\frac{4}{3 x}} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{3 c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{3 c}\right)^{2}} \\
& =-\frac{7 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{7 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{7 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{5 \sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{5 \sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{3} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{3 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{7}{6}}\left(c_{1} \cosh \left(\frac{5 \ln (x)}{6}\right)+i c_{2} \sinh \left(\frac{5 \ln (x)}{6}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{7}{6}}\left(c_{1} \cosh \left(\frac{5 \ln (x)}{6}\right)+i c_{2} \sinh \left(\frac{5 \ln (x)}{6}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{\frac{7}{6}}\left(c_{1} \cosh \left(\frac{5 \ln (x)}{6}\right)+i c_{2} \sinh \left(\frac{5 \ln (x)}{6}\right)\right)
$$

Verified OK.

13.7.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
3 x^{2} y^{\prime \prime}-4 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{3 x} \\
& q(x)=\frac{2}{3 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{3 x^{2}}+\frac{2}{3 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{8 v^{\prime}(x)}{3 x}=0 \\
& v^{\prime \prime}(x)+\frac{8 v^{\prime}(x)}{3 x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{8 u(x)}{3 x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{8 u}{3 x}
\end{aligned}
$$

Where $f(x)=-\frac{8}{3 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{8}{3 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{8}{3 x} d x \\
\ln (u) & =-\frac{8 \ln (x)}{3}+c_{1} \\
u & =\mathrm{e}^{-\frac{8 \ln (x)}{3}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{8}{3}}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{3 c_{1}}{5 x^{\frac{5}{3}}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{3 c_{1}}{5 x^{\frac{5}{3}}}+c_{2}\right) x^{2} \\
& =c_{2} x^{2}-\frac{3 x^{\frac{1}{3}} c_{1}}{5}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{3 c_{1}}{5 x^{\frac{5}{3}}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{3 c_{1}}{5 x^{\frac{5}{3}}}+c_{2}\right) x^{2}
$$

Verified OK.

13.7.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
3 x^{2} y^{\prime \prime}-4 y^{\prime} x+2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=3 x^{2} \\
& B=-4 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{9 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=9 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4}{9 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 480: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=9 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{4}{9 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=\frac{4}{9}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{4}{3} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{3}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{4}{9 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{4}{9}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{4}{3} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{3}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{4}{9 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{4}{3}$	$-\frac{1}{3}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{4}{3}$	$-\frac{1}{3}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{1}{3}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{3}-\left(-\frac{1}{3}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{3 x}+(-)(0) \\
& =-\frac{1}{3 x} \\
& =-\frac{1}{3 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{3 x}\right)(0)+\left(\left(\frac{1}{3 x^{2}}\right)+\left(-\frac{1}{3 x}\right)^{2}-\left(\frac{4}{9 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{3 x} d x} \\
& =\frac{1}{x^{\frac{1}{3}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{3 x^{2}} d x} \\
& =z_{1} e^{\frac{2 \ln (x)}{3}} \\
& =z_{1}\left(x^{\frac{2}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{\frac{1}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{3 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{4 \ln (x)}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{3 x^{\frac{5}{3}}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{\frac{1}{3}}\right)+c_{2}\left(x^{\frac{1}{3}}\left(\frac{3 x^{\frac{5}{3}}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{1}{3}} c_{1}+\frac{3 c_{2} x^{2}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{\frac{1}{3}} c_{1}+\frac{3 c_{2} x^{2}}{5}
$$

Verified OK.

13.7.6 Maple step by step solution

Let's solve
$3 y^{\prime \prime} x^{2}-4 y^{\prime} x+2 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{4 y^{\prime}}{3 x}-\frac{2 y}{3 x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{4 y^{\prime}}{3 x}+\frac{2 y}{3 x^{2}}=0$
- Multiply by denominators of the ODE
$3 y^{\prime \prime} x^{2}-4 y^{\prime} x+2 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE $3\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-4 \frac{d}{d t} y(t)+2 y(t)=0$

- Simplify
$3 \frac{d^{2}}{d t^{2}} y(t)-7 \frac{d}{d t} y(t)+2 y(t)=0$
- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=\frac{7 \frac{d}{d t} y(t)}{3}-\frac{2 y(t)}{3}
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)-\frac{7 d}{d t} y(t)+\frac{2 y(t)}{3}=0$
- Characteristic polynomial of ODE
$r^{2}-\frac{7}{3} r+\frac{2}{3}=0$
- Factor the characteristic polynomial
$\frac{(3 r-1)(r-2)}{3}=0$
- Roots of the characteristic polynomial

$$
r=\left(2, \frac{1}{3}\right)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{\frac{t}{3}}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{\frac{t}{3}}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1} x^{2}+c_{2} x^{\frac{1}{3}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve($3 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-4 * x * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} x^{2}+c_{2} x^{\frac{1}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20
DSolve[3*x^2*y' ' $[x]-4 * x * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2} x^{2}+c_{1} \sqrt[3]{x}
$$

13.8 problem 8

13.8.1 Solving as second order euler ode ode 3359
13.8.2 Solving as second order change of variable on x method 2 ode . 3361
13.8.3 Solving as second order change of variable on x method 1 ode . 3363
13.8.4 Solving as second order change of variable on y method 2 ode . 3365
13.8.5 Solving using Kovacic algorithm 3368
13.8.6 Maple step by step solution . 3373

Internal problem ID [11862]
Internal file name [OUTPUT/11871_Saturday_April_13_2024_01_13_20_AM_491032/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(
    x)]`]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0
$$

13.8.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+9 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+9 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+9=0
$$

Or

$$
\begin{equation*}
r^{2}+9=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 i \\
& r_{2}=3 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-3$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-3$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-3 i \ln (x)}+c_{2} e^{3 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

13.8.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{9}{x^{2}}}{\frac{1}{x^{2}}} \\
& =9 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+9 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+9 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (3 \tau)+c_{2} \sin (3 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (3 \tau)+c_{2} \sin (3 \tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

13.8.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{3}{c \sqrt{\frac{1}{x^{2}}}} x^{3}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{3 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{3 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 3 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

13.8.4 Solving as second order change of variable on y method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{9}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{6 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+6 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+6 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-6 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-6 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-6 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-6 i}{x} d x \\
\ln (u) & =(-1-6 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-6 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-6 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-6 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-6 i}}{6}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i} \\
& =x^{3 i} c_{2}+\frac{i x^{-3 i} c_{1}}{6}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i}
$$

Verified OK.

13.8.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-37}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-37 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{37}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 482: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{37}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{37}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{37}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-3 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-3 i-\left(\frac{1}{2}-3 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-3 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-3 i}{x} \\
& =\frac{\frac{1}{2}-3 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-3 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+3 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-3 i}{x}\right)^{2}-\left(-\frac{37}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-3 i} x \\
& =x^{\frac{1}{2}-3 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-3 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{6 i}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-3 i}\right)+c_{2}\left(x^{-3 i}\left(-\frac{i x^{6 i}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{-3 i} c_{1}-\frac{i c_{2} x^{3 i}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{-3 i} c_{1}-\frac{i c_{2} x^{3 i}}{6}
$$

Verified OK.

13.8.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+y^{\prime} x+9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}-\frac{9 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{9 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}+y^{\prime} x+9 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d} t y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+\frac{d}{d t} y(t)+9 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+9 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(t)=\cos (3 t)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\sin (3 t)
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

- Change variables back using $t=\ln (x)$
$y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x^2*diff (y (x),x$2)+x*diff (y(x),x)+9*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (3 \ln (x))+c_{2} \cos (3 \ln (x))
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 22
DSolve $\left[x^{\sim} 2 * y\right.$ '' $[x]+x * y$ ' $[x]+9 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos (3 \log (x))+c_{2} \sin (3 \log (x))
$$

13.9 problem 9

13.9.1 Solving as second order euler ode ode 3376
13.9.2 Solving as second order change of variable on x method 2 ode . 3377
13.9.3 Solving as second order change of variable on x method 1 ode . 3380
13.9.4 Solving as second order change of variable on y method 2 ode . 3382
13.9.5 Solving using Kovacic algorithm 3384
13.9.6 Maple step by step solution . 3389

Internal problem ID [11863]
Internal file name [OUTPUT/11872_Saturday_April_13_2024_01_13_22_AM_68095640/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(
    x)]`]
```

$$
9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0
$$

13.9.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
9 x^{2}(r(r-1)) x^{r-2}+3 x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
9 r(r-1) x^{r}+3 r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
9 r(r-1)+3 r+1=0
$$

Or

$$
\begin{equation*}
9 r^{2}-6 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{1}{3}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=x^{\frac{1}{3}} c_{1}+c_{2} x^{\frac{1}{3}} \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{1}{3}} c_{1}+c_{2} x^{\frac{1}{3}} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{\frac{1}{3}} c_{1}+c_{2} x^{\frac{1}{3}} \ln (x)
$$

Verified OK.

13.9.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{3 x} \\
& q(x)=\frac{1}{9 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{3 x} d x\right)} d x \\
& =\int e^{-\frac{\ln (x)}{3}} d x \\
& =\int \frac{1}{x^{\frac{1}{3}}} d x \\
& =\frac{3 x^{\frac{2}{3}}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{9 x^{2}}}{\frac{1}{x^{\frac{2}{3}}}} \\
& =\frac{1}{9 x^{\frac{4}{3}}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{9 x^{\frac{4}{3}}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{1}{9 x^{\frac{4}{3}}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{6} x^{\frac{1}{3}}\left(2 \ln (x) c_{2}-3 c_{2} \ln (2)+3 c_{2} \ln (3)+3 c_{1}\right)}{6}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{6} x^{\frac{1}{3}}\left(2 \ln (x) c_{2}-3 c_{2} \ln (2)+3 c_{2} \ln (3)+3 c_{1}\right)}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{6} x^{\frac{1}{3}}\left(2 \ln (x) c_{2}-3 c_{2} \ln (2)+3 c_{2} \ln (3)+3 c_{1}\right)}{6}
$$

Verified OK.

13.9.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{3 x} \\
& q(x)=\frac{1}{9 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{2}}}}{3 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{3 c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{3 c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{3 x} \frac{\sqrt{\frac{1}{x^{2}}}}{3 c}}{\left(\frac{\sqrt{\frac{1}{x^{2}}}}{3 c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \frac{\sqrt{\frac{1}{x^{2}}}}{3} d x}{c} \\
& =\frac{\sqrt{\frac{1}{x^{2}}} x \ln (x)}{3 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{1}{3}} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{1}{3}} c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{\frac{1}{3}} c_{1}
$$

Verified OK.

13.9.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{3 x} \\
& q(x)=\frac{1}{9 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{3 x^{2}}+\frac{1}{9 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=\frac{1}{3} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{\frac{1}{3}} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{\frac{1}{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \ln (x)+c_{2}\right) x^{\frac{1}{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \ln (x)+c_{2}\right) x^{\frac{1}{3}}
$$

Verified OK.

13.9.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
9 x^{2} y^{\prime \prime}+3 y^{\prime} x+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=9 x^{2} \\
& B=3 x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 484: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 x}{2 x} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{6}} \\
& =z_{1}\left(\frac{1}{x^{\frac{1}{6}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{\frac{1}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{9 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x)}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{\frac{1}{3}}\right)+c_{2}\left(x^{\frac{1}{3}}(\ln (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{1}{3}} c_{1}+c_{2} x^{\frac{1}{3}} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{\frac{1}{3}} c_{1}+c_{2} x^{\frac{1}{3}} \ln (x)
$$

Verified OK.

13.9.6 Maple step by step solution

Let's solve
$9 y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{3 x}-\frac{y}{9 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{3 x}+\frac{y}{9 x^{2}}=0
$$

- Multiply by denominators of the ODE
$9 y^{\prime \prime} x^{2}+3 y^{\prime} x+y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE
$9\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), x^{2}+3 \frac{d}{d t} y(t)+y(t)=0\right.$

- \quad Simplify
$9 \frac{d^{2}}{d t^{2}} y(t)-6 \frac{d}{d t} y(t)+y(t)=0$
- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=\frac{2 \frac{d}{d t} y(t)}{3}-\frac{y(t)}{9}
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)-\frac{2 \frac{d}{d t} y(t)}{3}+\frac{y(t)}{9}=0$
- Characteristic polynomial of ODE
$r^{2}-\frac{2}{3} r+\frac{1}{9}=0$
- Factor the characteristic polynomial

$$
\frac{(3 r-1)^{2}}{9}=0
$$

- Root of the characteristic polynomial
$r=\frac{1}{3}$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{\frac{t}{3}}$
- \quad Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence $y_{2}(t)=t \mathrm{e}^{\frac{t}{3}}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{\frac{t}{3}}+c_{2} t \mathrm{e}^{\frac{t}{3}}
$$

- \quad Change variables back using $t=\ln (x)$
$y=x^{\frac{1}{3}} c_{1}+c_{2} x^{\frac{1}{3}} \ln (x)$
- \quad Simplify
$y=\left(c_{1}+\ln (x) c_{2}\right) x^{\frac{1}{3}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve ($9 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+3 * x * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{1}+c_{2} \ln (x)\right) x^{\frac{1}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 24
DSolve[9*x^2*y''[x]+3*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{3} \sqrt[3]{x}\left(c_{2} \log (x)+3 c_{1}\right)
$$

13.10 problem 10

13.10.1 Solving as second order euler ode ode 3392
13.10.2 Solving as second order change of variable on x method 2 ode . 3394
13.10.3 Solving as second order change of variable on x method 1 ode . 3397
13.10.4 Solving as second order change of variable on y method 2 ode . 3399
13.10.5 Solving using Kovacic algorithm 3401
13.10.6 Maple step by step solution . 3406

Internal problem ID [11864]
Internal file name [OUTPUT/11873_Saturday_April_13_2024_01_13_23_AM_97187487/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+10 y=0
$$

13.10.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-5 x r x^{r-1}+10 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-5 r x^{r}+10 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-5 r+10=0
$$

Or

$$
\begin{equation*}
r^{2}-6 r+10=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=3-i \\
& r_{2}=3+i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=3$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=3, \beta=-1$, the above becomes

$$
y=x^{3}\left(c_{1} e^{-i \ln (x)}+c_{2} e^{i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=x^{3}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{3}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)
$$

Verified OK.
13.10.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{5}{x} d x\right)} d x \\
& =\int e^{5 \ln (x)} d x \\
& =\int x^{5} d x \\
& =\frac{x^{6}}{6} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{10}{x^{2}}}{x^{10}} \\
& =\frac{10}{x^{12}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{10 y(\tau)}{x^{12}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{10}{x^{12}}=\frac{5}{18 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{18 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
18\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
18 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
18 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
18 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
18 r^{2}-18 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{i}{6} \\
& r_{2}=\frac{1}{2}+\frac{i}{6}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{6}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{1}{6}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{i \ln (\tau)}{6}}+c_{2} e^{\frac{i \ln (\tau)}{6}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{\ln (\tau)}{6}\right)+c_{2} \sin \left(\frac{\ln (\tau)}{6}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1} \cos \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(x^{6}\right)}{6}\right)+c_{2} \sin \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(x^{6}\right)}{6}\right)\right)}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1} \cos \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(x^{6}\right)}{6}\right)+c_{2} \sin \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(x^{6}\right)}{6}\right)\right)}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1} \cos \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(x^{6}\right)}{6}\right)+c_{2} \sin \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(x^{6}\right)}{6}\right)\right)}{6}
$$

Verified OK.
13.10.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{10}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{10}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{5}{x} \frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{3 c \sqrt{10}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{10}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{10} c \tau}{10}}\left(c_{1} \cos \left(\frac{\sqrt{10} c \tau}{10}\right)+c_{2} \sin \left(\frac{\sqrt{10} c \tau}{10}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{10} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{3}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{3}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)
$$

Verified OK.

13.10.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{5 n}{x^{2}}+\frac{10}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3+i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{6+2 i}{x}-\frac{5}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+2 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+2 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-2 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-2 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-2 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-2 i}{x} d x \\
\ln (u) & =(-1-2 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-2 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-2 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-2 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i x^{-2 i} c_{1}}{2}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i x^{-2 i} c_{1}}{2}+c_{2}\right) x^{3+i} \\
& =c_{2} x^{3+i}+\frac{i c_{1} x^{3-i}}{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i x^{-2 i} c_{1}}{2}+c_{2}\right) x^{3+i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i x^{-2 i} c_{1}}{2}+c_{2}\right) x^{3+i}
$$

Verified OK.

13.10.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}-5 y^{\prime} x+10 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-5 x \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-5 \\
t & =4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{5}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,2\},\{1,3\},\{2\},\{3\},\{3,	
3	$\{1,\{1,2\}$	$\{2,5\}$.

Table 486: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{5}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{5}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{5}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-i-\left(\frac{1}{2}-i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-i}{x} \\
& =\frac{\frac{1}{2}-i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-i}{x}\right)^{2}-\left(-\frac{5}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-i} x d x \\
& =x^{\frac{1}{2}-i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2}-\frac{5 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{5}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{3-i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{2 i}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{3-i}\right)+c_{2}\left(x^{3-i}\left(-\frac{i x^{2 i}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3-i}-\frac{i c_{2} x^{3+i}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3-i}-\frac{i c_{2} x^{3+i}}{2}
$$

Verified OK.

13.10.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-5 y^{\prime} x+10 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{5 y^{\prime}}{x}-\frac{10 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{5 y^{\prime}}{x}+\frac{10 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-5 y^{\prime} x+10 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-5 \frac{d}{d t} y(t)+10 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-6 \frac{d}{d t} y(t)+10 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-6 r+10=0$
- Use quadratic formula to solve for r
$r=\frac{6 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(3-\mathrm{I}, 3+\mathrm{I})$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{3 t} \cos (t)$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{3 t} \sin (t)$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{3 t} \cos (t)+c_{2} \mathrm{e}^{3 t} \sin (t)$
- Change variables back using $t=\ln (x)$
$y=c_{1} x^{3} \cos (\ln (x))+c_{2} x^{3} \sin (\ln (x))$
- \quad Simplify
$y=x^{3}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+10*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{3}\left(c_{1} \sin (\ln (x))+\cos (\ln (x)) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]-5 * x * y$ ' $[x]+10 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x^{3}\left(c_{2} \cos (\log (x))+c_{1} \sin (\log (x))\right)
$$

13.11 problem 11

13.11.1 Maple step by step solution

3411
Internal problem ID [11865]
Internal file name [OUTPUT/11874_Saturday_April_13_2024_01_13_24_AM_53887226/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 11.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 y^{\prime} x-6 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 y^{\prime} x-6 y=0
$$

gives

$$
6 x \lambda x^{\lambda-1}-3 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-6 x^{\lambda}=0
$$

Which simplifies to

$$
6 \lambda x^{\lambda}-3 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-6 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
6 \lambda-3 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-6=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
1	1	real root
2	1	real root
3	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2} \\
& y_{3}=x^{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x
$$

Verified OK.

13.11.1 Maple step by step solution

Let's solve
$x^{3} y^{\prime \prime \prime}-3 y^{\prime \prime} x^{2}+6 y^{\prime} x-6 y=0$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative
$y^{\prime \prime \prime}=\frac{6 y}{x^{3}}+\frac{3\left(y^{\prime \prime} x-2 y^{\prime}\right)}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}-\frac{3 y^{\prime \prime}}{x}+\frac{6 y^{\prime}}{x^{2}}-\frac{6 y}{x^{3}}=0$
- Multiply by denominators of the ODE
$x^{3} y^{\prime \prime \prime}-3 y^{\prime \prime} x^{2}+6 y^{\prime} x-6 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{d^{3}}{d t^{3}} y(t)-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)-3\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+6 \frac{d}{d t} y(t)-6 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{3}}{d t^{3}} y(t)-6 \frac{d^{2}}{d t^{2}} y(t)+11 \frac{d}{d t} y(t)-6 y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=6 y_{3}(t)-11 y_{2}(t)+6 y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=6 y_{3}(t)-11 y_{2}(t)+6 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- \quad System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y(t)=c_{1} e^{t}+\frac{c_{2} e^{2 t}}{4}+\frac{c_{3} 3^{3 t}}{9}$
- Change variables back using $t=\ln (x)$
$y=c_{1} x+\frac{1}{4} c_{2} x^{2}+\frac{1}{9} c_{3} x^{3}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)-3 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+6 * x * \operatorname{diff}(y(x), x)-6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=x\left(c_{3} x^{2}+c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 19
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]-3 * x^{\wedge} 2 * y$ ' ' $[x]+6 * x * y$ ' $[x]-6 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x\left(x\left(c_{3} x+c_{2}\right)+c_{1}\right)
$$

13.12 problem 12

13.12.1 Maple step by step solution 3418

Internal problem ID [11866]
Internal file name [OUTPUT/11875_Saturday_April_13_2024_01_13_25_AM_90650534/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 12.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant__coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _fully, _exact, _linear]]

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-10 y^{\prime} x-8 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-10 y^{\prime} x-8 y=0
$$

gives

$$
-10 x \lambda x^{\lambda-1}+2 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-8 x^{\lambda}=0
$$

Which simplifies to

$$
-10 \lambda x^{\lambda}+2 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-8 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
-10 \lambda+2 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-8=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-\lambda^{2}-10 \lambda-8=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=-1
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
-1	1	real root
-2	1	real root
4	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}+c_{3} x^{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\frac{1}{x} \\
y_{2} & =\frac{1}{x^{2}} \\
y_{3} & =x^{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}+c_{3} x^{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}+c_{3} x^{4}
$$

Verified OK.

13.12.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+2 y^{\prime \prime} x^{2}-10 y^{\prime} x-8 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=\frac{8 y}{x^{3}}-\frac{2\left(y^{\prime \prime} x-5 y^{\prime}\right)}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}+\frac{2 y^{\prime \prime}}{x}-\frac{10 y^{\prime}}{x^{2}}-\frac{8 y}{x^{3}}=0$
- Multiply by denominators of the ODE

$$
x^{3} y^{\prime \prime \prime}+2 y^{\prime \prime} x^{2}-10 y^{\prime} x-8 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{d^{3}}{\frac{d t^{3}}{} y(t)} x^{3}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)+2\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-10 \frac{d}{d t} y(t)-8 y(t)=0
$$

- Simplify

$$
\frac{d^{3}}{d t^{3}} y(t)-\frac{d^{2}}{d t^{2}} y(t)-10 \frac{d}{d t} y(t)-8 y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=y_{3}(t)+10 y_{2}(t)+8 y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=y_{3}(t)+10 y_{2}(t)+8 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 10 & 1
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 10 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{4} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y(t)=\frac{\left(c_{3} e^{6 t}+16 c_{2} e^{t}+4 c_{1}\right) \mathrm{e}^{-2 t}}{16}$
- Change variables back using $t=\ln (x)$
$y=\frac{c_{3} x^{6}+16 c_{2} x+4 c_{1}}{16 x^{2}}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(x^3*diff (y(x),x$3)+2*x^2*diff(y(x),x$2)-10*x*\operatorname{diff ( }\textrm{y}(\textrm{x}),\textrm{x})-8*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{6}+c_{2} x+c_{3}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]+2 * x^{\wedge} 2 * y$ ' $'[x]-10 * x * y$ ' $[x]-8 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True

$$
y(x) \rightarrow \frac{c_{3} x^{6}+c_{2} x+c_{1}}{x^{2}}
$$

13.13 problem 13

13.13.1 Maple step by step solution 3425

Internal problem ID [11867]
Internal file name [OUTPUT/11876_Saturday_April_13_2024_01_13_25_AM_68307060/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 13.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}-6 y^{\prime} x+18 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}-6 y^{\prime} x+18 y=0
$$

gives

$$
-6 x \lambda x^{\lambda-1}-x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+18 x^{\lambda}=0
$$

Which simplifies to

$$
-6 \lambda x^{\lambda}-\lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}+18 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
-6 \lambda-\lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)+18=0
$$

Simplifying gives the characteristic equation as

$$
(\lambda+2)(\lambda-3)^{2}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=3 \\
& \lambda_{3}=3
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
-2	1	real root
3	2	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{3}+c_{3} \ln (x) x^{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{3} \\
& y_{3}=x^{3} \ln (x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+c_{2} x^{3}+c_{3} \ln (x) x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{3}+c_{3} \ln (x) x^{3}
$$

Verified OK.

13.13.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}-y^{\prime \prime} x^{2}-6 y^{\prime} x+18 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{18 y}{x^{3}}+\frac{y^{\prime \prime} x+6 y^{\prime}}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}-\frac{y^{\prime \prime}}{x}-\frac{6 y^{\prime}}{x^{2}}+\frac{18 y}{x^{3}}=0$
- Multiply by denominators of the ODE
$x^{3} y^{\prime \prime \prime}-y^{\prime \prime} x^{2}-6 y^{\prime} x+18 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)-\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-6 \frac{d}{d t} y(t)+18 y(t)=0
$$

- Simplify

$$
\frac{d^{3}}{d t^{3}} y(t)-4 \frac{d^{2}}{d t^{2}} y(t)-3 \frac{d}{d t} y(t)+18 y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=4 y_{3}(t)+3 y_{2}(t)-18 y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=4 y_{3}(t)+3 y_{2}(t)-18 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- \quad System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-18 & 3 & 4
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-18 & 3 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- \quad First solution from eigenvalue 3

$$
\vec{y}_{2}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, an

$$
\vec{y}_{3}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})
$$

- \quad Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(t)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-18 & 3 & 4
\end{array}\right]-3 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-\frac{1}{27} \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 3

$$
\vec{y}_{3}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{27} \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(t)+c_{3} \vec{y}_{3}(t)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{27} \\
0 \\
0
\end{array}\right]\right)
$$

- First component of the vector is the solution to the ODE

$$
y(t)=\frac{\mathrm{e}^{-2 t}\left(\left(\left(t-\frac{1}{3}\right) c_{3}+c_{2}\right) \mathrm{e}^{5 t}+\frac{9 c_{1}}{4}\right)}{9}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{\left(\left(\ln (x)-\frac{1}{3}\right) c_{3}+c_{2}\right) x^{5}+\frac{9 c_{1}}{4}}{9 x^{2}}
$$

- Simplify

$$
y=\frac{c_{3} \ln (x) x^{3}}{9}+\frac{c_{2} x^{3}}{9}-\frac{c_{3} x^{3}}{27}+\frac{c_{1}}{4 x^{2}}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(x^3*diff (y (x),x$3)-x^2*diff(y(x), x$2)-6*x*diff(y(x),x)+18*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{3} x^{5} \ln (x)+c_{2} x^{5}+c_{1}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 26
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]-x^{\wedge} 2 * y$ ' ' $[x]-6 * x * y$ ' $[x]+18 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{2} x^{5}+c_{3} x^{5} \log (x)+c_{1}}{x^{2}}
$$

13.14 problem 14

13.14.1 Solving as second order euler ode ode 3431
13.14.2 Solving as linear second order ode solved by an integrating factor ode
13.14.3 Solving as second order change of variable on x method 2 ode . 3435
13.14.4 Solving as second order change of variable on x method 1 ode . 3440
13.14.5 Solving as second order change of variable on y method 1 ode . 3445
13.14.6 Solving as second order change of variable on y method 2 ode . 3449
13.14.7 Solving using Kovacic algorithm 3454

Internal problem ID [11868]
Internal file name [OUTPUT/11877_Saturday_April_13_2024_01_13_26_AM_73878653/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change__of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of__variable_on_y_method_2", "linear_second__order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=4 x-6
$$

13.14.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=4 x-6$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=4 x-6
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{3}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{4 x-6}{x^{3}} d x
$$

Hence

$$
u_{1}=-\frac{3}{x^{2}}+\frac{4}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4 x-6}{x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{2}{x^{2}}+\frac{2}{x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{3}{x^{2}}+\frac{4}{x}\right) x^{2}+\left(-\frac{2}{x^{2}}+\frac{2}{x^{3}}\right) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=2 x-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =c_{2} x^{3}+c_{1} x^{2}+2 x-1
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2}+2 x-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x^{3}+c_{1} x^{2}+2 x-1
$$

Verified OK.

13.14.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{4 x-6}{x^{4}} \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =\frac{4 x-6}{x^{4}}
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=\frac{-2 x+2}{x^{3}}+c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=\frac{c_{1} x^{3}+2 x-1}{x^{2}}+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{c_{1} x^{3}+2 x-1}{x^{2}}+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}+2 x-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2}+2 x-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+c_{2} x^{2}+2 x-1
$$

Verified OK.

13.14.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}(4 x-6)}{x^{6}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}}(-3+4 x)}{x^{5}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}(4 x-6)}{x^{6}} d x
$$

Hence

$$
u_{2}=-\frac{2\left(x^{5}\right)^{\frac{2}{5}}(x-1)}{x^{5}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=2 x-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}\right)+(2 x-1)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}+2 x-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}+2 x-1
$$

Verified OK.

13.14.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=4 x-6$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=4 x-6
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}(4 x-6)}{x^{6}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}}(-3+4 x)}{x^{5}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}(4 x-6)}{x^{6}} d x
$$

Hence

$$
u_{2}=-\frac{2\left(x^{5}\right)^{\frac{2}{5}}(x-1)}{x^{5}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=2 x-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)\right)+(2 x-1) \\
& =2 x-1+x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=i x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right) c_{2}+x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right) c_{1}+2 x-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=i x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right) c_{2}+x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right) c_{1}+2 x-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right) c_{2}+x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right) c_{1}+2 x-1
$$

Verified OK.

13.14.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{4}{x}}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4} v^{\prime \prime}(x)=4 x-6
$$

Which is now solved for $v(x)$ Simplyfing the ode gives

$$
v^{\prime \prime}(x)=\frac{4 x-6}{x^{4}}
$$

Integrating once gives

$$
v^{\prime}(x)=-\frac{2}{x^{2}}+\frac{2}{x^{3}}+c_{1}
$$

Integrating again gives

$$
v(x)=\frac{2}{x}-\frac{1}{x^{2}}+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+\frac{2}{x}-\frac{1}{x^{2}}+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+\frac{2}{x}-\frac{1}{x^{2}}+c_{2}\right) x^{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(c_{1} x+\frac{2}{x}-\frac{1}{x^{2}}+c_{2}\right) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}}(4 x-6)}{x^{6}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}}(-3+4 x)}{x^{5}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}}(4 x-6)}{x^{6}} d x
$$

Hence

$$
u_{2}=-\frac{2\left(x^{5}\right)^{\frac{2}{5}}(x-1)}{x^{5}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=2 x-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} x+\frac{2}{x}-\frac{1}{x^{2}}+c_{2}\right) x^{2}\right)+(2 x-1)
\end{aligned}
$$

Which simplifies to

$$
y=c_{1} x^{3}+c_{2} x^{2}+4 x-2
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2}+4 x-2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+c_{2} x^{2}+4 x-2
$$

Verified OK.

13.14.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=4 x-6$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =x^{2}\left(c_{2} x-c_{1}\right)
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=4 x-6
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{3}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{4 x-6}{x^{3}} d x
$$

Hence

$$
u_{1}=-\frac{3}{x^{2}}+\frac{4}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4 x-6}{x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{2}{x^{2}}+\frac{2}{x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{3}{x^{2}}+\frac{4}{x}\right) x^{2}+\left(-\frac{2}{x^{2}}+\frac{2}{x^{3}}\right) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=2 x-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3}\right)+(2 x-1) \\
& =2 x-1+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3}
\end{aligned}
$$

Which simplifies to

$$
y=c_{2} x^{3}-c_{1} x^{2}+2 x-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{3}-c_{1} x^{2}+2 x-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x^{3}-c_{1} x^{2}+2 x-1
$$

Verified OK.

13.14.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 491: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x^{3}+c_{1} x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{3}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{4 x-6}{x^{3}} d x
$$

Hence

$$
u_{1}=-\frac{3}{x^{2}}+\frac{4}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2}(4 x-6)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4 x-6}{x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{2}{x^{2}}+\frac{2}{x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\frac{3}{x^{2}}+\frac{4}{x}\right) x^{2}+\left(-\frac{2}{x^{2}}+\frac{2}{x^{3}}\right) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=2 x-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x^{3}+c_{1} x^{2}\right)+(2 x-1)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{2} x+c_{1}\right)+2 x-1
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{2} x+c_{1}\right)+2 x-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{2} x+c_{1}\right)+2 x-1
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 19

```
dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=4*x-6,y(x), singsol=all)
```

$$
y(x)=c_{1} x^{3}+c_{2} x^{2}+2 x-1
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 2 * y\right.$ ' $[x]-4 * x * y$ ' $[x]+6 * y[x]==4 * x-6, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{2} x^{3}+c_{1} x^{2}+2 x-1
$$

13.15 problem 15

13.15.1 Solving as second order euler ode ode 3460
13.15.2 Solving as second order change of variable on x method 2 ode . 3463
13.15.3 Solving as second order change of variable on x method 1 ode . 3468
13.15.4 Solving as second order change of variable on y method 2 ode . 3473
13.15.5 Solving using Kovacic algorithm 3478

Internal problem ID [11869]
Internal file name [OUTPUT/11878_Saturday_April_13_2024_01_13_28_AM_92244890/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change_of__variable_on_x_method_2", "second_order_change__of_variable_on_y_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=2 x^{3}
$$

13.15.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=8, f(x)=2 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-5 x r x^{r-1}+8 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-5 r x^{r}+8 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-5 r+8=0
$$

Or

$$
\begin{equation*}
r^{2}-6 r+8=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=4
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{4}+c_{1} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=2 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
2 x & 4 x^{3}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(4 x^{3}\right)-\left(x^{4}\right)(2 x)
$$

Which simplifies to

$$
W=2 x^{5}
$$

Which simplifies to

$$
W=2 x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 x^{7}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 x^{5}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{2}\left(c_{2} x^{2}+c_{1}-2 x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{2} x^{2}+c_{1}-2 x\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{2} x^{2}+c_{1}-2 x\right)
$$

Verified OK.

13.15.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{5}{x} d x\right)} d x \\
& =\int e^{5 \ln (x)} d x \\
& =\int x^{5} d x \\
& =\frac{x^{6}}{6} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{8}{x^{2}}}{x^{10}} \\
& =\frac{8}{x^{12}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
& \frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau)=0 \\
& \frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{8 y(\tau)}{x^{12}}=0
\end{aligned}
$$

But in terms of τ

$$
\frac{8}{x^{12}}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{6}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{6}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{6}\right)^{\frac{1}{3}} & \left(x^{6}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{6}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{6}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{6}\right)^{\frac{1}{3}} & \left(x^{6}\right)^{\frac{2}{3}} \\
\frac{2 x^{5}}{\left(x^{6}\right)^{\frac{2}{3}}} & \frac{4 x^{5}}{\left(x^{6}\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{6}\right)^{\frac{1}{3}}\right)\left(\frac{4 x^{5}}{\left(x^{6}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{6}\right)^{\frac{2}{3}}\right)\left(\frac{2 x^{5}}{\left(x^{6}\right)^{\frac{2}{3}}}\right)
$$

Which simplifies to

$$
W=2 x^{5}
$$

Which simplifies to

$$
W=2 x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2\left(x^{6}\right)^{\frac{2}{3}} x^{3}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{6}\right)^{\frac{2}{3}}}{x^{4}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{6}\right)^{\frac{2}{3}}}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2\left(x^{6}\right)^{\frac{1}{3}} x^{3}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{6}\right)^{\frac{1}{3}}}{x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{6}\right)^{\frac{1}{3}}}{x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}\right)+\left(-2 x^{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}-2 x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}-2 x^{3}
$$

Verified OK.
13.15.3 Solving as second order change of variable on x method 1 ode This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=8, f(x)=2 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2 \sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2 \sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{5}{x} \frac{2 \sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right) x^{2}}{2}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=2 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{6}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{6}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{6}\right)^{\frac{1}{3}} & \left(x^{6}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{6}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{6}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{6}\right)^{\frac{1}{3}} & \left(x^{6}\right)^{\frac{2}{3}} \\
\frac{2 x^{5}}{\left(x^{6}\right)^{\frac{2}{3}}} & \frac{4 x^{5}}{\left(x^{6}\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{6}\right)^{\frac{1}{3}}\right)\left(\frac{4 x^{5}}{\left(x^{6}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{6}\right)^{\frac{2}{3}}\right)\left(\frac{2 x^{5}}{\left(x^{6}\right)^{\frac{2}{3}}}\right)
$$

Which simplifies to

$$
W=2 x^{5}
$$

Which simplifies to

$$
W=2 x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2\left(x^{6}\right)^{\frac{2}{3}} x^{3}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{6}\right)^{\frac{2}{3}}}{x^{4}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{6}\right)^{\frac{2}{3}}}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2\left(x^{6}\right)^{\frac{1}{3}} x^{3}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{6}\right)^{\frac{1}{3}}}{x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{6}\right)^{\frac{1}{3}}}{x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right) x^{2}}{2}\right)+\left(-2 x^{3}\right) \\
& =-2 x^{3}+\frac{\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right) x^{2}}{2}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{x^{2}\left(\left(i c_{2}+c_{1}\right) x^{2}-4 x-i c_{2}+c_{1}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}\left(\left(i c_{2}+c_{1}\right) x^{2}-4 x-i c_{2}+c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{2}\left(\left(i c_{2}+c_{1}\right) x^{2}-4 x-i c_{2}+c_{1}\right)}{2}
$$

Verified OK.

13.15.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=8, f(x)=2 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{5 n}{x^{2}}+\frac{8}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=4 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{4} \\
& =c_{2} x^{4}-\frac{1}{2} c_{1} x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=2 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
2 x & 4 x^{3}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(4 x^{3}\right)-\left(x^{4}\right)(2 x)
$$

Which simplifies to

$$
W=2 x^{5}
$$

Which simplifies to

$$
W=2 x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 x^{7}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 x^{5}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{4}\right)+\left(-2 x^{3}\right) \\
& =-2 x^{3}+\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{4}
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{x^{2}\left(-2 c_{2} x^{2}+c_{1}+4 x\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}\left(-2 c_{2} x^{2}+c_{1}+4 x\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x^{2}\left(-2 c_{2} x^{2}+c_{1}+4 x\right)}{2}
$$

Verified OK.

13.15.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-5 x \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 492: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{5}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{2}+\frac{1}{2} c_{2} x^{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\frac{x^{4}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \frac{x^{4}}{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\frac{x^{4}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \frac{x^{4}}{2} \\
2 x & 2 x^{3}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(2 x^{3}\right)-\left(\frac{x^{4}}{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{5}
$$

Which simplifies to

$$
W=x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7}}{x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 x^{5}}{x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{2}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}+\frac{1}{2} c_{2} x^{4}\right)+\left(-2 x^{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+\frac{1}{2} c_{2} x^{4}-2 x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+\frac{1}{2} c_{2} x^{4}-2 x^{3}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 18

```
dsolve(x^2*diff(y(x),x$2)-5*x*diff (y (x),x)+8*y(x)=2*x^3,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{2} x^{2}+c_{1}-2 x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 21
DSolve[x^2*y' $[\mathrm{x}]-5 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+8 * \mathrm{y}[\mathrm{x}]==2 * \mathrm{x}^{\wedge} 3, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(c_{2} x^{2}-2 x+c_{1}\right)
$$

13.16 problem 16

13.16.1 Solving as second order euler ode ode 3488
13.16.2 Solving as linear second order ode solved by an integrating factor
ode . 3491
13.16.3 Solving as second order change of variable on x method 2 ode . 3492
13.16.4 Solving as second order change of variable on x method 1 ode . 3497
13.16.5 Solving as second order change of variable on y method 1 ode . 3502
13.16.6 Solving as second order change of variable on y method 2 ode . 3507
13.16.7 Solving as second order integrable as is ode 3512
13.16.8 Solving as type second_order_integrable_as_is (not using ABC
version) . 3513
13.16.9 Solving using Kovacic algorithm 3515
13.16.1 Solving as exact linear second order ode ode 3520

Internal problem ID [11870]
Internal file name [OUTPUT/11879_Saturday_April_13_2024_01_13_30_AM_60665861/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable__as_is", "second_order_change_of_cvariable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_variable_on_y_method_1", "second_order_change_of_variable_on_y_method_2", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=4 \ln (x)
$$

13.16.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=4 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+4 x r x^{r-1}+2 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+4 r x^{r}+2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+4 r+2=0
$$

Or

$$
\begin{equation*}
r^{2}+3 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=4 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \ln (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 x \ln (x) d x
$$

Hence

$$
u_{1}=-2 x^{2} \ln (x)+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \ln (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 x \ln (x)-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 x \ln (x)-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=1-2 \ln (x)+\frac{4 x \ln (x)-4 x}{x}
$$

Which simplifies to

$$
y_{p}(x)=-3+2 \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =-3+2 \ln (x)+\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3+2 \ln (x)+\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-3+2 \ln (x)+\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
$$

Verified OK.
13.16.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{4}{x} d x} \\
& =x^{2}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =4 \ln (x) \\
\left(x^{2} y\right)^{\prime \prime} & =4 \ln (x)
\end{aligned}
$$

Integrating once gives

$$
\left(x^{2} y\right)^{\prime}=4 x \ln (x)-4 x+c_{1}
$$

Integrating again gives

$$
\left(x^{2} y\right)=x\left(2 x \ln (x)+c_{1}-3 x\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{x\left(2 x \ln (x)+c_{1}-3 x\right)+c_{2}}{x^{2}}
$$

Or

$$
y=2 \ln (x)+\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \ln (x)+\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \ln (x)+\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-3
$$

Verified OK.

13.16.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{4}{x} d x\right)} d x \\
& =\int e^{-4 \ln (x)} d x \\
& =\int \frac{1}{x^{4}} d x \\
& =-\frac{1}{3 x^{3}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{x^{2}}}{\frac{1}{x^{8}}} \\
& =2 x^{6} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 x^{6} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
2 x^{6}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3} \ln (x)+4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{2}=2\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3} \ln (x)-\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}(\ln (x)-1) \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}(-1+2 \ln (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-3+2 \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}\right)+(-3+2 \ln (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}-3+2 \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}-3+2 \ln (x)
$$

Verified OK.

13.16.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=4 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{4}{x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=4 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3} \ln (x)+4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{2}=2\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3} \ln (x)-\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}(\ln (x)-1) \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}(-1+2 \ln (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-3+2 \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}\right)+(-3+2 \ln (x)) \\
& =-3+2 \ln (x)+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Which simplifies to

$$
y=-3+2 \ln (x)+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3+2 \ln (x)+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-3+2 \ln (x)+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Verified OK.

13.16.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(\frac{4}{x}\right)^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(-\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{2}{x^{2}}-\left(-\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{4}{2}} \\
& =\frac{1}{x^{2}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{x^{2}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=4 \ln (x)
$$

Which is now solved for $v(x)$ Integrating once gives

$$
v^{\prime}(x)=4 x \ln (x)-4 x+c_{1}
$$

Integrating again gives

$$
v(x)=2 x^{2} \ln (x)-3 x^{2}+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{x^{2}}
$$

Hence (7) becomes

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3} \ln (x)+4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{3}}{ }^{\frac{1}{3}} \ln (x)\right.}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{2}=2\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3} \ln (x)-\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}(\ln (x)-1) \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}(-1+2 \ln (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-3+2 \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}\right)+(-3+2 \ln (x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}-3+2 \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}-3+2 \ln (x)
$$

Verified OK.

13.16.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=4 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{4 n}{x^{2}}+\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{-\frac{c_{1}}{x}+c_{2}}{x} \\
& =\frac{c_{2} x-c_{1}}{x^{2}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=4 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \ln (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 x \ln (x) d x
$$

Hence

$$
u_{1}=-2 x^{2} \ln (x)+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \ln (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 x \ln (x)-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 x \ln (x)-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=1-2 \ln (x)+\frac{4 x \ln (x)-4 x}{x}
$$

Which simplifies to

$$
y_{p}(x)=-3+2 \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{-\frac{c_{1}}{x}+c_{2}}{x}\right)+(-3+2 \ln (x)) \\
& =-3+2 \ln (x)+\frac{-\frac{c_{1}}{x}+c_{2}}{x}
\end{aligned}
$$

Which simplifies to

$$
y=-3+2 \ln (x)+\frac{-\frac{c_{1}}{x}+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3+2 \ln (x)+\frac{-\frac{c_{1}}{x}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-3+2 \ln (x)+\frac{-\frac{c_{1}}{x}+c_{2}}{x}
$$

Verified OK.

13.16.7 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y\right) d x=\int 4 \ln (x) d x \\
& x^{2} y^{\prime}+2 y x=4 x \ln (x)-4 x+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(4 x \ln (x)-4 x+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int 4 x \ln (x)-4 x+c_{1} \mathrm{~d} x \\
& x^{2} y=-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}
$$

Verified OK.

13.16.8 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=4 \ln (x)
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y\right) d x=\int 4 \ln (x) d x \\
& x^{2} y^{\prime}+2 y x=4 x \ln (x)-4 x+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{x} d x} \\
=x^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(4 x \ln (x)-4 x+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int 4 x \ln (x)-4 x+c_{1} \mathrm{~d} x \\
& x^{2} y=-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}
$$

Verified OK.

13.16.9 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=4 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 493: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{4} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4 x}{x^{2}} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-2 \ln (x)} \\
& =z_{1}\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \ln (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 x \ln (x) d x
$$

Hence

$$
u_{1}=-2 x^{2} \ln (x)+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \ln (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 x \ln (x)-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 x \ln (x)-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=1-2 \ln (x)+\frac{4 x \ln (x)-4 x}{x}
$$

Which simplifies to

$$
y_{p}(x)=-3+2 \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}\right)+(-3+2 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{2} x+c_{1}}{x^{2}}-3+2 \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} x+c_{1}}{x^{2}}-3+2 \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} x+c_{1}}{x^{2}}-3+2 \ln (x)
$$

Verified OK.

13.16.10 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=4 x \\
& r(x)=2 \\
& s(x)=4 \ln (x)
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =4
\end{aligned}
$$

Therefore (1) becomes

$$
2-(4)+(2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}+2 y x=\int 4 \ln (x) d x
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}+2 y x=4 x \ln (x)-4 x+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{4 x \ln (x)-4 x+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(4 x \ln (x)-4 x+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int 4 x \ln (x)-4 x+c_{1} \mathrm{~d} x \\
& x^{2} y=-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1} x+2 x^{2} \ln (x)+c_{2}}{x^{2}}
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(x^2*diff (y(x),x$2)+4*x*diff (y (x),x)+2*y(x)=4*ln(x),y(x), singsol=all)
```

$$
y(x)=2 \ln (x)+\frac{c_{1}}{x}-3+\frac{c_{2}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 23
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+4 * x * y$ ' $[x]+2 * y[x]==4 * \log [x], y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow \frac{c_{1}}{x^{2}}+2 \log (x)+\frac{c_{2}}{x}-3
$$

13.17 problem 17

13.17.1 Solving as second order euler ode ode 3524
13.17.2 Solving as second order change of variable on x method 2 ode . 3528
13.17.3 Solving as second order change of variable on x method 1 ode . 3534
13.17.4 Solving as second order change of variable on y method 2 ode . 3539
13.17.5 Solving using Kovacic algorithm 3545

Internal problem ID [11871]
Internal file name [OUTPUT/11880_Saturday_April_13_2024_01_13_34_AM_96256138/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_u__method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=2 x \ln (x)
$$

13.17.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=2 x \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+4=0
$$

Or

$$
\begin{equation*}
r^{2}+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 i \\
& r_{2}=2 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-2$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-2$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-2 i \ln (x)}+c_{2} e^{2 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=2 x \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 \ln (x)) \\
& y_{2}=-\sin (2 \ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 \ln (x)) & -\sin (2 \ln (x)) \\
\frac{d}{d x}(\cos (2 \ln (x))) & \frac{d}{d x}(-\sin (2 \ln (x)))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 \ln (x)) & -\sin (2 \ln (x)) \\
-\frac{2 \sin (2 \ln (x))}{x} & -\frac{2 \cos (2 \ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 \ln (x)))\left(-\frac{2 \cos (2 \ln (x))}{x}\right)-(-\sin (2 \ln (x)))\left(-\frac{2 \sin (2 \ln (x))}{x}\right)
$$

Which simplifies to

$$
W=-\frac{2\left(\cos (2 \ln (x))^{2}+\sin (2 \ln (x))^{2}\right)}{x}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-2 \sin (2 \ln (x)) x \ln (x)}{-2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (2 \ln (x)) \ln (x) d x
$$

Hence

$$
u_{1}=-\left(-\frac{2 \ln (x)}{5}+\frac{4}{25}\right) x \cos (2 \ln (x))-\left(\frac{\ln (x)}{5}+\frac{3}{25}\right) x \sin (2 \ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \cos (2 \ln (x)) x \ln (x)}{-2 x} d x
$$

Which simplifies to

$$
u_{2}=\int-\cos (2 \ln (x)) \ln (x) d x
$$

Hence

$$
u_{2}=-\left(\frac{\ln (x)}{5}+\frac{3}{25}\right) x \cos (2 \ln (x))+\left(-\frac{2 \ln (x)}{5}+\frac{4}{25}\right) x \sin (2 \ln (x))
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(-\frac{2\left(\frac{2}{5}-\ln (x)\right) \cos (2 \ln (x))}{5}-\frac{\left(\frac{3}{5}+\ln (x)\right) \sin (2 \ln (x))}{5}\right) x \\
& u_{2}=\left(-\frac{\left(\frac{3}{5}+\ln (x)\right) \cos (2 \ln (x))}{5}+\frac{2\left(\frac{2}{5}-\ln (x)\right) \sin (2 \ln (x))}{5}\right) x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\frac{2\left(\frac{2}{5}-\ln (x)\right) \cos (2 \ln (x))}{5}-\frac{\left(\frac{3}{5}+\ln (x)\right) \sin (2 \ln (x))}{5}\right) x \cos (2 \ln (x)) \\
& -\left(-\frac{\left(\frac{3}{5}+\ln (x)\right) \cos (2 \ln (x))}{5}+\frac{2\left(\frac{2}{5}-\ln (x)\right) \sin (2 \ln (x))}{5}\right) x \sin (2 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

13.17.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sin (\ln (x)) \cos (\ln (x)) \\
& y_{2}=2 \cos (\ln (x))^{2}-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{d}{d x}(\sin (\ln (x)) \cos (\ln (x))) & \frac{d}{d x}\left(2 \cos (\ln (x))^{2}-1\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x} & -\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & (\sin (\ln (x)) \cos (\ln (x)))\left(-\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}\right) \\
& -\left(2 \cos (\ln (x))^{2}-1\right)\left(\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=-\frac{2 \sin (\ln (x))^{2} \cos (\ln (x))^{2}+2 \cos (\ln (x))^{4}+\sin (\ln (x))^{2}-\cos (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=-\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2\left(2 \cos (\ln (x))^{2}-1\right) x \ln (x)}{-x} d x
$$

Which simplifies to

$$
u_{1}=-\int-2 \cos (2 \ln (x)) \ln (x) d x
$$

Hence

$$
u_{1}=2\left(\frac{\ln (x)}{5}+\frac{3}{25}\right) x \cos (2 \ln (x))-2\left(-\frac{2 \ln (x)}{5}+\frac{4}{25}\right) x \sin (2 \ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \sin (\ln (x)) \cos (\ln (x)) x \ln (x)}{-x} d x
$$

Which simplifies to

$$
u_{2}=\int-\sin (2 \ln (x)) \ln (x) d x
$$

Hence

$$
u_{2}=-\left(-\frac{2 \ln (x)}{5}+\frac{4}{25}\right) x \cos (2 \ln (x))-\left(\frac{\ln (x)}{5}+\frac{3}{25}\right) x \sin (2 \ln (x))
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(\frac{2\left(\frac{3}{5}+\ln (x)\right) \cos (2 \ln (x))}{5}-\frac{4\left(\frac{2}{5}-\ln (x)\right) \sin (2 \ln (x))}{5}\right) x \\
& u_{2}=\left(-\frac{2\left(\frac{2}{5}-\ln (x)\right) \cos (2 \ln (x))}{5}-\frac{\left(\frac{3}{5}+\ln (x)\right) \sin (2 \ln (x))}{5}\right) x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{align*}
y_{p}(x)= & \left(\frac{2\left(\frac{3}{5}+\ln (x)\right) \cos (2 \ln (x))}{5}\right. \\
& \left.-\frac{4\left(\frac{2}{5}-\ln (x)\right) \sin (2 \ln (x))}{5}\right) x \sin (\ln (x)) \cos (\ln (x)) \\
& +\left(-\frac{2\left(\frac{2}{5}-\ln (x)\right) \cos (2 \ln (x))}{5}-\frac{\left(\frac{3}{5}+\ln (x)\right) \sin (2 \ln (x))}{5}\right) x\left(2 \cos (\ln (x))^{2}\right. \tag{-1}
\end{align*}
$$

Which simplifies to

$$
y_{p}(x)=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)+\left(\frac{2 x \ln (x)}{5}-\frac{4 x}{25}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

13.17.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=2 x \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=2 x \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sin (\ln (x)) \cos (\ln (x)) \\
& y_{2}=2 \cos (\ln (x))^{2}-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{d}{d x}(\sin (\ln (x)) \cos (\ln (x))) & \frac{d}{d x}\left(2 \cos (\ln (x))^{2}-1\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x} & -\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & (\sin (\ln (x)) \cos (\ln (x)))\left(-\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}\right) \\
& -\left(2 \cos (\ln (x))^{2}-1\right)\left(\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=-\frac{2 \sin (\ln (x))^{2} \cos (\ln (x))^{2}+2 \cos (\ln (x))^{4}+\sin (\ln (x))^{2}-\cos (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=-\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2\left(2 \cos (\ln (x))^{2}-1\right) x \ln (x)}{-x} d x
$$

Which simplifies to

$$
u_{1}=-\int-2 \cos (2 \ln (x)) \ln (x) d x
$$

Hence

$$
u_{1}=2\left(\frac{\ln (x)}{5}+\frac{3}{25}\right) x \cos (2 \ln (x))-2\left(-\frac{2 \ln (x)}{5}+\frac{4}{25}\right) x \sin (2 \ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \sin (\ln (x)) \cos (\ln (x)) x \ln (x)}{-x} d x
$$

Which simplifies to

$$
u_{2}=\int-\sin (2 \ln (x)) \ln (x) d x
$$

Hence

$$
u_{2}=-\left(-\frac{2 \ln (x)}{5}+\frac{4}{25}\right) x \cos (2 \ln (x))-\left(\frac{\ln (x)}{5}+\frac{3}{25}\right) x \sin (2 \ln (x))
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(\frac{2\left(\frac{3}{5}+\ln (x)\right) \cos (2 \ln (x))}{5}-\frac{4\left(\frac{2}{5}-\ln (x)\right) \sin (2 \ln (x))}{5}\right) x \\
& u_{2}=\left(-\frac{2\left(\frac{2}{5}-\ln (x)\right) \cos (2 \ln (x))}{5}-\frac{\left(\frac{3}{5}+\ln (x)\right) \sin (2 \ln (x))}{5}\right) x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{align*}
y_{p}(x)= & \left(\frac{2\left(\frac{3}{5}+\ln (x)\right) \cos (2 \ln (x))}{5}\right. \\
& \left.-\frac{4\left(\frac{2}{5}-\ln (x)\right) \sin (2 \ln (x))}{5}\right) x \sin (\ln (x)) \cos (\ln (x)) \\
& +\left(-\frac{2\left(\frac{2}{5}-\ln (x)\right) \cos (2 \ln (x))}{5}-\frac{\left(\frac{3}{5}+\ln (x)\right) \sin (2 \ln (x))}{5}\right) x\left(2 \cos (\ln (x))^{2}\right. \tag{-1}
\end{align*}
$$

Which simplifies to

$$
y_{p}(x)=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)+\left(\frac{2 x \ln (x)}{5}-\frac{4 x}{25}\right) \\
& =\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

13.17.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=2 x \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+4 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+4 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-4 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-4 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-4 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-4 i}{x} d x \\
\ln (u) & =(-1-4 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-4 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-4 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-4 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-4 i}}{4}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i} \\
& =x^{2 i} c_{2}+\frac{i x^{-2 i} c_{1}}{4}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=2 x \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2 i} \\
& y_{2}=x^{2 i} x^{-4 i}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2 i} & x^{2 i} x^{-4 i} \\
\frac{d}{d x}\left(x^{2 i}\right) & \frac{d}{d x}\left(x^{2 i} x^{-4 i}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2 i} & x^{2 i} x^{-4 i} \\
\frac{2 i x^{2 i}}{x} & -\frac{2 i x^{2 i} x^{-4 i}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2 i}\right)\left(-\frac{2 i x^{2 i} x^{-4 i}}{x}\right)-\left(x^{2 i} x^{-4 i}\right)\left(\frac{2 i x^{2 i}}{x}\right)
$$

Which simplifies to

$$
W=-\frac{4 i x^{4 i} x^{-4 i}}{x}
$$

Which simplifies to

$$
W=-\frac{4 i}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 x^{2 i} x^{-4 i} x \ln (x)}{-4 i x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{i x^{-2 i} \ln (x)}{2} d x
$$

Hence

$$
u_{1}=-\frac{(4+3 i+(-10+5 i) \ln (x)) x^{1-2 i}}{50}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 x^{2 i} x \ln (x)}{-4 i x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{i x^{2 i} \ln (x)}{2} d x
$$

Hence

$$
u_{2}=\frac{(-4+3 i+(10+5 i) \ln (x)) x^{1+2 i}}{50}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{1-2 i}\left(\frac{4}{5}+\frac{3 i}{5}+(-2+i) \ln (x)\right)}{10} \\
& u_{2}=\frac{(-4+3 i+(10+5 i) \ln (x)) x^{1+2 i}}{50}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=-\frac{x^{1-2 i}\left(\frac{4}{5}+\frac{3 i}{5}+(-2+i) \ln (x)\right) x^{2 i}}{10}+\frac{(-4+3 i+(10+5 i) \ln (x)) x^{1+2 i} x^{2 i} x^{-4 i}}{50}$
Which simplifies to

$$
y_{p}(x)=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i}\right)+\left(\frac{2 x \ln (x)}{5}-\frac{4 x}{25}\right) \\
& =\frac{2 x \ln (x)}{5}-\frac{4 x}{25}+\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{2 x \ln (x)}{5}+x^{2 i} c_{2}-\frac{4 x}{25}+\frac{i x^{-2 i} c_{1}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x \ln (x)}{5}+x^{2 i} c_{2}-\frac{4 x}{25}+\frac{i x^{-2 i} c_{1}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 x \ln (x)}{5}+x^{2 i} c_{2}-\frac{4 x}{25}+\frac{i x^{-2 i} c_{1}}{4}
$$

Verified OK.

13.17.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-17}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-17 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{17}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 494: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{17}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{17}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{17}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-2 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-2 i-\left(\frac{1}{2}-2 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-2 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-2 i}{x} \\
& =\frac{\frac{1}{2}-2 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-2 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+2 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-2 i}{x}\right)^{2}-\left(-\frac{17}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-2 i} x d x \\
& =x^{\frac{1}{2}-2 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-2 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{4 i}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-2 i}\right)+c_{2}\left(x^{-2 i}\left(-\frac{i x^{4 i}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{-2 i} \\
& y_{2}=-\frac{i x^{2 i}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-2 i} & -\frac{i x^{2 i}}{4} \\
\frac{d}{d x}\left(x^{-2 i}\right) & \frac{d}{d x}\left(-\frac{i x^{2 i}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-2 i} & -\frac{i x^{2 i}}{4} \\
-\frac{2 i x^{-2 i}}{x} & \frac{x^{2 i}}{2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-2 i}\right)\left(\frac{x^{2 i}}{2 x}\right)-\left(-\frac{i x^{2 i}}{4}\right)\left(-\frac{2 i x^{-2 i}}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{-2 i} x^{2 i}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{i x^{2 i} x \ln (x)}{2}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{i x^{2 i} \ln (x)}{2} d x
$$

Hence

$$
u_{1}=\frac{x^{1+2 i}\left(-\frac{4}{5}+\frac{3 i}{5}+(2+i) \ln (x)\right)}{10}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 x \ln (x) x^{-2 i}}{x} d x
$$

Which simplifies to

$$
u_{2}=\int 2 x^{-2 i} \ln (x) d x
$$

Hence

$$
u_{2}=\frac{2 x^{1-2 i}(3-4 i+(5+10 i) \ln (x))}{25}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-4+3 i+(10+5 i) \ln (x)) x^{1+2 i}}{50} \\
& u_{2}=\frac{2 x^{1-2 i}(3-4 i+(5+10 i) \ln (x))}{25}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{(-4+3 i+(10+5 i) \ln (x)) x^{1+2 i} x^{-2 i}}{50}-\frac{i x^{1-2 i}(3-4 i+(5+10 i) \ln (x)) x^{2 i}}{50}
$$

Which simplifies to

$$
y_{p}(x)=\frac{2 x \ln (x)}{5}-\frac{4 x}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}\right)+\left(\frac{2 x \ln (x)}{5}-\frac{4 x}{25}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}+\frac{2 x \ln (x)}{5}-\frac{4 x}{25} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}+\frac{2 x \ln (x)}{5}-\frac{4 x}{25}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

```
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x), x)+4*y(x)=2*x*ln(x),y(x), singsol=all)
```

$$
y(x)=\sin (2 \ln (x)) c_{2}+\cos (2 \ln (x)) c_{1}+\frac{2 \ln (x) x}{5}-\frac{4 x}{25}
$$

Solution by Mathematica
Time used: 0.11 (sec). Leaf size: 33
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+x * y$ ' $[x]+4 * y[x]==2 * x * \log [x], y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow \frac{2}{25} x(5 \log (x)-2)+c_{1} \cos (2 \log (x))+c_{2} \sin (2 \log (x))
$$

13.18 problem 18

13.18.1 Solving as second order euler ode ode 3554
13.18.2 Solving as second order change of variable on x method 2 ode . 3558
13.18.3 Solving as second order change of variable on x method 1 ode . 3564
13.18.4 Solving as second order change of variable on y method 2 ode . 3568
13.18.5 Solving using Kovacic algorithm 3573

Internal problem ID [11872]
Internal file name [OUTPUT/11881_Saturday_April_13_2024_01_13_37_AM_23588908/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change_of__variable_on_x_method_2", "second_order_change__of_variable_on_y__method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=4 \sin (\ln (x))
$$

13.18.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=4 \sin (\ln (x))$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+4=0
$$

Or

$$
\begin{equation*}
r^{2}+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 i \\
& r_{2}=2 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-2$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-2$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-2 i \ln (x)}+c_{2} e^{2 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=4 \sin (\ln (x))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 \ln (x)) \\
& y_{2}=-\sin (2 \ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 \ln (x)) & -\sin (2 \ln (x)) \\
\frac{d}{d x}(\cos (2 \ln (x))) & \frac{d}{d x}(-\sin (2 \ln (x)))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 \ln (x)) & -\sin (2 \ln (x)) \\
-\frac{2 \sin (2 \ln (x))}{x} & -\frac{2 \cos (2 \ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 \ln (x)))\left(-\frac{2 \cos (2 \ln (x))}{x}\right)-(-\sin (2 \ln (x)))\left(-\frac{2 \sin (2 \ln (x))}{x}\right)
$$

Which simplifies to

$$
W=-\frac{2\left(\cos (2 \ln (x))^{2}+\sin (2 \ln (x))^{2}\right)}{x}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-4 \sin (2 \ln (x)) \sin (\ln (x))}{-2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\cos (\ln (x))-\cos (3 \ln (x))}{x} d x
$$

Hence

$$
u_{1}=\frac{\sin (3 \ln (x))}{3}-\sin (\ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \cos (2 \ln (x)) \sin (\ln (x))}{-2 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-\sin (3 \ln (x))+\sin (\ln (x))}{x} d x
$$

Hence

$$
u_{2}=\frac{\cos (3 \ln (x))}{3}-\cos (\ln (x))
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{4 \sin (\ln (x))^{3}}{3} \\
& u_{2}=\frac{4 \cos (\ln (x))^{3}}{3}-2 \cos (\ln (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{4 \sin (\ln (x))^{3} \cos (2 \ln (x))}{3}-\left(\frac{4 \cos (\ln (x))^{3}}{3}-2 \cos (\ln (x))\right) \sin (2 \ln (x))
$$

Which simplifies to

$$
y_{p}(x)=\frac{4 \sin (\ln (x))}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

13.18.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sin (\ln (x)) \cos (\ln (x)) \\
& y_{2}=2 \cos (\ln (x))^{2}-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{d}{d x}(\sin (\ln (x)) \cos (\ln (x))) & \frac{d}{d x}\left(2 \cos (\ln (x))^{2}-1\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x} & -\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & (\sin (\ln (x)) \cos (\ln (x)))\left(-\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}\right) \\
& -\left(2 \cos (\ln (x))^{2}-1\right)\left(\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=-\frac{2 \sin (\ln (x))^{2} \cos (\ln (x))^{2}+2 \cos (\ln (x))^{4}+\sin (\ln (x))^{2}-\cos (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=-\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(2 \cos (\ln (x))^{2}-1\right) \sin (\ln (x))}{-x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{-8 \sin (\ln (x)) \cos (\ln (x))^{2}+4 \sin (\ln (x))}{x} d x
$$

Hence

$$
u_{1}=-\frac{8 \cos (\ln (x))^{3}}{3}+4 \cos (\ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \sin (\ln (x))^{2} \cos (\ln (x))}{-x} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{4 \sin (\ln (x))^{2} \cos (\ln (x))}{x} d x
$$

Hence

$$
u_{2}=-\frac{4 \sin (\ln (x))^{3}}{3}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\frac{8 \cos (\ln (x))^{3}}{3}+4 \cos (\ln (x))\right) \sin (\ln (x)) \cos (\ln (x)) \\
& -\frac{4 \sin (\ln (x))^{3}\left(2 \cos (\ln (x))^{2}-1\right)}{3}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{4 \sin (\ln (x))}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)+\left(\frac{4 \sin (\ln (x))}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

13.18.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=4 \sin (\ln (x))$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=4 \sin (\ln (x))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sin (\ln (x)) \cos (\ln (x)) \\
& y_{2}=2 \cos (\ln (x))^{2}-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{d}{d x}(\sin (\ln (x)) \cos (\ln (x))) & \frac{d}{d x}\left(2 \cos (\ln (x))^{2}-1\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x} & -\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & (\sin (\ln (x)) \cos (\ln (x)))\left(-\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}\right) \\
& -\left(2 \cos (\ln (x))^{2}-1\right)\left(\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=-\frac{2 \sin (\ln (x))^{2} \cos (\ln (x))^{2}+2 \cos (\ln (x))^{4}+\sin (\ln (x))^{2}-\cos (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=-\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(2 \cos (\ln (x))^{2}-1\right) \sin (\ln (x))}{-x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{-8 \sin (\ln (x)) \cos (\ln (x))^{2}+4 \sin (\ln (x))}{x} d x
$$

Hence

$$
u_{1}=-\frac{8 \cos (\ln (x))^{3}}{3}+4 \cos (\ln (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \sin (\ln (x))^{2} \cos (\ln (x))}{-x} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{4 \sin (\ln (x))^{2} \cos (\ln (x))}{x} d x
$$

Hence

$$
u_{2}=-\frac{4 \sin (\ln (x))^{3}}{3}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\frac{8 \cos (\ln (x))^{3}}{3}+4 \cos (\ln (x))\right) \sin (\ln (x)) \cos (\ln (x)) \\
& -\frac{4 \sin (\ln (x))^{3}\left(2 \cos (\ln (x))^{2}-1\right)}{3}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{4 \sin (\ln (x))}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)+\left(\frac{4 \sin (\ln (x))}{3}\right) \\
& =\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y=\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{4 \sin (\ln (x))}{3}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.
13.18.4 Solving as second order change of variable on y method 2 ode This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=4 \sin (\ln (x))$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+4 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+4 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-4 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-4 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-4 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-4 i}{x} d x \\
\ln (u) & =(-1-4 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-4 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-4 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-4 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-4 i}}{4}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i} \\
& =x^{2 i} c_{2}+\frac{i x^{-2 i} c_{1}}{4}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=4 \sin (\ln (x))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2 i} \\
& y_{2}=x^{2 i} x^{-4 i}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2 i} & x^{2 i} x^{-4 i} \\
\frac{d}{d x}\left(x^{2 i}\right) & \frac{d}{d x}\left(x^{2 i} x^{-4 i}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2 i} & x^{2 i} x^{-4 i} \\
\frac{2 i x^{2 i}}{x} & -\frac{2 i x^{2 i} x^{-4 i}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2 i}\right)\left(-\frac{2 i x^{2 i} x^{-4 i}}{x}\right)-\left(x^{2 i} x^{-4 i}\right)\left(\frac{2 i x^{2 i}}{x}\right)
$$

Which simplifies to

$$
W=-\frac{4 i x^{4 i} x^{-4 i}}{x}
$$

Which simplifies to

$$
W=-\frac{4 i}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 x^{2 i} x^{-4 i} \sin (\ln (x))}{-4 i x} d x
$$

Which simplifies to

$$
u_{1}=-\int i x^{-1-2 i} \sin (\ln (x)) d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 x^{2 i} \sin (\ln (x))}{-4 i x} d x
$$

Which simplifies to

$$
u_{2}=\int i x^{-1+2 i} \sin (\ln (x)) d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{2 i}+\text { undefined } x^{2 i} x^{-4 i}
$$

Which simplifies to

$$
y_{p}(x)=\operatorname{undefined}\left(x^{2 i}+x^{-2 i}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i}\right)+\left(\operatorname{undefined}\left(x^{2 i}+x^{-2 i}\right)\right) \\
& =\text { undefined }\left(x^{2 i}+x^{-2 i}\right)+\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{2 i}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{2 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{2 i}
$$

Verified OK.

13.18.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-17}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-17 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{17}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 495: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{17}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{17}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{17}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-2 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-2 i-\left(\frac{1}{2}-2 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-2 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-2 i}{x} \\
& =\frac{\frac{1}{2}-2 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-2 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+2 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-2 i}{x}\right)^{2}-\left(-\frac{17}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-2 i} x d x \\
& =x^{\frac{1}{2}-2 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-2 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{4 i}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-2 i}\right)+c_{2}\left(x^{-2 i}\left(-\frac{i x^{4 i}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{-2 i} \\
& y_{2}=-\frac{i x^{2 i}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-2 i} & -\frac{i x^{2 i}}{4} \\
\frac{d}{d x}\left(x^{-2 i}\right) & \frac{d}{d x}\left(-\frac{i x^{2 i}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-2 i} & -\frac{i x^{2 i}}{4} \\
-\frac{2 i x^{-2 i}}{x} & \frac{x^{2 i}}{2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-2 i}\right)\left(\frac{x^{2 i}}{2 x}\right)-\left(-\frac{i x^{2 i}}{4}\right)\left(-\frac{2 i x^{-2 i}}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{-2 i} x^{2 i}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-i x^{2 i} \sin (\ln (x))}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int-i x^{-1+2 i} \sin (\ln (x)) d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 x^{-2 i} \sin (\ln (x))}{x} d x
$$

Which simplifies to

$$
u_{2}=\int 4 x^{-1-2 i} \sin (\ln (x)) d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{-2 i}-i \text { undefined } x^{2 i}
$$

Which simplifies to

$$
y_{p}(x)=\left(i x^{2 i}+x^{-2 i}\right) \text { undefined }
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}\right)+\left(\left(i x^{2 i}+x^{-2 i}\right) \text { undefined }\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}+\left(i x^{2 i}+x^{-2 i}\right) \text { undefined } \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}+\left(i x^{2 i}+x^{-2 i}\right) \text { undefined }
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+4*y(x)=4*\operatorname{sin}(\operatorname{ln}(x)),y(x), singsol=all)
```

$$
y(x)=\sin (2 \ln (x)) c_{2}+\cos (2 \ln (x)) c_{1}+\frac{4 \sin (\ln (x))}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.176 (sec). Leaf size: 29
DSolve [x^2*y''[x]+x*y'[x]+4*y[x]==4*Sin[Log[x]],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{4}{3} \sin (\log (x))+c_{1} \cos (2 \log (x))+c_{2} \sin (2 \log (x))
$$

13.19 problem 19

13.19.1 Maple step by step solution 3587

Internal problem ID [11873]
Internal file name [OUTPUT/11882_Saturday_April_13_2024_01_13_53_AM_23825213/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 19.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+2 y^{\prime} x-2 y=x^{3}
$$

This is higher order nonhomogeneous Euler type ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous Euler ODE And y_{p} is a particular solution to the nonhomogeneous Euler ODE. y_{h} is the solution to

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+2 y^{\prime} x-2 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+2 y^{\prime} x-2 y=x^{3}
$$

gives

$$
2 x \lambda x^{\lambda-1}-x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-2 x^{\lambda}=0
$$

Which simplifies to

$$
2 \lambda x^{\lambda}-\lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-2 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
2 \lambda-\lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-2=0
$$

Simplifying gives the characteristic equation as

$$
(\lambda-2)(\lambda-1)^{2}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
1	2	real root
2	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{1} x+c_{2} \ln (x) x+c_{3} x^{2}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x \ln (x) \\
& y_{3}=x^{2}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+2 y^{\prime} x-2 y=x^{3}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
x & x \ln (x) & x^{2} \\
1 & \ln (x)+1 & 2 x \\
0 & \frac{1}{x} & 2
\end{array}\right] \\
|W| & =x
\end{aligned}
$$

The determinant simplifies to

$$
|W|=x
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
x \ln (x) & x^{2} \\
\ln (x)+1 & 2 x
\end{array}\right] \\
&=x^{2}(\ln (x)-1) \\
& W_{2}(x)=\operatorname{det}\left[\begin{array}{ll}
x & x^{2} \\
1 & 2 x
\end{array}\right] \\
&=x^{2} \\
& \begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
x & x \ln (x) \\
1 & \ln (x)+1
\end{array}\right] \\
& =x
\end{aligned}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
& U_{1}=(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
&=(-1)^{2} \int \frac{\left(x^{3}\right)\left(x^{2}(\ln (x)-1)\right)}{\left.x^{3}\right)(x)} d x \\
&=\int \frac{x^{5}(\ln (x)-1)}{x^{4}} d x \\
&=\int(x(\ln (x)-1)) d x \\
&=\frac{x^{2} \ln (x)}{2}-\frac{3 x^{2}}{4} \\
& \begin{aligned}
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(x^{3}\right)\left(x^{2}\right)}{\left(x^{3}\right)(x)} d x \\
& =-\int \frac{x^{5}}{x^{4}} d x \\
& =-\int(x) d x \\
& =-\frac{x^{2}}{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(x^{3}\right)(x)}{\left(x^{3}\right)(x)} d x \\
& =\int \frac{x^{4}}{x^{4}} d x \\
& =\int(1) d x \\
& =x
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{x^{2} \ln (x)}{2}-\frac{3 x^{2}}{4}\right)(x) \\
& +\left(-\frac{x^{2}}{2}\right)(x \ln (x)) \\
& +(x)\left(x^{2}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{x^{3}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x+c_{2} \ln (x) x+c_{3} x^{2}\right)+\left(\frac{x^{3}}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=x\left(\ln (x) c_{2}+c_{3} x+c_{1}\right)+\frac{x^{3}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x) c_{2}+c_{3} x+c_{1}\right)+\frac{x^{3}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(\ln (x) c_{2}+c_{3} x+c_{1}\right)+\frac{x^{3}}{4}
$$

Verified OK.

13.19.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}-y^{\prime \prime} x^{2}+2 y^{\prime} x-2 y=x^{3}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve(x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=x^3,y(x), singsol=all)
```

$$
y(x)=\frac{x\left(4 c_{3} \ln (x)+4 c_{2} x+x^{2}+4 c_{1}\right)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 29
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]-x^{\wedge} 2 * y$ ' $'[x]+2 * x * y$ ' $[x]-2 * y[x]==x^{\wedge} 3, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{4} x\left(x^{2}+4 c_{3} x+4 c_{2} \log (x)+4 c_{1}\right)
$$

13.20 problem 20

13.20.1 Existence and uniqueness analysis 3590
13.20.2 Solving as second order euler ode ode 3590
13.20.3 Solving as second order change of variable on x method 2 ode . 3592
13.20.4 Solving as second order change of variable on y method 2 ode . 3596
13.20.5 Solving using Kovacic algorithm 3599
13.20.6 Maple step by step solution . 3606

Internal problem ID [11874]
Internal file name [OUTPUT/11883_Saturday_April_13_2024_01_13_54_AM_33597945/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y__method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(x)]•]

$$
x^{2} y^{\prime \prime}-2 y^{\prime} x-10 y=0
$$

With initial conditions

$$
\left[y(1)=5, y^{\prime}(1)=4\right]
$$

13.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{2}{x} \\
q(x) & =-\frac{10}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{2 y^{\prime}}{x}-\frac{10 y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-\frac{10}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

13.20.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-2 x r x^{r-1}-10 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-2 r x^{r}-10 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-2 r-10=0
$$

Or

$$
\begin{equation*}
r^{2}-3 r-10=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=5
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{5}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+c_{2} x^{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=1$ in the above gives

$$
\begin{equation*}
5=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 c_{1}}{x^{3}}+5 c_{2} x^{4}
$$

substituting $y^{\prime}=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=-2 c_{1}+5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{7}+3}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{7}+3}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 520: Solution plot

Verification of solutions

$$
y=\frac{2 x^{7}+3}{x^{2}}
$$

Verified OK.

13.20.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y^{\prime} x-10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-\frac{10}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{2}{x} d x\right)} d x \\
& =\int e^{2 \ln (x)} d x \\
& =\int x^{2} d x \\
& =\frac{x^{3}}{3} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{10}{x^{2}}}{x^{4}} \\
& =-\frac{10}{x^{6}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{10 y(\tau)}{x^{6}} & =0
\end{aligned}
$$

But in terms of τ

$$
-\frac{10}{x^{6}}=-\frac{10}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{10 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-10 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-10 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}-10 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0-10=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r-10=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{2}{3} \\
& r_{2}=\frac{5}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau^{\frac{2}{3}}}+c_{2} \tau^{\frac{5}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{3^{\frac{1}{3}}\left(c_{2} x^{6}\left(x^{3}\right)^{\frac{1}{3}}+9 c_{1} 3^{\frac{1}{3}}\right)}{9\left(x^{3}\right)^{\frac{2}{3}}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3^{\frac{1}{3}}\left(c_{2} x^{6}\left(x^{3}\right)^{\frac{1}{3}}+9 c_{1} 3^{\frac{1}{3}}\right)}{9\left(x^{3}\right)^{\frac{2}{3}}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=1$ in the above gives

$$
\begin{equation*}
5=3^{\frac{2}{3}} c_{1}+\frac{3^{\frac{1}{3}} c_{2}}{9} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{3^{\frac{1}{3}}\left(6 c_{2} x^{5}\left(x^{3}\right)^{\frac{1}{3}}+\frac{c_{2} x^{8}}{\left(x^{3}\right)^{\frac{2}{3}}}\right)}{9\left(x^{3}\right)^{\frac{2}{3}}}-\frac{23^{\frac{1}{3}}\left(c_{2} x^{6}\left(x^{3}\right)^{\frac{1}{3}}+9 c_{1} 3^{\frac{1}{3}}\right) x^{2}}{9\left(x^{3}\right)^{\frac{5}{3}}}
$$

substituting $y^{\prime}=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=-23^{\frac{2}{3}} c_{1}+\frac{53^{\frac{1}{3}} c_{2}}{9} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3^{\frac{1}{3}} \\
& c_{2}=63^{\frac{2}{3}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{6}\left(x^{3}\right)^{\frac{1}{3}}+3}{\left(x^{3}\right)^{\frac{2}{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{6}\left(x^{3}\right)^{\frac{1}{3}}+3}{\left(x^{3}\right)^{\frac{2}{3}}} \tag{1}
\end{equation*}
$$

Figure 521: Solution plot
Verification of solutions

$$
y=\frac{2 x^{6}\left(x^{3}\right)^{\frac{1}{3}}+3}{\left(x^{3}\right)^{\frac{2}{3}}}
$$

Verified OK.

13.20.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 y^{\prime} x-10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-\frac{10}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{2 n}{x^{2}}-\frac{10}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=5 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{8 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{8 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{8 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{8 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{8}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{8}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{8}{x} d x \\
\ln (u) & =-8 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-8 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{8}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{7 x^{7}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{5} \\
& =\frac{7 c_{2} x^{7}-c_{1}}{7 x^{2}}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=1$ in the above gives

$$
\begin{equation*}
5=-\frac{c_{1}}{7}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{x^{3}}+5\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{4}
$$

substituting $y^{\prime}=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=\frac{2 c_{1}}{7}+5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-21 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{7}+3}{x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{7}+3}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 522: Solution plot

Verification of solutions

$$
y=\frac{2 x^{7}+3}{x^{2}}
$$

Verified OK.

13.20.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}-2 y^{\prime} x-10 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-2 x \tag{3}\\
& C=-10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{12}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=12 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{12}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 497: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{12}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=12$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=4 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-3
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{12}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=12$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=4 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-3
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{12}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	4	-3

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	4	-3

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-3$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-3-(-3) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{x}+(-)(0) \\
& =-\frac{3}{x} \\
& =-\frac{3}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{x}\right)(0)+\left(\left(\frac{3}{x^{2}}\right)+\left(-\frac{3}{x}\right)^{2}-\left(\frac{12}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x}{x^{2}} d x} \\
& =z_{1} e^{\ln (x)} \\
& =z_{1}(x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{7}}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{7}}{7}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{5}}{7} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=5$ and $x=1$ in the above gives

$$
\begin{equation*}
5=c_{1}+\frac{c_{2}}{7} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 c_{1}}{x^{3}}+\frac{5 c_{2} x^{4}}{7}
$$

substituting $y^{\prime}=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=-2 c_{1}+\frac{5 c_{2}}{7} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=14
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{7}+3}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{7}+3}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 523: Solution plot

Verification of solutions

$$
y=\frac{2 x^{7}+3}{x^{2}}
$$

Verified OK.

13.20.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}-2 y^{\prime} x-10 y=0, y(1)=5,\left.y^{\prime}\right|_{\{x=1\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 y^{\prime}}{x}+\frac{10 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{2 y^{\prime}}{x}-\frac{10 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}-2 y^{\prime} x-10 y=0
$$

- Make a change of variables
$t=\ln (x)$
$\square \quad$ Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-2 \frac{d}{d t} y(t)-10 y(t)=0
$$

- Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-3 \frac{d}{d t} y(t)-10 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-3 r-10=0$
- Factor the characteristic polynomial
$(r+2)(r-5)=0$
- Roots of the characteristic polynomial

$$
r=(-2,5)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{5 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{5 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{5}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{5}
$$

Check validity of solution $y=\frac{c_{1}}{x^{2}}+c_{2} x^{5}$

- Use initial condition $y(1)=5$

$$
5=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{2 c_{1}}{x^{3}}+5 c_{2} x^{4}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=4$ $4=-2 c_{1}+5 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{3}{x^{2}}+2 x^{5}
$$

- \quad Solution to the IVP

$$
y=\frac{3}{x^{2}}+2 x^{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([x^2*diff (y(x),x$2)-2*x*diff(y(x),x)-10*y(x)=0,y(1) = 5, D(y)(1) = 4],y(x), singsol=a
```

$$
y(x)=2 x^{5}+\frac{3}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 16
DSolve $\left[\left\{x^{\wedge} 2 * y\right.\right.$ ' ' $[x]-2 * x * y$ ' $\left.[x]-10 * y[x]==0,\left\{y[1]==5, y^{\prime}[1]==4\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{2 x^{7}+3}{x^{2}}
$$

13.21 problem 21

13.21.1 Existence and uniqueness analysis 3610
13.21.2 Solving as second order euler ode ode 3610
13.21.3 Solving as linear second order ode solved by an integrating factor ode

3612
13.21.4 Solving as second order change of variable on x method 2 ode . 3615
13.21.5 Solving as second order change of variable on x method 1 ode . 3619
13.21.6 Solving as second order change of variable on y method 1 ode . 3622
13.21.7 Solving as second order change of variable on y method 2 ode . 3625
13.21.8 Solving using Kovacic algorithm 3628
13.21.9 Maple step by step solution . 3632

Internal problem ID [11875]
Internal file name [OUTPUT/11884_Saturday_April_13_2024_01_13_56_AM_26227055/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second__order_change__of_cariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second_order_change_of_cvariable_on_y_method_2", "linear_second__order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F( x)] 〕]
```

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

With initial conditions

$$
\left[y(2)=0, y^{\prime}(2)=4\right]
$$

13.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{4}{x} \\
q(x) & =\frac{6}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{6 y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{4}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{6}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

13.21.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=8 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=12 c_{2}+4 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x^{3}-2 x^{2}
$$

Which simplifies to

$$
y=(x-2) x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) x^{2} \tag{1}
\end{equation*}
$$

Figure 524: Solution plot

Verification of solutions

$$
y=(x-2) x^{2}
$$

Verified OK.
13.21.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=8 c_{1}+4 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} x^{2}+2 c_{2} x
$$

substituting $y^{\prime}=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=12 c_{1}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x^{3}-2 x^{2}
$$

Which simplifies to

$$
y=(x-2) x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) x^{2} \tag{1}
\end{equation*}
$$

Figure 525: Solution plot

Verification of solutions

$$
y=(x-2) x^{2}
$$

Verified OK.
13.21.4 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=\frac{45^{\frac{2}{5}}\left(5^{\frac{1}{5}} c_{1}+2 c_{2}\right)}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} 5^{\frac{3}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{3}{5}}}+\frac{3 c_{2} 5^{\frac{2}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{2}{5}}}
$$

substituting $y^{\prime}=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=\frac{4\left(5^{\frac{1}{5}} c_{1}+3 c_{2}\right) 5^{\frac{2}{5}}}{5} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-25^{\frac{2}{5}} \\
& c_{2}=5^{\frac{3}{5}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\left(x^{5}\right)^{\frac{3}{5}}-2\left(x^{5}\right)^{\frac{2}{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{5}\right)^{\frac{3}{5}}-2\left(x^{5}\right)^{\frac{2}{5}} \tag{1}
\end{equation*}
$$

Figure 526: Solution plot

Verification of solutions

$$
y=\left(x^{5}\right)^{\frac{3}{5}}-2\left(x^{5}\right)^{\frac{2}{5}}
$$

Verified OK.

13.21.5 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}} x^{3}}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=2 i c_{2}+6 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{5 x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{5}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
$$

substituting $y^{\prime}=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=4 i c_{2}+8 c_{1} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=-3 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x^{\frac{5}{2}} \sinh \left(\frac{\ln (x)}{2}\right)-x^{\frac{5}{2}} \cosh \left(\frac{\ln (x)}{2}\right)
$$

Which simplifies to

$$
y=-\left(\cosh \left(\frac{\ln (x)}{2}\right)-3 \sinh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\cosh \left(\frac{\ln (x)}{2}\right)-3 \sinh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}} \tag{1}
\end{equation*}
$$

Figure 527: Solution plot

Verification of solutions

$$
y=-\left(\cosh \left(\frac{\ln (x)}{2}\right)-3 \sinh \left(\frac{\ln (x)}{2}\right)\right) x^{\frac{5}{2}}
$$

Verified OK.

13.21.6 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-\frac{4}{2}}{2}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{4} v^{\prime \prime}(x)=0
$$

Which is now solved for $v(x)$ Integrating twice gives the solution

$$
v(x)=c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x+c_{2}\right) x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(c_{1} x+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=8 c_{1}+4 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x^{2}+2\left(c_{1} x+c_{2}\right) x
$$

substituting $y^{\prime}=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=12 c_{1}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=(x-2) x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) x^{2} \tag{1}
\end{equation*}
$$

Figure 528: Solution plot

Verification of solutions

$$
y=(x-2) x^{2}
$$

Verified OK.

13.21.7 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}+8 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} x+3\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2}
$$

substituting $y^{\prime}=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=-4 c_{1}+12 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=(x-2) x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) x^{2} \tag{1}
\end{equation*}
$$

Figure 529: Solution plot

Verification of solutions

$$
y=(x-2) x^{2}
$$

Verified OK.

13.21.8 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 499: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x^{3}+c_{1} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=8 c_{2}+4 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{2} x^{2}+2 c_{1} x
$$

substituting $y^{\prime}=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=12 c_{2}+4 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x^{3}-2 x^{2}
$$

Which simplifies to

$$
y=(x-2) x^{2}
$$

Summary
The solution(s) found are the following

Figure 530: Solution plot
Verification of solutions

$$
y=(x-2) x^{2}
$$

Verified OK.

13.21.9 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0, y(2)=0,\left.y^{\prime}\right|_{\{x=2\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{6 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{6 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime} x^{2}-4 y^{\prime} x+6 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), x^{2}-4 \frac{d}{d t} y(t)+6 y(t)=0\right.
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+6 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{3 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{2} x^{3}+c_{1} x^{2}$
- \quad Simplify
$y=x^{2}\left(c_{2} x+c_{1}\right)$
Check validity of solution $y=x^{2}\left(c_{2} x+c_{1}\right)$
- Use initial condition $y(2)=0$
$0=8 c_{2}+4 c_{1}$
- Compute derivative of the solution
$y^{\prime}=2 x\left(c_{2} x+c_{1}\right)+c_{2} x^{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=4$
$4=12 c_{2}+4 c_{1}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-2, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=(x-2) x^{2}
$$

- \quad Solution to the IVP

$$
y=(x-2) x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 11

```
dsolve([x^2*diff (y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(2)=0, D(y)(2) = 4],y(x), singsol=al
```

$$
y(x)=x^{2}(x-2)
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 12
DSolve $\left[\left\{x^{\wedge} 2 * y\right.\right.$ ' ' $[x]-4 * x * y$ ' $\left.[x]+6 * y[x]==0,\left\{y[2]==0, y^{\prime}[2]==4\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow(x-2) x^{2}
$$

13.22 problem 22

13.22.1 Existence and uniqueness analysis 3636
13.22.2 Solving as second order euler ode ode 3636
13.22.3 Solving as second order change of variable on x method 2 ode 3638
13.22.4 Solving as second order change of variable on x method 1 ode 3642
13.22.5 Solving as second order change of variable on y method 2 ode 3645
13.22.6 Solving as second order integrable as is ode 3648
13.22.7 Solving as type second_order_integrable_as_is (not using ABC version) 3650
13.22.8 Solving using Kovacic algorithm 3653
13.22.9 Solving as exact linear second order ode ode 3659
13.22.10Maple step by step solution 3662

Internal problem ID [11876]
Internal file name [OUTPUT/11885_Saturday_April_13_2024_01_13_58_AM_6549318/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change__of_variable_on__x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second__order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
x^{2} y^{\prime \prime}+5 y^{\prime} x+3 y=0
$$

With initial conditions

$$
\left[y(1)=1, y^{\prime}(1)=-5\right]
$$

13.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{5}{x} \\
q(x) & =\frac{3}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{5 y^{\prime}}{x}+\frac{3 y}{x^{2}}=0
$$

The domain of $p(x)=\frac{5}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{3}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

13.22.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+5 x r x^{r-1}+3 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+5 r x^{r}+3 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+5 r+3=0
$$

Or

$$
\begin{equation*}
r^{2}+4 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{3 c_{1}}{x^{4}}-\frac{c_{2}}{x^{2}}
$$

substituting $y^{\prime}=-5$ and $x=1$ in the above gives

$$
\begin{equation*}
-5=-3 c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}-2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 531: Solution plot
Verification of solutions

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Verified OK.
13.22.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{5}{x} d x\right)} d x \\
& =\int e^{-5 \ln (x)} d x \\
& =\int \frac{1}{x^{5}} d x \\
& =-\frac{1}{4 x^{4}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{3}{x^{2}}}{\frac{1}{x^{10}}} \\
& =3 x^{8} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+3 x^{8} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
3 x^{8}=\frac{3}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+3 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+3 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+3 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+3=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=\frac{3}{4}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{4}}+c_{2} \tau^{\frac{3}{4}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{-\frac{1}{x^{4}}}+2 c_{1}\right)}{4}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{\sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{-\frac{1}{x^{4}}}+2 c_{1}\right)}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\left(\frac{1}{2}+\frac{i}{2}\right) c_{1}+\left(-\frac{1}{4}+\frac{i}{4}\right) c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\sqrt{2}\left(c_{2} \sqrt{-\frac{1}{x^{4}}}+2 c_{1}\right)}{4\left(-\frac{1}{x^{4}}\right)^{\frac{3}{4}} x^{5}}+\frac{\sqrt{2} c_{2}}{2\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}} x^{5}}
$$

substituting $y^{\prime}=-5$ and $x=1$ in the above gives

$$
\begin{equation*}
-5=\left(-\frac{1}{2}-\frac{i}{2}\right) c_{1}+\left(\frac{3}{4}-\frac{3 i}{4}\right) c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1+i \\
& c_{2}=-4-4 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-i \sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{3}{4}}+\frac{i \sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}}}{2}-\sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{3}{4}}-\frac{\sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left((1+i) \sqrt{-\frac{1}{x^{4}}}+\frac{1}{2}-\frac{i}{2}\right) \sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\left((1+i) \sqrt{-\frac{1}{x^{4}}}+\frac{1}{2}-\frac{i}{2}\right) \sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}}
$$

Verified OK.

13.22.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{3}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{3}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{5}{x} \frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{4 c \sqrt{3}}{3}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 c \sqrt{3}\left(\frac{d}{d \tau} y(\tau)\right)}{3}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{2 \sqrt{3} c \tau}{3}}\left(c_{1} \cosh \left(\frac{\sqrt{3} c \tau}{3}\right)+i c_{2} \sinh \left(\frac{\sqrt{3} c \tau}{3}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{3} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x^{3}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x^{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{i c_{2}+c_{1}}{x^{2}}-\frac{3\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right)}{2 x^{4}}
$$

substituting $y^{\prime}=-5$ and $x=1$ in the above gives

$$
\begin{equation*}
-5=i c_{2}-2 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{-x^{2}+2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{2}+2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 532: Solution plot

Verification of solutions

$$
y=\frac{-x^{2}+2}{x^{3}}
$$

Verified OK.

13.22.5 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 y^{\prime} x+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{5 n}{x^{2}}+\frac{3}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{-\frac{c_{1}}{2 x^{2}}+c_{2}}{x} \\
& =\frac{2 c_{2} x^{2}-c_{1}}{2 x^{3}}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{-\frac{c_{1}}{2 x^{2}}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{2}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{x^{4}}-\frac{-\frac{c_{1}}{2 x^{2}}+c_{2}}{x^{2}}
$$

substituting $y^{\prime}=-5$ and $x=1$ in the above gives

$$
\begin{equation*}
-5=\frac{3 c_{1}}{2}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-4 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}-2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 533: Solution plot

Verification of solutions

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Verified OK.

13.22.6 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+5 y^{\prime} x+3 y\right) d x=0 \\
x^{2} y^{\prime}+3 y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{3}\right) & =\left(x^{3}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(y x^{3}\right) & =\left(c_{1} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{3}=\int c_{1} x \mathrm{~d} x \\
& y x^{3}=\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{2}+\frac{c_{1}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1}}{2 x^{2}}-\frac{3 c_{2}}{x^{4}}
$$

substituting $y^{\prime}=-5$ and $x=1$ in the above gives

$$
\begin{equation*}
-5=-\frac{c_{1}}{2}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}-2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 534: Solution plot

Verification of solutions

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Verified OK.
13.22.7 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+5 y^{\prime} x+3 y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+5 y^{\prime} x+3 y\right) d x=0 \\
x^{2} y^{\prime}+3 y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{3}\right) & =\left(x^{3}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(y x^{3}\right) & =\left(c_{1} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{3}=\int c_{1} x \mathrm{~d} x \\
& y x^{3}=\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{2}+\frac{c_{1}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1}}{2 x^{2}}-\frac{3 c_{2}}{x^{4}}
$$

substituting $y^{\prime}=-5$ and $x=1$ in the above gives

$$
\begin{equation*}
-5=-\frac{c_{1}}{2}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}-2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 535: Solution plot
Verification of solutions

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Verified OK.

13.22.8 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+5 y^{\prime} x+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=5 x \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 501: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5 x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{5}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{3}}\right)+c_{2}\left(\frac{1}{x^{3}}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{c_{2}}{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{3 c_{1}}{x^{4}}-\frac{c_{2}}{2 x^{2}}
$$

substituting $y^{\prime}=-5$ and $x=1$ in the above gives

$$
\begin{equation*}
-5=-3 c_{1}-\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}-2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 536: Solution plot

Verification of solutions

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Verified OK.

13.22.9 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=5 x \\
& r(x)=3 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =5
\end{aligned}
$$

Therefore (1) becomes

$$
2-(5)+(3)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}+3 y x=c_{1}
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}+3 y x=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{3}\right) & =\left(x^{3}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(y x^{3}\right) & =\left(c_{1} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{3}=\int c_{1} x \mathrm{~d} x \\
& y x^{3}=\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{2}+\frac{c_{1}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1}}{2 x^{2}}-\frac{3 c_{2}}{x^{4}}
$$

substituting $y^{\prime}=-5$ and $x=1$ in the above gives

$$
\begin{equation*}
-5=-\frac{c_{1}}{2}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}-2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 537: Solution plot

Verification of solutions

$$
y=-\frac{x^{2}-2}{x^{3}}
$$

Verified OK.

13.22.10 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x^{2}+5 y^{\prime} x+3 y=0, y(1)=1,\left.y^{\prime}\right|_{\{x=1\}}=-5\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{5 y^{\prime}}{x}-\frac{3 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{5 y^{\prime}}{x}+\frac{3 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}+5 y^{\prime} x+3 y=0
$$

- Make a change of variables
$t=\ln (x)$
\square
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+5 \frac{d}{d t} y(t)+3 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+4 \frac{d}{d t} y(t)+3 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}+4 r+3=0$
- Factor the characteristic polynomial
$(r+3)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-3,-1)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{-t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-t}
$$

- Change variables back using $t=\ln (x)$ $y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x}$
- \quad Simplify

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x}
$$

Check validity of solution $y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x}$

- Use initial condition $y(1)=1$

$$
1=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{3 c_{1}}{x^{4}}-\frac{c_{2}}{x^{2}}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=-5$ $-5=-3 c_{1}-c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=-1\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{-x^{2}+2}{x^{3}}
$$

- \quad Solution to the IVP

$$
y=\frac{-x^{2}+2}{x^{3}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve $\left(\left[x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+5 * x * \operatorname{diff}(y(x), x)+3 * y(x)=0, y(1)=1, D(y)(1)=-5\right], y(x)\right.$, singsol $=a$

$$
y(x)=\frac{-x^{2}+2}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 16
DSolve $\left[\left\{x^{\wedge} 2 * y\right.\right.$ ' ' $[x]+5 * x * y$ ' $\left.[x]+3 * y[x]==0,\left\{y[1]==1, y^{\prime}[1]==-5\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{2-x^{2}}{x^{3}}
$$

13.23 problem 23

13.23.1 Existence and uniqueness analysis 3666
13.23.2 Solving as second order euler ode ode 3666
13.23.3 Solving as second order integrable as is ode 3671
13.23.4 Solving as type second_order_integrable_as_is (not using ABC
version) . 3673
13.23.5 Solving using Kovacic algorithm 3676
13.23.6 Solving as exact linear second order ode ode 3685

Internal problem ID [11877]
Internal file name [OUTPUT/11886_Saturday_April_13_2024_01_14_01_AM_52727080/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler__ode", "exact linear second order ode", "second__order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}-2 y=4 x-8
$$

With initial conditions

$$
\left[y(1)=4, y^{\prime}(1)=-1\right]
$$

13.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-\frac{2}{x^{2}} \\
F & =\frac{4 x-8}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{2 y}{x^{2}}=\frac{4 x-8}{x^{2}}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-\frac{2}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. The domain of $F=\frac{4 x-8}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

13.23.2 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=0, C=-2, f(x)=4 x-8$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-2 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+0 r x^{r-1}-2 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+0 x^{r}-2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+c_{2} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-2 y=4 x-8
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & x^{2} \\
-\frac{1}{x^{2}} & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)(2 x)-\left(x^{2}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=3
$$

Which simplifies to

$$
W=3
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2}(4 x-8)}{3 x^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(\frac{4 x}{3}-\frac{8}{3}\right) d x
$$

Hence

$$
u_{1}=-\frac{2}{3} x^{2}+\frac{8}{3} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 x-8}{x}}{3 x^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4 x-8}{3 x^{3}} d x
$$

Hence

$$
u_{2}=\frac{4}{3 x^{2}}-\frac{4}{3 x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-\frac{2}{3} x^{2}+\frac{8}{3} x}{x}+\left(\frac{4}{3 x^{2}}-\frac{4}{3 x}\right) x^{2}
$$

Which simplifies to

$$
y_{p}(x)=-2 x+4
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =-2 x+4+\frac{c_{1}}{x}+c_{2} x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-2 x+4+\frac{c_{1}}{x}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=c_{1}+c_{2}+2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2-\frac{c_{1}}{x^{2}}+2 c_{2} x
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=-2-c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}-2 x^{2}+4 x+1}{x} \tag{1}
\end{equation*}
$$

Figure 538: Solution plot
Verification of solutions

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Verified OK.

13.23.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}-2 y\right) d x=\int(4 x-8) d x \\
& x^{2} y^{\prime}-2 y x=2 x^{2}-8 x+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{2}{x} \\
q(x) & =\frac{2 x^{2}+c_{1}-8 x}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{2 x^{2}+c_{1}-8 x}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 x^{2}+c_{1}-8 x}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{2 x^{2}+c_{1}-8 x}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{2 x^{2}+c_{1}-8 x}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{2 x^{2}+c_{1}-8 x}{x^{4}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =\frac{4}{x^{2}}-\frac{c_{1}}{3 x^{3}}-\frac{2}{x}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=x^{2}\left(\frac{4}{x^{2}}-\frac{c_{1}}{3 x^{3}}-\frac{2}{x}\right)+c_{2} x^{2}
$$

which simplifies to

$$
y=\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=-\frac{c_{1}}{3}+c_{2}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{9 c_{2} x^{2}-12 x+12}{3 x}-\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x^{2}}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=\frac{c_{1}}{3}+2 c_{2}-2 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}-2 x^{2}+4 x+1}{x} \tag{1}
\end{equation*}
$$

Figure 539: Solution plot

Verification of solutions

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Verified OK.

13.23.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}-2 y=4 x-8
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}-2 y\right) d x=\int(4 x-8) d x \\
& x^{2} y^{\prime}-2 y x=2 x^{2}-8 x+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2 x^{2}+c_{1}-8 x}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{2 x^{2}+c_{1}-8 x}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 x^{2}+c_{1}-8 x}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{2 x^{2}+c_{1}-8 x}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{2 x^{2}+c_{1}-8 x}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{2 x^{2}+c_{1}-8 x}{x^{4}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =\frac{4}{x^{2}}-\frac{c_{1}}{3 x^{3}}-\frac{2}{x}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=x^{2}\left(\frac{4}{x^{2}}-\frac{c_{1}}{3 x^{3}}-\frac{2}{x}\right)+c_{2} x^{2}
$$

which simplifies to

$$
y=\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=-\frac{c_{1}}{3}+c_{2}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{9 c_{2} x^{2}-12 x+12}{3 x}-\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x^{2}}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=\frac{c_{1}}{3}+2 c_{2}-2 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}-2 x^{2}+4 x+1}{x} \tag{1}
\end{equation*}
$$

Figure 540: Solution plot

Verification of solutions

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Verified OK.

13.23.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=0 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 503: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{2}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{2}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{2}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	2	-1

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(0) \\
& =-\frac{1}{x} \\
& =-\frac{1}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{x}\right)(0)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}\right)^{2}-\left(\frac{2}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\frac{1}{x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\frac{1}{x} \int \frac{1}{\frac{1}{x^{2}}} d x \\
& =\frac{1}{x}\left(\frac{x^{3}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{x^{3}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x}+\frac{c_{2} x^{2}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x} \\
y_{2} & =\frac{x^{2}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{x^{2}}{3} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{x^{2}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{x^{2}}{3} \\
-\frac{1}{x^{2}} & \frac{2 x}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x}\right)\left(\frac{2 x}{3}\right)-\left(\frac{x^{2}}{3}\right)\left(-\frac{1}{x^{2}}\right)
$$

Which simplifies to

$$
W=1
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{2}(4 x-8)}{3}}{x^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(\frac{4 x}{3}-\frac{8}{3}\right) d x
$$

Hence

$$
u_{1}=-\frac{2}{3} x^{2}+\frac{8}{3} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 x-8}{x}}{x^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4 x-8}{x^{3}} d x
$$

Hence

$$
u_{2}=\frac{4}{x^{2}}-\frac{4}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-\frac{2}{3} x^{2}+\frac{8}{3} x}{x}+\frac{\left(\frac{4}{x^{2}}-\frac{4}{x}\right) x^{2}}{3}
$$

Which simplifies to

$$
y_{p}(x)=-2 x+4
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}+\frac{c_{2} x^{2}}{3}\right)+(-2 x+4)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} x^{2}}{3}-2 x+4 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=c_{1}+\frac{c_{2}}{3}+2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1}}{x^{2}}+\frac{2 c_{2} x}{3}-2
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=-c_{1}+\frac{2 c_{2}}{3}-2 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}-2 x^{2}+4 x+1}{x} \tag{1}
\end{equation*}
$$

Figure 541: Solution plot

Verification of solutions

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Verified OK.

13.23.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =x^{2} \\
q(x) & =0 \\
r(x) & =-2 \\
s(x) & =4 x-8
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
2-(0)+(-2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}-2 y x=\int 4 x-8 d x
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}-2 y x=2 x^{2}+c_{1}-8 x
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2 x^{2}+c_{1}-8 x}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{2 x^{2}+c_{1}-8 x}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 x^{2}+c_{1}-8 x}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{2 x^{2}+c_{1}-8 x}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{2 x^{2}+c_{1}-8 x}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{2 x^{2}+c_{1}-8 x}{x^{4}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =\frac{4}{x^{2}}-\frac{c_{1}}{3 x^{3}}-\frac{2}{x}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=x^{2}\left(\frac{4}{x^{2}}-\frac{c_{1}}{3 x^{3}}-\frac{2}{x}\right)+c_{2} x^{2}
$$

which simplifies to

$$
y=\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=1$ in the above gives

$$
\begin{equation*}
4=-\frac{c_{1}}{3}+c_{2}+2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{9 c_{2} x^{2}-12 x+12}{3 x}-\frac{3 c_{2} x^{3}-6 x^{2}-c_{1}+12 x}{3 x^{2}}
$$

substituting $y^{\prime}=-1$ and $x=1$ in the above gives

$$
\begin{equation*}
-1=\frac{c_{1}}{3}+2 c_{2}-2 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}-2 x^{2}+4 x+1}{x} \tag{1}
\end{equation*}
$$

Figure 542: Solution plot

Verification of solutions

$$
y=\frac{x^{3}-2 x^{2}+4 x+1}{x}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([x^2*diff(y(x),x$2)-2*y(x)=4*x-8,y(1) = 4, D(y)(1) = -1],y(x), singsol=all)
```

$$
y(x)=x^{2}+4-2 x+\frac{1}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 16
DSolve $\left[\left\{x^{\wedge} 2 * y^{\prime \prime}[x]-2 * y[x]==4 * x-8,\left\{y[1]==4, y^{\prime}[1]==-1\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow x^{2}-2 x+\frac{1}{x}+4
$$

13.24 problem 24

13.24.1 Existence and uniqueness analysis 3691
13.24.2 Solving as second order euler ode ode 3691
13.24.3 Solving as second order change of variable on x method 2 ode . 3696
13.24.4 Solving as second order change of variable on x method 1 ode . 3703
13.24.5 Solving as second order change of variable on y method 2 ode . 3709
13.24.6 Solving as second order ode non constant coeff transformation on B ode

3715
13.24.7 Solving using Kovacic algorithm 3720

Internal problem ID [11878]
Internal file name [OUTPUT/11887_Saturday_April_13_2024_01_14_03_AM_90411466/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=-6 x^{3}+4 x^{2}
$$

With initial conditions

$$
\left[y(2)=4, y^{\prime}(2)=-1\right]
$$

13.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{4}{x} \\
q(x) & =\frac{4}{x^{2}} \\
F & =\frac{-6 x^{3}+4 x^{2}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{4 y}{x^{2}}=\frac{-6 x^{3}+4 x^{2}}{x^{2}}
$$

The domain of $p(x)=-\frac{4}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{4}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is also inside this domain. The domain of $F=\frac{-6 x^{3}+4 x^{2}}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

13.24.2 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=4, f(x)=-6 x^{3}+4 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=4
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{4}+c_{1} x
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=-6 x^{3}+4 x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & x^{4} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & x^{4} \\
1 & 4 x^{3}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(4 x^{3}\right)-\left(x^{4}\right)(1)
$$

Which simplifies to

$$
W=3 x^{4}
$$

Which simplifies to

$$
W=3 x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4}\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-2 x+\frac{4}{3}\right) d x
$$

Hence

$$
u_{1}=x^{2}-\frac{4}{3} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-6 x+4}{3 x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{2}{3 x^{2}}+\frac{2}{x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}-\frac{4}{3} x \\
& u_{2}=\frac{6 x-2}{3 x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(x^{2}-\frac{4}{3} x\right) x+\frac{(6 x-2) x^{2}}{3}
$$

Which simplifies to

$$
y_{p}(x)=3 x^{3}-2 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x\left(c_{2} x^{3}+3 x^{2}+c_{1}-2 x\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x\left(c_{2} x^{3}+3 x^{2}+c_{1}-2 x\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=16 c_{2}+16+2 c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2} x^{3}+3 x^{2}+c_{1}-2 x+x\left(3 c_{2} x^{2}+6 x-2\right)
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=32 c_{2}+28+c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =\frac{5}{3} \\
c_{2} & =-\frac{23}{24}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x\left(23 x^{3}-72 x^{2}+48 x-40\right)}{24}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x\left(23 x^{3}-72 x^{2}+48 x-40\right)}{24} \tag{1}
\end{equation*}
$$

Figure 543: Solution plot

Verification of solutions

$$
y=-\frac{x\left(23 x^{3}-72 x^{2}+48 x-40\right)}{24}
$$

Verified OK.

13.24.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{8}} \\
& =\frac{4}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{x^{10}}=\frac{4}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+4 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+4 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+4 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+4=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{5} \\
& r_{2}=\frac{4}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{5}}+c_{2} \tau^{\frac{4}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{4}{5}}\left(x^{5}\right)^{\frac{1}{5}}}{5}+\frac{c_{2} 5^{\frac{1}{5}}\left(x^{5}\right)^{\frac{4}{5}}}{5}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 5^{\frac{4}{5}}\left(x^{5}\right)^{\frac{1}{5}}}{5}+\frac{c_{2} 5^{\frac{1}{5}}\left(x^{5}\right)^{\frac{4}{5}}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{1}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{4}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{1}{5}} & \left(x^{5}\right)^{\frac{4}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{1}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{4}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{1}{5}} & \left(x^{5}\right)^{\frac{4}{5}} \\
\frac{x^{4}}{\left(x^{5}\right)^{\frac{4}{5}}} & \frac{4 x^{4}}{\left(x^{5}\right)^{\frac{1}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{1}{5}}\right)\left(\frac{4 x^{4}}{\left(x^{5}\right)^{\frac{1}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{4}{5}}\right)\left(\frac{x^{4}}{\left(x^{5}\right)^{\frac{4}{5}}}\right)
$$

Which simplifies to

$$
W=3 x^{4}
$$

Which simplifies to

$$
W=3 x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{4}{5}}\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{2\left(x^{5}\right)^{\frac{4}{5}}(3 x-2)}{3 x^{4}} d x
$$

Hence

$$
u_{1}=\frac{(3 x-4)\left(x^{5}\right)^{\frac{4}{5}}}{3 x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{1}{5}}\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{2\left(x^{5}\right)^{\frac{1}{5}}(3 x-2)}{3 x^{4}} d x
$$

Hence

$$
u_{2}=\frac{2(3 x-1)\left(x^{5}\right)^{\frac{1}{5}}}{3 x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x^{2}(3 x-4)}{3}+\frac{2(3 x-1) x^{2}}{3}
$$

Which simplifies to

$$
y_{p}(x)=3 x^{3}-2 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 5^{\frac{4}{5}}\left(x^{5}\right)^{\frac{1}{5}}}{5}+\frac{c_{2} 5^{\frac{1}{5}}\left(x^{5}\right)^{\frac{4}{5}}}{5}\right)+\left(3 x^{3}-2 x^{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{4}{5}}\left(x^{5}\right)^{\frac{1}{5}}}{5}+\frac{c_{2} 5^{\frac{1}{5}}\left(x^{5}\right)^{\frac{4}{5}}}{5}+3 x^{3}-2 x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=\frac{2 c_{1} 5^{\frac{4}{5}}}{5}+\frac{16 c_{2} 5^{\frac{1}{5}}}{5}+16 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} 5^{\frac{4}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{4}{5}}}+\frac{4 c_{2} 5^{\frac{1}{5}} x^{4}}{5\left(x^{5}\right)^{\frac{1}{5}}}+9 x^{2}-4 x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=\frac{c_{1} 5^{\frac{4}{5}}}{5}+\frac{32 c_{2} 5^{\frac{1}{5}}}{5}+28 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{55^{\frac{1}{5}}}{3} \\
& c_{2}=-\frac{235^{\frac{4}{5}}}{24}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5\left(x^{5}\right)^{\frac{1}{5}}}{3}-\frac{23\left(x^{5}\right)^{\frac{4}{5}}}{24}+3 x^{3}-2 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5\left(x^{5}\right)^{\frac{1}{5}}}{3}-\frac{23\left(x^{5}\right)^{\frac{4}{5}}}{24}+3 x^{3}-2 x^{2} \tag{1}
\end{equation*}
$$

Figure 544: Solution plot

Verification of solutions

$$
y=\frac{5\left(x^{5}\right)^{\frac{1}{5}}}{3}-\frac{23\left(x^{5}\right)^{\frac{4}{5}}}{24}+3 x^{3}-2 x^{2}
$$

Verified OK.

13.24.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=4, f(x)=-6 x^{3}+4 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 c \tau}{4}}\left(c_{1} \cosh \left(\frac{3 c \tau}{4}\right)+i c_{2} \sinh \left(\frac{3 c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=-6 x^{3}+4 x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{1}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{4}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{1}{5}} & \left(x^{5}\right)^{\frac{4}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{1}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{4}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{1}{5}} & \left(x^{5}\right)^{\frac{4}{5}} \\
\frac{x^{4}}{\left(x^{5}\right)^{\frac{4}{5}}} & \frac{4 x^{4}}{\left(x^{5}\right)^{\frac{1}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{1}{5}}\right)\left(\frac{4 x^{4}}{\left(x^{5}\right)^{\frac{1}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{4}{5}}\right)\left(\frac{x^{4}}{\left(x^{5}\right)^{\frac{4}{5}}}\right)
$$

Which simplifies to

$$
W=3 x^{4}
$$

Which simplifies to

$$
W=3 x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{4}{5}}\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{2\left(x^{5}\right)^{\frac{4}{5}}(3 x-2)}{3 x^{4}} d x
$$

Hence

$$
u_{1}=\frac{(3 x-4)\left(x^{5}\right)^{\frac{4}{5}}}{3 x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{1}{5}}\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{2\left(x^{5}\right)^{\frac{1}{5}}(3 x-2)}{3 x^{4}} d x
$$

Hence

$$
u_{2}=\frac{2(3 x-1)\left(x^{5}\right)^{\frac{1}{5}}}{3 x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x^{2}(3 x-4)}{3}+\frac{2(3 x-1) x^{2}}{3}
$$

Which simplifies to

$$
y_{p}(x)=3 x^{3}-2 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)\right)\right)+\left(3 x^{3}-2 x^{2}\right) \\
& =3 x^{3}-2 x^{2}+x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{3 \ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{3 \ln (x)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=i \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}+3 x^{3}-2 x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=i \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}+3 x^{3}-2 x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=7 i c_{2}+9 c_{1}+16 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=\frac{3 i x^{\frac{3}{2}} \cosh \left(\frac{3 \ln (x)}{2}\right) c_{2}}{2}+\frac{5 i \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{3}{2}} c_{2}}{2}+\frac{3 x^{\frac{3}{2}} \sinh \left(\frac{3 \ln (x)}{2}\right) c_{1}}{2}+\frac{5 \cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{3}{2}} c_{1}}{2}+9 x^{2}-4$
substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=\frac{31 i c_{2}}{2}+\frac{33 c_{1}}{2}+28 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{17}{24} \\
& c_{2}=\frac{21 i}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{21 \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}}}{8}+\frac{17 \cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}}}{24}+3 x^{3}-2 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{21 \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}}}{8}+\frac{17 \cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}}}{24}+3 x^{3}-2 x^{2} \tag{1}
\end{equation*}
$$

Figure 545: Solution plot

Verification of solutions

$$
y=-\frac{21 \sinh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}}}{8}+\frac{17 \cosh \left(\frac{3 \ln (x)}{2}\right) x^{\frac{5}{2}}}{24}+3 x^{3}-2 x^{2}
$$

Verified OK.

13.24.5 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=4, f(x)=-6 x^{3}+4 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=4 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{4 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{4 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{4 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{4 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{4}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{4}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{4}{x} d x \\
\ln (u) & =-4 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-4 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{4}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x^{4} \\
& =c_{2} x^{4}-\frac{1}{3} c_{1} x
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=-6 x^{3}+4 x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & x^{4} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & x^{4} \\
1 & 4 x^{3}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(4 x^{3}\right)-\left(x^{4}\right)(1)
$$

Which simplifies to

$$
W=3 x^{4}
$$

Which simplifies to

$$
W=3 x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4}\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-2 x+\frac{4}{3}\right) d x
$$

Hence

$$
u_{1}=x^{2}-\frac{4}{3} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-6 x+4}{3 x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{2}{3 x^{2}}+\frac{2}{x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}-\frac{4}{3} x \\
& u_{2}=\frac{6 x-2}{3 x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(x^{2}-\frac{4}{3} x\right) x+\frac{(6 x-2) x^{2}}{3}
$$

Which simplifies to

$$
y_{p}(x)=3 x^{3}-2 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x^{4}\right)+\left(3 x^{3}-2 x^{2}\right) \\
& =3 x^{3}-2 x^{2}+\left(-\frac{c_{1}}{3 x^{3}}+c_{2}\right) x^{4}
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{x\left(-3 c_{2} x^{3}-9 x^{2}+c_{1}+6 x\right)}{3}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{x\left(-3 c_{2} x^{3}-9 x^{2}+c_{1}+6 x\right)}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=16 c_{2}+16-\frac{2 c_{1}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2} x^{3}+3 x^{2}-\frac{c_{1}}{3}-2 x-\frac{x\left(-9 c_{2} x^{2}-18 x+6\right)}{3}
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=32 c_{2}+28-\frac{c_{1}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-5 \\
& c_{2}=-\frac{23}{24}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x\left(23 x^{3}-72 x^{2}+48 x-40\right)}{24}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x\left(23 x^{3}-72 x^{2}+48 x-40\right)}{24} \tag{1}
\end{equation*}
$$

Figure 546: Solution plot

Verification of solutions

$$
y=-\frac{x\left(23 x^{3}-72 x^{2}+48 x-40\right)}{24}
$$

Verified OK.

13.24.6 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=-4 x \\
& C=4 \\
& F=-6 x^{3}+4 x^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(-4 x)(-4)+(4)(-4 x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-4 x^{3} v^{\prime \prime}+\left(8 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-4 x^{2}\left(u^{\prime}(x) x-2 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{2}{x} d x \\
\ln (u) & =2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{2 \ln (x)+c_{1}} \\
& =c_{1} x^{2}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} x^{2}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int c_{1} x^{2} \mathrm{~d} x \\
& =\frac{c_{1} x^{3}}{3}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(-4 x)\left(\frac{c_{1} x^{3}}{3}+c_{2}\right) \\
& =-\frac{4 x\left(c_{1} x^{3}+3 c_{2}\right)}{3}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & x^{4} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & x^{4} \\
1 & 4 x^{3}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(4 x^{3}\right)-\left(x^{4}\right)(1)
$$

Which simplifies to

$$
W=3 x^{4}
$$

Which simplifies to

$$
W=3 x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4}\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-2 x+\frac{4}{3}\right) d x
$$

Hence

$$
u_{1}=x^{2}-\frac{4}{3} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x\left(-6 x^{3}+4 x^{2}\right)}{3 x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-6 x+4}{3 x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{2}{3 x^{2}}+\frac{2}{x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}-\frac{4}{3} x \\
& u_{2}=\frac{6 x-2}{3 x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(x^{2}-\frac{4}{3} x\right) x+\frac{(6 x-2) x^{2}}{3}
$$

Which simplifies to

$$
y_{p}(x)=3 x^{3}-2 x^{2}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-\frac{4 x\left(c_{1} x^{3}+3 c_{2}\right)}{3}\right)+\left(3 x^{3}-2 x^{2}\right) \\
& =-\frac{4}{3} c_{1} x^{4}-4 c_{2} x+3 x^{3}-2 x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{4}{3} c_{1} x^{4}-4 c_{2} x+3 x^{3}-2 x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=-\frac{64 c_{1}}{3}-8 c_{2}+16 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{16}{3} c_{1} x^{3}-4 c_{2}+9 x^{2}-4 x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=-\frac{128 c_{1}}{3}-4 c_{2}+28 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{23}{32} \\
& c_{2}=-\frac{5}{12}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{23}{24} x^{4}+3 x^{3}-2 x^{2}+\frac{5}{3} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{23}{24} x^{4}+3 x^{3}-2 x^{2}+\frac{5}{3} x \tag{1}
\end{equation*}
$$

Figure 547: Solution plot

Verification of solutions

$$
y=-\frac{23}{24} x^{4}+3 x^{3}-2 x^{2}+\frac{5}{3} x
$$

Verified OK.

13.24.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 504: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{2}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{2}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{2}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	2	-1

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(0) \\
& =-\frac{1}{x} \\
& =-\frac{1}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{x}\right)(0)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}\right)^{2}-\left(\frac{2}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{3}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}\left(x\left(\frac{x^{3}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 y^{\prime} x+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x+\frac{1}{3} c_{2} x^{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\frac{x^{4}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \frac{x^{4}}{3} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\frac{x^{4}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \frac{x^{4}}{3} \\
1 & \frac{4 x^{3}}{3}
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(x)\left(\frac{4 x^{3}}{3}\right)-\left(\frac{x^{4}}{3}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{4}\left(-6 x^{3}+4 x^{2}\right)}{3}}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-2 x+\frac{4}{3}\right) d x
$$

Hence

$$
u_{1}=x^{2}-\frac{4}{3} x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x\left(-6 x^{3}+4 x^{2}\right)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-6 x+4}{x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{2}{x^{2}}+\frac{6}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(x^{2}-\frac{4}{3} x\right) x+\frac{\left(-\frac{2}{x^{2}}+\frac{6}{x}\right) x^{4}}{3}
$$

Which simplifies to

$$
y_{p}(x)=3 x^{3}-2 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x+\frac{1}{3} c_{2} x^{4}\right)+\left(3 x^{3}-2 x^{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x+\frac{1}{3} c_{2} x^{4}+3 x^{3}-2 x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=2$ in the above gives

$$
\begin{equation*}
4=2 c_{1}+\frac{16 c_{2}}{3}+16 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}+\frac{4}{3} c_{2} x^{3}+9 x^{2}-4 x
$$

substituting $y^{\prime}=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=c_{1}+\frac{32 c_{2}}{3}+28 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{5}{3} \\
& c_{2}=-\frac{23}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{23}{24} x^{4}+3 x^{3}-2 x^{2}+\frac{5}{3} x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{23}{24} x^{4}+3 x^{3}-2 x^{2}+\frac{5}{3} x \tag{1}
\end{equation*}
$$

Figure 548: Solution plot

Verification of solutions

$$
y=-\frac{23}{24} x^{4}+3 x^{3}-2 x^{2}+\frac{5}{3} x
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([x^2*\operatorname{diff}(y(x),x$2)-4*x*\operatorname{diff}(y(x),x)+4*y(x)=4*x^2-6*x^3,y(2)=4,D(y)(2) = -1],y(x),
```

$$
y(x)=-\frac{23}{24} x^{4}+3 x^{3}-2 x^{2}+\frac{5}{3} x
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 28
DSolve $\left[\left\{x^{\wedge} 2 * y '^{\prime}[x]-4 * x * y\right.\right.$ ' $\left.[x]+4 * y[x]==4 * x^{\wedge} 2-6 * x^{\wedge} 3,\left\{y[2]==4, y^{\prime}[2]==-1\right\}\right\}, y[x], x$, IncludeSingular

$$
y(x) \rightarrow-\frac{23 x^{4}}{24}+3 x^{3}-2 x^{2}+\frac{5 x}{3}
$$

13.25 problem 25

13.25.1 Existence and uniqueness analysis 3731
13.25.2 Solving as second order euler ode ode 3732
13.25.3 Solving as second order change of variable on x method 2 ode . 3736
13.25.4 Solving as second order change of variable on y method 2 ode . 3742
13.25.5 Solving using Kovacic algorithm 3748

Internal problem ID [11879]
Internal file name [OUTPUT/11888_Saturday_April_13_2024_01_14_07_AM_57165022/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of__variable_on_x_method_2", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=10 x^{2}
$$

With initial conditions

$$
\left[y(1)=1, y^{\prime}(1)=-6\right]
$$

13.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =-\frac{6}{x^{2}} \\
F & =10
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{6 y}{x^{2}}=10
$$

The domain of $p(x)=\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-\frac{6}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. The domain of $F=10$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

13.25.2 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=2 x, C=-6, f(x)=10 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+2 x r x^{r-1}-6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+2 r x^{r}-6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+2 r-6=0
$$

Or

$$
\begin{equation*}
r^{2}+r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=10 x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{3}} \\
& y_{2}=x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{3}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & x^{2} \\
-\frac{3}{x^{4}} & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{3}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{3}{x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{5}{x^{2}}
$$

Which simplifies to

$$
W=\frac{5}{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{10 x^{4}}{5} d x
$$

Which simplifies to

$$
u_{1}=-\int 2 x^{4} d x
$$

Hence

$$
u_{1}=-\frac{2 x^{5}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{10}{x}}{5} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x} d x
$$

Hence

$$
u_{2}=2 \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)+\frac{c_{1}}{x^{3}}+c_{2} x^{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)+\frac{c_{1}}{x^{3}}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2}-\frac{2}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{6 x}{5}+4 x \ln (x)-\frac{3 c_{1}}{x^{4}}+2 c_{2} x
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=-3 c_{1}+2 c_{2}+\frac{6}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-\frac{3}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 549: Solution plot
Verification of solutions

$$
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Verified OK.

13.25.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{6}{x^{2}}}{\frac{1}{x^{4}}} \\
& =-6 x^{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-6 x^{2} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
-6 x^{2}=-\frac{6}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{6 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-6 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-6=0
$$

Or

$$
\begin{equation*}
r^{2}-r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau^{2}}+c_{2} \tau^{3}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} x^{5}-c_{2}}{x^{3}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{3}} \\
& y_{2}=x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{3}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & x^{2} \\
-\frac{3}{x^{4}} & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{3}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{3}{x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{5}{x^{2}}
$$

Which simplifies to

$$
W=\frac{5}{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{10 x^{4}}{5} d x
$$

Which simplifies to

$$
u_{1}=-\int 2 x^{4} d x
$$

Hence

$$
u_{1}=-\frac{2 x^{5}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{10}{x}}{5} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x} d x
$$

Hence

$$
u_{2}=2 \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x^{5}-c_{2}}{x^{3}}\right)+\left(-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}}-\frac{2 x^{2}}{5}+2 x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}-c_{2}-\frac{2}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=5 c_{1} x-\frac{3\left(c_{1} x^{5}-c_{2}\right)}{x^{4}}+\frac{6 x}{5}+4 x \ln (x)
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=2 c_{1}+3 c_{2}+\frac{6}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{3}{5} \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 550: Solution plot

Verification of solutions

$$
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Verified OK.
13.25.4 Solving as second order change of variable on y method 2 ode This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=2 x, C=-6, f(x)=10 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}-\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\frac{6 v^{\prime}(x)}{x} & =0 \\
v^{\prime \prime}(x)+\frac{6 v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{6 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{6 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{6}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{6}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{6}{x} d x \\
\ln (u) & =-6 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-6 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{6}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{5 x^{5}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2} \\
& =\frac{5 c_{2} x^{5}-c_{1}}{5 x^{3}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=10 x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{3}} \\
& y_{2}=x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{x^{3}}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & x^{2} \\
-\frac{3}{x^{4}} & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{3}}\right)(2 x)-\left(x^{2}\right)\left(-\frac{3}{x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{5}{x^{2}}
$$

Which simplifies to

$$
W=\frac{5}{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{10 x^{4}}{5} d x
$$

Which simplifies to

$$
u_{1}=-\int 2 x^{4} d x
$$

Hence

$$
u_{1}=-\frac{2 x^{5}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{10}{x}}{5} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x} d x
$$

Hence

$$
u_{2}=2 \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2}\right)+\left(-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)\right) \\
& =-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)+\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{10 x^{5} \ln (x)+5 c_{2} x^{5}-2 x^{5}-c_{1}}{5 x^{3}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{10 x^{5} \ln (x)+5 c_{2} x^{5}-2 x^{5}-c_{1}}{5 x^{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{5}+c_{2}-\frac{2}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{50 x^{4} \ln (x)+25 c_{2} x^{4}}{5 x^{3}}-\frac{3\left(10 x^{5} \ln (x)+5 c_{2} x^{5}-2 x^{5}-c_{1}\right)}{5 x^{4}}
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=\frac{3 c_{1}}{5}+2 c_{2}+\frac{6}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-10 \\
& c_{2}=-\frac{3}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 551: Solution plot

Verification of solutions

$$
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Verified OK.

13.25.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{6}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=6 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{6}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 505: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{6}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{6}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{6}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	3	-2

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	3	-2

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-2$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-2-(-2) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{2}{x}+(-)(0) \\
& =-\frac{2}{x} \\
& =-\frac{2}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{2}{x}\right)(0)+\left(\left(\frac{2}{x^{2}}\right)+\left(-\frac{2}{x}\right)^{2}-\left(\frac{6}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{5}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{3}}\right)+c_{2}\left(\frac{1}{x^{3}}\left(\frac{x^{5}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x^{3}}+\frac{c_{2} x^{2}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{3}} \\
y_{2} & =\frac{x^{2}}{5}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & \frac{x^{2}}{5} \\
\frac{d}{d x}\left(\frac{1}{x^{3}}\right) & \frac{d}{d x}\left(\frac{x^{2}}{5}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & \frac{x^{2}}{5} \\
-\frac{3}{x^{4}} & \frac{2 x}{5}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{3}}\right)\left(\frac{2 x}{5}\right)-\left(\frac{x^{2}}{5}\right)\left(-\frac{3}{x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{2}}
$$

Which simplifies to

$$
W=\frac{1}{x^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 x^{4}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int 2 x^{4} d x
$$

Hence

$$
u_{1}=-\frac{2 x^{5}}{5}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{10}{x}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{10}{x} d x
$$

Hence

$$
u_{2}=10 \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{3}}+\frac{c_{2} x^{2}}{5}\right)+\left(-\frac{2 x^{2}}{5}+2 x^{2} \ln (x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+\frac{c_{2} x^{2}}{5}-\frac{2 x^{2}}{5}+2 x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{c_{2}}{5}-\frac{2}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{3 c_{1}}{x^{4}}+\frac{2 c_{2} x}{5}+\frac{6 x}{5}+4 x \ln (x)
$$

substituting $y^{\prime}=-6$ and $x=1$ in the above gives

$$
\begin{equation*}
-6=-3 c_{1}+\frac{2 c_{2}}{5}+\frac{6}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}} \tag{1}
\end{equation*}
$$

Figure 552: Solution plot

Verification of solutions

$$
y=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 22
dsolve $\left(\left[x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+2 * x * \operatorname{diff}(y(x), x)-6 * y(x)=10 * x^{\wedge} 2, y(1)=1, D(y)(1)=-6\right], y(x)\right.$, sing

$$
y(x)=\frac{2 x^{5} \ln (x)-x^{5}+2}{x^{3}}
$$

Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 23
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}\right.\right.$ ' $[x]+2 * x * y$ ' $[x]-6 * y[x]==10 * x^{\wedge} 2,\{y[1]==1, y$ ' $\left.[1]==-6\}\right\}, y[x], x$, IncludeSingularSolut

$$
y(x) \rightarrow \frac{-x^{5}+2 x^{5} \log (x)+2}{x^{3}}
$$

13.26 problem 26

13.26.1 Existence and uniqueness analysis 3760
13.26.2 Solving as second order euler ode ode 3760
13.26.3 Solving as second order change of variable on x method 2 ode . 3765
13.26.4 Solving as second order change of variable on x method 1 ode . 3771
13.26.5 Solving as second order change of variable on y method 2 ode . 3777
13.26.6 Solving using Kovacic algorithm 3783

Internal problem ID [11880]
Internal file name [OUTPUT/11889_Saturday_April_13_2024_01_14_09_AM_33480691/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=2 x^{3}
$$

With initial conditions

$$
\left[y(2)=0, y^{\prime}(2)=-8\right]
$$

13.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{5}{x} \\
q(x) & =\frac{8}{x^{2}} \\
F & =2 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{5 y^{\prime}}{x}+\frac{8 y}{x^{2}}=2 x
$$

The domain of $p(x)=-\frac{5}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{8}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is also inside this domain. The domain of $F=2 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

13.26.2 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=8, f(x)=2 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-5 x r x^{r-1}+8 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-5 r x^{r}+8 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-5 r+8=0
$$

Or

$$
\begin{equation*}
r^{2}-6 r+8=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=4
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{4}+c_{1} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=2 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
2 x & 4 x^{3}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(4 x^{3}\right)-\left(x^{4}\right)(2 x)
$$

Which simplifies to

$$
W=2 x^{5}
$$

Which simplifies to

$$
W=2 x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 x^{7}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 x^{5}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{2}\left(c_{2} x^{2}+c_{1}-2 x\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{2}\left(c_{2} x^{2}+c_{1}-2 x\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=16 c_{2}+4 c_{1}-16 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 x\left(c_{2} x^{2}+c_{1}-2 x\right)+x^{2}\left(2 c_{2} x-2\right)
$$

substituting $y^{\prime}=-8$ and $x=2$ in the above gives

$$
\begin{equation*}
-8=32 c_{2}+4 c_{1}-24 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2(x-2) x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2(x-2) x^{2} \tag{1}
\end{equation*}
$$

Figure 553: Solution plot

Verification of solutions

$$
y=-2(x-2) x^{2}
$$

Verified OK.

13.26.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{5}{x} d x\right)} d x \\
& =\int e^{5 \ln (x)} d x \\
& =\int x^{5} d x \\
& =\frac{x^{6}}{6} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{8}{x^{2}}}{x^{10}} \\
& =\frac{8}{x^{12}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{8 y(\tau)}{x^{12}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{8}{x^{12}}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{6}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{6}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{6}\right)^{\frac{1}{3}} & \left(x^{6}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{6}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{6}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{6}\right)^{\frac{1}{3}} & \left(x^{6}\right)^{\frac{2}{3}} \\
\frac{2 x^{5}}{\left(x^{6}\right)^{\frac{2}{3}}} & \frac{4 x^{5}}{\left(x^{6}\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{6}\right)^{\frac{1}{3}}\right)\left(\frac{4 x^{5}}{\left(x^{6}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{6}\right)^{\frac{2}{3}}\right)\left(\frac{2 x^{5}}{\left(x^{6}\right)^{\frac{2}{3}}}\right)
$$

Which simplifies to

$$
W=2 x^{5}
$$

Which simplifies to

$$
W=2 x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2\left(x^{6}\right)^{\frac{2}{3}} x^{3}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{6}\right)^{\frac{2}{3}}}{x^{4}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{6}\right)^{\frac{2}{3}}}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2\left(x^{6}\right)^{\frac{1}{3}} x^{3}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{6}\right)^{\frac{1}{3}}}{x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{6}\right)^{\frac{1}{3}}}{x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}\right)+\left(-2 x^{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} 6^{\frac{2}{3}}\left(x^{6}\right)^{\frac{1}{3}}}{6}+\frac{c_{2} 6^{\frac{1}{3}}\left(x^{6}\right)^{\frac{2}{3}}}{6}-2 x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=\frac{2 c_{1} 6^{\frac{2}{3}}}{3}+\frac{8 c_{2} 6^{\frac{1}{3}}}{3}-16 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} 6^{\frac{2}{3}} x^{5}}{3\left(x^{6}\right)^{\frac{2}{3}}}+\frac{2 c_{2} 6^{\frac{1}{3}} x^{5}}{3\left(x^{6}\right)^{\frac{1}{3}}}-6 x^{2}
$$

substituting $y^{\prime}=-8$ and $x=2$ in the above gives

$$
\begin{equation*}
-8=\frac{2 c_{1} 6^{\frac{2}{3}}}{3}+\frac{16 c_{2} 6^{\frac{1}{3}}}{3}-24 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=46^{\frac{1}{3}} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=4\left(x^{6}\right)^{\frac{1}{3}}-2 x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4\left(x^{6}\right)^{\frac{1}{3}}-2 x^{3} \tag{1}
\end{equation*}
$$

Figure 554: Solution plot

Verification of solutions

$$
y=4\left(x^{6}\right)^{\frac{1}{3}}-2 x^{3}
$$

Verified OK.

13.26.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=8, f(x)=2 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2 \sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2 \sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{5}{x} \frac{2 \sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{x^{2}\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right)}{2}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=2 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{6}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{6}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{6}\right)^{\frac{1}{3}} & \left(x^{6}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{6}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{6}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{6}\right)^{\frac{1}{3}} & \left(x^{6}\right)^{\frac{2}{3}} \\
\frac{2 x^{5}}{\left(x^{6}\right)^{\frac{2}{3}}} & \frac{4 x^{5}}{\left(x^{6}\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{6}\right)^{\frac{1}{3}}\right)\left(\frac{4 x^{5}}{\left(x^{6}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{6}\right)^{\frac{2}{3}}\right)\left(\frac{2 x^{5}}{\left(x^{6}\right)^{\frac{2}{3}}}\right)
$$

Which simplifies to

$$
W=2 x^{5}
$$

Which simplifies to

$$
W=2 x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2\left(x^{6}\right)^{\frac{2}{3}} x^{3}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{6}\right)^{\frac{2}{3}}}{x^{4}} d x
$$

Hence

$$
u_{1}=-\frac{\left(x^{6}\right)^{\frac{2}{3}}}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2\left(x^{6}\right)^{\frac{1}{3}} x^{3}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{6}\right)^{\frac{1}{3}}}{x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{6}\right)^{\frac{1}{3}}}{x^{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{x^{2}\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right)}{2}\right)+\left(-2 x^{3}\right) \\
& =-2 x^{3}+\frac{x^{2}\left(\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}\right)}{2}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{x^{2}\left(\left(i c_{2}+c_{1}\right) x^{2}-4 x-i c_{2}+c_{1}\right)}{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{x^{2}\left(\left(i c_{2}+c_{1}\right) x^{2}-4 x-i c_{2}+c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=6 i c_{2}+10 c_{1}-16 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=x\left(\left(i c_{2}+c_{1}\right) x^{2}-4 x-i c_{2}+c_{1}\right)+\frac{x^{2}\left(2\left(i c_{2}+c_{1}\right) x-4\right)}{2}
$$

substituting $y^{\prime}=-8$ and $x=2$ in the above gives

$$
\begin{equation*}
-8=14 i c_{2}+18 c_{1}-24 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=4 i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{3}+4 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{3}+4 x^{2} \tag{1}
\end{equation*}
$$

Figure 555: Solution plot

Verification of solutions

$$
y=-2 x^{3}+4 x^{2}
$$

Verified OK.

13.26.5 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=8, f(x)=2 x^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{5 n}{x^{2}}+\frac{8}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=4 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{4} \\
& =c_{2} x^{4}-\frac{1}{2} c_{1} x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=2 x^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
2 x & 4 x^{3}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(4 x^{3}\right)-\left(x^{4}\right)(2 x)
$$

Which simplifies to

$$
W=2 x^{5}
$$

Which simplifies to

$$
W=2 x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 x^{7}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 x^{5}}{2 x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{4}\right)+\left(-2 x^{3}\right) \\
& =-2 x^{3}+\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x^{4}
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{x^{2}\left(-2 c_{2} x^{2}+c_{1}+4 x\right)}{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{x^{2}\left(-2 c_{2} x^{2}+c_{1}+4 x\right)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=16 c_{2}-2 c_{1}-16 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-x\left(-2 c_{2} x^{2}+c_{1}+4 x\right)-\frac{x^{2}\left(-4 c_{2} x+4\right)}{2}
$$

substituting $y^{\prime}=-8$ and $x=2$ in the above gives

$$
\begin{equation*}
-8=32 c_{2}-2 c_{1}-24 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-8 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2(x-2) x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2(x-2) x^{2} \tag{1}
\end{equation*}
$$

Figure 556: Solution plot

Verification of solutions

$$
y=-2(x-2) x^{2}
$$

Verified OK.

13.26.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-5 x \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 506: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{5}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-5 y^{\prime} x+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{2}+\frac{1}{2} c_{2} x^{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\frac{x^{4}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \frac{x^{4}}{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\frac{x^{4}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \frac{x^{4}}{2} \\
2 x & 2 x^{3}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(2 x^{3}\right)-\left(\frac{x^{4}}{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{5}
$$

Which simplifies to

$$
W=x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7}}{x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int 1 d x
$$

Hence

$$
u_{1}=-x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 x^{5}}{x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{2}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-2 x^{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}+\frac{1}{2} c_{2} x^{4}\right)+\left(-2 x^{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x^{2}+\frac{1}{2} c_{2} x^{4}-2 x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=2$ in the above gives

$$
\begin{equation*}
0=4 c_{1}+8 c_{2}-16 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{2} x^{3}+2 c_{1} x-6 x^{2}
$$

substituting $y^{\prime}=-8$ and $x=2$ in the above gives

$$
\begin{equation*}
-8=16 c_{2}+4 c_{1}-24 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=4 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{3}+4 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{3}+4 x^{2} \tag{1}
\end{equation*}
$$

Figure 557: Solution plot

Verification of solutions

$$
y=-2 x^{3}+4 x^{2}
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry $[0,1]$
trying a double symmetry of the form $[x i=0$, eta=F $(x)]$
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve $\left(\left[x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-5 * x * \operatorname{diff}(y(x), x)+8 * y(x)=2 * x \wedge 3, y(2)=0, D(y)(2)=-8\right], y(x)\right.$, sings

$$
y(x)=-2 x^{3}+4 x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 13
DSolve $\left[\left\{x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]-5 * x * y\right.\right.$ ' $[x]+8 * y[x]==2 * x^{\wedge} 3,\{y[2]==0, y$ ' $\left.[2]==-8\}\right\}, y[x], x$, IncludeSingularSoluti

$$
y(x) \rightarrow-2(x-2) x^{2}
$$

13.27 problem 27

13.27.1 Existence and uniqueness analysis 3793
13.27.2 Solving as second order euler ode ode 3794
13.27.3 Solving using Kovacic algorithm 3799

Internal problem ID [11881]
Internal file name [OUTPUT/11890_Saturday_April_13_2024_01_14_12_AM_12077989/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-6 y=\ln (x)
$$

With initial conditions

$$
\left[y(1)=\frac{1}{6}, y^{\prime}(1)=-\frac{1}{6}\right]
$$

13.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-\frac{6}{x^{2}} \\
F & =\frac{\ln (x)}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{6 y}{x^{2}}=\frac{\ln (x)}{x^{2}}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-\frac{6}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. The domain of $F=\frac{\ln (x)}{x^{2}}$ is

$$
\{0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

13.27.2 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=0, C=-6, f(x)=\ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-6 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+0 r x^{r-1}-6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+0 x^{r}-6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+0-6=0
$$

Or

$$
\begin{equation*}
r^{2}-r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{3}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-6 y=\ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{2}} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{3} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & x^{3} \\
-\frac{2}{x^{3}} & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(3 x^{2}\right)-\left(x^{3}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=5
$$

Which simplifies to

$$
W=5
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{3} \ln (x)}{5 x^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x \ln (x)}{5} d x
$$

Hence

$$
u_{1}=-\frac{x^{2} \ln (x)}{10}+\frac{x^{2}}{20}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\ln (x)}{x^{2}}}{5 x^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{5 x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{\ln (x)}{15 x^{3}}-\frac{1}{45 x^{3}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{20} \\
& u_{2}=\frac{-1-3 \ln (x)}{45 x^{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{1}{36}-\frac{\ln (x)}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{1}{36}-\frac{\ln (x)}{6}+\frac{c_{1}}{x^{2}}+c_{2} x^{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{1}{36}-\frac{\ln (x)}{6}+\frac{c_{1}}{x^{2}}+c_{2} x^{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{1}{6}$ and $x=1$ in the above gives

$$
\begin{equation*}
\frac{1}{6}=c_{1}+c_{2}+\frac{1}{36} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{1}{6 x}-\frac{2 c_{1}}{x^{3}}+3 c_{2} x^{2}
$$

substituting $y^{\prime}=-\frac{1}{6}$ and $x=1$ in the above gives

$$
\begin{equation*}
-\frac{1}{6}=-2 c_{1}+3 c_{2}-\frac{1}{6} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{12} \\
& c_{2}=\frac{1}{18}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{5}-6 x^{2} \ln (x)+x^{2}+3}{36 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{5}-6 x^{2} \ln (x)+x^{2}+3}{36 x^{2}} \tag{1}
\end{equation*}
$$

Figure 558: Solution plot

Verification of solutions

$$
y=\frac{2 x^{5}-6 x^{2} \ln (x)+x^{2}+3}{36 x^{2}}
$$

Verified OK.

13.27.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=0 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{6}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=6 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{6}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 507: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{6}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{6}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{6}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	3	-2

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	3	-2

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-2$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-2-(-2) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{2}{x}+(-)(0) \\
& =-\frac{2}{x} \\
& =-\frac{2}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{2}{x}\right)(0)+\left(\left(\frac{2}{x^{2}}\right)+\left(-\frac{2}{x}\right)^{2}-\left(\frac{6}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\frac{1}{x^{2}} \int \frac{1}{\frac{1}{x^{4}}} d x \\
& =\frac{1}{x^{2}}\left(\frac{x^{5}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{5}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{3}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{x^{3}}{5}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{3}}{5} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{x^{3}}{5}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{x^{3}}{5} \\
-\frac{2}{x^{3}} & \frac{3 x^{2}}{5}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(\frac{3 x^{2}}{5}\right)-\left(\frac{x^{3}}{5}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=1
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{3} \ln (x)}{5}}{x^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x \ln (x)}{5} d x
$$

Hence

$$
u_{1}=-\frac{x^{2} \ln (x)}{10}+\frac{x^{2}}{20}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\ln (x)}{x^{2}}}{x^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{x^{4}} d x
$$

Hence

$$
u_{2}=-\frac{\ln (x)}{3 x^{3}}-\frac{1}{9 x^{3}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{20} \\
& u_{2}=\frac{-1-3 \ln (x)}{9 x^{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{1}{36}-\frac{\ln (x)}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{3}}{5}\right)+\left(\frac{1}{36}-\frac{\ln (x)}{6}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{3}}{5}+\frac{1}{36}-\frac{\ln (x)}{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{1}{6}$ and $x=1$ in the above gives

$$
\begin{equation*}
\frac{1}{6}=c_{1}+\frac{c_{2}}{5}+\frac{1}{36} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 c_{1}}{x^{3}}+\frac{3 c_{2} x^{2}}{5}-\frac{1}{6 x}
$$

substituting $y^{\prime}=-\frac{1}{6}$ and $x=1$ in the above gives

$$
\begin{equation*}
-\frac{1}{6}=-2 c_{1}+\frac{3 c_{2}}{5}-\frac{1}{6} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{12} \\
& c_{2}=\frac{5}{18}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 x^{5}-6 x^{2} \ln (x)+x^{2}+3}{36 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x^{5}-6 x^{2} \ln (x)+x^{2}+3}{36 x^{2}} \tag{1}
\end{equation*}
$$

Figure 559: Solution plot

Verification of solutions

$$
y=\frac{2 x^{5}-6 x^{2} \ln (x)+x^{2}+3}{36 x^{2}}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
dsolve([x^2*diff (y(x),x$2)-6*y(x)=ln(x),y(1) = 1/6, D(y)(1) = -1/6],y(x), singsol=all)
```

$$
y(x)=\frac{1}{12 x^{2}}+\frac{x^{3}}{18}-\frac{\ln (x)}{6}+\frac{1}{36}
$$

Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 29
DSolve $\left[\left\{x^{\wedge} 2 * y\right.\right.$ ' ' $\left.[x]-6 * y[x]==\log [x],\left\{y[1]==1 / 6, y^{\prime}[1]==-1 / 6\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{2 x^{5}+x^{2}-6 x^{2} \log (x)+3}{36 x^{2}}
$$

13.28 problem 28

13.28.1 Solving as second order integrable as is ode
13.28.2 Solving as type second_order_integrable_as_is (not using ABC version)

3811
13.28.3 Solving using Kovacic algorithm 3812
13.28.4 Solving as exact linear second order ode ode 3817
13.28.5 Maple step by step solution . 3819

Internal problem ID [11882]
Internal file name [OUTPUT/11891_Saturday_April_13_2024_01_14_13_AM_67873546/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_oorder_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
(x+2)^{2} y^{\prime \prime}-(x+2) y^{\prime}-3 y=0
$$

13.28.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left((x+2)^{2} y^{\prime \prime}+(-x-2) y^{\prime}-3 y\right) d x=0 \\
& (-3 x-6) y+\left(x^{2}+4 x+4\right) y^{\prime}=c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x+2} \\
& q(x)=\frac{c_{1}}{(x+2)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{x+2}=\frac{c_{1}}{(x+2)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x+2} d x} \\
& =\frac{1}{(x+2)^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{(x+2)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{(x+2)^{3}}\right) & =\left(\frac{1}{(x+2)^{3}}\right)\left(\frac{c_{1}}{(x+2)^{2}}\right) \\
\mathrm{d}\left(\frac{y}{(x+2)^{3}}\right) & =\left(\frac{c_{1}}{(x+2)^{5}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{(x+2)^{3}}=\int \frac{c_{1}}{(x+2)^{5}} \mathrm{~d} x \\
& \frac{y}{(x+2)^{3}}=-\frac{c_{1}}{4(x+2)^{4}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{(x+2)^{3}}$ results in

$$
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3}
$$

Verified OK.

13.28.2 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
(x+2)^{2} y^{\prime \prime}+(-x-2) y^{\prime}-3 y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left((x+2)^{2} y^{\prime \prime}+(-x-2) y^{\prime}-3 y\right) d x=0 \\
\quad(-3 x-6) y+\left(x^{2}+4 x+4\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x+2} \\
& q(x)=\frac{c_{1}}{(x+2)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{x+2}=\frac{c_{1}}{(x+2)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x+2} d x} \\
& =\frac{1}{(x+2)^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{(x+2)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{(x+2)^{3}}\right) & =\left(\frac{1}{(x+2)^{3}}\right)\left(\frac{c_{1}}{(x+2)^{2}}\right) \\
\mathrm{d}\left(\frac{y}{(x+2)^{3}}\right) & =\left(\frac{c_{1}}{(x+2)^{5}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{(x+2)^{3}}=\int \frac{c_{1}}{(x+2)^{5}} \mathrm{~d} x \\
& \frac{y}{(x+2)^{3}}=-\frac{c_{1}}{4(x+2)^{4}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{(x+2)^{3}}$ results in

$$
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3}
$$

Verified OK.

13.28.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
(x+2)^{2} y^{\prime \prime}+(-x-2) y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=(x+2)^{2} \\
& B=-x-2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{15}{4(x+2)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=15 \\
& t=4(x+2)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4(x+2)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 508: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4(x+2)^{2}$. There is a pole at $x=-2$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{15}{4(x+2)^{2}}
$$

For the pole at $x=-2$ let b be the coefficient of $\frac{1}{(x+2)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{15}{4(x+2)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{15}{4(x+2)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
-2	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2(x+2)}+(-)(0) \\
& =-\frac{3}{2(x+2)} \\
& =-\frac{3}{2(x+2)}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{2(x+2)}\right)(0)+\left(\left(\frac{3}{2(x+2)^{2}}\right)+\left(-\frac{3}{2(x+2)}\right)^{2}-\left(\frac{15}{4(x+2)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2(x+2)} d x} \\
& =\frac{1}{(x+2)^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-x-2}{(x+2)^{2}} d x} \\
& =z_{1} e^{\ln (x+2)} \\
& =z_{1}(\sqrt{x+2})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x+2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x-2}{(x+2)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x+2)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{(x+2)^{4}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x+2}\right)+c_{2}\left(\frac{1}{x+2}\left(\frac{(x+2)^{4}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x+2}+\frac{c_{2}(x+2)^{3}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x+2}+\frac{c_{2}(x+2)^{3}}{4}
$$

Verified OK.

13.28.4 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=(x+2)^{2} \\
& q(x)=-x-2 \\
& r(x)=-3 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =-1
\end{aligned}
$$

Therefore (1) becomes

$$
2-(-1)+(-3)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
(x+2)^{2} y^{\prime}+(-3 x-6) y=c_{1}
$$

We now have a first order ode to solve which is

$$
(x+2)^{2} y^{\prime}+(-3 x-6) y=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x+2} \\
& q(x)=\frac{c_{1}}{(x+2)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{x+2}=\frac{c_{1}}{(x+2)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x+2} d x} \\
& =\frac{1}{(x+2)^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{(x+2)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{(x+2)^{3}}\right) & =\left(\frac{1}{(x+2)^{3}}\right)\left(\frac{c_{1}}{(x+2)^{2}}\right) \\
\mathrm{d}\left(\frac{y}{(x+2)^{3}}\right) & =\left(\frac{c_{1}}{(x+2)^{5}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{(x+2)^{3}}=\int \frac{c_{1}}{(x+2)^{5}} \mathrm{~d} x \\
& \frac{y}{(x+2)^{3}}=-\frac{c_{1}}{4(x+2)^{4}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{(x+2)^{3}}$ results in

$$
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{4(x+2)}+c_{2}(x+2)^{3}
$$

Verified OK.

13.28.5 Maple step by step solution

Let's solve

$$
(x+2)^{2} y^{\prime \prime}+(-x-2) y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{x+2}+\frac{3 y}{(x+2)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x+2}-\frac{3 y}{(x+2)^{2}}=0$
Check to see if $x_{0}=-2$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{1}{x+2}, P_{3}(x)=-\frac{3}{(x+2)^{2}}\right]
$$

- $(x+2) \cdot P_{2}(x)$ is analytic at $x=-2$
$\left.\left((x+2) \cdot P_{2}(x)\right)\right|_{x=-2}=-1$
- $(x+2)^{2} \cdot P_{3}(x)$ is analytic at $x=-2$

$$
\left.\left((x+2)^{2} \cdot P_{3}(x)\right)\right|_{x=-2}=-3
$$

- $x=-2$ is a regular singular point

Check to see if $x_{0}=-2$ is a regular singular point $x_{0}=-2$

- Multiply by denominators
$(x+2)^{2} y^{\prime \prime}+(-x-2) y^{\prime}-3 y=0$
- Change variables using $x=u-2$ so that the regular singular point is at $u=0$ $u^{2}\left(\frac{d^{2}}{d u^{2}} y(u)\right)-u\left(\frac{d}{d u} y(u)\right)-3 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite DE with series expansions
- Convert $u \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion

$$
u \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r}
$$

- Convert $u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion

$$
u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r}
$$

Rewrite DE with series expansions
$\sum_{k=0}^{\infty} a_{k}(k+r+1)(k+r-3) u^{k+r}=0$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
r=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
a_{k}(k+1)(k-3)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k}=0
$$

- Recursion relation for $r=0$

$$
a_{k}=0
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k}=0\right]
$$

- \quad Revert the change of variables $u=x+2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+2)^{k}, a_{k}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 19

```
dsolve((x+2)~2*diff (y (x),x$2)-(x+2)*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}+c_{2}(x+2)^{4}}{x+2}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 22
DSolve $[(x+2) \wedge 2 * y$ ' ' $[x]-(x+2) * y$ ' $[x]-3 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1}(x+2)^{3}+\frac{c_{2}}{x+2}
$$

13.29 problem 29

13.29.1 Solving as second order change of variable on x method 2 ode . 3823
13.29.2 Solving as second order ode non constant coeff transformation
on B ode . 3826
13.29.3 Solving using Kovacic algorithm 3828
13.29.4 Maple step by step solution . 3833

Internal problem ID [11883]
Internal file name [OUTPUT/11892_Saturday_April_13_2024_01_14_14_AM_480238/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 4, Section 4.5. The Cauchy-Euler Equation. Exercises page 169
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(2 x-3)^{2} y^{\prime \prime}-6(2 x-3) y^{\prime}+12 y=0
$$

13.29.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
4\left(x-\frac{3}{2}\right)^{2} y^{\prime \prime}+(-12 x+18) y^{\prime}+12 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{6}{-2 x+3} \\
q(x) & =\frac{12}{(2 x-3)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{6}{-2 x+3} d x\right)} d x \\
& =\int e^{3 \ln (-2 x+3)} d x \\
& =\int(-2 x+3)^{3} d x \\
& =-\frac{(-2 x+3)^{4}}{8} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{12}{(2 x-3)^{2}}}{(-2 x+3)^{6}} \\
& =\frac{12}{(2 x-3)^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{12 y(\tau)}{(2 x-3)^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{12}{(2 x-3)^{8}}=\frac{3}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+3 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+3 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+3 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+3=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=\frac{3}{4}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{4}}+c_{2} \tau^{\frac{3}{4}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{2^{\frac{1}{4}}\left(-(2 x-3)^{4}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{2} \sqrt{-(2 x-3)^{4}}+4 c_{1}\right)}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2^{\frac{1}{4}}\left(-(2 x-3)^{4}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{2} \sqrt{-(2 x-3)^{4}}+4 c_{1}\right)}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2^{\frac{1}{4}}\left(-(2 x-3)^{4}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{2} \sqrt{-(2 x-3)^{4}}+4 c_{1}\right)}{8}
$$

Verified OK.

13.29.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=4\left(x-\frac{3}{2}\right)^{2} \\
& B=-12 x+18 \\
& C=12 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(4\left(x-\frac{3}{2}\right)^{2}\right)(0)+(-12 x+18)(-12)+(12)(-12 x+18) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-6(2 x-3)^{3} v^{\prime \prime}+\left(12(2 x-3)^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-6(2 x-3)^{3} u^{\prime}(x)+12 u(x)(2 x-3)^{2}=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u}{2 x-3}
\end{aligned}
$$

Where $f(x)=\frac{2}{2 x-3}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{2 x-3} d x \\
\int \frac{1}{u} d u & =\int \frac{2}{2 x-3} d x \\
\ln (u) & =\ln (2 x-3)+c_{1} \\
u & =\mathrm{e}^{\ln (2 x-3)+c_{1}} \\
& =c_{1}(2 x-3)
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}(2 x-3)
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int c_{1}(2 x-3) \mathrm{d} x \\
& =c_{1}\left(x^{2}-3 x\right)+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(-12 x+18)\left(c_{1}\left(x^{2}-3 x\right)+c_{2}\right) \\
& =-12\left(c_{1} x^{2}-3 c_{1} x+c_{2}\right)\left(x-\frac{3}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-12\left(c_{1} x^{2}-3 c_{1} x+c_{2}\right)\left(x-\frac{3}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-12\left(c_{1} x^{2}-3 c_{1} x+c_{2}\right)\left(x-\frac{3}{2}\right)
$$

Verified OK.

13.29.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4\left(x-\frac{3}{2}\right)^{2} y^{\prime \prime}+(-12 x+18) y^{\prime}+12 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4\left(x-\frac{3}{2}\right)^{2} \\
& B=-12 x+18 \tag{3}\\
& C=12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{(2 x-3)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=(2 x-3)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{(2 x-3)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 510: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=(2 x-3)^{2}$. There is a pole at $x=\frac{3}{2}$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4\left(x-\frac{3}{2}\right)^{2}}
$$

For the pole at $x=\frac{3}{2}$ let b be the coefficient of $\frac{1}{\left(x-\frac{3}{2}\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{(2 x-3)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{(2 x-3)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
$\frac{3}{2}$	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2\left(x-\frac{3}{2}\right)}+(-)(0) \\
& =-\frac{1}{2\left(x-\frac{3}{2}\right)} \\
& =-\frac{1}{2 x-3}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2\left(x-\frac{3}{2}\right)}\right)(0)+\left(\left(\frac{1}{2\left(x-\frac{3}{2}\right)^{2}}\right)+\left(-\frac{1}{2\left(x-\frac{3}{2}\right)}\right)^{2}-\left(\frac{3}{(2 x-3)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2\left(x-\frac{3}{2}\right)} d x} \\
& =\frac{1}{\sqrt{2 x-3}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-12 x+18}{4\left(x-\frac{3}{2}\right)^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (2 x-3)}{2}} \\
& =z_{1}\left((2 x-3)^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=2 x-3
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-12 x+18}{4\left(x-\frac{3}{2}\right)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (2 x-3)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(x^{2}-3 x\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(2 x-3)+c_{2}\left(2 x-3\left(x^{2}-3 x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(2 x-3)+c_{2}\left(2 x^{3}-9 x^{2}+9 x\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}(2 x-3)+c_{2}\left(2 x^{3}-9 x^{2}+9 x\right)
$$

Verified OK.

13.29.4 Maple step by step solution

Let's solve
$4\left(x-\frac{3}{2}\right)^{2} y^{\prime \prime}+(-12 x+18) y^{\prime}+12 y=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{6 y^{\prime}}{2 x-3}-\frac{12 y}{(2 x-3)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{6 y^{\prime}}{2 x-3}+\frac{12 y}{(2 x-3)^{2}}=0$Check to see if $x_{0}=\frac{3}{2}$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{6}{2 x-3}, P_{3}(x)=\frac{12}{(2 x-3)^{2}}\right]
$$

- $\left(x-\frac{3}{2}\right) \cdot P_{2}(x)$ is analytic at $x=\frac{3}{2}$

$$
\left.\left(\left(x-\frac{3}{2}\right) \cdot P_{2}(x)\right)\right|_{x=\frac{3}{2}}=-3
$$

- $\left(x-\frac{3}{2}\right)^{2} \cdot P_{3}(x)$ is analytic at $x=\frac{3}{2}$

$$
\left.\left(\left(x-\frac{3}{2}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{3}{2}}=3
$$

- $x=\frac{3}{2}$ is a regular singular point

Check to see if $x_{0}=\frac{3}{2}$ is a regular singular point

$$
x_{0}=\frac{3}{2}
$$

- Multiply by denominators

$$
(2 x-3)^{2} y^{\prime \prime}+(-12 x+18) y^{\prime}+12 y=0
$$

- \quad Change variables using $x=u+\frac{3}{2}$ so that the regular singular point is at $u=0$ $4 u^{2}\left(\frac{d^{2}}{d u^{2}} y(u)\right)-12 u\left(\frac{d}{d u} y(u)\right)+12 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite DE with series expansions
- Convert $u \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion
$u \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r}$
- Convert $u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion
$u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r}$
Rewrite DE with series expansions
$\sum_{k=0}^{\infty} 4 a_{k}(k+r-1)(k+r-3) u^{k+r}=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r=0$
- Each term in the series must be 0 , giving the recursion relation

$$
4 a_{k}(k-1)(k-3)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k}=0
$$

- \quad Recursion relation for $r=0$

$$
a_{k}=0
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k}=0\right]
$$

- \quad Revert the change of variables $u=x-\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x-\frac{3}{2}\right)^{k}, a_{k}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

```
dsolve((2*x-3)^2*diff (y (x),x$2)-6*(2*x-3)*\operatorname{diff}(y(x),x)+12*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(x-\frac{3}{2}\right)\left(c_{1}+c_{2}\left(x-\frac{3}{2}\right)^{2}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 24

```
DSolve[(2*x-3)^2*y''[x]-6*(2*x-3)*y'[x]+12*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{2}(3-2 x)^{3}+c_{1}(3-2 x)
$$

14 Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232

14.1 problem 1 3837
14.2 problem 2 3846
14.3 problem 3 3855
14.4 problem 4 3865
14.5 problem 5 3875
14.6 problem 6 3886
14.7 problem 7 3897
14.8 problem 8 3906
14.9 problem 9 3918
14.10problem 10 3929
14.11 problem 11 3940
14.12problem 12 3950
14.13problem 13 3961
14.14problem 14 3972
14.15problem 15 3981
14.16problem 16 3992
14.17problem 17 4003
14.18problem 18 4015

14.1 problem 1

14.1.1 Maple step by step solution 3844

Internal problem ID [11884]
Internal file name [OUTPUT/11893_Saturday_April_13_2024_01_14_15_AM_40632902/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}+y^{\prime} x+y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{783}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{784}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x^{2} y^{\prime}+y x-2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-y^{\prime} x^{3}-x^{2} y+5 y^{\prime} x+3 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-9 x^{2}+8\right) y^{\prime}+x y\left(x^{2}-7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+14 x^{3}-33 x\right) y^{\prime}-y\left(x^{4}-12 x^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=3 y(0) \\
& F_{3}=8 y^{\prime}(0) \\
& F_{4}=-15 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y^{\prime} x-y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime} x+y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0, giving the recursion relation
$(k+1)\left(a_{k+2}(k+2)+a_{k}\right)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{k+2}\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff (y (x),x$2)+x*diff (y (x),x)+y(x)=0,y(x),type='series', x=0);
\[
y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 42
AsymptoticDSolveValue[y''[x]+x*y'[x]+y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{15}-\frac{x^{3}}{3}+x\right)+c_{1}\left(\frac{x^{4}}{8}-\frac{x^{2}}{2}+1\right)
$$

14.2 problem 2

14.2.1 Maple step by step solution 3853

Internal problem ID [11885]
Internal file name [OUTPUT/11894_Saturday_April_13_2024_01_14_16_AM_16203133/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+8 y^{\prime} x-4 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{786}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{787}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-8 y^{\prime} x+4 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =64 x^{2} y^{\prime}-32 y x-4 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =128\left(-4 x^{3}+x\right) y^{\prime}+16 y\left(16 x^{2}-3\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(4096 x^{4}-2304 x^{2}+80\right) y^{\prime}-2048 x\left(x^{2}-\frac{1}{2}\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-32768 x^{5}+32768 x^{3}-4224 x\right) y^{\prime}+\left(16384 x^{4}-15360 x^{2}+1344\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=4 y(0) \\
& F_{1}=-4 y^{\prime}(0) \\
& F_{2}=-48 y(0) \\
& F_{3}=80 y^{\prime}(0) \\
& F_{4}=1344 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+2 x^{2}-2 x^{4}+\frac{28}{15} x^{6}\right) y(0)+\left(x-\frac{2}{3} x^{3}+\frac{2}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-8\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 8 n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} 8 n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-4 a_{0}=0 \\
a_{2}=2 a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+8 n a_{n}-4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{4 a_{n}(2 n-1)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{2 a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+12 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-2 a_{0}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+20 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{2 a_{1}}{3}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+28 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{28 a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+36 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{4 a_{1}}{7}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+2 a_{0} x^{2}-\frac{2}{3} a_{1} x^{3}-2 a_{0} x^{4}+\frac{2}{3} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(-2 x^{4}+2 x^{2}+1\right) a_{0}+\left(x-\frac{2}{3} x^{3}+\frac{2}{3} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(-2 x^{4}+2 x^{2}+1\right) c_{1}+\left(x-\frac{2}{3} x^{3}+\frac{2}{3} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+2 x^{2}-2 x^{4}+\frac{28}{15} x^{6}\right) y(0)+\left(x-\frac{2}{3} x^{3}+\frac{2}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(-2 x^{4}+2 x^{2}+1\right) c_{1}+\left(x-\frac{2}{3} x^{3}+\frac{2}{3} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+2 x^{2}-2 x^{4}+\frac{28}{15} x^{6}\right) y(0)+\left(x-\frac{2}{3} x^{3}+\frac{2}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(-2 x^{4}+2 x^{2}+1\right) c_{1}+\left(x-\frac{2}{3} x^{3}+\frac{2}{3} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-8 y^{\prime} x+4 y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+8 y^{\prime} x-4 y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+4 a_{k}(2 k-1)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+8 a_{k} k-4 a_{k}=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{4 a_{k}(2 k-1)}{k^{2}+3 k+2}\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+8*x*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})-4*y(x)=0,y(x),type='series',x=0)
```

$$
y(x)=\left(-2 x^{4}+2 x^{2}+1\right) y(0)+\left(x-\frac{2}{3} x^{3}+\frac{2}{3} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 38

```
AsymptoticDSolveValue[y''[x]+8*x*y'[x]-4*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{2}\left(\frac{2 x^{5}}{3}-\frac{2 x^{3}}{3}+x\right)+c_{1}\left(-2 x^{4}+2 x^{2}+1\right)
$$

14.3 problem 3

14.3.1 Maple step by step solution 3862

Internal problem ID [11886]
Internal file name [OUTPUT/11895_Saturday_April_13_2024_01_14_17_AM_52170285/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+y^{\prime} x+\left(2 x^{2}+1\right) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{789}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{790}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-2 x^{2} y-y^{\prime} x-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =2 y x^{3}-x^{2} y^{\prime}-3 y x-2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(3 x^{3}-3 x\right) y^{\prime}+y\left(2 x^{4}+11 x^{2}-1\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(-x^{4}+23 x^{2}-4\right) y^{\prime}-6 x y\left(x^{4}-\frac{11}{6} x^{2}-\frac{25}{6}\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-5 x^{5}-16 x^{3}+75 x\right) y^{\prime}+2\left(x^{6}-\frac{75}{2} x^{4}+9 x^{2}+\frac{29}{2}\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=-y(0) \\
& F_{3}=-4 y^{\prime}(0) \\
& F_{4}=29 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{29}{720} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-2 x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty} 2 x^{n+2} a_{n} & =\sum_{n=2}^{\infty} 2 a_{n-2} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=2}^{\infty} 2 a_{n-2} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}+a_{0}=0
$$

$$
a_{2}=-\frac{a_{0}}{2}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+2 a_{n-2}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n a_{n}+a_{n}+2 a_{n-2}}{(n+2)(n+1)} \\
& =-\frac{a_{n}}{n+2}-\frac{2 a_{n-2}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+3 a_{2}+2 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{30}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+5 a_{4}+2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{29 a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+6 a_{5}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{13 a_{1}}{630}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}-\frac{1}{24} a_{0} x^{4}-\frac{1}{30} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) a_{0}+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{29}{720} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{29}{720} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-2 x^{2} y-y^{\prime} x-y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\left(-2 x^{2}-1\right) y-y^{\prime} x
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x+\left(2 x^{2}+1\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions
$2 a_{2}+a_{0}+\left(6 a_{3}+2 a_{1}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+1)+2 a_{k-2}\right) x^{k}\right)=0$

- The coefficients of each power of x must be 0

$$
\left[2 a_{2}+a_{0}=0,6 a_{3}+2 a_{1}=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{2}=-\frac{a_{0}}{2}, a_{3}=-\frac{a_{1}}{3}\right\}
$$

- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}+a_{k} k+a_{k}+2 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$\left((k+2)^{2}+3 k+8\right) a_{k+4}+a_{k+2}(k+2)+a_{k+2}+2 a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{k a_{k+2}+2 a_{k}+3 a_{k+2}}{k^{2}+7 k+12}, a_{2}=-\frac{a_{0}}{2}, a_{3}=-\frac{a_{1}}{3}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff (y (x),x$2)+x*diff (y(x),x)+(2*x^2+1)*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) y(0)+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[y' ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $\left.[\mathrm{x}]+\left(2 * \mathrm{x}^{\wedge} 2+1\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(-\frac{x^{5}}{30}-\frac{x^{3}}{3}+x\right)+c_{1}\left(-\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)
$$

14.4 problem 4

14.4.1 Maple step by step solution 3872

Internal problem ID [11887]
Internal file name [OUTPUT/11896_Saturday_April_13_2024_01_14_18_AM_24910550/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+y^{\prime} x+\left(x^{2}-4\right) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{792}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{793}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-x^{2} y-y^{\prime} x+4 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =3 y^{\prime}+\left(x^{3}-6 x\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{3}-9 x\right) y^{\prime}+6 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(-x^{4}+12 x^{2}-3\right) y^{\prime}+\left(-x^{5}+13 x^{3}-36 x\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-3 x^{3}-9 x\right) y^{\prime}+y\left(x^{6}-21 x^{4}+90 x^{2}-48\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=4 y(0) \\
& F_{1}=3 y^{\prime}(0) \\
& F_{2}=6 y(0) \\
& F_{3}=-3 y^{\prime}(0) \\
& F_{4}=-48 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+2 x^{2}+\frac{1}{4} x^{4}-\frac{1}{15} x^{6}\right) y(0)+\left(x+\frac{1}{2} x^{3}-\frac{1}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty} x^{n+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{aligned}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \\
& n=0 \text { gives }
\end{aligned}
$$

$$
2 a_{2}-4 a_{0}=0
$$

$$
a_{2}=2 a_{0}
$$

$n=1$ gives

$$
6 a_{3}-3 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{1}}{2}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+a_{n-2}-4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n a_{n}-4 a_{n}+a_{n-2}}{(n+2)(n+1)} \\
& =-\frac{(n-4) a_{n}}{(n+2)(n+1)}-\frac{a_{n-2}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-2 a_{2}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{4}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-a_{3}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{40}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+a_{5}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{19 a_{1}}{1680}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+2 a_{0} x^{2}+\frac{1}{2} a_{1} x^{3}+\frac{1}{4} a_{0} x^{4}-\frac{1}{40} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+2 x^{2}+\frac{1}{4} x^{4}\right) a_{0}+\left(x+\frac{1}{2} x^{3}-\frac{1}{40} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+2 x^{2}+\frac{1}{4} x^{4}\right) c_{1}+\left(x+\frac{1}{2} x^{3}-\frac{1}{40} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+2 x^{2}+\frac{1}{4} x^{4}-\frac{1}{15} x^{6}\right) y(0)+\left(x+\frac{1}{2} x^{3}-\frac{1}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+2 x^{2}+\frac{1}{4} x^{4}\right) c_{1}+\left(x+\frac{1}{2} x^{3}-\frac{1}{40} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+2 x^{2}+\frac{1}{4} x^{4}-\frac{1}{15} x^{6}\right) y(0)+\left(x+\frac{1}{2} x^{3}-\frac{1}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+2 x^{2}+\frac{1}{4} x^{4}\right) c_{1}+\left(x+\frac{1}{2} x^{3}-\frac{1}{40} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-x^{2} y-y^{\prime} x+4 y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\left(-x^{2}+4\right) y-y^{\prime} x
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x+\left(x^{2}-4\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions
$2 a_{2}-4 a_{0}+\left(6 a_{3}-3 a_{1}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k-4)+a_{k-2}\right) x^{k}\right)=0$

- \quad The coefficients of each power of x must be 0

$$
\left[2 a_{2}-4 a_{0}=0,6 a_{3}-3 a_{1}=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{2}=2 a_{0}, a_{3}=\frac{a_{1}}{2}\right\}
$$

- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}+a_{k} k-4 a_{k}+a_{k-2}=0$
- \quad Shift index using $k->k+2$
$\left((k+2)^{2}+3 k+8\right) a_{k+4}+a_{k+2}(k+2)-4 a_{k+2}+a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{k a_{k+2}+a_{k}-2 a_{k+2}}{k^{2}+7 k+12}, a_{2}=2 a_{0}, a_{3}=\frac{a_{1}}{2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+(x^2-4)*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1+2 x^{2}+\frac{1}{4} x^{4}\right) y(0)+\left(x+\frac{1}{2} x^{3}-\frac{1}{40} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40
AsymptoticDSolveValue[y' ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+(\mathrm{x} \sim 2-4) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(-\frac{x^{5}}{40}+\frac{x^{3}}{2}+x\right)+c_{1}\left(\frac{x^{4}}{4}+2 x^{2}+1\right)
$$

14.5 problem 5

14.5.1 Maple step by step solution 3882

Internal problem ID [11888]
Internal file name [OUTPUT/11897_Saturday_April_13_2024_01_14_19_AM_78059033/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+y^{\prime} x+(3 x+2) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{795}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{796}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x-3 y x-2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{2}-3 x-3\right) y^{\prime}+3\left(x^{2}+\frac{2}{3} x-1\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-x^{3}+6 x^{2}+7 x-6\right) y^{\prime}-3\left(x^{3}-\frac{7}{3} x^{2}-7 x-\frac{8}{3}\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-9 x^{3}-3 x^{2}+39 x+15\right) y^{\prime}+3\left(x^{4}-\frac{16}{3} x^{3}-14 x^{2}+6 x+11\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+12 x^{4}-9 x^{3}-108 x^{2}-3 x+72\right) y^{\prime}-3\left(x^{5}-\frac{25}{3} x^{4}-13 x^{3}+53 x^{2}+69 x+4\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y(0) \\
& F_{1}=-3 y^{\prime}(0)-3 y(0) \\
& F_{2}=-6 y^{\prime}(0)+8 y(0) \\
& F_{3}=15 y^{\prime}(0)+33 y(0) \\
& F_{4}=72 y^{\prime}(0)-12 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{11}{40} x^{5}-\frac{1}{60} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{1}{10} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} 3 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 3 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{3}\\
& n=0 \text { gives } \\
& 2 a_{2}+2 a_{0}=0 \\
& a_{2}=-a_{0}
\end{align*}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+n a_{n}+3 a_{n-1}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n a_{n}+2 a_{n}+3 a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{a_{n}}{1+n}-\frac{3 a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+3 a_{1}+3 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{2}-\frac{a_{0}}{2}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+4 a_{2}+3 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{3}-\frac{a_{1}}{4}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+5 a_{3}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{8}+\frac{11 a_{0}}{40}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+6 a_{4}+3 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{60}+\frac{a_{1}}{10}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+7 a_{5}+3 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{336}-\frac{39 a_{0}}{560}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}+\left(-\frac{a_{1}}{2}-\frac{a_{0}}{2}\right) x^{3}+\left(\frac{a_{0}}{3}-\frac{a_{1}}{4}\right) x^{4}+\left(\frac{a_{1}}{8}+\frac{11 a_{0}}{40}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{11}{40} x^{5}\right) a_{0}+\left(x-\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{11}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{11}{40} x^{5}-\frac{1}{60} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{1}{10} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{11}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{11}{40} x^{5}-\frac{1}{60} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{1}{10} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{11}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y^{\prime} x-3 y x-2 y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=(-3 x-2) y-y^{\prime} x
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x+(3 x+2) y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
2 a_{2}+2 a_{0}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+2)+3 a_{k-1}\right) x^{k}\right)=0
$$

- \quad Each term must be 0
$2 a_{2}+2 a_{0}=0$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+a_{k} k+2 a_{k}+3 a_{k-1}=0$
- \quad Shift index using $k->k+1$
$\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k+1}(k+1)+2 a_{k+1}+3 a_{k}=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{k a_{k+1}+3 a_{k}+3 a_{k+1}}{k^{2}+5 k+6}, 2 a_{2}+2 a_{0}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        <- heuristic approach successful
    <- hypergeometric successful
    <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form could result into a too large expression - returning special functi
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
Order:=6;
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+(3*x+2)*y(x)=0,y(x),type='series',x=0);
```

$y(x)=\left(1-x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}+\frac{11}{40} x^{5}\right) y(0)+\left(x-\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 61
AsymptoticDSolveValue $[\mathrm{y}$ ' ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+(3 * \mathrm{x}+2) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{8}-\frac{x^{4}}{4}-\frac{x^{3}}{2}+x\right)+c_{1}\left(\frac{11 x^{5}}{40}+\frac{x^{4}}{3}-\frac{x^{3}}{2}-x^{2}+1\right)
$$

14.6 problem 6

14.6.1 Maple step by step solution 3893

Internal problem ID [11889]
Internal file name [OUTPUT/11898_Saturday_April_13_2024_01_14_20_AM_85922392/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-y^{\prime} x+(3 x-2) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{798}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{799}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-3 y x+y^{\prime} x+2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{2}-3 x+3\right) y^{\prime}-3\left(x^{2}-\frac{2}{3} x+1\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{3}-6 x^{2}+7 x-6\right) y^{\prime}-3 y\left(x^{3}-\frac{11}{3} x^{2}+7 x-\frac{8}{3}\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-9 x^{3}+21 x^{2}-39 x+15\right) y^{\prime}-3 y\left(x^{4}-\frac{20}{3} x^{3}+14 x^{2}-18 x+11\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{5}-12 x^{4}+45 x^{3}-108 x^{2}+111 x-72\right) y^{\prime}-3\left(x^{5}-\frac{29}{3} x^{4}+31 x^{3}-73 x^{2}+69 x-28\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=2 y(0) \\
& F_{1}=3 y^{\prime}(0)-3 y(0) \\
& F_{2}=-6 y^{\prime}(0)+8 y(0) \\
& F_{3}=15 y^{\prime}(0)-33 y(0) \\
& F_{4}=-72 y^{\prime}(0)+84 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1+x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}-\frac{11}{40} x^{5}+\frac{7}{60} x^{6}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}-\frac{1}{10} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} 3 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 3 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-2 a_{0}=0 \\
a_{2}=a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)-n a_{n}+3 a_{n-1}-2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n a_{n}+2 a_{n}-3 a_{n-1}}{(n+2)(1+n)} \\
& =\frac{a_{n}}{1+n}-\frac{3 a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-3 a_{1}+3 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{2}-\frac{a_{0}}{2}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-4 a_{2}+3 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{3}-\frac{a_{1}}{4}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-5 a_{3}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{8}-\frac{11 a_{0}}{40}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-6 a_{4}+3 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{7 a_{0}}{60}-\frac{a_{1}}{10}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-7 a_{5}+3 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{13 a_{1}}{336}-\frac{39 a_{0}}{560}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+a_{0} x^{2}+\left(\frac{a_{1}}{2}-\frac{a_{0}}{2}\right) x^{3}+\left(\frac{a_{0}}{3}-\frac{a_{1}}{4}\right) x^{4}+\left(\frac{a_{1}}{8}-\frac{11 a_{0}}{40}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}-\frac{11}{40} x^{5}\right) a_{0}+\left(x+\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}-\frac{11}{40} x^{5}\right) c_{1}+\left(x+\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1+x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}-\frac{11}{40} x^{5}+\frac{7}{60} x^{6}\right) y(0) \tag{1}\\
& +\left(x+\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}-\frac{1}{10} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}-\frac{11}{40} x^{5}\right) c_{1}+\left(x+\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1+x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}-\frac{11}{40} x^{5}+\frac{7}{60} x^{6}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}-\frac{1}{10} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1+x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}-\frac{11}{40} x^{5}\right) c_{1}+\left(x+\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-3 y x+y^{\prime} x+2 y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=(-3 x+2) y+y^{\prime} x
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-y^{\prime} x+(3 x-2) y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
2 a_{2}-2 a_{0}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}(k+2)+3 a_{k-1}\right) x^{k}\right)=0
$$

- \quad Each term must be 0
$2 a_{2}-2 a_{0}=0$
- Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}-a_{k} k-2 a_{k}+3 a_{k-1}=0
$$

- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}-a_{k+1}(k+1)-2 a_{k+1}+3 a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{k a_{k+1}-3 a_{k}+3 a_{k+1}}{k^{2}+5 k+6}, 2 a_{2}-2 a_{0}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        <- heuristic approach successful
    <- hypergeometric successful
    <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form could result into a too large expression - returning special functi
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 47

```
Order:=6;
dsolve(diff(y(x),x$2)-x*diff(y(x),x)+(3*x-2)*y(x)=0,y(x),type='series',x=0);
```

$y(x)=\left(1+x^{2}-\frac{1}{2} x^{3}+\frac{1}{3} x^{4}-\frac{11}{40} x^{5}\right) y(0)+\left(x+\frac{1}{2} x^{3}-\frac{1}{4} x^{4}+\frac{1}{8} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 59
AsymptoticDSolveValue[y' $\quad[\mathrm{x}]-\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+(3 * \mathrm{x}-2) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{8}-\frac{x^{4}}{4}+\frac{x^{3}}{2}+x\right)+c_{1}\left(-\frac{11 x^{5}}{40}+\frac{x^{4}}{3}-\frac{x^{3}}{2}+x^{2}+1\right)
$$

14.7 problem 7

Internal problem ID [11890]
Internal file name [OUTPUT/11899_Saturday_April_13_2024_01_14_21_AM_32507608/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime} x+y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{801}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{802}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{x\left(y^{\prime}+y\right)}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(-x^{3}+2 x^{2}-x-1\right) y^{\prime}+y\left(2 x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(4 x^{4}-6 x^{3}+2 x^{2}+9 x-2\right) y^{\prime}+x y\left(x^{3}-6 x^{2}+x+9\right)}{\left(x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{6}-18 x^{5}+26 x^{4}+9 x^{3}-71 x^{2}+27 x+9\right) y^{\prime}-6 y\left(x^{5}-4 x^{4}+\frac{1}{3} x^{3}+12 x^{2}-\frac{2}{3} x-\frac{3}{2}\right)}{\left(x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-9 x^{7}+96 x^{6}-132 x^{5}-192 x^{4}+603 x^{3}-252 x^{2}-219 x+36\right) y^{\prime}-y\left(x^{7}-36 x^{6}+122 x^{5}+29 x^{4}-\frac{1}{2}\right.}{\left(x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-y^{\prime}(0)-y(0) \\
& F_{2}=-2 y^{\prime}(0) \\
& F_{3}=9 y(0)+9 y^{\prime}(0) \\
& F_{4}=4 y(0)+36 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as
$y=\left(1-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{3}{40} x^{5}+\frac{1}{20} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime} x+y x=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=0
\end{align*}
$$

$n=1$ gives

$$
6 a_{3}+a_{1}+a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{6}-\frac{a_{1}}{6}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(1+n)+n a_{n}+a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n}+a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{n^{2} a_{n}}{(n+2)(1+n)}-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
4 a_{2}+12 a_{4}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
9 a_{3}+20 a_{5}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{3 a_{0}}{40}+\frac{3 a_{1}}{40}
$$

For $n=4$ the recurrence equation gives

$$
16 a_{4}+30 a_{6}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{1}}{20}+\frac{a_{0}}{180}
$$

For $n=5$ the recurrence equation gives

$$
25 a_{5}+42 a_{7}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{5 a_{0}}{112}-\frac{43 a_{1}}{1008}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\left(-\frac{a_{0}}{6}-\frac{a_{1}}{6}\right) x^{3}-\frac{a_{1} x^{4}}{12}+\left(\frac{3 a_{0}}{40}+\frac{3 a_{1}}{40}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}\right) a_{0}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{3}{40} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{3}{40} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{1}{180} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{3}{40} x^{5}+\frac{1}{20} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{3}{40} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$y=\left(1-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{3}{40} x^{5}+\frac{1}{20} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)$
Verified OK.

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{3}{40} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
        -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c =
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
Order:=6;
dsolve((x^2+1)*diff(y(x),x$2)+x*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1-\frac{1}{6} x^{3}+\frac{3}{40} x^{5}\right) y(0)+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{3}{40} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 49
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2+1\right) * y\right.$ ' $\quad[x]+x * y$ ' $\left.[x]+x * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{3 x^{5}}{40}-\frac{x^{3}}{6}+1\right)+c_{2}\left(\frac{3 x^{5}}{40}-\frac{x^{4}}{12}-\frac{x^{3}}{6}+x\right)
$$

14.8 problem 8

14.8.1 Maple step by step solution

3914
Internal problem ID [11891]
Internal file name [OUTPUT/11900_Saturday_April_13_2024_01_14_21_AM_74726995/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 8 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
(x-1) y^{\prime \prime}-(3 x-2) y^{\prime}+2 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{804}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{805}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{3 y^{\prime} x-2 y x-2 y^{\prime}}{x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{(7 x-3) y^{\prime}+(-6 x-2) y}{x-1} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{(15 x-4) y^{\prime}+(-14 x-8) y}{x-1} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{(31 x-5) y^{\prime}+(-30 x-22) y}{x-1} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{(63 x-6) y^{\prime}+(-62 x-52) y}{x-1}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=2 y^{\prime}(0) \\
& F_{1}=2 y(0)+3 y^{\prime}(0) \\
& F_{2}=8 y(0)+4 y^{\prime}(0) \\
& F_{3}=22 y(0)+5 y^{\prime}(0) \\
& F_{4}=52 y(0)+6 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1+\frac{1}{3} x^{3}+\frac{1}{3} x^{4}+\frac{11}{60} x^{5}+\frac{13}{180} x^{6}\right) y(0) \\
& +\left(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
(x-1) y^{\prime \prime}+(-3 x+2) y^{\prime}+2 y x=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(x-1)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+(-3 x+2)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) \tag{2}\\
& \quad+\sum_{n=1}^{\infty}\left(-3 n a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the
power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n} \\
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) & =\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \\
\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1} & =\sum_{n=0}^{\infty} 2(1+n) a_{1+n} x^{n} \\
\sum_{n=0}^{\infty} 2 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n}\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \tag{3}\\
& \quad+\sum_{n=1}^{\infty}\left(-3 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2(1+n) a_{1+n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-2 a_{2}+2 a_{1}=0 \\
a_{2}=a_{1}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(1+n) a_{1+n} n-(n+2) a_{n+2}(1+n)-3 n a_{n}+2(1+n) a_{1+n}+2 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n^{2} a_{1+n}-3 n a_{n}+3 n a_{1+n}+2 a_{1+n}+2 a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{3 n a_{n}}{(n+2)(1+n)}+\frac{\left(n^{2}+3 n+2\right) a_{1+n}}{(n+2)(1+n)}+\frac{2 a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{2}-6 a_{3}-3 a_{1}+2 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{2}+\frac{a_{0}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{3}-12 a_{4}-6 a_{2}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{1}}{6}+\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{4}-20 a_{5}-9 a_{3}+2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{24}+\frac{11 a_{0}}{60}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{5}-30 a_{6}-12 a_{4}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{1}}{120}+\frac{13 a_{0}}{180}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{6}-42 a_{7}-15 a_{5}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{720}+\frac{19 a_{0}}{840}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+a_{1} x^{2}+\left(\frac{a_{1}}{2}+\frac{a_{0}}{3}\right) x^{3}+\left(\frac{a_{1}}{6}+\frac{a_{0}}{3}\right) x^{4}+\left(\frac{a_{1}}{24}+\frac{11 a_{0}}{60}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{3} x^{4}+\frac{11}{60} x^{5}\right) a_{0}+\left(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{3} x^{4}+\frac{11}{60} x^{5}\right) c_{1}+\left(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1+\frac{1}{3} x^{3}+\frac{1}{3} x^{4}+\frac{11}{60} x^{5}+\frac{13}{180} x^{6}\right) y(0) \tag{1}\\
& +\left(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+\frac{1}{3} x^{3}+\frac{1}{3} x^{4}+\frac{11}{60} x^{5}\right) c_{1}+\left(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1+\frac{1}{3} x^{3}+\frac{1}{3} x^{4}+\frac{11}{60} x^{5}+\frac{13}{180} x^{6}\right) y(0) \\
& +\left(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{3} x^{4}+\frac{11}{60} x^{5}\right) c_{1}+\left(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.8.1 Maple step by step solution

Let's solve

$$
(x-1) y^{\prime \prime}+(-3 x+2) y^{\prime}+2 y x=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{2 x y}{x-1}+\frac{(3 x-2) y^{\prime}}{x-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(3 x-2) y^{\prime}}{x-1}+\frac{2 x y}{x-1}=0$
Check to see if $x_{0}=1$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{3 x-2}{x-1}, P_{3}(x)=\frac{2 x}{x-1}\right]$
- $(x-1) \cdot P_{2}(x)$ is analytic at $x=1$
$\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=-1$
- $(x-1)^{2} \cdot P_{3}(x)$ is analytic at $x=1$
$\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=0$
- $x=1$ is a regular singular point

Check to see if $x_{0}=1$ is a regular singular point
$x_{0}=1$

- Multiply by denominators

$$
(x-1) y^{\prime \prime}+(-3 x+2) y^{\prime}+2 y x=0
$$

- Change variables using $x=u+1$ so that the regular singular point is at $u=0$ $u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-3 u-1)\left(\frac{d}{d u} y(u)\right)+(2 u+2) y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$
$u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}$
- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$ $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}$
- Shift index using $k->k+1$
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-2+r) u^{-1+r}+\left(a_{1}(1+r)(-1+r)-a_{0}(-2+3 r)\right) u^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)\right.\right.$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term must be 0
$a_{1}(1+r)(-1+r)-a_{0}(-2+3 r)=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1+r)(k+r-1)+a_{k}(-3 k-3 r+2)+2 a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+2}(k+2+r)(k+r)+a_{k+1}(-3 k-1-3 r)+2 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{3 k a_{k+1}+3 r a_{k+1}-2 a_{k}+a_{k+1}}{(k+2+r)(k+r)}$
- Recursion relation for $r=0$

$$
a_{k+2}=\frac{3 k a_{k+1}-2 a_{k}+a_{k+1}}{(k+2) k}
$$

- Series not valid for $r=0$, division by 0 in the recursion relation at $k=0$

$$
a_{k+2}=\frac{3 k a_{k+1}-2 a_{k}+a_{k+1}}{(k+2) k}
$$

- \quad Recursion relation for $r=2$

$$
a_{k+2}=\frac{3 k a_{k+1}-2 a_{k}+7 a_{k+1}}{(k+4)(k+2)}
$$

- \quad Solution for $r=2$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+2}=\frac{3 k a_{k+1}-2 a_{k}+7 a_{k+1}}{(k+4)(k+2)}, 3 a_{1}-4 a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k+2}, a_{k+2}=\frac{3 k a_{k+1}-2 a_{k}+7 a_{k+1}}{(k+4)(k+2)}, 3 a_{1}-4 a_{0}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

```
Order:=6;
dsolve((x-1)*diff(y(x),x$2)-(3*x-2)*diff(y(x),x)+2*x*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{1}{3} x^{3}+\frac{1}{3} x^{4}+\frac{11}{60} x^{5}\right) y(0)+\left(x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 59
AsymptoticDSolveValue[(x-1)*y' $[\mathrm{x}]-(3 * x-2) * y$ ' $[\mathrm{x}]+2 * x * y[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{11 x^{5}}{60}+\frac{x^{4}}{3}+\frac{x^{3}}{3}+1\right)+c_{2}\left(\frac{x^{5}}{24}+\frac{x^{4}}{6}+\frac{x^{3}}{2}+x^{2}+x\right)
$$

14.9 problem 9

14.9.1 Maple step by step solution 3925

Internal problem ID [11892]
Internal file name [OUTPUT/11901_Saturday_April_13_2024_01_14_22_AM_46985098/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(x^{3}-1\right) y^{\prime \prime}+x^{2} y^{\prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{807}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{808}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{x\left(y^{\prime} x+y\right)}{x^{3}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{x^{4} y^{\prime}+3 y x^{3}+3 y^{\prime} x+y}{\left(x^{3}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-10 y x^{5}-24 y^{\prime} x^{3}-18 x^{2} y-4 y^{\prime}}{\left(x^{3}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =-\frac{10 x\left(\left(x^{7}-16 x^{4}-13 x\right) y^{\prime}-4 y\left(x^{6}+5 x^{3}+1\right)\right)}{\left(x^{3}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(90 x^{10}-1040 x^{7}-2390 x^{4}-300 x\right) y^{\prime}-190\left(x^{9}+\frac{204}{19} x^{6}+\frac{137}{19} x^{3}+\frac{4}{19}\right) y}{\left(x^{3}-1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=y(0) \\
& F_{2}=4 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=40 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{6} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{3}-1\right) y^{\prime \prime}+x^{2} y^{\prime}+y x=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{3}-1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+x^{2}\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n x^{1+n} a_{n}(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n x^{1+n} a_{n}(n-1) & =\sum_{n=3}^{\infty}(n-1) a_{n-1}(n-2) x^{n} \\
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) & =\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \\
\sum_{n=1}^{\infty} n x^{1+n} a_{n} & =\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=3}^{\infty}(n-1) a_{n-1}(n-2) x^{n}\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \tag{3}\\
& \quad+\left(\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=0
\end{align*}
$$

$n=1$ gives

$$
-6 a_{3}+a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{6}
$$

$n=2$ gives

$$
-12 a_{4}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{4}=\frac{a_{1}}{6}
$$

For $3 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n-1) a_{n-1}(n-2)-(n+2) a_{n+2}(1+n)+(n-1) a_{n-1}+a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n-1}\left(n^{2}-2 n+2\right)}{(n+2)(1+n)} \tag{5}
\end{equation*}
$$

For $n=3$ the recurrence equation gives

$$
5 a_{2}-20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
10 a_{3}-30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{18}
$$

For $n=5$ the recurrence equation gives

$$
17 a_{4}-42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{17 a_{1}}{252}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{6} a_{0} x^{3}+\frac{1}{6} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{3}}{6}\right) a_{0}+\left(x+\frac{1}{6} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x+\frac{1}{6} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{6} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x+\frac{1}{6} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{6} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x+\frac{1}{6} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.9.1 Maple step by step solution

Let's solve
$\left(x^{3}-1\right) y^{\prime \prime}+x^{2} y^{\prime}+y x=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{x^{2} y^{\prime}}{x^{3}-1}-\frac{x y}{x^{3}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{x^{2} y^{\prime}}{x^{3}-1}+\frac{x y}{x^{3}-1}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{x^{2}}{x^{3}-1}, P_{3}(x)=\frac{x}{x^{3}-1}\right]
$$

- $(x-1) \cdot P_{2}(x)$ is analytic at $x=1$
$\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=\frac{1}{3}$
- $(x-1)^{2} \cdot P_{3}(x)$ is analytic at $x=1$

$$
\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=0
$$

- $x=1$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=1$

- Multiply by denominators
$\left(x^{3}-1\right) y^{\prime \prime}+x^{2} y^{\prime}+y x=0$
- Change variables using $x=u+1$ so that the regular singular point is at $u=0$ $\left(u^{3}+3 u^{2}+3 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(u^{2}+2 u+1\right)\left(\frac{d}{d u} y(u)\right)+(u+1) y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-2+3 r) u^{-1+r}+\left(a_{1}(1+r)(1+3 r)+a_{0}\left(3 r^{2}-r+1\right)\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(3 k+1\right.\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
r(-2+3 r)=0
$$

- Values of r that satisfy the indicial equation $r \in\left\{0, \frac{2}{3}\right\}$
- \quad Each term must be 0
$a_{1}(1+r)(1+3 r)+a_{0}\left(3 r^{2}-r+1\right)=0$
- Each term in the series must be 0 , giving the recursion relation

$$
\left(3 a_{k}+a_{k-1}+3 a_{k+1}\right) k^{2}+\left(\left(6 a_{k}+2 a_{k-1}+6 a_{k+1}\right) r-a_{k}-2 a_{k-1}+4 a_{k+1}\right) k+\left(3 a_{k}+a_{k-1}+3 a_{i}\right.
$$

- \quad Shift index using $k->k+1$

$$
\left(3 a_{k+1}+a_{k}+3 a_{k+2}\right)(k+1)^{2}+\left(\left(6 a_{k+1}+2 a_{k}+6 a_{k+2}\right) r-a_{k+1}-2 a_{k}+4 a_{k+2}\right)(k+1)+\left(3 a_{k+}\right.
$$

- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{k^{2} a_{k}+3 k^{2} a_{k+1}+2 k r a_{k}+6 k r a_{k+1}+r^{2} a_{k}+3 r^{2} a_{k+1}+5 k a_{k+1}+5 r a_{k+1}+a_{k}+3 a_{k+1}}{3 k^{2}+6 k r+3 r^{2}+10 k+10 r+8}$
- Recursion relation for $r=0$
$a_{k+2}=-\frac{k^{2} a_{k}+3 k^{2} a_{k+1}+5 k a_{k+1}+a_{k}+3 a_{k+1}}{3 k^{2}+10 k+8}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{k^{2} a_{k}+3 k^{2} a_{k+1}+5 k a_{k+1}+a_{k}+3 a_{k+1}}{3 k^{2}+10 k+8}, a_{1}+a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k}, a_{k+2}=-\frac{k^{2} a_{k}+3 k^{2} a_{k+1}+5 k a_{k+1}+a_{k}+3 a_{k+1}}{3 k^{2}+10 k+8}, a_{1}+a_{0}=0\right]
$$

- Recursion relation for $r=\frac{2}{3}$

$$
a_{k+2}=-\frac{k^{2} a_{k}+3 k^{2} a_{k+1}+\frac{4}{3} k a_{k}+9 k a_{k+1}+\frac{13}{9} a_{k}+\frac{23}{3} a_{k+1}}{3 k^{2}+14 k+16}
$$

- \quad Solution for $r=\frac{2}{3}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{2}{3}}, a_{k+2}=-\frac{k^{2} a_{k}+3 k^{2} a_{k+1}+\frac{4}{3} k a_{k}+9 k a_{k+1}+\frac{13}{9} a_{k}+\frac{23}{3} a_{k+1}}{3 k^{2}+14 k+16}, 5 a_{1}+\frac{5 a_{0}}{3}=0\right]
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k+\frac{2}{3}}, a_{k+2}=-\frac{k^{2} a_{k}+3 k^{2} a_{k+1}+\frac{4}{3} k a_{k}+9 k a_{k+1}+\frac{13}{9} a_{k}+\frac{23}{3} a_{k+1}}{3 k^{2}+14 k+16}, 5 a_{1}+\frac{5 a_{0}}{3}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x-1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x-1)^{k+\frac{2}{3}}\right), a_{k+2}=-\frac{k^{2} a_{k}+3 k^{2} a_{1+k}+5 k a_{1+k}+a_{k}+3 a_{1+k}}{3 k^{2}+10 k+8}, a_{1}+a_{0}=\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    <- heuristic approach successful
    <- hypergeometric successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
Order:=6;
dsolve((x^3-1)*diff (y(x), x$2)+x^2*diff (y (x), x)+x*y (x)=0,y(x),type='series',x=0);
    y(x)=(1+\frac{\mp@subsup{x}{}{3}}{6})y(0)+(x+\frac{1}{6}\mp@subsup{x}{}{4})D(y)(0)+O(\mp@subsup{x}{}{6})
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[(x^3-1)*y' ' $[\mathrm{x}]+\mathrm{x}^{\wedge} 2 * \mathrm{y}$ ' $\left.[\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{4}}{6}+x\right)+c_{1}\left(\frac{x^{3}}{6}+1\right)
$$

14.10 problem 10

14.10.1 Maple step by step solution 3937

Internal problem ID [11893]
Internal file name [OUTPUT/11902_Saturday_April_13_2024_01_14_23_AM_37826173/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
(x+3) y^{\prime \prime}+(x+2) y^{\prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{810}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{811}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{y^{\prime} x+2 y^{\prime}+y}{x+3} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{y^{\prime} x+y}{x+3} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-x^{2}-x+6\right) y^{\prime}-y(x+1)}{(x+3)^{2}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{3}+2 x^{2}-13 x-30\right) y^{\prime}+y\left(x^{2}+2 x-7\right)}{(x+3)^{3}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{-(x+3)\left(x^{3}-21 x-30\right) y^{\prime}-y\left(x^{3}+3 x^{2}-15 x-57\right)}{(x+3)^{4}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{y(0)}{3}-\frac{2 y^{\prime}(0)}{3} \\
& F_{1}=\frac{y(0)}{3} \\
& F_{2}=-\frac{y(0)}{9}+\frac{2 y^{\prime}(0)}{3} \\
& F_{3}=-\frac{7 y(0)}{27}-\frac{10 y^{\prime}(0)}{9} \\
& F_{4}=\frac{19 y(0)}{27}+\frac{10 y^{\prime}(0)}{9}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{2}+\frac{1}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{3240} x^{5}+\frac{19}{19440} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{3} x^{2}+\frac{1}{36} x^{4}-\frac{1}{108} x^{5}+\frac{1}{648} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
(x+3) y^{\prime \prime}+(x+2) y^{\prime}+y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(x+3)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+(x+2)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} 3 n(n-1) a_{n} x^{n-2}\right) \tag{2}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the
power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty}(n+1) a_{n+1} n x^{n} \\
\sum_{n=2}^{\infty} 3 n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty} 3(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1} & =\sum_{n=0}^{\infty} 2(n+1) a_{n+1} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty}(n+1) a_{n+1} n x^{n}\right)+\left(\sum_{n=0}^{\infty} 3(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
6 a_{2}+2 a_{1}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{6}-\frac{a_{1}}{3}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+1) a_{n+1} n+3(n+2) a_{n+2}(n+1)+n a_{n}+2(n+1) a_{n+1}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n a_{n+1}+a_{n}+2 a_{n+1}}{3(n+2)} \\
& =-\frac{a_{n}}{3(n+2)}-\frac{a_{n+1}}{3} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{2}+18 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{18}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{3}+36 a_{4}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{216}+\frac{a_{1}}{36}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{4}+60 a_{5}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{7 a_{0}}{3240}-\frac{a_{1}}{108}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{5}+90 a_{6}+5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{19 a_{0}}{19440}+\frac{a_{1}}{648}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{6}+126 a_{7}+6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{13 a_{0}}{58320}-\frac{a_{1}}{13608}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes
$y=a_{0}+a_{1} x+\left(-\frac{a_{0}}{6}-\frac{a_{1}}{3}\right) x^{2}+\frac{a_{0} x^{3}}{18}+\left(-\frac{a_{0}}{216}+\frac{a_{1}}{36}\right) x^{4}+\left(-\frac{7 a_{0}}{3240}-\frac{a_{1}}{108}\right) x^{5}+\ldots$
Collecting terms, the solution becomes
$y=\left(1-\frac{1}{6} x^{2}+\frac{1}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{3240} x^{5}\right) a_{0}+\left(x-\frac{1}{3} x^{2}+\frac{1}{36} x^{4}-\frac{1}{108} x^{5}\right) a_{1}+O\left(x^{6}\right)$

At $x=0$ the solution above becomes
$y=\left(1-\frac{1}{6} x^{2}+\frac{1}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{3240} x^{5}\right) c_{1}+\left(x-\frac{1}{3} x^{2}+\frac{1}{36} x^{4}-\frac{1}{108} x^{5}\right) c_{2}+O\left(x^{6}\right)$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{6} x^{2}+\frac{1}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{3240} x^{5}+\frac{19}{19440} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{3} x^{2}+\frac{1}{36} x^{4}-\frac{1}{108} x^{5}+\frac{1}{648} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{6} x^{2}+\frac{1}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{3240} x^{5}\right) c_{1}+\left(x-\frac{1}{3} x^{2}+\frac{1}{36} x^{4}-\frac{1}{108} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{2}+\frac{1}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{3240} x^{5}+\frac{19}{19440} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{3} x^{2}+\frac{1}{36} x^{4}-\frac{1}{108} x^{5}+\frac{1}{648} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.
$y=\left(1-\frac{1}{6} x^{2}+\frac{1}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{3240} x^{5}\right) c_{1}+\left(x-\frac{1}{3} x^{2}+\frac{1}{36} x^{4}-\frac{1}{108} x^{5}\right) c_{2}+O\left(x^{6}\right)$
Verified OK.

14.10.1 Maple step by step solution

Let's solve

$$
(x+3) y^{\prime \prime}+(x+2) y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x+3}-\frac{(x+2) y^{\prime}}{x+3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(x+2) y^{\prime}}{x+3}+\frac{y}{x+3}=0$
Check to see if $x_{0}=-3$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{x+2}{x+3}, P_{3}(x)=\frac{1}{x+3}\right]$
- $(x+3) \cdot P_{2}(x)$ is analytic at $x=-3$
$\left.\left((x+3) \cdot P_{2}(x)\right)\right|_{x=-3}=-1$
- $(x+3)^{2} \cdot P_{3}(x)$ is analytic at $x=-3$
$\left.\left((x+3)^{2} \cdot P_{3}(x)\right)\right|_{x=-3}=0$
- $x=-3$ is a regular singular point

Check to see if $x_{0}=-3$ is a regular singular point
$x_{0}=-3$

- Multiply by denominators

$$
(x+3) y^{\prime \prime}+(x+2) y^{\prime}+y=0
$$

- \quad Change variables using $x=u-3$ so that the regular singular point is at $u=0$ $u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)+y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion

$$
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
$$

- Shift index using $k->k+1$

$$
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)+a_{k}(k+1+r)\right) u^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+1+r)\left(a_{k+1}(k+r-1)+a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{a_{k}}{k+r-1}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=-\frac{a_{k}}{k-1}
$$

- Series not valid for $r=0$, division by 0 in the recursion relation at $k=1$

$$
a_{k+1}=-\frac{a_{k}}{k-1}
$$

- Recursion relation for $r=2$

$$
a_{k+1}=-\frac{a_{k}}{k+1}
$$

- \quad Solution for $r=2$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
$$

- \quad Revert the change of variables $u=x+3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+3)^{k+2}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
Order:=6;
dsolve((x+3)*diff(y(x),x$2)+(x+2)*diff(y(x),x)+y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \left(1-\frac{1}{6} x^{2}+\frac{1}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{3240} x^{5}\right) y(0) \\
& +\left(x-\frac{1}{3} x^{2}+\frac{1}{36} x^{4}-\frac{1}{108} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63
AsymptoticDSolveValue $[(x+3) * y$ ' ' $[x]+(x+2) * y '[x]+y[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(-\frac{x^{5}}{108}+\frac{x^{4}}{36}-\frac{x^{2}}{3}+x\right)+c_{1}\left(-\frac{7 x^{5}}{3240}-\frac{x^{4}}{216}+\frac{x^{3}}{18}-\frac{x^{2}}{6}+1\right)
$$

14.11 problem 11

14.11.1 Existence and uniqueness analysis 3940
14.11.2 Maple step by step solution . 3948

Internal problem ID [11894]
Internal file name [OUTPUT/11903_Saturday_April_13_2024_01_14_24_AM_94254307/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

14.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-x \\
q(x) & =-1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

The domain of $p(x)=-x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{813}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{814}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y^{\prime} x+y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x^{2} y^{\prime}+y x+2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{3}+5 x\right) y^{\prime}+y\left(x^{2}+3\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}+9 x^{2}+8\right) y^{\prime}+x y\left(x^{2}+7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{5}+14 x^{3}+33 x\right) y^{\prime}+y\left(x^{4}+12 x^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
F_{0} & =1 \\
F_{1} & =0 \\
F_{2} & =3 \\
F_{3} & =0 \\
F_{4} & =15
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+O\left(x^{6}\right) \\
& y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}-a_{0}=0
$$

$$
a_{2}=\frac{a_{0}}{2}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) a_{0}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+O\left(x^{6}\right) \tag{1}\\
& y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)
$$

Verified OK.

14.11.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=y^{\prime} x+y, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

$\square \quad$ Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+1)\left(a_{k+2}(k+2)-a_{k}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{a_{k}}{k+2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff(y(x),x$2)-x*diff(y(x),x)-y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);
```

$$
y(x)=1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue $\left[\left\{y^{\prime} '[x]-x * y '[x]-y[x]==0,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow \frac{x^{4}}{8}+\frac{x^{2}}{2}+1
$$

14.12 problem 12

14.12.1 Existence and uniqueness analysis 3950
14.12.2 Maple step by step solution . 3958

Internal problem ID [11895]
Internal file name [OUTPUT/11904_Saturday_April_13_2024_01_14_26_AM_92243548/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} x-2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

14.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime} x-2 y=0
$$

The domain of $p(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{816}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{817}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x+2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x^{2} y^{\prime}-2 y x+y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-x\left(x^{2}+1\right) y^{\prime}+2 x^{2} y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-1\right) y^{\prime}+\left(-2 x^{3}+2 x\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\left(x^{2}-3\right) x\left(\left(x^{2}+1\right) y^{\prime}-2 y x\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{2}=0 \\
& F_{3}=-1 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=x+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right) \\
& y=x+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-2 a_{0}=0 \\
a_{2}=a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}-2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}(n-2)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+3 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{1680}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+a_{0} x^{2}+\frac{1}{6} a_{1} x^{3}-\frac{1}{120} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(x^{2}+1\right) a_{0}+\left(x+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(x^{2}+1\right) c_{1}+\left(x+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=x+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right) \tag{1}\\
& y=x+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)
$$

Verified OK.

14.12.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-y^{\prime} x+2 y, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x-2 y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

$\square \quad$ Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k-2)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}+a_{k}(k-2)=0
$$

- Recursion relation; series terminates at $k=2$

$$
a_{k+2}=-\frac{a_{k}(k-2)}{k^{2}+3 k+2}
$$

- Apply recursion relation for $k=0$

$$
a_{2}=a_{0}
$$

- Terminating series solution of the ODE. Use reduction of order to find the second linearly ind

$$
y=A_{2} x^{2}+A_{1} x+a_{0}
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Kummer successful
        <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form is not straightforward to achieve - returning special function solu
        <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff (y(x),x$2)+x*diff (y(x),x)-2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0
```

$$
y(x)=x+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue[\{y''[x]+x*y'[x]-2*y[x]==0,\{y[0]==0,y'[0]==1\}\},y[x],\{x,0,5\}]

$$
y(x) \rightarrow-\frac{x^{5}}{120}+\frac{x^{3}}{6}+x
$$

14.13 problem 13

14.13.1 Existence and uniqueness analysis 3961

Internal problem ID [11896]
Internal file name [OUTPUT/11905_Saturday_April_13_2024_01_14_28_AM_24219364/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime} x+2 y x=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=3\right]
$$

With the expansion point for the power series method at $x=0$.

14.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x}{x^{2}+1} \\
q(x) & =\frac{2 x}{x^{2}+1} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}+1}+\frac{2 x y}{x^{2}+1}=0
$$

The domain of $p(x)=\frac{x}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{2 x}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{819}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{820}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{x\left(2 y+y^{\prime}\right)}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(-2 x^{3}+2 x^{2}-2 x-1\right) y^{\prime}+\left(4 x^{2}-2\right) y}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(8 x^{4}-6 x^{3}+4 x^{2}+9 x-4\right) y^{\prime}+4 x y\left(x^{3}-3 x^{2}+x+\frac{9}{2}\right)}{\left(x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(4 x^{6}-36 x^{5}+32 x^{4}+18 x^{3}-68 x^{2}+54 x+9\right) y^{\prime}-24\left(x^{5}-2 x^{4}+\frac{1}{3} x^{3}+6 x^{2}-\frac{2}{3} x-\frac{3}{4}\right) y}{\left(x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-36 x^{7}+192 x^{6}-168 x^{5}-384 x^{4}+612 x^{3}-504 x^{2}-201 x+72\right) y^{\prime}-8\left(x^{7}-18 x^{6}+32 x^{5}+\frac{29}{2} x^{4}-\right.}{\left(x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=2$ and $y^{\prime}(0)=3$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-7 \\
& F_{2}=-12 \\
& F_{3}=63 \\
& F_{4}=248
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=3 x+2-\frac{7 x^{3}}{6}-\frac{x^{4}}{2}+\frac{21 x^{5}}{40}+\frac{31 x^{6}}{90}+O\left(x^{6}\right)
$$

$$
y=3 x+2-\frac{7 x^{3}}{6}-\frac{x^{4}}{2}+\frac{21 x^{5}}{40}+\frac{31 x^{6}}{90}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+1\right) y^{\prime \prime}+y^{\prime} x+2 y x=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} 2 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}\right)=0
\end{align*}
$$

$n=1$ gives

$$
6 a_{3}+a_{1}+2 a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{3}-\frac{a_{1}}{6}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(1+n)+n a_{n}+2 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n}+2 a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{n^{2} a_{n}}{(n+2)(1+n)}-\frac{2 a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
4 a_{2}+12 a_{4}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{6}
$$

For $n=3$ the recurrence equation gives

$$
9 a_{3}+20 a_{5}+2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{3 a_{0}}{20}+\frac{3 a_{1}}{40}
$$

For $n=4$ the recurrence equation gives

$$
16 a_{4}+30 a_{6}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{1}}{10}+\frac{a_{0}}{45}
$$

For $n=5$ the recurrence equation gives

$$
25 a_{5}+42 a_{7}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{5 a_{0}}{56}-\frac{37 a_{1}}{1008}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\left(-\frac{a_{0}}{3}-\frac{a_{1}}{6}\right) x^{3}-\frac{a_{1} x^{4}}{6}+\left(\frac{3 a_{0}}{20}+\frac{3 a_{1}}{40}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{3} x^{3}+\frac{3}{20} x^{5}\right) a_{0}+\left(x-\frac{1}{6} x^{3}-\frac{1}{6} x^{4}+\frac{3}{40} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{3} x^{3}+\frac{3}{20} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{6} x^{4}+\frac{3}{40} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

$$
y=2-\frac{7 x^{3}}{6}+\frac{21 x^{5}}{40}+3 x-\frac{x^{4}}{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=3 x+2-\frac{7 x^{3}}{6}-\frac{x^{4}}{2}+\frac{21 x^{5}}{40}+\frac{31 x^{6}}{90}+O\left(x^{6}\right) \tag{1}\\
& y=2-\frac{7 x^{3}}{6}+\frac{21 x^{5}}{40}+3 x-\frac{x^{4}}{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=3 x+2-\frac{7 x^{3}}{6}-\frac{x^{4}}{2}+\frac{21 x^{5}}{40}+\frac{31 x^{6}}{90}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=2-\frac{7 x^{3}}{6}+\frac{21 x^{5}}{40}+3 x-\frac{x^{4}}{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c =
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
Order:=6;
dsolve([(x~2+1)*diff(y(x),x$2)+x*diff (y(x),x)+2*x*y(x)=0,y(0) = 2, D(y)(0) = 3],y(x),type='s
```

$$
y(x)=2+3 x-\frac{7}{6} x^{3}-\frac{1}{2} x^{4}+\frac{21}{40} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 29
AsymptoticDSolveValue $\left[\left\{\left(x^{\sim} 2+1\right) * y{ }^{\prime}\right.\right.$ ' $[x]+x * y$ ' $\left.\left.[x]+2 * x * y[x]==0,\left\{y[0]==2, y^{\prime}[0]==3\right\}\right\}, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow \frac{21 x^{5}}{40}-\frac{x^{4}}{2}-\frac{7 x^{3}}{6}+3 x+2
$$

14.14 problem 14

Internal problem ID [11897]
Internal file name [OUTPUT/11906_Saturday_April_13_2024_01_14_29_AM_59679552/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(2 x^{2}-3\right) y^{\prime \prime}-2 y^{\prime} x+y=0
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=5\right]
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{822}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{823}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{2 y^{\prime} x-y}{2 x^{2}-3} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-2 x^{2} y^{\prime}+2 y x-3 y^{\prime}}{\left(2 x^{2}-3\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{8\left(x^{3}+3 x\right) y^{\prime}+\left(-10 x^{2}-3\right) y}{\left(2 x^{2}-3\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(-52 x^{4}-240 x^{2}-63\right) y^{\prime}+72 x y\left(x^{2}+1\right)}{\left(2 x^{2}-3\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(456 x^{5}+2952 x^{3}+2106 x\right) y^{\prime}+\left(-668 x^{4}-1416 x^{2}-153\right) y}{\left(2 x^{2}-3\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=-1$ and $y^{\prime}(0)=5$ gives

$$
\begin{aligned}
F_{0} & =-\frac{1}{3} \\
F_{1} & =-\frac{5}{3} \\
F_{2} & =-\frac{1}{9} \\
F_{3} & =-\frac{35}{9} \\
F_{4} & =-\frac{17}{27}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=5 x-1-\frac{x^{2}}{6}-\frac{5 x^{3}}{18}-\frac{x^{4}}{216}-\frac{7 x^{5}}{216}-\frac{17 x^{6}}{19440}+O\left(x^{6}\right) \\
& y=5 x-1-\frac{x^{2}}{6}-\frac{5 x^{3}}{18}-\frac{x^{4}}{216}-\frac{7 x^{5}}{216}-\frac{17 x^{6}}{19440}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(2 x^{2}-3\right) y^{\prime \prime}-2 y^{\prime} x+y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(2 x^{2}-3\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 2 x^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-3 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty}\left(-3 n(n-1) a_{n} x^{n-2}\right)=\sum_{n=0}^{\infty}\left(-3(n+2) a_{n+2}(n+1) x^{n}\right)
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\left(\sum_{n=2}^{\infty} 2 x^{n} a_{n} n(n-1)\right) & +\sum_{n=0}^{\infty}\left(-3(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
\quad+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right) & +\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-6 a_{2}+a_{0}=0 \\
a_{2}=\frac{a_{0}}{6}
\end{gathered}
$$

$n=1$ gives

$$
-18 a_{3}-a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{18}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
2 n a_{n}(n-1)-3(n+2) a_{n+2}(n+1)-2 n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}\left(2 n^{2}-4 n+1\right)}{3(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
a_{2}-36 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{216}
$$

For $n=3$ the recurrence equation gives

$$
7 a_{3}-60 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{7 a_{1}}{1080}
$$

For $n=4$ the recurrence equation gives

$$
17 a_{4}-90 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{17 a_{0}}{19440}
$$

For $n=5$ the recurrence equation gives

$$
31 a_{5}-126 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{31 a_{1}}{19440}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{6} a_{0} x^{2}-\frac{1}{18} a_{1} x^{3}+\frac{1}{216} a_{0} x^{4}-\frac{7}{1080} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{6} x^{2}+\frac{1}{216} x^{4}\right) a_{0}+\left(x-\frac{1}{18} x^{3}-\frac{7}{1080} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+\frac{1}{6} x^{2}+\frac{1}{216} x^{4}\right) c_{1}+\left(x-\frac{1}{18} x^{3}-\frac{7}{1080} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=-1-\frac{x^{2}}{6}-\frac{x^{4}}{216}+5 x-\frac{5 x^{3}}{18}-\frac{7 x^{5}}{216}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=5 x-1-\frac{x^{2}}{6}-\frac{5 x^{3}}{18}-\frac{x^{4}}{216}-\frac{7 x^{5}}{216}-\frac{17 x^{6}}{19440}+O\left(x^{6}\right) \tag{1}\\
& y=-1-\frac{x^{2}}{6}-\frac{x^{4}}{216}+5 x-\frac{5 x^{3}}{18}-\frac{7 x^{5}}{216}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=5 x-1-\frac{x^{2}}{6}-\frac{5 x^{3}}{18}-\frac{x^{4}}{216}-\frac{7 x^{5}}{216}-\frac{17 x^{6}}{19440}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=-1-\frac{x^{2}}{6}-\frac{x^{4}}{216}+5 x-\frac{5 x^{3}}{18}-\frac{7 x^{5}}{216}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
Order:=6;
dsolve([(2*x~2-3)*diff (y(x),x$2)-2*x*\operatorname{diff}(y(x),x)+y(x)=0,y(0)=-1,D(y)(0)=5],y(x),type='
```

$$
y(x)=-1+5 x-\frac{1}{6} x^{2}-\frac{5}{18} x^{3}-\frac{1}{216} x^{4}-\frac{7}{216} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36
AsymptoticDSolveValue $\left[\left\{\left(2 * x^{\wedge} 2-3\right) * y{ }^{\prime} '[x]-2 * x * y '[x]+y[x]==0,\left\{y[0]==-1, y^{\prime}[0]==5\right\}\right\}, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow-\frac{7 x^{5}}{216}-\frac{x^{4}}{216}-\frac{5 x^{3}}{18}-\frac{x^{2}}{6}+5 x-1
$$

14.15 problem 15

14.15.1 Maple step by step solution 3989

Internal problem ID [11898]
Internal file name [OUTPUT/11907_Saturday_April_13_2024_01_14_31_AM_97603693/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 15 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second__order_change_of_cvariable_on_x_method_1", "second__order__change__of_variable_on_x_method_2", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]`]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y=0
$$

With the expansion point for the power series method at $x=1$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)(1+t)^{2}+\left(\frac{d}{d t} y(t)\right)(1+t)+y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{825}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{826}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{\left(\frac{d}{d t} y(t)\right) t+\frac{d}{d t} y(t)+y(t)}{(1+t)^{2}} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{\left(\frac{d}{d t} y(t)\right)(1+t)+3 y(t)}{(1+t)^{3}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =-\frac{10 y(t)}{(1+t)^{4}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{(-10 t-10)\left(\frac{d}{d t} y(t)\right)+40 y(t)}{(1+t)^{5}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{(90 t+90)\left(\frac{d}{d t} y(t)\right)-190 y(t)}{(1+t)^{6}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y^{\prime}(0)-y(0) \\
& F_{1}=y^{\prime}(0)+3 y(0) \\
& F_{2}=-10 y(0) \\
& F_{3}=40 y(0)-10 y^{\prime}(0) \\
& F_{4}=-190 y(0)+90 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y(t)= & \left(1-\frac{1}{2} t^{2}+\frac{1}{2} t^{3}-\frac{5}{12} t^{4}+\frac{1}{3} t^{5}-\frac{19}{72} t^{6}\right) y(0)+\left(t-\frac{1}{2} t^{2}+\frac{1}{6} t^{3}-\frac{1}{12} t^{5}+\frac{1}{8} t^{6}\right) y^{\prime}(0) \\
& +O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(t^{2}+2 t+1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+\left(\frac{d}{d t} y(t)\right)(1+t)+y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(t^{2}+2 t+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)(1+t)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n t^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right) \tag{2}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the
power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} 2 n t^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 2(n+1) a_{n+1} n t^{n} \\
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n} \\
\sum_{n=1}^{\infty} n a_{n} t^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} t^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=1}^{\infty} 2(n+1) a_{n+1} n t^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}\right) \tag{3}\\
& +\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} t^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{1}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}-\frac{a_{1}}{2}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{2}+6 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{2}+\frac{a_{1}}{6}
$$

For $2 \leq n$, the recurrence equation is
$n a_{n}(n-1)+2(n+1) a_{n+1} n+(n+2) a_{n+2}(n+1)+(n+1) a_{n+1}+n a_{n}+a_{n}=0$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n}+2 n^{2} a_{n+1}+3 n a_{n+1}+a_{n}+a_{n+1}}{(n+2)(n+1)} \\
& =-\frac{\left(n^{2}+1\right) a_{n}}{(n+2)(n+1)}-\frac{\left(2 n^{2}+3 n+1\right) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
5 a_{2}+15 a_{3}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{5 a_{0}}{12}
$$

For $n=3$ the recurrence equation gives

$$
10 a_{3}+28 a_{4}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{3}-\frac{a_{1}}{12}
$$

For $n=4$ the recurrence equation gives

$$
17 a_{4}+45 a_{5}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{19 a_{0}}{72}+\frac{a_{1}}{8}
$$

For $n=5$ the recurrence equation gives

$$
26 a_{5}+66 a_{6}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{5 a_{0}}{24}-\frac{73 a_{1}}{504}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t+\left(-\frac{a_{0}}{2}-\frac{a_{1}}{2}\right) t^{2}+\left(\frac{a_{0}}{2}+\frac{a_{1}}{6}\right) t^{3}-\frac{5 a_{0} t^{4}}{12}+\left(\frac{a_{0}}{3}-\frac{a_{1}}{12}\right) t^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(1-\frac{1}{2} t^{2}+\frac{1}{2} t^{3}-\frac{5}{12} t^{4}+\frac{1}{3} t^{5}\right) a_{0}+\left(t-\frac{1}{2} t^{2}+\frac{1}{6} t^{3}-\frac{1}{12} t^{5}\right) a_{1}+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
y(t)=\left(1-\frac{1}{2} t^{2}+\frac{1}{2} t^{3}-\frac{5}{12} t^{4}+\frac{1}{3} t^{5}\right) c_{1}+\left(t-\frac{1}{2} t^{2}+\frac{1}{6} t^{3}-\frac{1}{12} t^{5}\right) c_{2}+O\left(t^{6}\right)
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-1$ results in

$$
\begin{aligned}
y= & \left(1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{2}-\frac{5(x-1)^{4}}{12}+\frac{(x-1)^{5}}{3}-\frac{19(x-1)^{6}}{72}\right) y(1) \\
& +\left(x-1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{5}}{12}+\frac{(x-1)^{6}}{8}\right) y^{\prime}(1)+O\left((x-1)^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{2}-\frac{5(x-1)^{4}}{12}+\frac{(x-1)^{5}}{3}-\frac{19(x-1)^{6}}{72}\right) y(1) \tag{1}\\
& +\left(x-1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{5}}{12}+\frac{(x-1)^{6}}{8}\right) y^{\prime}(1)+O\left((x-1)^{6}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{2}-\frac{5(x-1)^{4}}{12}+\frac{(x-1)^{5}}{3}-\frac{19(x-1)^{6}}{72}\right) y(1) \\
& +\left(x-1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{5}}{12}+\frac{(x-1)^{6}}{8}\right) y^{\prime}(1)+O\left((x-1)^{6}\right)
\end{aligned}
$$

Verified OK.

14.15.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}+y^{\prime} x+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}-\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}+y^{\prime} x+y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{d^{2}}{\frac{d t^{2}}{} x^{2}(t)}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+\frac{d}{d t} y(t)+y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\cos (t)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\sin (t)
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 49

```
Order:=6;
dsolve( }\mp@subsup{x}{}{~}2*\operatorname{diff}(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=1)
```

$$
\begin{aligned}
y(x)= & \left(1-\frac{(-1+x)^{2}}{2}+\frac{(-1+x)^{3}}{2}-\frac{5(-1+x)^{4}}{12}+\frac{(-1+x)^{5}}{3}\right) y(1) \\
& +\left(-1+x-\frac{(-1+x)^{2}}{2}+\frac{(-1+x)^{3}}{6}-\frac{(-1+x)^{5}}{12}\right) D(y)(1)+O\left(x^{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 78
AsymptoticDSolveValue $\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime}\right.$ ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $\left.[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 1,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1}{3}(x-1)^{5}-\frac{5}{12}(x-1)^{4}+\frac{1}{2}(x-1)^{3}-\frac{1}{2}(x-1)^{2}+1\right) \\
& +c_{2}\left(-\frac{1}{12}(x-1)^{5}+\frac{1}{6}(x-1)^{3}-\frac{1}{2}(x-1)^{2}+x-1\right)
\end{aligned}
$$

14.16 problem 16

14.16.1 Maple step by step solution \qquad
Internal problem ID [11899]
Internal file name [OUTPUT/11908_Saturday_April_13_2024_01_14_32_AM_9598584/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second__order_change__of_variable_on_x_method_2", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}+3 y^{\prime} x-y=0
$$

With the expansion point for the power series method at $x=1$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)(1+t)^{2}+3\left(\frac{d}{d t} y(t)\right)(1+t)-y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{828}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{829}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{3\left(\frac{d}{d t} y(t)\right) t+3 \frac{d}{d t} y(t)-y(t)}{(1+t)^{2}} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{13\left(\frac{d}{d t} y(t)\right)(1+t)-5 y(t)}{(1+t)^{3}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{(-70 t-70)\left(\frac{d}{d t} y(t)\right)+28 y(t)}{(1+t)^{4}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{(448 t+448)\left(\frac{d}{d t} y(t)\right)-182 y(t)}{(1+t)^{5}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{(-3318 t-3318)\left(\frac{d}{d t} y(t)\right)+1358 y(t)}{(1+t)^{6}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0)-3 y^{\prime}(0) \\
& F_{1}=-5 y(0)+13 y^{\prime}(0) \\
& F_{2}=28 y(0)-70 y^{\prime}(0) \\
& F_{3}=-182 y(0)+448 y^{\prime}(0) \\
& F_{4}=1358 y(0)-3318 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y(t)= & \left(1+\frac{1}{2} t^{2}-\frac{5}{6} t^{3}+\frac{7}{6} t^{4}-\frac{91}{60} t^{5}+\frac{679}{360} t^{6}\right) y(0) \\
& +\left(t-\frac{3}{2} t^{2}+\frac{13}{6} t^{3}-\frac{35}{12} t^{4}+\frac{56}{15} t^{5}-\frac{553}{120} t^{6}\right) y^{\prime}(0)+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(t^{2}+2 t+1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(3 t+3)\left(\frac{d}{d t} y(t)\right)-y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(t^{2}+2 t+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+(3 t+3)\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n t^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right) \tag{2}\\
& +\left(\sum_{n=1}^{\infty} 3 n a_{n} t^{n}\right)+\left(\sum_{n=1}^{\infty} 3 n a_{n} t^{n-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} t^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the
power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} 2 n t^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 2(n+1) a_{n+1} n t^{n} \\
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n} \\
\sum_{n=1}^{\infty} 3 n a_{n} t^{n-1} & =\sum_{n=0}^{\infty} 3(n+1) a_{n+1} t^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=1}^{\infty} 2(n+1) a_{n+1} n t^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 3 n a_{n} t^{n}\right)+\left(\sum_{n=0}^{\infty} 3(n+1) a_{n+1} t^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} t^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+3 a_{1}-a_{0}=0 \\
a_{2}=\frac{a_{0}}{2}-\frac{3 a_{1}}{2}
\end{gathered}
$$

$n=1$ gives

$$
10 a_{2}+6 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{5 a_{0}}{6}+\frac{13 a_{1}}{6}
$$

For $2 \leq n$, the recurrence equation is
$n a_{n}(n-1)+2(n+1) a_{n+1} n+(n+2) a_{n+2}(n+1)+3 n a_{n}+3(n+1) a_{n+1}-a_{n}=0$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n}+2 n^{2} a_{n+1}+2 n a_{n}+5 n a_{n+1}-a_{n}+3 a_{n+1}}{(n+2)(n+1)} \\
& =-\frac{\left(n^{2}+2 n-1\right) a_{n}}{(n+2)(n+1)}-\frac{\left(2 n^{2}+5 n+3\right) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
7 a_{2}+21 a_{3}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{7 a_{0}}{6}-\frac{35 a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
14 a_{3}+36 a_{4}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{91 a_{0}}{60}+\frac{56 a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
23 a_{4}+55 a_{5}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{679 a_{0}}{360}-\frac{553 a_{1}}{120}
$$

For $n=5$ the recurrence equation gives

$$
34 a_{5}+78 a_{6}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{91 a_{0}}{40}+\frac{1993 a_{1}}{360}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y(t)= & a_{0}+a_{1} t+\left(\frac{a_{0}}{2}-\frac{3 a_{1}}{2}\right) t^{2}+\left(-\frac{5 a_{0}}{6}+\frac{13 a_{1}}{6}\right) t^{3} \\
& +\left(\frac{7 a_{0}}{6}-\frac{35 a_{1}}{12}\right) t^{4}+\left(-\frac{91 a_{0}}{60}+\frac{56 a_{1}}{15}\right) t^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes
$y(t)=\left(1+\frac{1}{2} t^{2}-\frac{5}{6} t^{3}+\frac{7}{6} t^{4}-\frac{91}{60} t^{5}\right) a_{0}+\left(t-\frac{3}{2} t^{2}+\frac{13}{6} t^{3}-\frac{35}{12} t^{4}+\frac{56}{15} t^{5}\right) a_{1}+O\left(t^{6}\right)$
At $t=0$ the solution above becomes
$y(t)=\left(1+\frac{1}{2} t^{2}-\frac{5}{6} t^{3}+\frac{7}{6} t^{4}-\frac{91}{60} t^{5}\right) c_{1}+\left(t-\frac{3}{2} t^{2}+\frac{13}{6} t^{3}-\frac{35}{12} t^{4}+\frac{56}{15} t^{5}\right) c_{2}+O\left(t^{6}\right)$
Replacing t in the above with the original independent variable $x s$ using $t=x-1$ results in

$$
\begin{aligned}
y= & \left(1+\frac{(x-1)^{2}}{2}-\frac{5(x-1)^{3}}{6}+\frac{7(x-1)^{4}}{6}-\frac{91(x-1)^{5}}{60}+\frac{679(x-1)^{6}}{360}\right) y(1) \\
& +\left(x-1-\frac{3(x-1)^{2}}{2}+\frac{13(x-1)^{3}}{6}-\frac{35(x-1)^{4}}{12}+\frac{56(x-1)^{5}}{15}-\frac{553(x-1)^{6}}{120}\right) y^{\prime}(1) \\
& +O\left((x-1)^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1+\frac{(x-1)^{2}}{2}-\frac{5(x-1)^{3}}{6}+\frac{7(x-1)^{4}}{6}-\frac{91(x-1)^{5}}{60}+\frac{679(x-1)^{6}}{360}\right) y(1) \\
& +\left(x-1-\frac{3(x-1)^{2}}{2}+\frac{13(x-1)^{3}}{6}-\frac{35(x-1)^{4}}{12}+\frac{56(x-1)^{5}}{15}\right. \tag{1}\\
& \left.-\frac{553(x-1)^{6}}{120}\right) y^{\prime}(1)+O\left((x-1)^{6}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1+\frac{(x-1)^{2}}{2}-\frac{5(x-1)^{3}}{6}+\frac{7(x-1)^{4}}{6}-\frac{91(x-1)^{5}}{60}+\frac{679(x-1)^{6}}{360}\right) y(1) \\
& +\left(x-1-\frac{3(x-1)^{2}}{2}+\frac{13(x-1)^{3}}{6}-\frac{35(x-1)^{4}}{12}+\frac{56(x-1)^{5}}{15}-\frac{553(x-1)^{6}}{120}\right) y^{\prime}(1) \\
& +O\left((x-1)^{6}\right)
\end{aligned}
$$

Verified OK.

14.16.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{x}+\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{x}-\frac{y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
y^{\prime \prime} x^{2}+3 y^{\prime} x-y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}+3 \frac{d}{d t} y(t)-y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+2 \frac{d}{d t} y(t)-y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}+2 r-1=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{8})}{2}$
- Roots of the characteristic polynomial
$r=(-\sqrt{2}-1, \sqrt{2}-1)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{(-\sqrt{2}-1) t}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{(\sqrt{2}-1) t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{(-\sqrt{2}-1) t}+c_{2} \mathrm{e}^{(\sqrt{2}-1) t}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} \mathrm{e}^{(-\sqrt{2}-1) \ln (x)}+c_{2} \mathrm{e}^{(\sqrt{2}-1) \ln (x)}$
- \quad Simplify
$y=\frac{c_{1} x^{-\sqrt{2}}}{x}+\frac{c_{2} x^{\sqrt{2}}}{x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 54

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=1);
```

$$
\begin{aligned}
y(x)= & \left(1+\frac{(-1+x)^{2}}{2}-\frac{5(-1+x)^{3}}{6}+\frac{7(-1+x)^{4}}{6}-\frac{91(-1+x)^{5}}{60}\right) y(1) \\
& +\left(-1+x-\frac{3(-1+x)^{2}}{2}+\frac{13(-1+x)^{3}}{6}-\frac{35(-1+x)^{4}}{12}+\frac{56(-1+x)^{5}}{15}\right) D(y) \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 87
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+3 * x * y$ ' $\left.[x]-y[x]==0, y[x],\{x, 1,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{91}{60}(x-1)^{5}+\frac{7}{6}(x-1)^{4}-\frac{5}{6}(x-1)^{3}+\frac{1}{2}(x-1)^{2}+1\right) \\
& +c_{2}\left(\frac{56}{15}(x-1)^{5}-\frac{35}{12}(x-1)^{4}+\frac{13}{6}(x-1)^{3}-\frac{3}{2}(x-1)^{2}+x-1\right)
\end{aligned}
$$

14.17 problem 17

14.17.1 Existence and uniqueness analysis 4003
14.17.2 Maple step by step solution . 4012

Internal problem ID [11900]
Internal file name [OUTPUT/11909_Saturday_April_13_2024_01_14_33_AM_53322424/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x y^{\prime \prime}+y^{\prime}+2 y=0
$$

With initial conditions

$$
\left[y(1)=2, y^{\prime}(1)=4\right]
$$

With the expansion point for the power series method at $x=1$.

14.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{2}{x} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{2 y}{x}=0
$$

The domain of $p(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)(1+t)+\frac{d}{d t} y(t)+2 y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. With initial conditions now becoming

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =4
\end{aligned}
$$

The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the
case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{831}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{832}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{\frac{d}{d t} y(t)+2 y(t)}{1+t} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{-2\left(\frac{d}{d t} y(t)\right) t+4 y(t)}{(1+t)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{(8 t+2)\left(\frac{d}{d t} y(t)\right)+4 y(t)(-2+t)}{(1+t)^{3}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{\left(4 t^{2}-28 t-8\right)\left(\frac{d}{d t} y(t)\right)-24 y(t)(t-1)}{(1+t)^{4}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{\left(-36 t^{2}+120 t+36\right)\left(\frac{d}{d t} y(t)\right)-8 y(t)\left(t^{2}-16 t+13\right)}{(1+t)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=2$ and $y^{\prime}(0)=4$ gives

$$
\begin{aligned}
& F_{0}=-8 \\
& F_{1}=8 \\
& F_{2}=-8 \\
& F_{3}=16 \\
& F_{4}=-64
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y(t)=-4 t^{2}+4 t+2+\frac{4 t^{3}}{3}-\frac{t^{4}}{3}+\frac{2 t^{5}}{15}-\frac{4 t^{6}}{45}+O\left(t^{6}\right) \\
& y(t)=-4 t^{2}+4 t+2+\frac{4 t^{3}}{3}-\frac{t^{4}}{3}+\frac{2 t^{5}}{15}-\frac{4 t^{6}}{45}+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)(1+t)+\frac{d}{d t} y(t)+2 y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)(1+t)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n t^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} t^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the
power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n t^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty}(n+1) a_{n+1} n t^{n} \\
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n} \\
\sum_{n=1}^{\infty} n a_{n} t^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} t^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty}(n+1) a_{n+1} n t^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}\right) \tag{3}\\
& +\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} t^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} t^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{1}+2 a_{0}=0 \\
a_{2}=-a_{0}-\frac{a_{1}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+1) a_{n+1} n+(n+2) a_{n+2}(n+1)+(n+1) a_{n+1}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n+1}+2 n a_{n+1}+2 a_{n}+a_{n+1}}{(n+2)(n+1)} \\
& =-\frac{2 a_{n}}{(n+2)(n+1)}-\frac{\left(n^{2}+2 n+1\right) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
4 a_{2}+6 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{2 a_{0}}{3}
$$

For $n=2$ the recurrence equation gives

$$
9 a_{3}+12 a_{4}+2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{3}+\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
16 a_{4}+20 a_{5}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{5}-\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
25 a_{5}+30 a_{6}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{13 a_{0}}{90}+\frac{a_{1}}{20}
$$

For $n=5$ the recurrence equation gives

$$
36 a_{6}+42 a_{7}+2 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{4 a_{0}}{35}-\frac{5 a_{1}}{126}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t+\left(-a_{0}-\frac{a_{1}}{2}\right) t^{2}+\frac{2 a_{0} t^{3}}{3}+\left(-\frac{a_{0}}{3}+\frac{a_{1}}{12}\right) t^{4}+\left(\frac{a_{0}}{5}-\frac{a_{1}}{15}\right) t^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(1-t^{2}+\frac{2}{3} t^{3}-\frac{1}{3} t^{4}+\frac{1}{5} t^{5}\right) a_{0}+\left(t-\frac{1}{2} t^{2}+\frac{1}{12} t^{4}-\frac{1}{15} t^{5}\right) a_{1}+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
\begin{gathered}
y(t)=\left(1-t^{2}+\frac{2}{3} t^{3}-\frac{1}{3} t^{4}+\frac{1}{5} t^{5}\right) c_{1}+\left(t-\frac{1}{2} t^{2}+\frac{1}{12} t^{4}-\frac{1}{15} t^{5}\right) c_{2}+O\left(t^{6}\right) \\
y(t)=2-4 t^{2}+\frac{4 t^{3}}{3}-\frac{t^{4}}{3}+\frac{2 t^{5}}{15}+4 t+O\left(t^{6}\right)
\end{gathered}
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-1$ results in
$y=-4(x-1)^{2}+4 x-2+\frac{4(x-1)^{3}}{3}-\frac{(x-1)^{4}}{3}+\frac{2(x-1)^{5}}{15}-\frac{4(x-1)^{6}}{45}+O\left((x-1)^{6}\right)$
Summary
The solution(s) found are the following
$y=-4(x-1)^{2}+4 x-2+\frac{4(x-1)^{3}}{3}-\frac{(x-1)^{4}}{3}+\frac{2(x-1)^{5}}{15}-\frac{4(x-1)^{6}}{45}+O\left((x-1)^{6}\right)$
Verification of solutions
$y=-4(x-1)^{2}+4 x-2+\frac{4(x-1)^{3}}{3}-\frac{(x-1)^{4}}{3}+\frac{2(x-1)^{5}}{15}-\frac{4(x-1)^{6}}{45}+O\left((x-1)^{6}\right)$
Verified OK.

14.17.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime} x+y^{\prime}+2 y=0, y(1)=2,\left.y^{\prime}\right|_{\{x=1\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y}{x}-\frac{y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{2 y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{2}{x}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x+y^{\prime}+2 y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$
$y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}+2 a_{k}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation $r^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=0
$$

- Each term in the series must be 0 , giving the recursion relation $a_{k+1}(k+1)^{2}+2 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}$
- Recursion relation for $r=0$
$a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
Order:=6;
dsolve([x*diff (y (x),x$2)+diff (y (x),x)+2*y (x)=0,y(1) = 2, D(y)(1) = 4],y(x),type='series', x=1
```

$$
\begin{array}{r}
y(x)=2+4(-1+x)-4(-1+x)^{2}+\frac{4}{3}(-1+x)^{3}-\frac{1}{3}(-1+x)^{4}+\frac{2}{15}(-1+x)^{5}+\mathrm{O}((-1 \\
\left.+x)^{6}\right)
\end{array}
$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 44
AsymptoticDSolveValue $[\{x * y$ ' ' $[x]+y$ ' $[x]+2 * y[x]==0,\{y[1]==2, y$ ' $[1]==4\}\}, y[x],\{x, 1,5\}]$

$$
y(x) \rightarrow \frac{2}{15}(x-1)^{5}-\frac{1}{3}(x-1)^{4}+\frac{4}{3}(x-1)^{3}-4(x-1)^{2}+4(x-1)+2
$$

14.18 problem 18

14.18.1 Maple step by step solution . 4023

Internal problem ID [11901]
Internal file name [OUTPUT/11910_Saturday_April_13_2024_01_14_35_AM_36640186/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[_Gegenbauer]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+n(n+1) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{834}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{835}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{y n^{2}+y n-2 y^{\prime} x}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(n^{2} x^{2}+n x^{2}-n^{2}+6 x^{2}-n+2\right) y^{\prime}-4 y n x(n+1)}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{(x-1)\left(-8\left(\left(n^{2}+n+3\right) x^{2}-n^{2}-n+3\right) x y^{\prime}+y n(n+1)\left(\left(n^{2}+n+18\right) x^{2}-n^{2}-n+6\right)\right)(x+1)}{\left(x^{2}-1\right)^{4}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(\left(\left(n^{4}+2 n^{3}+59 n^{2}+58 n+120\right) x^{4}+\left(-2 n^{4}-4 n^{3}-46 n^{2}-44 n+240\right) x^{2}+n^{4}+2 n^{3}-13 n^{2}-1\right.\right.}{\left(x^{2}-1\right)^{5}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-18\left(\left(n^{4}+2 n^{3}+\frac{77}{3} n^{2}+\frac{74}{3} n+40\right) x^{4}-2\left(n^{2}+n+10\right)\left(n^{2}+n-\frac{20}{3}\right) x^{2}+n^{4}+2 n^{3}-17 n^{2}-18 n\right.\right.}{2}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) n(n+1) \\
& F_{1}=-y^{\prime}(0) n^{2}-y^{\prime}(0) n+2 y^{\prime}(0) \\
& F_{2}=y(0) n^{4}+2 y(0) n^{3}-5 y(0) n^{2}-6 y(0) n \\
& F_{3}=y^{\prime}(0) n^{4}+2 y^{\prime}(0) n^{3}-13 y^{\prime}(0) n^{2}-14 y^{\prime}(0) n+24 y^{\prime}(0) \\
& F_{4}=-y(0) n^{6}-3 y(0) n^{5}+23 y(0) n^{4}+51 y(0) n^{3}-94 y(0) n^{2}-120 y(0) n
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} n^{2} x^{2}-\frac{1}{2} n x^{2}+\frac{1}{24} n^{4} x^{4}+\frac{1}{12} x^{4} n^{3}-\frac{5}{24} n^{2} x^{4}-\frac{1}{4} n x^{4}-\frac{1}{720} x^{6} n^{6}-\frac{1}{240} n^{5} x^{6}\right. \\
& \left.+\frac{23}{720} n^{4} x^{6}+\frac{17}{240} n^{3} x^{6}-\frac{47}{360} n^{2} x^{6}-\frac{1}{6} x^{6} n\right) y(0) \\
& +\left(x-\frac{1}{6} n^{2} x^{3}-\frac{1}{6} n x^{3}+\frac{1}{3} x^{3}+\frac{1}{120} x^{5} n^{4}+\frac{1}{60} x^{5} n^{3}-\frac{13}{120} x^{5} n^{2}-\frac{7}{60} x^{5} n+\frac{1}{5} x^{5}\right) y^{\prime}(0) \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+\left(n^{2}+n\right) y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(n^{2}+n\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \tag{2}\\
& +\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty}\left(n^{2}+n\right) a_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty}\left(n^{2}+n\right) a_{n} x^{n}\right)=0
\end{gather*}
$$

$n=0$ gives

$$
2 a_{2}+a_{0} n(n+1)=0
$$

$$
a_{2}=-\frac{1}{2} a_{0} n^{2}-\frac{1}{2} a_{0} n
$$

$n=1$ gives

$$
6 a_{3}-2 a_{1}+a_{1} n(n+1)=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{1}{6} a_{1} n^{2}-\frac{1}{6} a_{1} n+\frac{1}{3} a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-2 n a_{n}+a_{n} n(n+1)=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-n^{2}+n-n\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-6 a_{2}+12 a_{4}+a_{2} n(n+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{5}{24} a_{0} n^{2}-\frac{1}{4} a_{0} n+\frac{1}{24} a_{0} n^{4}+\frac{1}{12} a_{0} n^{3}
$$

For $n=3$ the recurrence equation gives

$$
-12 a_{3}+20 a_{5}+a_{3} n(n+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{13}{120} a_{1} n^{2}-\frac{7}{60} a_{1} n+\frac{1}{5} a_{1}+\frac{1}{120} a_{1} n^{4}+\frac{1}{60} a_{1} n^{3}
$$

For $n=4$ the recurrence equation gives

$$
-20 a_{4}+30 a_{6}+a_{4} n(n+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{47}{360} a_{0} n^{2}-\frac{1}{6} a_{0} n+\frac{23}{720} a_{0} n^{4}+\frac{17}{240} a_{0} n^{3}-\frac{1}{720} a_{0} n^{6}-\frac{1}{240} a_{0} n^{5}
$$

For $n=5$ the recurrence equation gives

$$
-30 a_{5}+42 a_{7}+a_{5} n(n+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{5}{63} a_{1} n^{2}-\frac{37}{420} a_{1} n+\frac{1}{7} a_{1}+\frac{41}{5040} a_{1} n^{4}+\frac{29}{1680} a_{1} n^{3}-\frac{1}{5040} a_{1} n^{6}-\frac{1}{1680} a_{1} n^{5}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y= & a_{0}+a_{1} x+\left(-\frac{1}{2} a_{0} n^{2}-\frac{1}{2} a_{0} n\right) x^{2}+\left(-\frac{1}{6} a_{1} n^{2}-\frac{1}{6} a_{1} n+\frac{1}{3} a_{1}\right) x^{3} \\
& +\left(-\frac{5}{24} a_{0} n^{2}-\frac{1}{4} a_{0} n+\frac{1}{24} a_{0} n^{4}+\frac{1}{12} a_{0} n^{3}\right) x^{4} \\
& +\left(-\frac{13}{120} a_{1} n^{2}-\frac{7}{60} a_{1} n+\frac{1}{5} a_{1}+\frac{1}{120} a_{1} n^{4}+\frac{1}{60} a_{1} n^{3}\right) x^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y= & \left(1+\left(-\frac{1}{2} n^{2}-\frac{1}{2} n\right) x^{2}+\left(-\frac{5}{24} n^{2}-\frac{1}{4} n+\frac{1}{24} n^{4}+\frac{1}{12} n^{3}\right) x^{4}\right) a_{0} \\
& +\left(x+\left(-\frac{1}{6} n^{2}-\frac{1}{6} n+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} n^{2}-\frac{7}{60} n+\frac{1}{5}+\frac{1}{120} n^{4}+\frac{1}{60} n^{3}\right) x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{align*}
$$

At $x=0$ the solution above becomes

$$
\begin{aligned}
y= & \left(1+\left(-\frac{1}{2} n^{2}-\frac{1}{2} n\right) x^{2}+\left(-\frac{5}{24} n^{2}-\frac{1}{4} n+\frac{1}{24} n^{4}+\frac{1}{12} n^{3}\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{1}{6} n^{2}-\frac{1}{6} n+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} n^{2}-\frac{7}{60} n+\frac{1}{5}+\frac{1}{120} n^{4}+\frac{1}{60} n^{3}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} n^{2} x^{2}-\frac{1}{2} n x^{2}+\frac{1}{24} n^{4} x^{4}+\frac{1}{12} x^{4} n^{3}-\frac{5}{24} n^{2} x^{4}-\frac{1}{4} n x^{4}-\frac{1}{720} x^{6} n^{6}-\frac{1}{240} n^{5} x^{6}\right. \\
& \left.+\frac{23}{720} n^{4} x^{6}+\frac{17}{240} n^{3} x^{6}-\frac{47}{360} n^{2} x^{6}-\frac{1}{6} x^{6} n\right) y(0)+\left(x-\frac{1}{6} n^{2} x^{3}-\frac{1}{6} n x^{3}+\frac{1}{3}\left(1^{\prime}\right)\right. \\
& \left.+\frac{1}{120} x^{5} n^{4}+\frac{1}{60} x^{5} n^{3}-\frac{13}{120} x^{5} n^{2}-\frac{7}{60} x^{5} n+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+\left(-\frac{1}{2} n^{2}-\frac{1}{2} n\right) x^{2}+\left(-\frac{5}{24} n^{2}-\frac{1}{4} n+\frac{1}{24} n^{4}+\frac{1}{12} n^{3}\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{1}{6} n^{2}-\frac{1}{6} n+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} n^{2}-\frac{7}{60} n+\frac{1}{5}+\frac{1}{120} n^{4}+\frac{1}{60} n^{3}\right) x^{5}\right)(2) c_{2} \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} n^{2} x^{2}-\frac{1}{2} n x^{2}+\frac{1}{24} n^{4} x^{4}+\frac{1}{12} x^{4} n^{3}-\frac{5}{24} n^{2} x^{4}-\frac{1}{4} n x^{4}-\frac{1}{720} x^{6} n^{6}-\frac{1}{240} n^{5} x^{6}\right. \\
& \left.+\frac{23}{720} n^{4} x^{6}+\frac{17}{240} n^{3} x^{6}-\frac{47}{360} n^{2} x^{6}-\frac{1}{6} x^{6} n\right) y(0) \\
& +\left(x-\frac{1}{6} n^{2} x^{3}-\frac{1}{6} n x^{3}+\frac{1}{3} x^{3}+\frac{1}{120} x^{5} n^{4}+\frac{1}{60} x^{5} n^{3}-\frac{13}{120} x^{5} n^{2}-\frac{7}{60} x^{5} n+\frac{1}{5} x^{5}\right) y^{\prime}(0) \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \left(1+\left(-\frac{1}{2} n^{2}-\frac{1}{2} n\right) x^{2}+\left(-\frac{5}{24} n^{2}-\frac{1}{4} n+\frac{1}{24} n^{4}+\frac{1}{12} n^{3}\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{1}{6} n^{2}-\frac{1}{6} n+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} n^{2}-\frac{7}{60} n+\frac{1}{5}+\frac{1}{120} n^{4}+\frac{1}{60} n^{3}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

14.18.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+\left(n^{2}+n\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{n(n+1) y}{x^{2}-1}-\frac{2 x y^{\prime}}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{n(n+1) y}{x^{2}-1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{n(n+1)}{x^{2}-1}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=1
$$

- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$y^{\prime \prime}\left(x^{2}-1\right)+2 y^{\prime} x-n(n+1) y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(-n^{2}-n\right) y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(r+1+n+k)(r-n+k)\right) u^{k+r}\right)=0
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
-2 r^{2}=0
$$

- Values of r that satisfy the indicial equation

$$
r=0
$$

- Each term in the series must be 0, giving the recursion relation

$$
-2 a_{k+1}(k+1)^{2}+a_{k}(1+n+k)(-n+k)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}(1+n+k)(-n+k)}{2(k+1)^{2}}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}(1+n+k)(-n+k)}{2(k+1)^{2}}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(1+n+k)(-n+k)}{2(k+1)^{2}}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=\frac{a_{k}(1+n+k)(-n+k)}{2(k+1)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Legendre successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 101

```
Order:=6;
dsolve((1-x^2)*diff(y(x),x$2)-2*x*diff (y (x),x)+n*(n+1)*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & \left(1-\frac{n(n+1) x^{2}}{2}+\frac{n\left(n^{3}+2 n^{2}-5 n-6\right) x^{4}}{24}\right) y(0) \\
& +\left(x-\frac{\left(n^{2}+n-2\right) x^{3}}{6}+\frac{\left(n^{4}+2 n^{3}-13 n^{2}-14 n+24\right) x^{5}}{120}\right) D(y)(0)+O\left(x^{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 120
AsymptoticDSolveValue[(1-x^2)*y' ' $[\mathrm{x}]-2 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{n} *(\mathrm{n}+1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{1}{120}\left(n^{2}+n\right)^{2} x^{5}+\frac{7}{60}\left(-n^{2}-n\right) x^{5}+\frac{1}{6}\left(-n^{2}-n\right) x^{3}+\frac{x^{5}}{5}+\frac{x^{3}}{3}+x\right) \\
& +c_{1}\left(\frac{1}{24}\left(n^{2}+n\right)^{2} x^{4}+\frac{1}{4}\left(-n^{2}-n\right) x^{4}+\frac{1}{2}\left(-n^{2}-n\right) x^{2}+1\right)
\end{aligned}
$$

15 Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius). Exercises page 251
15.1 problem 1 4028
15.2 problem 2 4043
15.3 problem 3 4058
15.4 problem 4 4064
15.5 problem 5 4070
15.6 problem 6 4082
15.7 problem 7 4094
15.8 problem 8 4107
15.9 problem 9 4120
15.10problem 10 4133
15.11problem 11 4146
15.12problem 12 4160
15.13problem 13 4173
15.14problem 14 4186
15.15problem 15 4199
15.16problem 16 4212
15.17problem 17 4226
15.18problem 18 4241
15.19problem 19 4253
15.20problem 20 4269
15.21problem 21 4284
15.22problem 22 4300
15.23problem 23 4316
15.24problem 24 4327
15.25problem 25 4343
15.26problem 26 4354

15.1 problem 1

15.1.1 Maple step by step solution . 4039

Internal problem ID [11902]
Internal file name [OUTPUT/11911_Saturday_April_13_2024_01_14_37_AM_31651573/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(x^{2}-3 x\right) y^{\prime \prime}+(x+2) y^{\prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(x^{2}-3 x\right) y^{\prime \prime}+(x+2) y^{\prime}+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x+2}{x(x-3)} \\
q(x) & =\frac{1}{x(x-3)}
\end{aligned}
$$

Table 527: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x+2}{x(x-3)}$	
singularity	type
$x=0$	"regular"
$x=3$	"regular"

$q(x)=\frac{1}{x(x-3)}$	
singularity	type
$x=0$	"regular"
$x=3$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0,3, \infty]$
Irregular singular points : []
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
y^{\prime \prime} x(x-3)+(x+2) y^{\prime}+y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x(x-3) \tag{1}\\
& +(x+2)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-3 x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r-1} \\
\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1} \\
\sum_{n=0}^{\infty} a_{n} x^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right) \\
& +\sum_{n=0}^{\infty}\left(-3 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
-3 x^{n+r-1} a_{n}(n+r)(n+r-1)+2(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
-3 x^{-1+r} a_{0} r(-1+r)+2 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(-3 x^{-1+r} r(-1+r)+2 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(-3 r^{2}+5 r\right) x^{-1+r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
-3 r^{2}+5 r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{5}{3} \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(-3 r^{2}+5 r\right) x^{-1+r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{5}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{5}{3}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n-1}(n+r-1)(n+r-2)-3 a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+a_{n-1}(n+r-1)+2 a_{n}(n+r)+a_{n-1}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}\left(n^{2}+2 n r+r^{2}-2 n-2 r+2\right)}{3 n^{2}+6 n r+3 r^{2}-5 n-5 r} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{5}{3}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}\left(9 n^{2}+12 n+13\right)}{27 n^{2}+45 n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{5}{3}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{r^{2}+1}{3 r^{2}+r-2}
$$

Which for the root $r=\frac{5}{3}$ becomes

$$
a_{1}=\frac{17}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$\frac{17}{36}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}
$$

Which for the root $r=\frac{5}{3}$ becomes

$$
a_{2}=\frac{1241}{7128}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$\frac{17}{36}$
a_{2}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}$	$\frac{1241}{7128}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}{27 r^{6}+189 r^{5}+441 r^{4}+343 r^{3}-84 r^{2}-196 r-48}
$$

Which for the root $r=\frac{5}{3}$ becomes

$$
a_{3}=\frac{80665}{1347192}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$\frac{17}{36}$
a_{2}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}$	$\frac{1241}{7128}$
a_{3}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}{27 r^{6}+189 r^{5}+441 r^{4}+343 r^{3}-84 r^{2}-196 r-48}$	$\frac{80665}{1347192}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}{81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344}
$$

Which for the root $r=\frac{5}{3}$ becomes

$$
a_{4}=\frac{972725}{48498912}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$\frac{17}{36}$
a_{2}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}$	$\frac{1241}{7128}$
a_{3}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}{27 r^{6}+189 r^{5}+441 r^{4}+343 r^{3}-84 r^{2}-196 r-48}$	$\frac{80665}{1347192}$
a_{4}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}{81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344}$	$\frac{972725}{48498912}$

For $n=5$, using the above recursive equation gives
$a_{5}=\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}{\left(81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344\right)\left(3 r^{2}+25 r+50\right)}$
Which for the root $r=\frac{5}{3}$ becomes

$$
a_{5}=\frac{5797441}{872980416}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	$\frac{1}{4}$
a_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$\frac{17}{36}$
a_{2}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}$	$\frac{1241}{7128}$
a_{3}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}{27 r^{6}+189 r^{5}+441 r^{4}+343 r^{3}-84 r^{2}-196 r-48}\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)$	$\frac{80665}{1347192}$
a_{4}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}{81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344}$	$\frac{972725}{48498912}$
a_{5}	$\frac{\left(81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344\right)\left(3 r^{2}+25 r+50\right)}{(1)}$	$\frac{5797441}{872980416}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{5}{3}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{5}{3}}\left(1+\frac{17 x}{36}+\frac{1241 x^{2}}{7128}+\frac{80665 x^{3}}{1347192}+\frac{972725 x^{4}}{48498912}+\frac{5797441 x^{5}}{872980416}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the
indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{align*}
& b_{n-1}(n+r-1)(n+r-2)-3 b_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+b_{n-1}(n+r-1)+2(n+r) b_{n}+b_{n-1}=0
\end{align*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}\left(n^{2}+2 n r+r^{2}-2 n-2 r+2\right)}{3 n^{2}+6 n r+3 r^{2}-5 n-5 r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}\left(n^{2}-2 n+2\right)}{n(3 n-5)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{r^{2}+1}{3 r^{2}+r-2}
$$

Which for the root $r=0$ becomes

$$
b_{1}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$-\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}
$$

Which for the root $r=0$ becomes

$$
b_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$-\frac{1}{2}$
b_{2}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}{27 r^{6}+189 r^{5}+441 r^{4}+343 r^{3}-84 r^{2}-196 r-48}
$$

Which for the root $r=0$ becomes

$$
b_{3}=-\frac{5}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$-\frac{1}{2}$
b_{2}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}$	$-\frac{1}{2}$
b_{3}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}{27 r^{6}+189 r^{5}+441 r^{4}+343 r^{3}-84 r^{2}-196 r-48}$	$-\frac{5}{24}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}{81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344}
$$

Which for the root $r=0$ becomes

$$
b_{4}=-\frac{25}{336}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$-\frac{1}{2}$
b_{2}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}$	$-\frac{1}{2}$
b_{3}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}{27 r^{6}+189 r^{5}+441 r^{4}+343 r^{3}-84 r^{2}-196 r-48}$	$-\frac{5}{24}$
b_{4}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}{81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344}$	$-\frac{25}{336}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}{\left(81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344\right)\left(3 r^{2}+25 r+50\right)}
$$

Which for the root $r=0$ becomes

$$
b_{5}=-\frac{17}{672}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r^{2}+1}{3 r^{2}+r-2}$	$-\frac{1}{2}$
b_{2}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}{9 r^{4}+24 r^{3}+7 r^{2}-12 r-4}$	$-\frac{1}{2}$
b_{3}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}{27 r^{6}+189 r^{5}+441 r^{4}+343 r^{3}-84 r^{2}-196 r-48}$	$-\frac{5}{24}$
b_{4}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}{81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344}$	
b_{5}	$\frac{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}{\left(81 r^{8}+1080 r^{7}+5670 r^{6}+14700 r^{5}+18613 r^{4}+7420 r^{3}-6220 r^{2}-6400 r-1344\right)\left(3 r^{2}+25 r+50\right)}$	$-\frac{17}{672}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1-\frac{x}{2}-\frac{x^{2}}{2}-\frac{5 x^{3}}{24}-\frac{25 x^{4}}{336}-\frac{17 x^{5}}{672}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{5}{3}}\left(1+\frac{17 x}{36}+\frac{1241 x^{2}}{7128}+\frac{80665 x^{3}}{1347192}+\frac{972725 x^{4}}{48498912}+\frac{5797441 x^{5}}{872980416}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{2}-\frac{x^{2}}{2}-\frac{5 x^{3}}{24}-\frac{25 x^{4}}{336}-\frac{17 x^{5}}{672}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{5}{3}}\left(1+\frac{17 x}{36}+\frac{1241 x^{2}}{7128}+\frac{80665 x^{3}}{1347192}+\frac{972725 x^{4}}{48498912}+\frac{5797441 x^{5}}{872980416}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{2}-\frac{x^{2}}{2}-\frac{5 x^{3}}{24}-\frac{25 x^{4}}{336}-\frac{17 x^{5}}{672}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{5}{3}}\left(1+\frac{17 x}{36}+\frac{1241 x^{2}}{7128}+\frac{80665 x^{3}}{1347192}+\frac{972725 x^{4}}{48498912}+\frac{5797441 x^{5}}{872980416}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2}\left(1-\frac{x}{2}-\frac{x^{2}}{2}-\frac{5 x^{3}}{24}-\frac{25 x^{4}}{336}-\frac{17 x^{5}}{672}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{5}{3}}\left(1+\frac{17 x}{36}+\frac{1241 x^{2}}{7128}+\frac{80665 x^{3}}{1347192}+\frac{972725 x^{4}}{48498912}+\frac{5797441 x^{5}}{872980416}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{2}-\frac{x^{2}}{2}-\frac{5 x^{3}}{24}-\frac{25 x^{4}}{336}-\frac{17 x^{5}}{672}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

15.1.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x(x-3)+(x+2) y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{y}{x(x-3)}-\frac{(x+2) y^{\prime}}{x(x-3)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(x+2) y^{\prime}}{x(x-3)}+\frac{y}{x(x-3)}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{x+2}{x(x-3)}, P_{3}(x)=\frac{1}{x(x-3)}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{2}{3}$
- $\quad x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x(x-3)+(x+2) y^{\prime}+y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}$
- Shift index using $k->k+2-m$
$x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}$
Rewrite ODE with series expansions
$-a_{0} r(-5+3 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(3 k-2+3 r)+a_{k}\left(k^{2}+2 k r+r^{2}+1\right)\right) x^{k+r}\right)=$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-r(-5+3 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{5}{3}\right\}$
- \quad Each term in the series must be 0 , giving the recursion relation

$$
-3\left(k-\frac{2}{3}+r\right)(k+1+r) a_{k+1}+a_{k}\left(k^{2}+2 k r+r^{2}+1\right)=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}\left(k^{2}+2 k r+r^{2}+1\right)}{(3 k-2+3 r)(k+1+r)}$
- Recursion relation for $r=0$
$a_{k+1}=\frac{a_{k}\left(k^{2}+1\right)}{(3 k-2)(k+1)}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+1\right)}{(3 k-2)(k+1)}\right]$
- Recursion relation for $r=\frac{5}{3}$
$a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{10}{3} k+\frac{34}{9}\right)}{(3 k+3)\left(k+\frac{8}{3}\right)}$
- \quad Solution for $r=\frac{5}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{5}{3}}, a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{10}{3} k+\frac{34}{9}\right)}{(3 k+3)\left(k+\frac{8}{3}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{5}{3}}\right), a_{1+k}=\frac{a_{k}\left(k^{2}+1\right)}{(3 k-2)(1+k)}, b_{1+k}=\frac{b_{k}\left(k^{2}+\frac{10}{3} k+\frac{34}{9}\right)}{(3 k+3)\left(k+\frac{8}{3}\right)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
    <- heuristic approach successful
    <- hypergeometric successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 44

```
Order:=6;
dsolve((x^2-3*x)*diff (y(x),x$2)+(x+2)*diff (y(x),x)+y(x)=0,y(x),type='series', x=0);
y(x)=\mp@subsup{c}{1}{}\mp@subsup{x}{}{\frac{5}{3}}(1+\frac{17}{36}x+\frac{1241}{7128}\mp@subsup{x}{}{2}+\frac{80665}{1347192}\mp@subsup{x}{}{3}+\frac{972725}{48498912}\mp@subsup{x}{}{4}+\frac{5797441}{872980416}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))
    +c}\mp@subsup{c}{2}{}(1-\frac{1}{2}x-\frac{1}{2}\mp@subsup{x}{}{2}-\frac{5}{24}\mp@subsup{x}{}{3}-\frac{25}{336}\mp@subsup{x}{}{4}-\frac{17}{672}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6})
```

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 85
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2-3 * x\right) * y{ }^{\prime}\right.$ ' $\left.[x]+(x+2) * y^{\prime}[x]+y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{2}\left(-\frac{17 x^{5}}{672}-\frac{25 x^{4}}{336}-\frac{5 x^{3}}{24}-\frac{x^{2}}{2}-\frac{x}{2}+1\right) \\
& +c_{1}\left(\frac{5797441 x^{5}}{872980416}+\frac{972725 x^{4}}{48498912}+\frac{80665 x^{3}}{1347192}+\frac{1241 x^{2}}{7128}+\frac{17 x}{36}+1\right) x^{5 / 3}
\end{aligned}
$$

15.2 problem 2

15.2.1 Maple step by step solution 4053

Internal problem ID [11903]
Internal file name [OUTPUT/11912_Saturday_April_13_2024_10_26_13_PM_19754612/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(x^{3}+x^{2}\right) y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+4 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(x^{3}+x^{2}\right) y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+4 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x-2}{x(x+1)} \\
q(x) & =\frac{4}{x^{2}(x+1)}
\end{aligned}
$$

Table 529: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x-2}{x(x+1)}$	
singularity	type
$x=-1$	"regular"
$x=0$	"regular"

$q(x)=\frac{4}{x^{2}(x+1)}$	
singularity	type
$x=-1$	"regular"
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[-1,0, \infty]$
Irregular singular points: []
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
y^{\prime \prime} x^{2}(x+1)+\left(x^{2}-2 x\right) y^{\prime}+4 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2}(x+1) \tag{1}\\
& +\left(x^{2}-2 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2B}\\
& +\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 x^{r} a_{0} r+4 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r} r+4 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-3 r+4\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-3 r+4=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2}+\frac{i \sqrt{7}}{2} \\
& r_{2}=\frac{3}{2}-\frac{i \sqrt{7}}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-3 r+4\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}+\frac{i \sqrt{7}}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{3}{2}-\frac{i \sqrt{7}}{2}}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n-1}(n+r-1)(n+r-2)+a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+a_{n-1}(n+r-1)-2 a_{n}(n+r)+4 a_{n}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(n^{2}+2 n r+r^{2}-2 n-2 r+1\right)}{n^{2}+2 n r+r^{2}-3 n-3 r+4} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}+\frac{i \sqrt{7}}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(\left(i n+\frac{1}{2} i\right) \sqrt{7}+n^{2}+n-\frac{3}{2}\right)}{n(i \sqrt{7}+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}+\frac{i \sqrt{7}}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{r^{2}}{r^{2}-r+2}
$$

Which for the root $r=\frac{3}{2}+\frac{i \sqrt{7}}{2}$ becomes

$$
a_{1}=-\frac{(3+i \sqrt{7})^{2}}{4+4 i \sqrt{7}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}-r+2}$	$-\frac{(3+i \sqrt{7})^{2}}{4+4 i \sqrt{7}}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{r^{2}(r+1)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)}
$$

Which for the root $r=\frac{3}{2}+\frac{i \sqrt{7}}{2}$ becomes

$$
a_{2}=\frac{-4 \sqrt{7}-12 i}{(-\sqrt{7}+i)(i \sqrt{7}+2)}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}-r+2}$	$-\frac{(3+i \sqrt{7})^{2}}{4+4 i \sqrt{7}}$
a_{2}	$\frac{r^{2}(r+1)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)}$	$\frac{-4 \sqrt{7}-12 i}{(-\sqrt{7}+i)(i \sqrt{7}+2)}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{r^{2}(r+1)^{2}(r+2)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)}
$$

Which for the root $r=\frac{3}{2}+\frac{i \sqrt{7}}{2}$ becomes

$$
a_{3}=\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2}}{576 i \sqrt{7}-960}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}-r+2}$	$-\frac{(3+i \sqrt{7})^{2}}{4+4 i \sqrt{7}}$
a_{2}	$\frac{r^{2}(r+1)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)}$	$\frac{-4 \sqrt{7}-12 i}{(-\sqrt{7}+i)(i \sqrt{7}+2)}$
a_{3}	$-\frac{r^{2}(r+1)^{2}(r+2)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)}$	$\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2}}{576 i \sqrt{7}-960}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)\left(r^{2}+5 r+8\right)}
$$

Which for the root $r=\frac{3}{2}+\frac{i \sqrt{7}}{2}$ becomes

$$
a_{4}=\frac{(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)^{2}(9 i \sqrt{7}+37)}{3072(i \sqrt{7}+4)(-\sqrt{7}+i)(i \sqrt{7}+2)}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}-r+2}$	$-\frac{(3+i \sqrt{7})^{2}}{4+4 i \sqrt{7}}$
a_{2}	$\frac{r^{2}(r+1)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)}$	$\frac{-4 \sqrt{7}-12 i}{(-\sqrt{7}+i)(i \sqrt{7}+2)}$
a_{3}	$-\frac{r^{2}(r+1)^{2}(r+2)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)}$	$\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2}}{576 i \sqrt{7}-960}$
a_{4}	$\frac{r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)\left(r^{2}+5 r+8\right)}$	$\frac{(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)^{2}(9 i \sqrt{7}+37)}{3072(i \sqrt{7}+4)(-\sqrt{7}+i)(i \sqrt{7}+2)}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)\left(r^{2}+5 r+8\right)\left(r^{2}+7 r+14\right)}
$$

Which for the root $r=\frac{3}{2}+\frac{i \sqrt{7}}{2}$ becomes

$$
a_{5}=\frac{11(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)\left(i \sqrt{7}+\frac{57}{11}\right)(i \sqrt{7}+9)^{2}}{61440(i \sqrt{7}+4)(\sqrt{7}-i)(i \sqrt{7}+2)}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}-r+2}$	$-\frac{(3+i \sqrt{7})^{2}}{4+4 i \sqrt{7}}$
a_{2}	$\frac{r^{2}(r+1)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)}$	$\frac{-4 \sqrt{7}-12 i}{(-\sqrt{7}+i)(i \sqrt{7}+2)}$
a_{3}	$-\frac{r^{2}(r+1)^{2}(r+2)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)}$	$\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2}}{576 i \sqrt{7}-960}$
a_{4}	$\frac{r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)\left(r^{2}+5 r+8\right)}$	$\frac{(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)^{2}(9 i \sqrt{7}+37)}{3072(i \sqrt{7}+4)(-\sqrt{7}+i)(i \sqrt{7}+2)}$
a_{5}	$-\frac{r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}{\left(r^{2}-r+2\right)\left(r^{2}+r+2\right)\left(r^{2}+3 r+4\right)\left(r^{2}+5 r+8\right)\left(r^{2}+7 r+14\right)}$	$\frac{11(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)\left(i \sqrt{7}+\frac{57}{11}\right)(i \sqrt{7}+9)^{2}}{61440(i \sqrt{7}+4)(\sqrt{7}-i)(i \sqrt{7}+2)}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}+\frac{i \sqrt{7}}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
&=x^{\frac{3}{2}+\frac{i \sqrt{7}}{2}}\left(1-\frac{(3+i \sqrt{7})^{2} x}{4+4 i \sqrt{7}}+\right. \frac{(-4 \sqrt{7}-12 i) x^{2}}{(-\sqrt{7}+i)(i \sqrt{7}+2)}+\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2} x^{3}}{576 i \sqrt{7}-960} \\
&+\frac{(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)^{2}(9 i \sqrt{7}+37) x^{4}}{3072(i \sqrt{7}+4)(-\sqrt{7}+i)(i \sqrt{7}+2)} \\
&+\left.\frac{11(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)\left(i \sqrt{7}+\frac{57}{11}\right)(i \sqrt{7}+9)^{2} x^{5}}{61440(i \sqrt{7}+4)(\sqrt{7}-i)(i \sqrt{7}+2)}+O\left(x^{6}\right)\right)
\end{aligned}
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
\begin{array}{r}
y_{2}(x)=x^{\frac{3}{2}-\frac{i \sqrt{7}}{2}} \begin{array}{r}
1-\frac{(3-i \sqrt{7})^{2} x}{4-4 i \sqrt{7}}+\frac{(-4 \sqrt{7}+12 i) x^{2}}{(-\sqrt{7}-i)(-i \sqrt{7}+2)} \\
+\frac{7(-3 i-\sqrt{7})^{2}(-i \sqrt{7}+5)^{2} x^{3}}{-576 i \sqrt{7}-960} \\
+\frac{(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)^{2}(-9 i \sqrt{7}+37) x^{4}}{3072(-i \sqrt{7}+4)(-\sqrt{7}-i)(-i \sqrt{7}+2)} \\
+\frac{11(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)\left(-i \sqrt{7}+\frac{57}{11}\right)(-i \sqrt{7}+9)^{2} x^{5}}{61440(-i \sqrt{7}+4)(\sqrt{7}+i)(-i \sqrt{7}+2)}
\end{array} \\
\left.+O\left(x^{6}\right)\right)
\end{array}
$$

Therefore the homogeneous solution is
$y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$

$$
\begin{array}{r}
=c_{1} x^{\frac{3}{2}+\frac{i \sqrt{7}}{2}\left(1-\frac{(3+i \sqrt{7})^{2} x}{4+4 i \sqrt{7}}+\frac{(-4 \sqrt{7}-12 i) x^{2}}{(-\sqrt{7}+i)(i \sqrt{7}+2)}+\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2} x^{3}}{576 i \sqrt{7}-960}\right.} \begin{array}{r}
+\frac{(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)^{2}(9 i \sqrt{7}+37) x^{4}}{3072(i \sqrt{7}+4)(-\sqrt{7}+i)(i \sqrt{7}+2)} \\
\left.+\frac{11(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)\left(i \sqrt{7}+\frac{57}{11}\right)(i \sqrt{7}+9)^{2} x^{5}}{61440(i \sqrt{7}+4)(\sqrt{7}-i)(i \sqrt{7}+2)}+O\left(x^{6}\right)\right) \\
+c_{2} x^{\frac{3}{2}-\frac{i \sqrt{7}}{2}\left(1-\frac{(3-i \sqrt{7})^{2} x}{4-4 i \sqrt{7}}+\frac{(-4 \sqrt{7}+12 i) x^{2}}{(-\sqrt{7}-i)(-i \sqrt{7}+2)}\right.} \\
+\frac{7(-3 i-\sqrt{7})^{2}(-i \sqrt{7}+5)^{2} x^{3}}{-576 i \sqrt{7}-960} \\
+\frac{(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)^{2}(-9 i \sqrt{7}+37) x^{4}}{3072(-i \sqrt{7}+4)(-\sqrt{7}-i)(-i \sqrt{7}+2)} \\
+\frac{11(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)\left(-i \sqrt{7}+\frac{57}{11}\right)(-i \sqrt{7}+9)^{2} x^{5}}{61440(-i \sqrt{7}+4)(\sqrt{7}+i)(-i \sqrt{7}+2)}
\end{array}
\end{array}
$$

Hence the final solution is
$y=y_{h}$

$$
\begin{array}{r}
=c_{1} x^{\frac{3}{2}+\frac{i \sqrt{7}}{2}}\left(1-\frac{(3+i \sqrt{7})^{2} x}{4+4 i \sqrt{7}}+\frac{(-4 \sqrt{7}-12 i) x^{2}}{(-\sqrt{7}+i)(i \sqrt{7}+2)}+\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2} x^{3}}{576 i \sqrt{7}-960}\right. \\
\\
+\frac{(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)^{2}(9 i \sqrt{7}+37) x^{4}}{3072(i \sqrt{7}+4)(-\sqrt{7}+i)(i \sqrt{7}+2)} \\
\left.+\frac{11(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)\left(i \sqrt{7}+\frac{57}{11}\right)(i \sqrt{7}+9)^{2} x^{5}}{61440(i \sqrt{7}+4)(\sqrt{7}-i)(i \sqrt{7}+2)}+O\left(x^{6}\right)\right) \\
+c_{2} x^{\frac{3}{2}-\frac{i \sqrt{7}}{2}}\left(1-\frac{(3-i \sqrt{7})^{2} x}{4-4 i \sqrt{7}}+\frac{(-4 \sqrt{7}+12 i) x^{2}}{(-\sqrt{7}-i)(-i \sqrt{7}+2)}\right. \\
+\frac{7(-3 i-\sqrt{7})^{2}(-i \sqrt{7}+5)^{2} x^{3}}{-576 i \sqrt{7}-960} \\
+\frac{(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)^{2}(-9 i \sqrt{7}+37) x^{4}}{3072(-i \sqrt{7}+4)(-\sqrt{7}-i)(-i \sqrt{7}+2)} \\
+\frac{11(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)\left(-i \sqrt{7}+\frac{57}{11}\right)(-i \sqrt{7}+9)^{2} x^{5}}{61440(-i \sqrt{7}+4)(\sqrt{7}+i)(-i \sqrt{7}+2)}
\end{array}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x^{\frac{3}{2}+\frac{i \sqrt{7}}{2}}\left(1-\frac{(3+i \sqrt{7})^{2} x}{4+4 i \sqrt{7}}+\frac{(-4 \sqrt{7}-12 i) x^{2}}{(-\sqrt{7}+i)(i \sqrt{7}+2)}+\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2} x^{3}}{576 i \sqrt{7}-960}\right. \\
& +\frac{(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)^{2}(9 i \sqrt{7}+37) x^{4}}{3072(i \sqrt{7}+4)(-\sqrt{7}+i)(i \sqrt{7}+2)} \\
& \left.+\frac{11(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)\left(i \sqrt{7}+\frac{57}{11}\right)(i \sqrt{7}+9)^{2} x^{5}}{61440(i \sqrt{7}+4)(\sqrt{7}-i)(i \sqrt{7}+2)}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{3}{2}-\frac{i \sqrt{7}}{2}}\left(1-\frac{(3-i \sqrt{7})^{2} x}{4-4 i \sqrt{7}}+\frac{(-4 \sqrt{7}+12 i) x^{2}}{(-\sqrt{7}-i)(-i \sqrt{7}+2)}\right. \\
& +\frac{7(-3 i-\sqrt{7})^{2}(-i \sqrt{7}+5)^{2} x^{3}}{-576 i \sqrt{7}-960} \\
& +\frac{(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)^{2}(-9 i \sqrt{7}+37) x^{4}}{3072(-i \sqrt{7}+4)(-\sqrt{7}-i)(-i \sqrt{7}+2)} \\
& \left.+\frac{11(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)\left(-i \sqrt{7}+\frac{57}{11}\right)(-i \sqrt{7}+9)^{2} x^{5}}{61440(-i \sqrt{7}+4)(\sqrt{7}+i)(-i \sqrt{7}+2)}+O\left(x^{6}\right)\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\left.\begin{array}{r}
y=c_{1} x^{\frac{3}{2}+\frac{i \sqrt{7}}{2}}\left(1-\frac{(3+i \sqrt{7})^{2} x}{4+4 i \sqrt{7}}+\frac{(-4 \sqrt{7}-12 i) x^{2}}{(-\sqrt{7}+i)(i \sqrt{7}+2)}+\frac{7(3 i-\sqrt{7})^{2}(i \sqrt{7}+5)^{2} x^{3}}{576 i \sqrt{7}-960}\right. \\
\\
+\frac{(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)^{2}(9 i \sqrt{7}+37) x^{4}}{3072(i \sqrt{7}+4)(-\sqrt{7}+i)(i \sqrt{7}+2)} \\
\left.+\frac{11(3 i-\sqrt{7})(i \sqrt{7}+7)^{2}(i \sqrt{7}+5)\left(i \sqrt{7}+\frac{57}{11}\right)(i \sqrt{7}+9)^{2} x^{5}}{61440(i \sqrt{7}+4)(\sqrt{7}-i)(i \sqrt{7}+2)}+O\left(x^{6}\right)\right)
\end{array}\right) \quad \begin{array}{r}
+\frac{7(-3 i-\sqrt{7})^{2}(-i \sqrt{7}+5)^{2} x^{3}}{-576 i \sqrt{7}-960} \\
+c_{2} x^{\frac{3}{2}-\frac{i \sqrt{7}}{2}\left(1-\frac{(3-i \sqrt{7})^{2} x}{4-4 i \sqrt{7}}+\frac{(-4 \sqrt{7}+12 i) x^{2}}{(-\sqrt{7}-i)(-i \sqrt{7}+2)}\right.} \\
+\frac{(-3 i-\sqrt{7})(-i \sqrt{7}+7)^{2}(-i \sqrt{7}+5)^{2}(-9 i \sqrt{7}+37) x^{4}}{3072(-i \sqrt{7}+4)(-\sqrt{7}-i)(-i \sqrt{7}+2)} \\
\end{array}
$$

Verified OK.

15.2.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}(x+1)+\left(x^{2}-2 x\right) y^{\prime}+4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{4 y}{x^{2}(x+1)}-\frac{(x-2) y^{\prime}}{x(x+1)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(x-2) y^{\prime}}{x(x+1)}+\frac{4 y}{x^{2}(x+1)}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{x-2}{x(x+1)}, P_{3}(x)=\frac{4}{x^{2}(x+1)}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=3
$$

- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=-1
$$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}(x+1)+x(x-2) y^{\prime}+4 y=0
$$

- Change variables using $x=u-1$ so that the regular singular point is at $u=0$

$$
\left(u^{3}-2 u^{2}+u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(u^{2}-4 u+3\right)\left(\frac{d}{d u} y(u)\right)+4 y(u)=0
$$

- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(2+r) u^{-1+r}+\left(a_{1}(1+r)(3+r)-2 a_{0}(2+r)(-1+r)\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(k+3+\right.\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-2,0\}$
- \quad Each term must be 0
$a_{1}(1+r)(3+r)-2 a_{0}(2+r)(-1+r)=0$
- Each term in the series must be 0 , giving the recursion relation

$$
a_{k+1}(k+1+r)(k+3+r)-2 a_{k}(k+r+2)(k+r-1)+a_{k-1}(k+r-1)^{2}=0
$$

- \quad Shift index using $k->k+1$
$a_{k+2}(k+r+2)(k+4+r)-2 a_{k+1}(k+3+r)(k+r)+a_{k}(k+r)^{2}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}+2 k r a_{k}-4 k r a_{k+1}+r^{2} a_{k}-2 r^{2} a_{k+1}-6 k a_{k+1}-6 r a_{k+1}}{(k+r+2)(k+4+r)}$
- Recursion relation for $r=-2$; series terminates at $k=2$
$a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-4 k a_{k}+2 k a_{k+1}+4 a_{k}+4 a_{k+1}}{k(k+2)}$
- \quad Series not valid for $r=-2$, division by 0 in the recursion relation at $k=0$
$a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-4 k a_{k}+2 k a_{k+1}+4 a_{k}+4 a_{k+1}}{k(k+2)}$
- Recursion relation for $r=0$; series terminates at $k=0$
$a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-6 k a_{k+1}}{(k+2)(k+4)}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-6 k a_{k+1}}{(k+2)(k+4)}, 3 a_{1}+4 a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-6 k a_{k+1}}{(k+2)(k+4)}, 3 a_{1}+4 a_{0}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 2F1 ODE
    <- hypergeometric successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 1227

```
Order:=6;
dsolve((x^3+x^2)*diff(y(x),x$2)+(x^2-2*x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{array}{r}
y(x)=x^{\frac{3}{2}\left(c _ { 2 } x ^ { \frac { i \sqrt { 7 } } { 2 } } \left(1+\frac{3 \sqrt{7}-i}{-2 \sqrt{7}+2 i} x\right.\right.} \begin{array}{r}
+\frac{-4 \sqrt{7}-12 i}{(-\sqrt{7}+i)(i \sqrt{7}+2)} x^{2} \\
\\
\quad+\frac{224}{3} \frac{1}{(\sqrt{7}-2 i)(-\sqrt{7}+i)(3+i \sqrt{7})} x^{3}
\end{array} \\
+\frac{84 \sqrt{7}-\frac{1036 i}{3}}{(-\sqrt{7}+i)(i \sqrt{7}+2)(3+i \sqrt{7})(4+i \sqrt{7})} x^{4} \\
\left.+\frac{\frac{2576 i \sqrt{7}}{3}+\frac{6608}{5}}{(-4 i+\sqrt{7})(-\sqrt{7}+i)(i \sqrt{7}+2)(3+i \sqrt{7})(i \sqrt{7}+5)} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
+c_{1} x^{-\frac{i \sqrt{7}}{2}\left(1+\frac{-3 \sqrt{7}-i}{2 \sqrt{7}+2 i} x+\frac{12+4 i \sqrt{7}}{5+3 i \sqrt{7}} x^{2}\right.} \\
+\frac{224}{3} \frac{1}{(i \sqrt{7}-2)(\sqrt{7}+3 i)(\sqrt{7}+i)} x^{3}+\frac{63 i \sqrt{7}-259}{15 i \sqrt{7}-129} x^{4} \\
\left.\left.+\frac{-1239 i-805 \sqrt{7}}{675 i+255 \sqrt{7}} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{array}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 5834

```
AsymptoticDSolveValue[( \(\left.x^{\wedge} 3+x^{\wedge} 2\right) * y\) ' \(\left.[x]+\left(x^{\wedge} 2-2 * x\right) * y '[x]+4 * y[x]==0, y[x],\{x, 0,5\}\right]\)
```

Too large to display

15.3 problem 3

15.3.1 Maple step by step solution . 4059

Internal problem ID [11904]
Internal file name [OUTPUT/11913_Saturday_April_13_2024_10_26_15_PM_27176372/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Irregular singular point"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
\left(x^{4}-2 x^{3}+x^{2}\right) y^{\prime \prime}+2(x-1) y^{\prime}+x^{2} y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(x^{4}-2 x^{3}+x^{2}\right) y^{\prime \prime}+(2 x-2) y^{\prime}+x^{2} y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x^{2}(x-1)} \\
& q(x)=\frac{1}{(x-1)^{2}}
\end{aligned}
$$

Table 531: Table $p(x), q(x)$ singularites.

$p(x)=\frac{2}{x^{2}(x-1)}$	
singularity	type
$x=0$	"irregular"
$x=1$	"regular"

$q(x)=\frac{1}{(x-1)^{2}}$	
singularity	type
$x=1$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[1, \infty]$
Irregular singular points : [0]
Since $x=0$ is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since $x=0$ is not regular singular point. Terminating.

Verification of solutions N/A

15.3.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}(x-1)^{2}+(2 x-2) y^{\prime}+x^{2} y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{2 y^{\prime}}{(x-1) x^{2}}-\frac{y}{(x-1)^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{(x-1) x^{2}}+\frac{y}{(x-1)^{2}}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{2}{x^{2}(x-1)}, P_{3}(x)=\frac{1}{(x-1)^{2}}\right]
$$

- $(x-1) \cdot P_{2}(x)$ is analytic at $x=1$
$\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=2$
- $(x-1)^{2} \cdot P_{3}(x)$ is analytic at $x=1$

$$
\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=1
$$

- $\quad x=1$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=1$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}(x-1)^{2}+(2 x-2) y^{\prime}+x^{2} y=0
$$

- \quad Change variables using $x=u+1$ so that the regular singular point is at $u=0$ $\left(u^{4}+2 u^{3}+u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+2 u\left(\frac{d}{d u} y(u)\right)+\left(u^{2}+2 u+1\right) y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .2$
$u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}$
- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion
$u \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r}$
- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .4$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}\left(r^{2}+r+1\right) u^{r}+\left(\left(r^{2}+3 r+3\right) a_{1}+2 a_{0}\left(r^{2}-r+1\right)\right) u^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}+k+r+\right.\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation $r^{2}+r+1=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right\}$
- Each term must be 0
$\left(r^{2}+3 r+3\right) a_{1}+2 a_{0}\left(r^{2}-r+1\right)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=-\frac{2 a_{0}\left(r^{2}-r+1\right)}{r^{2}+3 r+3}$
- Each term in the series must be 0 , giving the recursion relation

$$
\left(a_{k}+a_{k-2}+2 a_{k-1}\right) k^{2}+\left(\left(2 a_{k}+2 a_{k-2}+4 a_{k-1}\right) r+a_{k}-5 a_{k-2}-6 a_{k-1}\right) k+\left(a_{k}+a_{k-2}+2 a_{k-1}\right.
$$

- \quad Shift index using $k->k+2$

$$
\left(a_{k+2}+a_{k}+2 a_{k+1}\right)(k+2)^{2}+\left(\left(2 a_{k+2}+2 a_{k}+4 a_{k+1}\right) r+a_{k+2}-5 a_{k}-6 a_{k+1}\right)(k+2)+\left(a_{k+2}-\right.
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{k^{2} a_{k}+2 k^{2} a_{k+1}+2 k r a_{k}+4 k r a_{k+1}+r^{2} a_{k}+2 r^{2} a_{k+1}-k a_{k}+2 k a_{k+1}-r a_{k}+2 r a_{k+1}+a_{k}+2 a_{k+1}}{k^{2}+2 k r+r^{2}+5 k+5 r+7}
$$

- Recursion relation for $r=-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
a_{k+2}=-\frac{k^{2} a_{k}+2 k^{2} a_{k+1}+2 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k}+4 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k+1}+\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} a_{k}+2\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} a_{k+1}-k a_{k}+2 k a_{k+1}-\left(-\frac{1}{2}-\frac{1}{2}\right.}{k^{2}+2 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}+5 k+\frac{9}{2}-\frac{5 \mathrm{I} \sqrt{3}}{2}}
$$

- \quad Solution for $r=-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}, a_{k+2}=-\frac{k^{2} a_{k}+2 k^{2} a_{k+1}+2 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k}+4 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k+1}+\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} a_{k}+2\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right.}{k^{2}+2 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(-\frac{1}{2}-\frac{\mathrm{IV}}{2}\right.}\right.
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}, a_{k+2}=-\frac{k^{2} a_{k}+2 k^{2} a_{k+1}+2 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k}+4 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k+1}+\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} a_{k}+2\left(-\frac{1}{2}\right.}{k^{2}+2 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(-\frac{1}{2}\right.}\right.
$$

- Recursion relation for $r=-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}$

$$
a_{k+2}=-\frac{k^{2} a_{k}+2 k^{2} a_{k+1}+2 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k}+4 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k+1}+\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} a_{k}+2\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} a_{k+1}-k a_{k}+2 k a_{k+1}-\left(-\frac{1}{2}+\frac{1}{}\right.}{k^{2}+2 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}+5 k+\frac{9}{2}+\frac{5 \mathrm{I} \sqrt{3}}{2}}
$$

- \quad Solution for $r=-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}, a_{k+2}=-\frac{k^{2} a_{k}+2 k^{2} a_{k+1}+2 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k}+4 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k+1}+\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} a_{k}+2\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right.}{k^{2}+2 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{2}}{2}\right.}\right.
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}, a_{k+2}=-\frac{k^{2} a_{k}+2 k^{2} a_{k+1}+2 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k}+4 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k+1}+\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2} a_{k}+2\left(-\frac{1}{2}\right.}{k^{2}+2 k\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(-\frac{1}{2}\right.}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x-1)^{k-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x-1)^{k-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}\right), a_{k+2}=-\frac{k^{2} a_{k}+2 k^{2} a_{1+k}+2 k\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) a_{k}+4 k}{}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a = 0, e <> 0, c <>
```

X Solution by Maple

```
Order:=6;
dsolve((x^4-2*x^3+x^2)*diff (y (x), x$2)+2*(x-1)*diff (y (x),x)+x^2*y(x)=0,y(x),type='series', x=0
```

No solution found
\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 71
AsymptoticDSolveValue $\left[\left(x^{\wedge} 4-2 * x^{\wedge} 3+x^{\wedge} 2\right) * y^{\prime \prime}[x]+2 *(x-1) * y{ }^{\prime}[x]+x^{\wedge} 2 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{3 x^{5}}{10}+\frac{x^{4}}{4}+\frac{x^{3}}{6}+1\right)+c_{2} e^{-2 / x}\left(-\frac{429 x^{5}}{5}+\frac{91 x^{4}}{4}-\frac{31 x^{3}}{6}+3 x^{2}+1\right) x^{4}
$$

15.4 problem 4

15.4.1 Maple step by step solution . 4065

Internal problem ID [11905]
Internal file name [OUTPUT/11914_Saturday_April_13_2024_10_26_15_PM_30461767/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Irregular singular point"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$\underline{\text { Unable to solve or complete the solution. }}$

$$
\left(x^{5}+x^{4}-6 x^{3}\right) y^{\prime \prime}+x^{2} y^{\prime}+y(x-2)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(x^{5}+x^{4}-6 x^{3}\right) y^{\prime \prime}+x^{2} y^{\prime}+y(x-2)=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x\left(x^{2}+x-6\right)} \\
q(x) & =\frac{1}{x^{3}(x+3)}
\end{aligned}
$$

Table 533: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x\left(x^{2}+x-6\right)}$	
singularity	type
$x=-3$	"regular"
$x=0$	"regular"
$x=2$	"regular"

$q(x)=\frac{1}{x^{3}(x+3)}$	
singularity	type
$x=-3$	"regular"
$x=0$	"irregular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[-3,2, \infty]$
Irregular singular points : [0]
Since $x=0$ is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since $x=0$ is not regular singular point. Terminating.

Verification of solutions N/A

15.4.1 Maple step by step solution

Let's solve
$\left(x^{5}+x^{4}-6 x^{3}\right) y^{\prime \prime}+x^{2} y^{\prime}+y(x-2)=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x^{3}(x+3)}-\frac{y^{\prime}}{x\left(x^{2}+x-6\right)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x\left(x^{2}+x-6\right)}+\frac{y}{x^{3}(x+3)}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x\left(x^{2}+x-6\right)}, P_{3}(x)=\frac{1}{x^{3}(x+3)}\right]$
- $(x+3) \cdot P_{2}(x)$ is analytic at $x=-3$

$$
\left.\left((x+3) \cdot P_{2}(x)\right)\right|_{x=-3}=\frac{1}{15}
$$

- $(x+3)^{2} \cdot P_{3}(x)$ is analytic at $x=-3$

$$
\left.\left((x+3)^{2} \cdot P_{3}(x)\right)\right|_{x=-3}=0
$$

- $x=-3$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=-3
$$

- Multiply by denominators

$$
y^{\prime \prime} x^{3}\left(x^{2}+x-6\right)(x+3)+y^{\prime} x^{2}(x+3)+y\left(x^{2}+x-6\right)=0
$$

- \quad Change variables using $x=u-3$ so that the regular singular point is at $u=0$

$$
\left(u^{6}-14 u^{5}+72 u^{4}-162 u^{3}+135 u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(u^{3}-6 u^{2}+9 u\right)\left(\frac{d}{d u} y(u)\right)+\left(u^{2}-5 u\right) y(u)=
$$

- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .6$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions

$$
9 a_{0} r(-14+15 r) u^{r}+\left(9 a_{1}(1+r)(1+15 r)-a_{0}\left(162 r^{2}-156 r+5\right)\right) u^{1+r}+\left(9 a_{2}(2+r)(16+15\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$9 r(-14+15 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{14}{15}\right\}$
- \quad The coefficients of each power of u must be 0 $\left[9 a_{1}(1+r)(1+15 r)-a_{0}\left(162 r^{2}-156 r+5\right)=0,9 a_{2}(2+r)(16+15 r)-a_{1}\left(162 r^{2}+168 r+11\right.\right.$
- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=\frac{a_{0}\left(162 r^{2}-156 r+5\right)}{9\left(15 r^{2}+16 r+1\right)}, a_{2}=\frac{a_{0}\left(16524 r^{4}+1161 r^{3}-14175 r^{2}-381 r+46\right)}{81\left(225 r^{4}+930 r^{3}+1231 r^{2}+558 r+32\right)}, a_{3}=\frac{a_{0}\left(1357398 r^{6}+4208274 r^{5}+2090772 r^{4}-31\right.}{729\left(3375 r^{6}+31050 r^{5}+110070 r^{4}+18\right.}\right.
$$

- Each term in the series must be 0 , giving the recursion relation
$\left(135 a_{k}+a_{k-4}-14 a_{k-3}+72 a_{k-2}-162 a_{k-1}\right) k^{2}+\left(2\left(135 a_{k}+a_{k-4}-14 a_{k-3}+72 a_{k-2}-162 a_{k-}\right.\right.$
- \quad Shift index using $k->k+4$
$\left(135 a_{k+4}+a_{k}-14 a_{k+1}+72 a_{k+2}-162 a_{k+3}\right)(k+4)^{2}+\left(2\left(135 a_{k+4}+a_{k}-14 a_{k+1}+72 a_{k+2}-1\right.\right.$
- Recursion relation that defines series solution to ODE
$a_{k+4}=-\frac{k^{2} a_{k}-14 k^{2} a_{k+1}+72 k^{2} a_{k+2}-162 k^{2} a_{k+3}+2 k r a_{k}-28 k r a_{k+1}+144 k r a_{k+2}-324 k r a_{k+3}+r^{2} a_{k}-14 r^{2} a_{k+1}+72 r^{2} a_{k+2}-16}{9\left(15 k^{2}+30 k r+15 r^{2}+106\right.}$
- \quad Recursion relation for $r=0$
$a_{k+4}=-\frac{k^{2} a_{k}-14 k^{2} a_{k+1}+72 k^{2} a_{k+2}-162 k^{2} a_{k+3}-k a_{k}-14 k a_{k+1}+217 k a_{k+2}-816 k a_{k+3}+147 a_{k+2}-995 a_{k+3}}{9\left(15 k^{2}+106 k+184\right)}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+4}=-\frac{k^{2} a_{k}-14 k^{2} a_{k+1}+72 k^{2} a_{k+2}-162 k^{2} a_{k+3}-k a_{k}-14 k a_{k+1}+217 k a_{k+2}-816 k a_{k+3}+147 a_{k+2}-99}{9\left(15 k^{2}+106 k+184\right)}\right.
$$

- \quad Revert the change of variables $u=x+3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+3)^{k}, a_{k+4}=-\frac{k^{2} a_{k}-14 k^{2} a_{k+1}+72 k^{2} a_{k+2}-162 k^{2} a_{k+3}-k a_{k}-14 k a_{k+1}+217 k a_{k+2}-816 k a_{k+3}+147 a_{k+2}}{9\left(15 k^{2}+106 k+184\right)}\right.
$$

- \quad Recursion relation for $r=\frac{14}{15}$
$a_{k+4}=-\frac{k^{2} a_{k}-14 k^{2} a_{k+1}+72 k^{2} a_{k+2}-162 k^{2} a_{k+3}+\frac{13}{15} k a_{k}-\frac{602}{15} k a_{k+1}+\frac{1757}{5} k a_{k+2}-\frac{5592}{5} k a_{k+3}-\frac{14}{225} a_{k}-\frac{5684}{225} a_{k+1}+\frac{30919}{75} a_{k+2}}{9\left(15 k^{2}+134 k+296\right)}$
- \quad Solution for $r=\frac{14}{15}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{14}{15}}, a_{k+4}=-\frac{k^{2} a_{k}-14 k^{2} a_{k+1}+72 k^{2} a_{k+2}-162 k^{2} a_{k+3}+\frac{13}{15} k a_{k}-\frac{602}{15} k a_{k+1}+\frac{1757}{5} k a_{k+2}-\frac{5592}{5} k a_{k+3}-\frac{1}{2}}{9\left(15 k^{2}+134 k+296\right)}\right.
$$

- \quad Revert the change of variables $u=x+3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+3)^{k+\frac{14}{15}}, a_{k+4}=-\frac{k^{2} a_{k}-14 k^{2} a_{k+1}+72 k^{2} a_{k+2}-162 k^{2} a_{k+3}+\frac{13}{15} k a_{k}-\frac{602}{15} k a_{k+1}+\frac{1757}{5} k a_{k+2}-\frac{5592}{5} k a_{k+}}{9\left(15 k^{2}+134 k+296\right)}\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+3)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+3)^{k+\frac{14}{15}}\right), a_{k+4}=-\frac{k^{2} a_{k}-14 k^{2} a_{1+k}+72 k^{2} a_{k+2}-162 k^{2} a_{k+3}-k a_{k}-14 k a}{9\left(15 k^{2}+106\right.}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c
```

X Solution by Maple

```
Order:=6;
dsolve((x^5+\mp@subsup{x}{}{\wedge}4-6**^3)*diff(y(x),x$2)+\mp@subsup{x}{}{\wedge}2*\operatorname{diff}(y(x),x)+(x-2)*y(x)=0,y(x),type='series',x=0);
```

No solution found
\checkmark Solution by Mathematica
Time used: 0.226 (sec). Leaf size: 282
AsymptoticDSolveValue $\left[\left(x^{\wedge} 5+x^{\wedge} 4-6 * x^{\wedge} 3\right) * y^{\prime} '[x]+x^{\wedge} 2 * y '[x]+(x-2) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-\frac{2 i}{\sqrt{3} \sqrt{x}}} x^{5 / 6}\left(-\frac{70670717962217 i x^{9 / 2}}{8463329722368 \sqrt{3}}+\frac{454703707 i x^{7 / 2}}{544195584 \sqrt{3}}-\frac{287057 i x^{5 / 2}}{1679616 \sqrt{3}}+\frac{22 i x^{3 / 2}}{243 \sqrt{3}}\right. \\
& \quad+\frac{28128149072197063 x^{5}}{1523399350026240}-\frac{222818846149 x^{4}}{156728328192}+\frac{35197783 x^{3}}{181398528}-\frac{14123 x^{2}}{279936}+\frac{17 x}{216}-\frac{7 i \sqrt{x}}{6 \sqrt{3}} \\
& \quad+1)+c_{2} e^{\frac{2 i}{\sqrt{3} \sqrt{x}}} x^{5 / 6}\left(\frac{70670717962217 i x^{9 / 2}}{8463329722368 \sqrt{3}}-\frac{454703707 i x^{7 / 2}}{544195584 \sqrt{3}}+\frac{287057 i x^{5 / 2}}{1679616 \sqrt{3}}-\frac{22 i x^{3 / 2}}{243 \sqrt{3}}+\frac{28128149072197}{152339935002}\right.
\end{aligned}
$$

15.5 problem 5

15.5.1 Maple step by step solution 4078

Internal problem ID [11906]
Internal file name [OUTPUT/11915_Saturday_April_13_2024_10_26_16_PM_34342693/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
2 x^{2} y^{\prime \prime}+y^{\prime} x+y\left(x^{2}-1\right)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
2 x^{2} y^{\prime \prime}+y^{\prime} x+y\left(x^{2}-1\right)=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =\frac{x^{2}-1}{2 x^{2}}
\end{aligned}
$$

Table 535: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{2 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x^{2}-1}{2 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
2 x^{2} y^{\prime \prime}+y^{\prime} x+y\left(x^{2}-1\right)=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)\left(x^{2}-1\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
2 x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
2 x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(2 x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(2 r^{2}-r-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
2 r^{2}-r-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(2 r^{2}-r-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{3}{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-n-r-1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(2 n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{2 r^{2}+7 r+5}
$$

Which for the root $r=1$ becomes

$$
a_{2}=-\frac{1}{14}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{2 r^{2}+7 r+5}$	$-\frac{1}{14}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{2 r^{2}+7 r+5}$	$-\frac{1}{14}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{4 r^{4}+44 r^{3}+169 r^{2}+264 r+135}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{616}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{2 r^{2}+7 r+5}$	$-\frac{1}{14}$
a_{3}	0	0
a_{4}	$\frac{1}{4 r^{4}+44 r^{3}+169 r^{2}+264 r+135}$	$\frac{1}{616}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{2 r^{2}+7 r+5}$	$-\frac{1}{14}$
a_{3}	0	0
a_{4}	$\frac{1}{4 r^{4}+44 r^{3}+169 r^{2}+264 r+135}$	$\frac{1}{616}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{616}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-n-r-1} \tag{4}
\end{equation*}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n(2 n-3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{1}{2 r^{2}+7 r+5}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{2 r^{2}+7 r+5}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{2 r^{2}+7 r+5}$	$-\frac{1}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{4 r^{4}+44 r^{3}+169 r^{2}+264 r+135}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{4}=\frac{1}{40}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{2 r^{2}+7 r+5}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{4 r^{4}+44 r^{3}+169 r^{2}+264 r+135}$	$\frac{1}{40}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{2 r^{2}+7 r+5}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{4 r^{4}+44 r^{3}+169 r^{2}+264 r+135}$	$\frac{1}{40}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{40}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{616}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{40}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =c_{1} x\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{616}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{40}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{616}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{40}+O\left(x^{6}\right)\right)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{616}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{40}+O\left(x^{6}\right)\right)}{\sqrt{x}}
$$

Verified OK.

15.5.1 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime} x^{2}+y^{\prime} x+y\left(x^{2}-1\right)=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(x^{2}-1\right) y}{2 x^{2}}-\frac{y^{\prime}}{2 x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{2 x}+\frac{\left(x^{2}-1\right) y}{2 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{2 x}, P_{3}(x)=\frac{x^{2}-1}{2 x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{2}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$2 y^{\prime \prime} x^{2}+y^{\prime} x+y\left(x^{2}-1\right)=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
\square
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0}(1+2 r)(-1+r) x^{r}+a_{1}(3+2 r) r x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r+1)(k+r-1)+a_{k-2}\right) x^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{1,-\frac{1}{2}\right\}$
- Each term must be 0

$$
a_{1}(3+2 r) r=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$2(k+r-1)\left(k+r+\frac{1}{2}\right) a_{k}+a_{k-2}=0$
- \quad Shift index using $k->k+2$
$2(k+1+r)\left(k+\frac{5}{2}+r\right) a_{k+2}+a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{a_{k}}{(k+1+r)(2 k+5+2 r)}
$$

- \quad Recursion relation for $r=1$

$$
a_{k+2}=-\frac{a_{k}}{(k+2)(2 k+7)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+2}=-\frac{a_{k}}{(k+2)(2 k+7)}, a_{1}=0\right]
$$

- Recursion relation for $r=-\frac{1}{2}$
$a_{k+2}=-\frac{a_{k}}{\left(k+\frac{1}{2}\right)(2 k+4)}$
- \quad Solution for $r=-\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{a_{k}}{\left(k+\frac{1}{2}\right)(2 k+4)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{1+k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{1}{2}}\right), a_{k+2}=-\frac{a_{k}}{(k+2)(2 k+7)}, a_{1}=0, b_{k+2}=-\frac{b_{k}}{\left(k+\frac{1}{2}\right)(2 k+4)}, b_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
Order:=6;
dsolve(2*x^2*diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+\textrm{x}*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+(\mp@subsup{x}{}{\wedge}2-1)*y(x)=0,y(x),type='series',x=0)
\[
y(x)=\frac{c_{1}\left(1-\frac{1}{2} x^{2}+\frac{1}{40} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}}+c_{2} x\left(1-\frac{1}{14} x^{2}+\frac{1}{616} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\]
```

Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 48
AsymptoticDSolveValue[2*x^2*y' $\quad[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+(\mathrm{x} \sim 2-1) * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1} x\left(\frac{x^{4}}{616}-\frac{x^{2}}{14}+1\right)+\frac{c_{2}\left(\frac{x^{4}}{40}-\frac{x^{2}}{2}+1\right)}{\sqrt{x}}
$$

15.6 problem 6

15.6.1 Maple step by step solution

Internal problem ID [11907]
Internal file name [OUTPUT/11916_Saturday_April_13_2024_10_26_17_PM_79930221/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
2 x^{2} y^{\prime \prime}+y^{\prime} x+\left(2 x^{2}-3\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
2 x^{2} y^{\prime \prime}+y^{\prime} x+\left(2 x^{2}-3\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =\frac{2 x^{2}-3}{2 x^{2}}
\end{aligned}
$$

Table 537: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{2 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{2 x^{2}-3}{2 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
2 x^{2} y^{\prime \prime}+y^{\prime} x+\left(2 x^{2}-3\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(2 x^{2}-3\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 2 x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 2 x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} 2 a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\left(\sum_{n=2}^{\infty} 2 a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
2 x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-3 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
2 x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-3 a_{0} x^{r}=0
$$

Or

$$
\left(2 x^{r} r(-1+r)+x^{r} r-3 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(2 r^{2}-r-3\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
2 r^{2}-r-3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(2 r^{2}-r-3\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{5}{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)+2 a_{n-2}-3 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-n-r-3} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-2}}{n(2 n+5)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{2}{2 r^{2}+7 r+3}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{2}=-\frac{1}{9}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{2}{2 r^{2}+7 r+3}$	$-\frac{1}{9}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{2}{2 r^{2}+7 r+3}$	$-\frac{1}{9}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{4}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+15 r+25\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{4}=\frac{1}{234}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{2}{2 r^{2}+7 r+3}$	$-\frac{1}{9}$
a_{3}	0	0
a_{4}	$\frac{4}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{1}{234}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{2}{2 r^{2}+7 r+3}$	$-\frac{1}{9}$
a_{3}	0	0
a_{4}	$\frac{4}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{1}{234}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1-\frac{x^{2}}{9}+\frac{x^{4}}{234}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+b_{n}(n+r)+2 b_{n-2}-3 b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{2 b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-n-r-3} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{2 b_{n-2}}{n(2 n-5)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{2}{2 r^{2}+7 r+3}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{2}{2 r^{2}+7 r+3}$	1

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{2}{2 r^{2}+7 r+3}$	1
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{4}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+15 r+25\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=-\frac{1}{6}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{2}{2 r^{2}+7 r+3}$	1
b_{3}	0	0
b_{4}	$\frac{4}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+15 r+25\right)}$	$-\frac{1}{6}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{2}{2 r^{2}+7 r+3}$	1
b_{3}	0	0
b_{4}	$\frac{4}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+15 r+25\right)}$	$-\frac{1}{6}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{3}{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+x^{2}-\frac{x^{4}}{6}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{9}+\frac{x^{4}}{234}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x^{2}-\frac{x^{4}}{6}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{9}+\frac{x^{4}}{234}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x^{2}-\frac{x^{4}}{6}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{9}+\frac{x^{4}}{234}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x^{2}-\frac{x^{4}}{6}+O\left(x^{6}\right)\right)}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{9}+\frac{x^{4}}{234}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x^{2}-\frac{x^{4}}{6}+O\left(x^{6}\right)\right)}{x}
$$

Verified OK.

15.6.1 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime} x^{2}+y^{\prime} x+\left(2 x^{2}-3\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(2 x^{2}-3\right) y}{2 x^{2}}-\frac{y^{\prime}}{2 x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{2 x}+\frac{\left(2 x^{2}-3\right) y}{2 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{2 x}, P_{3}(x)=\frac{2 x^{2}-3}{2 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{3}{2}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$2 y^{\prime \prime} x^{2}+y^{\prime} x+\left(2 x^{2}-3\right) y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
\square
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-3+2 r) x^{r}+a_{1}(2+r)(-1+2 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+1)(2 k+2 r-3)+2 a_{k-2}\right)\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-3+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-1, \frac{3}{2}\right\}$
- Each term must be 0

$$
a_{1}(2+r)(-1+2 r)=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation

$$
2\left(k+r-\frac{3}{2}\right)(k+r+1) a_{k}+2 a_{k-2}=0
$$

- \quad Shift index using $k->k+2$

$$
2\left(k+\frac{1}{2}+r\right)(k+3+r) a_{k+2}+2 a_{k}=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{2 a_{k}}{(2 k+1+2 r)(k+3+r)}
$$

- \quad Recursion relation for $r=-1$

$$
a_{k+2}=-\frac{2 a_{k}}{(2 k-1)(k+2)}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{2 a_{k}}{(2 k-1)(k+2)}, a_{1}=0\right]
$$

- Recursion relation for $r=\frac{3}{2}$
$a_{k+2}=-\frac{2 a_{k}}{(2 k+4)\left(k+\frac{9}{2}\right)}$
- \quad Solution for $r=\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+2}=-\frac{2 a_{k}}{(2 k+4)\left(k+\frac{9}{2}\right)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{3}{2}}\right), a_{k+2}=-\frac{2 a_{k}}{(2 k-1)(k+2)}, a_{1}=0, b_{k+2}=-\frac{2 b_{k}}{(2 k+4)\left(k+\frac{9}{2}\right)}, b_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 35

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Order: }=6 ; \\
\text { dsolve }\left(2 * \mathrm{x}^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\left(2 * \mathrm{x}^{\wedge} 2-3\right) * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}),\right. \text { type='series }
\end{array}, \mathrm{x}=0\right) ; \\
& \qquad y(x)=\frac{c_{2} x^{\frac{5}{2}}\left(1-\frac{1}{9} x^{2}+\frac{1}{234} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{1}\left(1+x^{2}-\frac{1}{6} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 46
AsymptoticDSolveValue [2*x^2*y''[x]+x*y'[x]+(2*x^2-3)*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow \frac{c_{2}\left(-\frac{x^{4}}{6}+x^{2}+1\right)}{x}+c_{1}\left(\frac{x^{4}}{234}-\frac{x^{2}}{9}+1\right) x^{3 / 2}
$$

15.7 problem 7

15.7.1 Maple step by step solution . 4103

Internal problem ID [11908]
Internal file name [OUTPUT/11917_Saturday_April_13_2024_10_26_18_PM_80034732/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}+\frac{8}{9}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}+\frac{8}{9}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =\frac{9 x^{2}+8}{9 x^{2}}
\end{aligned}
$$

Table 539: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{9 x^{2}+8}{9 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}+\frac{8}{9}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& -\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(x^{2}+\frac{8}{9}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{8 a_{n} x^{n+r}}{9}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} \frac{8 a_{n} x^{n+r}}{9}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+\frac{8 a_{n} x^{n+r}}{9}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+\frac{8 a_{0} x^{r}}{9}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r+\frac{8 x^{r}}{9}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(9 r^{2}-18 r+8\right) x^{r}}{9}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2 r+\frac{8}{9}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{4}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(9 r^{2}-18 r+8\right) x^{r}}{9}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{2}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{4}{3}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{2}{3}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n-2}+\frac{8 a_{n}}{9}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{9 a_{n-2}}{9 n^{2}+18 n r+9 r^{2}-18 n-18 r+8} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{4}{3}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{3 a_{n-2}}{n(3 n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{4}{3}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{9}{9 r^{2}+18 r+8}
$$

Which for the root $r=\frac{4}{3}$ becomes

$$
a_{2}=-\frac{3}{16}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{9}{9 r^{2}+18 r+8}$	$-\frac{3}{16}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{9}{9 r^{2}+18 r+8}$	$-\frac{3}{16}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{81}{\left(9 r^{2}+18 r+8\right)\left(9 r^{2}+54 r+80\right)}
$$

Which for the root $r=\frac{4}{3}$ becomes

$$
a_{4}=\frac{9}{896}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{9}{9 r^{2}+18 r+8}$	$-\frac{3}{16}$
a_{3}	0	0
a_{4}	$\frac{9}{\left(9 r^{2}+18 r+8\right)\left(9 r^{2}+54 r+80\right)}$	$\frac{9}{896}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{9}{9 r^{2}+18 r+8}$	$-\frac{3}{16}$
a_{3}	0	0
a_{4}	$\frac{9}{\left(9 r^{2}+18 r+8\right)\left(9 r^{2}+54 r+80\right)}$	$\frac{9}{896}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{4}{3}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{4}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n}(n+r)+b_{n-2}+\frac{8 b_{n}}{9}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{9 b_{n-2}}{9 n^{2}+18 n r+9 r^{2}-18 n-18 r+8} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{3 b_{n-2}}{n(3 n-2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=\frac{2}{3}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{9}{9 r^{2}+18 r+8}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
b_{2}=-\frac{3}{8}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{9}{9 r^{2}+18 r+8}$	$-\frac{3}{8}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{9}{9 r^{2}+18 r+8}$	$-\frac{3}{8}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{81}{\left(9 r^{2}+18 r+8\right)\left(9 r^{2}+54 r+80\right)}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
b_{4}=\frac{9}{320}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{9}{9 r^{2}+18 r+8}$	$-\frac{3}{8}$
b_{3}	0	0
b_{4}	$\frac{81}{\left(9 r^{2}+18 r+8\right)\left(9 r^{2}+54 r+80\right)}$	$\frac{9}{320}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{9}{9 r^{2}+18 r+8}$	$-\frac{3}{8}$
b_{3}	0	0
b_{4}	$\frac{81}{\left(9 r^{2}+18 r+8\right)\left(9 r^{2}+54 r+80\right)}$	$\frac{9}{320}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{4}{3}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{\frac{2}{3}}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{4}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)+c_{2} x^{\frac{2}{3}}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{\frac{4}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)+c_{2} x^{\frac{2}{3}}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{\frac{4}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)+c_{2} x^{\frac{2}{3}}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{\frac{4}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)+c_{2} x^{\frac{2}{3}}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)
$$

Verified OK.

15.7.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}-y^{\prime} x+\left(x^{2}+\frac{8}{9}\right) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{\left(9 x^{2}+8\right) y}{9 x^{2}}+\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{\left(9 x^{2}+8\right) y}{9 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=\frac{9 x^{2}+8}{9 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{8}{9}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$9 y^{\prime \prime} x^{2}-9 y^{\prime} x+\left(9 x^{2}+8\right) y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-2+3 r)(-4+3 r) x^{r}+a_{1}(1+3 r)(-1+3 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(3 k+3 r-2)(3 k+3 r-4)+؟\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-2+3 r)(-4+3 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{\frac{2}{3}, \frac{4}{3}\right\}$
- Each term must be 0

$$
a_{1}(1+3 r)(-1+3 r)=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0, giving the recursion relation
$9\left(k-\frac{2}{3}+r\right)\left(k+r-\frac{4}{3}\right) a_{k}+9 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$9\left(k+\frac{4}{3}+r\right)\left(k+\frac{2}{3}+r\right) a_{k+2}+9 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{9 a_{k}}{(3 k+4+3 r)(3 k+2+3 r)}$
- \quad Recursion relation for $r=\frac{2}{3}$
$a_{k+2}=-\frac{9 a_{k}}{(3 k+6)(3 k+4)}$
- \quad Solution for $r=\frac{2}{3}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{2}{3}}, a_{k+2}=-\frac{9 a_{k}}{(3 k+6)(3 k+4)}, a_{1}=0\right]$
- Recursion relation for $r=\frac{4}{3}$

$$
a_{k+2}=-\frac{9 a_{k}}{(3 k+8)(3 k+6)}
$$

- \quad Solution for $r=\frac{4}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{4}{3}}, a_{k+2}=-\frac{9 a_{k}}{(3 k+8)(3 k+6)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\frac{2}{3}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{4}{3}}\right), a_{k+2}=-\frac{9 a_{k}}{(3 k+6)(3 k+4)}, a_{1}=0, b_{k+2}=-\frac{9 b_{k}}{(3 k+8)(3 k+6)}, b_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```


\checkmark Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+(x^2+8/9)*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=c_{1} x^{\frac{2}{3}}\left(1-\frac{3}{8} x^{2}+\frac{9}{320} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2} x^{\frac{4}{3}}\left(1-\frac{3}{16} x^{2}+\frac{9}{896} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 52
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]-x * y\right.$ ' $\left.[x]+\left(x^{\wedge} 2+8 / 9\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{9 x^{4}}{896}-\frac{3 x^{2}}{16}+1\right) x^{4 / 3}+c_{2}\left(\frac{9 x^{4}}{320}-\frac{3 x^{2}}{8}+1\right) x^{2 / 3}
$$

15.8 problem 8

15.8.1 Maple step by step solution . 4116

Internal problem ID [11909]
Internal file name [OUTPUT/11918_Saturday_April_13_2024_10_26_19_PM_67683918/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 8 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(2 x^{2}+\frac{5}{9}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(2 x^{2}+\frac{5}{9}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{18 x^{2}+5}{9 x^{2}}
\end{aligned}
$$

Table 541: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{18 x^{2}+5}{9 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(2 x^{2}+\frac{5}{9}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& -\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(2 x^{2}+\frac{5}{9}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} 2 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{5 a_{n} x^{n+r}}{9}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 2 x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} 2 a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} 2 a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} \frac{5 a_{n} x^{n+r}}{9}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+\frac{5 a_{n} x^{n+r}}{9}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+\frac{5 a_{0} x^{r}}{9}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r+\frac{5 x^{r}}{9}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(9 r^{2}-18 r+5\right) x^{r}}{9}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2 r+\frac{5}{9}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{5}{3} \\
& r_{2}=\frac{1}{3}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(9 r^{2}-18 r+5\right) x^{r}}{9}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{4}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{5}{3}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{3}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)+2 a_{n-2}+\frac{5 a_{n}}{9}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{18 a_{n-2}}{9 n^{2}+18 n r+9 r^{2}-18 n-18 r+5} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{5}{3}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{6 a_{n-2}}{n(3 n+4)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{5}{3}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{18}{9 r^{2}+18 r+5}
$$

Which for the root $r=\frac{5}{3}$ becomes

$$
a_{2}=-\frac{3}{10}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{18}{9 r^{2}+18 r+5}$	$-\frac{3}{10}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{18}{9 r^{2}+18 r+5}$	$-\frac{3}{10}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{324}{\left(9 r^{2}+18 r+5\right)\left(9 r^{2}+54 r+77\right)}
$$

Which for the root $r=\frac{5}{3}$ becomes

$$
a_{4}=\frac{9}{320}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{18}{9 r^{2}+18 r+5}$	$-\frac{3}{10}$
a_{3}	0	0
a_{4}	$\frac{924}{\left(9 r^{2}+18 r+5\right)\left(9 r^{2}+54 r+77\right)}$	$\frac{9}{320}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{18}{9 r^{2}+18 r+5}$	$-\frac{3}{10}$
a_{3}	0	0
a_{4}	$\frac{324}{\left(9 r^{2}+18 r+5\right)\left(9 r^{2}+54 r+77\right)}$	$\frac{9}{320}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{5}{3}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{5}{3}}\left(1-\frac{3 x^{2}}{10}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n}(n+r)+2 b_{n-2}+\frac{5 b_{n}}{9}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{18 b_{n-2}}{9 n^{2}+18 n r+9 r^{2}-18 n-18 r+5} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{6 b_{n-2}}{n(3 n-4)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=\frac{1}{3}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{18}{9 r^{2}+18 r+5}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
b_{2}=-\frac{3}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{18}{9 r^{2}+18 r+5}$	$-\frac{3}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{18}{9 r^{2}+18 r+5}$	$-\frac{3}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{324}{\left(9 r^{2}+18 r+5\right)\left(9 r^{2}+54 r+77\right)}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
b_{4}=\frac{9}{32}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{18}{9 r^{2}+18 r+5}$	$-\frac{3}{2}$
b_{3}	0	0
b_{4}	$\frac{924}{\left(9 r^{2}+18 r+5\right)\left(9 r^{2}+54 r+77\right)}$	$\frac{9}{32}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{18}{9 r^{2}+18 r+5}$	$-\frac{3}{2}$
b_{3}	0	0
b_{4}	$\frac{324}{\left(9 r^{2}+18 r+5\right)\left(9 r^{2}+54 r+77\right)}$	$\frac{9}{32}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{5}{3}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{2}+\frac{9 x^{4}}{32}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{5}{3}}\left(1-\frac{3 x^{2}}{10}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)+c_{2} x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{2}+\frac{9 x^{4}}{32}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{\frac{5}{3}}\left(1-\frac{3 x^{2}}{10}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)+c_{2} x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{2}+\frac{9 x^{4}}{32}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{\frac{5}{3}}\left(1-\frac{3 x^{2}}{10}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)+c_{2} x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{2}+\frac{9 x^{4}}{32}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{\frac{5}{3}}\left(1-\frac{3 x^{2}}{10}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)+c_{2} x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{2}+\frac{9 x^{4}}{32}+O\left(x^{6}\right)\right)
$$

Verified OK.

15.8.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}-y^{\prime} x+\left(2 x^{2}+\frac{5}{9}\right) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{\left(18 x^{2}+5\right) y}{9 x^{2}}+\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{\left(18 x^{2}+5\right) y}{9 x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=\frac{18 x^{2}+5}{9 x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{5}{9}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$9 y^{\prime \prime} x^{2}-9 y^{\prime} x+\left(18 x^{2}+5\right) y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-1+3 r)(-5+3 r) x^{r}+a_{1}(2+3 r)(-2+3 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(3 k+3 r-1)(3 k+3 r-5)+1\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+3 r)(-5+3 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{\frac{1}{3}, \frac{5}{3}\right\}
$$

- Each term must be 0

$$
a_{1}(2+3 r)(-2+3 r)=0
$$

- \quad Solve for the dependent coefficient(s)

$$
a_{1}=0
$$

- Each term in the series must be 0, giving the recursion relation
$9\left(k+r-\frac{1}{3}\right)\left(k+r-\frac{5}{3}\right) a_{k}+18 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$9\left(k+\frac{5}{3}+r\right)\left(k+\frac{1}{3}+r\right) a_{k+2}+18 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{18 a_{k}}{(3 k+5+3 r)(3 k+1+3 r)}$
- Recursion relation for $r=\frac{1}{3}$
$a_{k+2}=-\frac{18 a_{k}}{(3 k+6)(3 k+2)}$
- \quad Solution for $r=\frac{1}{3}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{3}}, a_{k+2}=-\frac{18 a_{k}}{(3 k+6)(3 k+2)}, a_{1}=0\right]$
- Recursion relation for $r=\frac{5}{3}$

$$
a_{k+2}=-\frac{18 a_{k}}{(3 k+10)(3 k+6)}
$$

- \quad Solution for $r=\frac{5}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{5}{3}}, a_{k+2}=-\frac{18 a_{k}}{(3 k+10)(3 k+6)}, a_{1}=0\right]
$$

- \quad Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{3}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{5}{3}}\right), a_{k+2}=-\frac{18 a_{k}}{(3 k+6)(3 k+2)}, a_{1}=0, b_{k+2}=-\frac{18 b_{k}}{(3 k+10)(3 k+6)}, b_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```


\checkmark Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

```
Order:=6;
dsolve(x^2*diff (y(x),x$2)-x*diff(y(x),x)+(2*x^2+5/9)*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=c_{1} x^{\frac{1}{3}}\left(1-\frac{3}{2} x^{2}+\frac{9}{32} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2} x^{\frac{5}{3}}\left(1-\frac{3}{10} x^{2}+\frac{9}{320} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52
AsymptoticDSolveValue [x^2*y' ' $[x]-x * y$ ' $\left.[x]+\left(2 * x^{\wedge} 2+5 / 9\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{9 x^{4}}{32}-\frac{3 x^{2}}{2}+1\right) \sqrt[3]{x}+c_{1}\left(\frac{9 x^{4}}{320}-\frac{3 x^{2}}{10}+1\right) x^{5 / 3}
$$

15.9 problem 9

15.9.1 Maple step by step solution 4129

Internal problem ID [11910]
Internal file name [OUTPUT/11919_Saturday_April_13_2024_10_26_19_PM_61469210/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{9}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{9}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{9 x^{2}-1}{9 x^{2}}
\end{aligned}
$$

Table 543: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{9 x^{2}-1}{9 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{9}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(x^{2}-\frac{1}{9}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{9}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{9}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-\frac{a_{n} x^{n+r}}{9}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-\frac{a_{0} x^{r}}{9}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-\frac{x^{r}}{9}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(9 r^{2}-1\right) x^{r}}{9}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-\frac{1}{9}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=-\frac{1}{3}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(9 r^{2}-1\right) x^{r}}{9}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{2}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{3}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{3}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-\frac{a_{n}}{9}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{9 a_{n-2}}{9 n^{2}+18 n r+9 r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{3 a_{n-2}}{n(3 n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{3}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{9}{9 r^{2}+36 r+35}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
a_{2}=-\frac{3}{16}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{9}{9 r^{2}+36 r+35}$	$-\frac{3}{16}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{9}{9 r^{2}+36 r+35}$	$-\frac{3}{16}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{81}{\left(9 r^{2}+36 r+35\right)\left(9 r^{2}+72 r+143\right)}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
a_{4}=\frac{9}{896}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{9}{9 r^{2}+36 r+35}$	$-\frac{3}{16}$
a_{3}	0	0
a_{4}	$\frac{81}{\left(9 r^{2}+36 r+35\right)\left(9 r^{2}+72 r+143\right)}$	$\frac{9}{896}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{9}{9 r^{2}+36 r+35}$	$-\frac{3}{16}$
a_{3}	0	0
a_{4}	$\frac{81}{\left(9 r^{2}+36 r+35\right)\left(9 r^{2}+72 r+143\right)}$	$\frac{9}{896}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{3}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-\frac{b_{n}}{9}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{9 b_{n-2}}{9 n^{2}+18 n r+9 r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{3 b_{n-2}}{n(3 n-2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{3}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{9}{9 r^{2}+36 r+35}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
b_{2}=-\frac{3}{8}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{9}{9 r^{2}+36 r+35}$	$-\frac{3}{8}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{9}{9 r^{2}+36 r+35}$	$-\frac{3}{8}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{81}{\left(9 r^{2}+36 r+35\right)\left(9 r^{2}+72 r+143\right)}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
b_{4}=\frac{9}{320}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{9}{9 r^{2}+36 r+35}$	$-\frac{3}{8}$
b_{3}	0	0
b_{4}	$\frac{81}{\left(9 r^{2}+36 r+35\right)\left(9 r^{2}+72 r+143\right)}$	$\frac{9}{320}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{9}{9 r^{2}+36 r+35}$	$-\frac{3}{8}$
b_{3}	0	0
b_{4}	$\frac{81}{\left(9 r^{2}+36 r+35\right)\left(9 r^{2}+72 r+143\right)}$	$\frac{9}{320}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{1}{3}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)}{x^{\frac{1}{3}}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)}{x^{\frac{1}{3}}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)}{x^{\frac{1}{3}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{32}+O\left(x^{6}\right)\right)}{x^{\frac{1}{3}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{\frac{1}{3}}\left(1-\frac{3 x^{2}}{16}+\frac{9 x^{4}}{896}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{3 x^{2}}{8}+\frac{9 x^{4}}{320}+O\left(x^{6}\right)\right)}{x^{\frac{1}{3}}}
$$

Verified OK.

15.9.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}+y^{\prime} x+\left(x^{2}-\frac{1}{9}\right) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{\left(9 x^{2}-1\right) y}{9 x^{2}}-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(9 x^{2}-1\right) y}{9 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{9 x^{2}-1}{9 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{9}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$9 y^{\prime \prime} x^{2}+9 y^{\prime} x+\left(9 x^{2}-1\right) y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+3 r)(-1+3 r) x^{r}+a_{1}(4+3 r)(2+3 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(3 k+3 r+1)(3 k+3 r-1)+9 a_{k}\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+3 r)(-1+3 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{1}{3}, \frac{1}{3}\right\}
$$

- Each term must be 0
$a_{1}(4+3 r)(2+3 r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0, giving the recursion relation
$a_{k}(3 k+3 r+1)(3 k+3 r-1)+9 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(3 k+7+3 r)(3 k+5+3 r)+9 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{9 a_{k}}{(3 k+7+3 r)(3 k+5+3 r)}$
- Recursion relation for $r=-\frac{1}{3}$
$a_{k+2}=-\frac{9 a_{k}}{(3 k+6)(3 k+4)}$
- \quad Solution for $r=-\frac{1}{3}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{3}}, a_{k+2}=-\frac{9 a_{k}}{(3 k+6)(3 k+4)}, a_{1}=0\right]$
- Recursion relation for $r=\frac{1}{3}$

$$
a_{k+2}=-\frac{9 a_{k}}{(3 k+8)(3 k+6)}
$$

- \quad Solution for $r=\frac{1}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{3}}, a_{k+2}=-\frac{9 a_{k}}{(3 k+8)(3 k+6)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{3}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{3}}\right), a_{k+2}=-\frac{9 a_{k}}{(3 k+6)(3 k+4)}, a_{1}=0, b_{k+2}=-\frac{9 b_{k}}{(3 k+8)(3 k+6)}, b_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/9)*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\frac{x^{\frac{2}{3}}\left(1-\frac{3}{16} x^{2}+\frac{9}{896} x^{4}+\mathrm{O}\left(x^{6}\right)\right) c_{2}+\left(1-\frac{3}{8} x^{2}+\frac{9}{320} x^{4}+\mathrm{O}\left(x^{6}\right)\right) c_{1}}{x^{\frac{1}{3}}}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 52
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+x * y\right.$ ' $\left.[x]+\left(x^{\wedge} 2-1 / 9\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1} \sqrt[3]{x}\left(\frac{9 x^{4}}{896}-\frac{3 x^{2}}{16}+1\right)+\frac{c_{2}\left(\frac{9 x^{4}}{320}-\frac{3 x^{2}}{8}+1\right)}{\sqrt[3]{x}}
$$

15.10 problem 10

15.10.1 Maple step by step solution . 4142

Internal problem ID [11911]
Internal file name [OUTPUT/11920_Saturday_April_13_2024_10_26_20_PM_53141073/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(
    x)]`]]
```

$$
2 x y^{\prime \prime}+y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
2 x y^{\prime \prime}+y^{\prime}+2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =\frac{1}{x}
\end{aligned}
$$

Table 545: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{2 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
2 x y^{\prime \prime}+y^{\prime}+2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives
$2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0 \tag{2A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}=\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
2 x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
2 x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
$$

Or

$$
\left(2 x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(-1+2 r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
2 r^{2}-r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(-1+2 r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{1}{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)+2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{2 n^{2}+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{2}{2 r^{2}+3 r+1}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{1}=-\frac{2}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	$-\frac{2}{3}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=\frac{2}{15}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	$-\frac{2}{3}$
a_{2}	$\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}$	$\frac{2}{15}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{8}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=-\frac{4}{315}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	$-\frac{2}{3}$
a_{2}	$\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}$	$\frac{2}{15}$
a_{3}	$-\frac{8}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}$	$-\frac{4}{315}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{16 r^{8}+288 r^{7}+2184 r^{6}+9072 r^{5}+22449 r^{4}+33642 r^{3}+29531 r^{2}+13698 r+2520}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{2}{2835}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	$-\frac{2}{3}$
a_{2}	$\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}$	$\frac{2}{15}$
a_{3}	$-\frac{8}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}$	$-\frac{4}{315}$
a_{4}	$\frac{16}{16 r^{8}+288 r^{7}+2184 r^{6}+9072 r^{5}+22449 r^{4}+33642 r^{3}+29531 r^{2}+13698 r+2520}$	$\frac{2}{2835}$

For $n=5$, using the above recursive equation gives
$a_{5}=-\frac{32}{32 r^{10}+880 r^{9}+10560 r^{8}+72600 r^{7}+315546 r^{6}+902055 r^{5}+1708465 r^{4}+2102375 r^{3}+1594197 r}$
Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=-\frac{4}{155925}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	$-\frac{1}{3}$
a_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	$-\frac{2}{3}$
a_{2}	$\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}$	$\frac{2}{15}$
a_{3}	$-\frac{8}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}$	$-\frac{4}{315}$
a_{4}	$\frac{16}{16 r^{8}+288 r^{7}+2184 r^{6}+9072 r^{5}+2244 r^{4}+33642 r^{3}+29531 r^{2}+13698 r+2520}$	$\frac{2}{2835}$
a_{5}	$-\frac{32}{32 r^{10}+880 r^{9}+10560 r^{8}+72600 r^{7}+315546 r^{6}+902055 r^{5}+1708465 r^{4}+2102375 r^{3}+1594197 r^{2}+664290 r+113400}$	$-\frac{4}{155925}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{2 x}{3}+\frac{2 x^{2}}{15}-\frac{4 x^{3}}{315}+\frac{2 x^{4}}{2835}-\frac{4 x^{5}}{155925}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+(n+r) b_{n}+2 b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{2 b_{n-1}}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
b_{n}=-\frac{2 b_{n-1}}{n(2 n-1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{2}{2 r^{2}+3 r+1}
$$

Which for the root $r=0$ becomes

$$
b_{1}=-2
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	-2

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
$$

Which for the root $r=0$ becomes

$$
b_{2}=\frac{2}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	-2
b_{2}	$\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}$	$\frac{2}{3}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{8}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}
$$

Which for the root $r=0$ becomes

$$
b_{3}=-\frac{4}{45}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	-2
b_{2}	$\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}$	$\frac{2}{3}$
b_{3}	$-\frac{8}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}$	$-\frac{4}{45}$

For $n=4$, using the above recursive equation gives
$b_{4}=\frac{16}{16 r^{8}+288 r^{7}+2184 r^{6}+9072 r^{5}+22449 r^{4}+33642 r^{3}+29531 r^{2}+13698 r+2520}$
Which for the root $r=0$ becomes

$$
b_{4}=\frac{2}{315}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	-2
b_{2}	$\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}$	8
b_{3}	$-\frac{2}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90} \frac{16}{3}$	
b_{4}	$\frac{4}{16 r^{8}+288 r^{7}+2184 r^{6}+9072 r^{5}+22449 r^{4}+33642 r^{3}+29531 r^{2}+13698 r+2520}$	$\frac{2}{45}$

For $n=5$, using the above recursive equation gives
$b_{5}=-\frac{32}{32 r^{10}+880 r^{9}+10560 r^{8}+72600 r^{7}+315546 r^{6}+902055 r^{5}+1708465 r^{4}+2102375 r^{3}+1594197 r}$
Which for the root $r=0$ becomes

$$
b_{5}=-\frac{4}{14175}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2}{2 r^{2}+3 r+1}$	-2
b_{2}	$\frac{4}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}$	$\frac{2}{3}$
b_{3}	$-\frac{8}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}$	$-\frac{4}{45}$
b_{4}	$\frac{16}{16 r^{8}+288 r^{7}+2184 r^{6}+9072 r^{5}+22449 r^{4}+33642 r^{3}+29531 r^{2}+13698 r+2520}$	$\frac{2}{315}$
b_{5}	$-\frac{32}{32 r^{10}+880 r^{9}+10560 r^{8}+72600 r^{7}+315546 r^{6}+902055 r^{5}+1708465 r^{4}+2102375 r^{3}+1594197 r^{2}+664290 r+113400}$	$-\frac{4}{14175}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1-2 x+\frac{2 x^{2}}{3}-\frac{4 x^{3}}{45}+\frac{2 x^{4}}{315}-\frac{4 x^{5}}{14175}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-\frac{2 x}{3}+\frac{2 x^{2}}{15}-\frac{4 x^{3}}{315}+\frac{2 x^{4}}{2835}-\frac{4 x^{5}}{155925}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-2 x+\frac{2 x^{2}}{3}-\frac{4 x^{3}}{45}+\frac{2 x^{4}}{315}-\frac{4 x^{5}}{14175}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1-\frac{2 x}{3}+\frac{2 x^{2}}{15}-\frac{4 x^{3}}{315}+\frac{2 x^{4}}{2835}-\frac{4 x^{5}}{155925}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-2 x+\frac{2 x^{2}}{3}-\frac{4 x^{3}}{45}+\frac{2 x^{4}}{315}-\frac{4 x^{5}}{14175}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x}\left(1-\frac{2 x}{3}+\frac{2 x^{2}}{15}-\frac{4 x^{3}}{315}+\frac{2 x^{4}}{2835}-\frac{4 x^{5}}{155925}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2}\left(1-2 x+\frac{2 x^{2}}{3}-\frac{4 x^{3}}{45}+\frac{2 x^{4}}{315}-\frac{4 x^{5}}{14175}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{2 x}{3}+\frac{2 x^{2}}{15}-\frac{4 x^{3}}{315}+\frac{2 x^{4}}{2835}-\frac{4 x^{5}}{155925}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-2 x+\frac{2 x^{2}}{3}-\frac{4 x^{3}}{45}+\frac{2 x^{4}}{315}-\frac{4 x^{5}}{14175}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

15.10.1 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime} x+y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{2 x}-\frac{y}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{2 x}+\frac{y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{1}{2 x}, P_{3}(x)=\frac{1}{x}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
2 y^{\prime \prime} x+y^{\prime}+2 y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$
$y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(-1+2 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(2 k+1+2 r)+2 a_{k}\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-1+2 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{0, \frac{1}{2}\right\}
$$

- Each term in the series must be 0 , giving the recursion relation

$$
2\left(k+r+\frac{1}{2}\right)(k+1+r) a_{k+1}+2 a_{k}=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{2 a_{k}}{(2 k+1+2 r)(k+1+r)}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=-\frac{2 a_{k}}{(2 k+1)(k+1)}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{2 a_{k}}{(2 k+1)(k+1)}\right]
$$

- \quad Recursion relation for $r=\frac{1}{2}$

$$
a_{k+1}=-\frac{2 a_{k}}{(2 k+2)\left(k+\frac{3}{2}\right)}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=-\frac{2 a_{k}}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{1+k}=-\frac{2 a_{k}}{(2 k+1)(1+k)}, b_{1+k}=-\frac{2 b_{k}}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 44

```
Order:=6;
dsolve(2*x*diff (y(x),x$2)+diff (y (x), x)+2*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1-\frac{2}{3} x+\frac{2}{15} x^{2}-\frac{4}{315} x^{3}+\frac{2}{2835} x^{4}-\frac{4}{155925} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(1-2 x+\frac{2}{3} x^{2}-\frac{4}{45} x^{3}+\frac{2}{315} x^{4}-\frac{4}{14175} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 83
AsymptoticDSolveValue[2*x*y' ' $[\mathrm{x}]+\mathrm{y}$ ' $[\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt{x}\left(-\frac{4 x^{5}}{155925}+\frac{2 x^{4}}{2835}-\frac{4 x^{3}}{315}+\frac{2 x^{2}}{15}-\frac{2 x}{3}+1\right) \\
& +c_{2}\left(-\frac{4 x^{5}}{14175}+\frac{2 x^{4}}{315}-\frac{4 x^{3}}{45}+\frac{2 x^{2}}{3}-2 x+1\right)
\end{aligned}
$$

15.11 problem 11

15.11.1 Maple step by step solution .4156

Internal problem ID [11912]
Internal file name [OUTPUT/11921_Saturday_April_13_2024_10_26_21_PM_33879010/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
3 x y^{\prime \prime}-(x-2) y^{\prime}-2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
3 x y^{\prime \prime}+(-x+2) y^{\prime}-2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x-2}{3 x} \\
& q(x)=-\frac{2}{3 x}
\end{aligned}
$$

Table 547: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x-2}{3 x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{2}{3 x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
3 x y^{\prime \prime}+(-x+2) y^{\prime}-2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 3\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +(-x+2)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r-1}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
3 x^{n+r-1} a_{n}(n+r)(n+r-1)+2(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
3 x^{-1+r} a_{0} r(-1+r)+2 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(3 x^{-1+r} r(-1+r)+2 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(-1+3 r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
3 r^{2}-r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(-1+3 r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{1}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{3}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
3 a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+2 a_{n}(n+r)-2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r+1)}{3 n^{2}+6 n r+3 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
\begin{equation*}
a_{n}=\frac{3 n a_{n-1}+4 a_{n-1}}{9 n^{2}+3 n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{3}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{2+r}{3 r^{2}+5 r+2}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
a_{1}=\frac{7}{12}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	$\frac{7}{12}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
a_{2}=\frac{5}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	$\frac{7}{12}$
a_{2}	$\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}$	$\frac{5}{36}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{4+r}{27 r^{4}+162 r^{3}+333 r^{2}+278 r+80}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
a_{3}=\frac{13}{648}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	$\frac{7}{12}$
a_{2}	$\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}$	$\frac{5}{36}$
a_{3}	$\frac{4+r}{27 r^{4}+162 r^{3}+333 r^{2}+278 r+80}$	$\frac{13}{648}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{5+r}{81 r^{5}+783 r^{4}+2781 r^{3}+4497 r^{2}+3298 r+880}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
a_{4}=\frac{1}{486}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	$\frac{7}{12}$
a_{2}	$\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}$	$\frac{5}{36}$
a_{3}	$\frac{4+r}{27 r^{4}+162 r^{3}+333 r^{2}+278 r+80}$	$\frac{13}{648}$
a_{4}	$\frac{51 r^{5}+783 r^{4}+2781 r^{3}+4497 r^{2}+3298 r+880}{818}$	$\frac{1}{486}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{6+r}{243 r^{6}+3483 r^{5}+19305 r^{4}+52425 r^{3}+72852 r^{2}+48812 r+12320}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
a_{5}=\frac{19}{116640}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	$\frac{7}{12}$
a_{2}	$\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}$	$\frac{5}{36}$
a_{3}	$\frac{4+r}{27 r^{4}+162 r^{3}+333 r^{2}+278 r+80}$	$\frac{13}{648}$
a_{4}	$\frac{5+r}{81 r^{5}+783 r^{4}+2781 r^{3}+4497 r^{2}+3298 r+880}$	$\frac{1}{486}$
a_{5}	$\frac{6+r}{243 r^{6}+3483 r^{5}+19305 r^{4}+52425 r^{3}+72852 r^{2}+48812 r+12320}$	$\frac{19}{116640}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{3}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{3}}\left(1+\frac{7 x}{12}+\frac{5 x^{2}}{36}+\frac{13 x^{3}}{648}+\frac{x^{4}}{486}+\frac{19 x^{5}}{116640}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
3 b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)+2(n+r) b_{n}-2 b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(n+r+1)}{3 n^{2}+6 n r+3 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(n+1)}{n(3 n-1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{2+r}{3 r^{2}+5 r+2}
$$

Which for the root $r=0$ becomes

$$
b_{1}=1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	1

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}
$$

Which for the root $r=0$ becomes

$$
b_{2}=\frac{3}{10}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	1
b_{2}	$\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}$	$\frac{3}{10}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{4+r}{27 r^{4}+162 r^{3}+333 r^{2}+278 r+80}
$$

Which for the root $r=0$ becomes

$$
b_{3}=\frac{1}{20}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	1
b_{2}	$\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}$	$\frac{3}{10}$
b_{3}	$\frac{4+r}{27 r^{4}+162 r^{3}+333 r^{2}+278 r+80}$	$\frac{1}{20}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{5+r}{81 r^{5}+783 r^{4}+2781 r^{3}+4497 r^{2}+3298 r+880}
$$

Which for the root $r=0$ becomes

$$
b_{4}=\frac{1}{176}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	1
b_{2}	$\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}$	$\frac{3}{10}$
b_{3}	$\frac{4+r}{27 r^{4}+162 r^{3}+333 r^{2}+278 r+80}$	$\frac{1}{20}$
b_{4}	$\frac{5+r}{81 r^{5}+783 r^{4}+2781 r^{3}+4497 r^{2}+3298 r+880}$	$\frac{1}{176}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{6+r}{243 r^{6}+3483 r^{5}+19305 r^{4}+52425 r^{3}+72852 r^{2}+48812 r+12320}
$$

Which for the root $r=0$ becomes

$$
b_{5}=\frac{3}{6160}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2+r}{3 r^{2}+5 r+2}$	1
b_{2}	$\frac{3+r}{9 r^{3}+30 r^{2}+31 r+10}$	$\frac{3}{10}$
b_{3}	$\frac{4+r}{27 r^{4}+162 r^{3}+333 r^{2}+278 r+80}$	$\frac{1}{20}$
b_{4}	$\frac{5+r}{81 r^{5}+783 r^{4}+2781 r^{3}+4497 r^{2}+3298 r+880}$	$\frac{1}{176}$
b_{5}	$\frac{6+r}{243 r^{6}+3483 r^{5}+19305 r^{4}+52425 r^{3}+72852 r^{2}+48812 r+12320}$	$\frac{3}{6160}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1+x+\frac{3 x^{2}}{10}+\frac{x^{3}}{20}+\frac{x^{4}}{176}+\frac{3 x^{5}}{6160}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{1}{3}}\left(1+\frac{7 x}{12}+\frac{5 x^{2}}{36}+\frac{13 x^{3}}{648}+\frac{x^{4}}{486}+\frac{19 x^{5}}{116640}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+x+\frac{3 x^{2}}{10}+\frac{x^{3}}{20}+\frac{x^{4}}{176}+\frac{3 x^{5}}{6160}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{1}{3}}\left(1+\frac{7 x}{12}+\frac{5 x^{2}}{36}+\frac{13 x^{3}}{648}+\frac{x^{4}}{486}+\frac{19 x^{5}}{116640}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+x+\frac{3 x^{2}}{10}+\frac{x^{3}}{20}+\frac{x^{4}}{176}+\frac{3 x^{5}}{6160}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{1}{3}}\left(1+\frac{7 x}{12}+\frac{5 x^{2}}{36}+\frac{13 x^{3}}{648}+\frac{x^{4}}{486}+\frac{19 x^{5}}{116640}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2}\left(1+x+\frac{3 x^{2}}{10}+\frac{x^{3}}{20}+\frac{x^{4}}{176}+\frac{3 x^{5}}{6160}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{1}{3}}\left(1+\frac{7 x}{12}+\frac{5 x^{2}}{36}+\frac{13 x^{3}}{648}+\frac{x^{4}}{486}+\frac{19 x^{5}}{116640}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+x+\frac{3 x^{2}}{10}+\frac{x^{3}}{20}+\frac{x^{4}}{176}+\frac{3 x^{5}}{6160}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

15.11.1 Maple step by step solution

Let's solve

$$
3 y^{\prime \prime} x+(-x+2) y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{2 y}{3 x}+\frac{(x-2) y^{\prime}}{3 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{(x-2) y^{\prime}}{3 x}-\frac{2 y}{3 x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x-2}{3 x}, P_{3}(x)=-\frac{2}{3 x}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{2}{3}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$3 y^{\prime \prime} x+(-x+2) y^{\prime}-2 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$

$$
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-1+3 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(3 k+2+3 r)-a_{k}(k+r+2)\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-1+3 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{0, \frac{1}{3}\right\}
$$

- Each term in the series must be 0, giving the recursion relation
$3\left(k+\frac{2}{3}+r\right)(k+1+r) a_{k+1}-a_{k}(k+r+2)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r+2)}{(3 k+2+3 r)(k+1+r)}$
- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}(k+2)}{(3 k+2)(k+1)}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}(k+2)}{(3 k+2)(k+1)}\right]
$$

- \quad Recursion relation for $r=\frac{1}{3}$
$a_{k+1}=\frac{a_{k}\left(k+\frac{7}{3}\right)}{(3 k+3)\left(k+\frac{4}{3}\right)}$
- \quad Solution for $r=\frac{1}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{3}}, a_{k+1}=\frac{a_{k}\left(k+\frac{7}{3}\right)}{(3 k+3)\left(k+\frac{4}{3}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{3}}\right), a_{1+k}=\frac{a_{k}(k+2)}{(3 k+2)(1+k)}, b_{1+k}=\frac{b_{k}\left(k+\frac{7}{3}\right)}{(3 k+3)\left(k+\frac{4}{3}\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
    <- special function solution successful
        Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form for at least one hypergeometric solution is achieved - returning wi
    <- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 44

```
Order:=6;
dsolve(3*x*diff(y(x),x$2)-(x-2)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{\frac{1}{3}}\left(1+\frac{7}{12} x+\frac{5}{36} x^{2}+\frac{13}{648} x^{3}+\frac{1}{486} x^{4}+\frac{19}{116640} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(1+x+\frac{3}{10} x^{2}+\frac{1}{20} x^{3}+\frac{1}{176} x^{4}+\frac{3}{6160} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 81
AsymptoticDSolveValue[3*x*y' $[\mathrm{x}]-(\mathrm{x}-2) * \mathrm{y}$ ' $[\mathrm{x}]-2 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$
$y(x) \rightarrow c_{1} \sqrt[3]{x}\left(\frac{19 x^{5}}{116640}+\frac{x^{4}}{486}+\frac{13 x^{3}}{648}+\frac{5 x^{2}}{36}+\frac{7 x}{12}+1\right)+c_{2}\left(\frac{3 x^{5}}{6160}+\frac{x^{4}}{176}+\frac{x^{3}}{20}+\frac{3 x^{2}}{10}+x\right.$
$+1)$

15.12 problem 12

15.12.1 Maple step by step solution . 4169

Internal problem ID [11913]
Internal file name [OUTPUT/11922_Saturday_April_13_2024_10_26_22_PM_18318295/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

$$
x y^{\prime \prime}+2 y^{\prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}+2 y^{\prime}+y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=1
\end{aligned}
$$

Table 549: Table $p(x), q(x)$ singularites.

$p(x)=\frac{2}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=1$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}+2 y^{\prime}+y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+2\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)+2(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)+2 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)+2 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r(1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(1+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{r^{2}+5 r+6}
$$

Which for the root $r=0$ becomes

$$
a_{2}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{6}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{6}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}$	$\frac{1}{120}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}$	$\frac{1}{120}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if
C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-1} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+2(n+r) b_{n}+b_{n-2}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)+2(n-1) b_{n}+b_{n-2}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}-n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{1}{r^{2}+5 r+6}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}$	$\frac{1}{24}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x}
$$

Verified OK.

15.12.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+2 y^{\prime}+y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y^{\prime}}{x}+y=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{2}{x}, P_{3}(x)=1\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+2 y^{\prime}+y x=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
\square
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}$
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(1+r) x^{-1+r}+a_{1}(1+r)(2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)(k+2+r)+a_{k-1}\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r(1+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{-1,0\}
$$

- Each term must be 0
$a_{1}(1+r)(2+r)=0$
- Each term in the series must be 0 , giving the recursion relation

$$
a_{k+1}(k+r+1)(k+2+r)+a_{k-1}=0
$$

- \quad Shift index using $k->k+1$
$a_{k+2}(k+2+r)(k+3+r)+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}}{(k+2+r)(k+3+r)}$
- \quad Recursion relation for $r=-1$
$a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}$
- \quad Solution for $r=-1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}, 0=0\right]$
- Recursion relation for $r=0$
$a_{k+2}=-\frac{a_{k}}{(k+2)(k+3)}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+3)}, 2 a_{1}=0\right]$
- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{k+2}=-\frac{a_{k}}{(1+k)(k+2)}, 0=0, b_{k+2}=-\frac{b_{k}}{(k+2)(k+3)}, 2 b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 32

```
Order:=6;
dsolve(x*diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+2*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+\textrm{x}*\textrm{y}(\textrm{x})=0,y(x),type='series', x=0)
```

$$
y(x)=c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 42

```
AsymptoticDSolveValue[x*y'' [x]+2*y'[x]+x*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{1}\left(\frac{x^{3}}{24}-\frac{x}{2}+\frac{1}{x}\right)+c_{2}\left(\frac{x^{4}}{120}-\frac{x^{2}}{6}+1\right)
$$

15.13 problem 13

15.13.1 Maple step by step solution

Internal problem ID [11914]
Internal file name [OUTPUT/11923_Saturday_April_13_2024_10_26_23_PM_34633178/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type [[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4 x^{2}-1}{4 x^{2}}
\end{aligned}
$$

Table 551: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{4 x^{2}-1}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(x^{2}-\frac{1}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-\frac{a_{n} x^{n+r}}{4}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-\frac{a_{0} x^{r}}{4}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-\frac{x^{r}}{4}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-\frac{1}{4}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sqrt{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-\frac{a_{n}}{4}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{4}{4 r^{2}+16 r+15}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{120}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{120}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{1}{2}} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+b_{n}\left(n-\frac{1}{2}\right)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{5}
\end{equation*}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}-4 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{4}{4 r^{2}+16 r+15}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{24}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
$$

Verified OK.

15.13.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$4 y^{\prime \prime} x^{2}+4 y^{\prime} x+\left(4 x^{2}-1\right) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k}-\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}
$$

- \quad Each term must be 0
$a_{1}(3+2 r)(1+2 r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}
$$

- Recursion relation for $r=-\frac{1}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}
$$

- \quad Solution for $r=-\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]
$$

- \quad Recursion relation for $r=\frac{1}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 35

```
Order:=6;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series', x=0)
```

$$
y(x)=\frac{c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}+\mathrm{O}\left(x^{6}\right)\right) x+c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 58
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' $\left.'[x]+x * y '[x]+\left(x^{\wedge} 2-1 / 4\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{7 / 2}}{24}-\frac{x^{3 / 2}}{2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{x^{9 / 2}}{120}-\frac{x^{5 / 2}}{6}+\sqrt{x}\right)
$$

15.14 problem 14

15.14.1 Maple step by step solution 4195

Internal problem ID [11915]
Internal file name [OUTPUT/11924_Saturday_April_13_2024_10_26_24_PM_10607916/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+\left(x^{4}+x\right) y^{\prime}-y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{4}+x\right) y^{\prime}-y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{x^{3}+1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Table 553: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x^{3}+1}{x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=-\frac{1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{4}+x\right) y^{\prime}-y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& +\left(x^{4}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r+3} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+3} a_{n}(n+r)=\sum_{n=3}^{\infty} a_{n-3}(n-3+r) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=3}^{\infty} a_{n-3}(n-3+r) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=0
$$

For $3 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-3}(n-3+r)+a_{n}(n+r)-a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-3}(n-3+r)}{n^{2}+2 n r+r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-3}(n-2)}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{r}{r^{2}+6 r+8}
$$

Which for the root $r=1$ becomes

$$
a_{3}=-\frac{1}{15}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	$-\frac{r}{r^{2}+6 r+8}$	$-\frac{1}{15}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	$-\frac{r}{r^{2}+6 r+8}$	$-\frac{1}{15}$
a_{4}	0	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	$-\frac{r}{r^{2}+6 r+8}$	$-\frac{1}{15}$
a_{4}	0	0
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{x^{3}}{15}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-1} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

Substituting $n=2$ in $\mathrm{Eq}(3)$ gives

$$
b_{2}=0
$$

For $3 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n-3}(n-3+r)+b_{n}(n+r)-b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)+b_{n-3}(n-4)+b_{n}(n-1)-b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-3}(n-3+r)}{n^{2}+2 n r+r^{2}-1} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-3}(n-4)}{n^{2}-2 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{r}{r^{2}+6 r+8}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=\frac{1}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	$-\frac{r}{r^{2}+6 r+8}$	$\frac{1}{3}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	$-\frac{r}{r^{2}+6 r+8}$	$\frac{1}{3}$
b_{4}	0	0

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	$-\frac{r}{r^{2}+6 r+8}$	$\frac{1}{3}$
b_{4}	0	0
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+\frac{x^{3}}{3}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1-\frac{x^{3}}{15}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x^{3}}{3}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =c_{1} x\left(1-\frac{x^{3}}{15}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x^{3}}{3}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x\left(1-\frac{x^{3}}{15}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x^{3}}{3}+O\left(x^{6}\right)\right)}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x\left(1-\frac{x^{3}}{15}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x^{3}}{3}+O\left(x^{6}\right)\right)}{x}
$$

Verified OK.

15.14.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+\left(x^{4}+x\right) y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y}{x^{2}}-\frac{\left(x^{3}+1\right) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(x^{3}+1\right) y^{\prime}}{x}-\frac{y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{x^{3}+1}{x}, P_{3}(x)=-\frac{1}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}+x\left(x^{3}+1\right) y^{\prime}-y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .4$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-1+r) x^{r}+a_{1}(2+r) r x^{1+r}+a_{2}(3+r)(1+r) x^{2+r}+\left(\sum_{k=3}^{\infty}\left(a_{k}(k+r+1)(k+r-\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,1\}$
- \quad The coefficients of each power of x must be 0
$\left[a_{1}(2+r) r=0, a_{2}(3+r)(1+r)=0\right]$
- \quad Solve for the dependent coefficient(s)
$\left\{a_{1}=0, a_{2}=0\right\}$
- \quad Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k+r-1)+a_{k-3}(k-3+r)=0$
- \quad Shift index using $k->k+3$
$a_{k+3}(k+4+r)(k+2+r)+a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+3}=-\frac{a_{k}(k+r)}{(k+4+r)(k+2+r)}$
- \quad Recursion relation for $r=-1$

$$
a_{k+3}=-\frac{a_{k}(k-1)}{(k+3)(k+1)}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+3}=-\frac{a_{k}(k-1)}{(k+3)(k+1)}, a_{1}=0, a_{2}=0\right]
$$

- \quad Recursion relation for $r=1$

$$
a_{k+3}=-\frac{a_{k}(k+1)}{(k+5)(k+3)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+3}=-\frac{a_{k}(k+1)}{(k+5)(k+3)}, a_{1}=0, a_{2}=0\right]
$$

- \quad Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{1+k}\right), a_{k+3}=-\frac{a_{k}(k-1)}{(k+3)(1+k)}, a_{1}=0, a_{2}=0, b_{k+3}=-\frac{b_{k}(1+k)}{(k+5)(k+3)}, b_{1}=\right.
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful`
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 29

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+(x^4+x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=c_{1} x\left(1-\frac{1}{15} x^{3}+\mathrm{O}\left(x^{6}\right)\right)+\frac{c_{2}\left(-2-\frac{2}{3} x^{3}+\mathrm{O}\left(x^{6}\right)\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 30
AsymptoticDSolveValue [x^2*y' $\left.\quad[x]+\left(x^{\wedge} 4+x\right) * y '[x]-y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{4}}{15}\right)+c_{1}\left(\frac{x^{2}}{3}+\frac{1}{x}\right)
$$

15.15 problem 15

15.15.1 Maple step by step solution 4208

Internal problem ID [11916]
Internal file name [OUTPUT/11925_Saturday_April_13_2024_10_26_24_PM_69209561/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

$$
x y^{\prime \prime}-\left(x^{2}+2\right) y^{\prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}+\left(-x^{2}-2\right) y^{\prime}+y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x^{2}+2}{x} \\
& q(x)=1
\end{aligned}
$$

Table 555: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x^{2}+2}{x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=1$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}+\left(-x^{2}-2\right) y^{\prime}+y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +\left(-x^{2}-2\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
$$

Which simplifies to

$$
\begin{gather*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
\quad+\sum_{n=0}^{\infty}\left(-2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0
\end{gather*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2}(n+r-2) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=2}^{\infty}\left(-a_{n-2}(n+r-2) x^{n+r-1}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)-2(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)-2 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)-2 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(-3+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r(-3+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=3 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(-3+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{3}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+3} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-2}(n+r-2)-2 a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-2}}{n+r} \tag{4}
\end{equation*}
$$

Which for the root $r=3$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-2}}{n+3} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=3$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{2+r}
$$

Which for the root $r=3$ becomes

$$
a_{2}=\frac{1}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{1}{2+r}$	$\frac{1}{5}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{1}{2+r}$	$\frac{1}{5}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(2+r)(4+r)}
$$

Which for the root $r=3$ becomes

$$
a_{4}=\frac{1}{35}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{1}{2+r}$	$\frac{1}{5}$
a_{3}	0	0
a_{4}	$\frac{1}{(2+r)(4+r)}$	$\frac{1}{35}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{1}{2+r}$	$\frac{1}{5}$
a_{3}	0	0
a_{4}	$\frac{1}{(2+r)(4+r)}$	$\frac{1}{35}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{3}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{3}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{35}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow 0} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the \log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n-2}(n+r-2)-2(n+r) b_{n}+b_{n-2}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=0$ becomes

$$
\begin{equation*}
b_{n} n(n-1)-b_{n-2}(n-2)-2 n b_{n}+b_{n-2}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n+r} \tag{5}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-2}}{n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1}{2+r}
$$

Which for the root $r=0$ becomes

$$
b_{2}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{1}{2+r}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{1}{2+r}$	$\frac{1}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{(2+r)(4+r)}
$$

Which for the root $r=0$ becomes

$$
b_{4}=\frac{1}{8}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{1}{2+r}$	$\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{(2+r)(4+r)}$	$\frac{1}{8}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{1}{2+r}$	$\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{(2+r)(4+r)}$	$\frac{1}{8}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{3}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{35}+O\left(x^{6}\right)\right)+c_{2}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{3}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{35}+O\left(x^{6}\right)\right)+c_{2}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{35}+O\left(x^{6}\right)\right)+c_{2}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{35}+O\left(x^{6}\right)\right)+c_{2}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)\right)
$$

Verified OK.

15.15.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+\left(-x^{2}-2\right) y^{\prime}+y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2 nd derivative

$$
y^{\prime \prime}=\frac{\left(x^{2}+2\right) y^{\prime}}{x}-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{\left(x^{2}+2\right) y^{\prime}}{x}+y=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{x^{2}+2}{x}, P_{3}(x)=1\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $\quad x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x+\left(-x^{2}-2\right) y^{\prime}+y x=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(-3+r) x^{-1+r}+a_{1}(1+r)(-2+r) x^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+r+1)(k-2+r)-a_{k-1}(k-2+r\right.\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-3+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,3\}$
- Each term must be 0
$a_{1}(1+r)(-2+r)=0$
- Each term in the series must be 0 , giving the recursion relation
$(k-2+r)\left(a_{k+1}(k+r+1)-a_{k-1}\right)=0$
- \quad Shift index using $k->k+1$
$(k+r-1)\left(a_{k+2}(k+2+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=\frac{a_{k}}{k+2+r}
$$

- Recursion relation for $r=0$

$$
a_{k+2}=\frac{a_{k}}{k+2}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{a_{k}}{k+2},-2 a_{1}=0\right]
$$

- \quad Recursion relation for $r=3$

$$
a_{k+2}=\frac{a_{k}}{k+5}
$$

- \quad Solution for $r=3$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+3}, a_{k+2}=\frac{a_{k}}{k+5}, 4 a_{1}=0\right]$
- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+3}\right), a_{k+2}=\frac{a_{k}}{k+2},-2 a_{1}=0, b_{k+2}=\frac{b_{k}}{k+5}, 4 b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 32

```
Order:=6;
dsolve(x*diff (y(x),x$2)-(x^2+2)*diff (y(x),x)+x*y (x)=0,y(x),type='series', x=0);
```

$$
y(x)=c_{1} x^{3}\left(1+\frac{1}{5} x^{2}+\frac{1}{35} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(12+6 x^{2}+\frac{3}{2} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 44

AsymptoticDSolveValue $\left[\mathrm{x} * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]-\left(\mathrm{x}^{\wedge} 2+2\right) * \mathrm{y}\right.$ ' $\left.[\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{4}}{8}+\frac{x^{2}}{2}+1\right)+c_{2}\left(\frac{x^{7}}{35}+\frac{x^{5}}{5}+x^{3}\right)
$$

15.16 problem 16

15.16.1 Maple step by step solution 4222

Internal problem ID [11917]
Internal file name [OUTPUT/11926_Saturday_April_13_2024_10_26_25_PM_53530479/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x^{2} y^{\prime}-2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x^{2} y^{\prime}-2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-\frac{2}{x^{2}}
\end{aligned}
$$

Table 557: Table $p(x), q(x)$ singularites.

$p(x)=1$	
singularity	type

$q(x)=-\frac{2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x^{2} y^{\prime}-2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2}+x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)-2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(1+n)}{n(n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{r}{r^{2}+r-2}
$$

Which for the root $r=2$ becomes

$$
a_{1}=-\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1+r}{r^{3}+4 r^{2}+r-6}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{3}{20}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$
a_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{20}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{r^{3}+6 r^{2}+5 r-12}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{1}{30}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$
a_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{20}$
a_{3}	$-\frac{1}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{1}{30}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{1}{168}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$
a_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{20}$
a_{3}	$-\frac{1}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{1}{30}$
a_{4}	$\frac{1}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}$	$\frac{1}{168}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1}{\left(r^{2}+9 r+18\right)\left(r^{3}+6 r^{2}+3 r-10\right)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=-\frac{1}{1120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$
a_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{20}$
a_{3}	$-\frac{1}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{1}{30}$
a_{4}	$\frac{1}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}$	$\frac{1}{168}$
a_{5}	$-\frac{1}{\left(r^{2}+9 r+18\right)\left(r^{3}+6 r^{2}+3 r-10\right)}$	$-\frac{1}{1120}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1-\frac{x}{2}+\frac{3 x^{2}}{20}-\frac{x^{3}}{30}+\frac{x^{4}}{168}-\frac{x^{5}}{1120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =-\frac{1}{r^{3}+6 r^{2}+5 r-12}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{r^{3}+6 r^{2}+5 r-12} & =\lim _{r \rightarrow-1}-\frac{1}{r^{3}+6 r^{2}+5 r-12} \\
& =\frac{1}{12}
\end{aligned}
$$

The limit is $\frac{1}{12}$. Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n-1}(n+r-1)-2 b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)+b_{n-1}(n-2)-2 b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}(n-2)}{n^{2}-3 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{r}{r^{2}+r-2}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1+r}{\left(r^{2}+r-2\right)(r+3)}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$
b_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	0

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{1}{(r+4)(r+3)(-1+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=\frac{1}{12}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$
b_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{1}{(r+4)(r+3)(-1+r)}$	$\frac{1}{12}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{(r+4)(-1+r)\left(r^{2}+7 r+10\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=-\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$
b_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{1}{(r+4)(r+3)(-1+r)}$	$\frac{1}{12}$
b_{4}	$\frac{1}{(5+r)(2+r)(r+4)(-1+r)}$	$-\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{1}{(-1+r)\left(r^{2}+7 r+10\right)\left(r^{2}+9 r+18\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=\frac{1}{80}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{r^{2}+r-2}$	$-\frac{1}{2}$
b_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{1}{(r+4)(r+3)(-1+r)}$	$\frac{1}{12}$
b_{4}	$\frac{1}{(5+r)(2+r)(r+4)(-1+r)}$	$-\frac{1}{24}$
b_{5}	$-\frac{1}{(r+6)(r+3)(5+r)(-1+r)(2+r)}$	$\frac{1}{80}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{24}+\frac{x^{5}}{80}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

$$
=c_{1} x^{2}\left(1-\frac{x}{2}+\frac{3 x^{2}}{20}-\frac{x^{3}}{30}+\frac{x^{4}}{168}-\frac{x^{5}}{1120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{24}+\frac{x^{5}}{80}+O\left(x^{6}\right)\right)}{x}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
=c_{1} x^{2}\left(1-\frac{x}{2}+\frac{3 x^{2}}{20}-\frac{x^{3}}{30}+\frac{x^{4}}{168}-\frac{x^{5}}{1120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{24}+\frac{x^{5}}{80}+O\left(x^{6}\right)\right)}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1-\frac{x}{2}+\frac{3 x^{2}}{20}-\frac{x^{3}}{30}+\frac{x^{4}}{168}-\frac{x^{5}}{1120}+O\left(x^{6}\right)\right) \tag{1}\\
& +\frac{c_{2}\left(1-\frac{x}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{24}+\frac{x^{5}}{80}+O\left(x^{6}\right)\right)}{x}
\end{align*}
$$

Verification of solutions
$y=c_{1} x^{2}\left(1-\frac{x}{2}+\frac{3 x^{2}}{20}-\frac{x^{3}}{30}+\frac{x^{4}}{168}-\frac{x^{5}}{1120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{24}+\frac{x^{5}}{80}+O\left(x^{6}\right)\right)}{x}$
Verified OK.

15.16.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+x^{2} y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-y^{\prime}+\frac{2 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime}-\frac{2 y}{x^{2}}=0
$$

$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=1, P_{3}(x)=-\frac{2}{x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x^{2}+x^{2} y^{\prime}-2 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y^{\prime}$ to series expansion
$x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}$
- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-2)+a_{k-1}(k-1+r)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\{-1,2\}
$$

- Each term in the series must be 0 , giving the recursion relation

$$
a_{k}(k+r+1)(k+r-2)+a_{k-1}(k-1+r)=0
$$

- \quad Shift index using $k->k+1$

$$
a_{k+1}(k+2+r)(k-1+r)+a_{k}(k+r)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{a_{k}(k+r)}{(k+2+r)(k-1+r)}
$$

- Recursion relation for $r=-1$; series terminates at $k=1$
$a_{k+1}=-\frac{a_{k}(k-1)}{(k+1)(k-2)}$
- Apply recursion relation for $k=0$

$$
a_{1}=-\frac{a_{0}}{2}
$$

- Terminating series solution of the ODE for $r=-1$. Use reduction of order to find the second

$$
y=a_{0} \cdot\left(-\frac{x}{2}+1\right)
$$

- Recursion relation for $r=2$

$$
a_{k+1}=-\frac{a_{k}(k+2)}{(k+4)(k+1)}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=-\frac{a_{k}(k+2)}{(k+4)(k+1)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=a_{0} \cdot\left(-\frac{x}{2}+1\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), b_{1+k}=-\frac{b_{k}(k+2)}{(k+4)(1+k)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

```
Order:=6;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)+x^2*diff(y(x),x)-2*y(x)=0,y(x),type='series', x=0)
```

$$
\begin{aligned}
y(x)= & c_{1} x^{2}\left(1-\frac{1}{2} x+\frac{3}{20} x^{2}-\frac{1}{30} x^{3}+\frac{1}{168} x^{4}-\frac{1}{1120} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(12-6 x+x^{3}-\frac{1}{2} x^{4}+\frac{3}{20} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 63
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+x^{\wedge} \sim 2 * y$ ' $\left.[x]-2 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(-\frac{x^{3}}{24}+\frac{x^{2}}{12}+\frac{1}{x}-\frac{1}{2}\right)+c_{2}\left(\frac{x^{6}}{168}-\frac{x^{5}}{30}+\frac{3 x^{4}}{20}-\frac{x^{3}}{2}+x^{2}\right)
$$

15.17 problem 17

15.17.1 Maple step by step solution 4236

Internal problem ID [11918]
Internal file name [OUTPUT/11927_Saturday_April_13_2024_10_26_26_PM_76951881/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(2 x^{2}-x\right) y^{\prime \prime}+(2 x-2) y^{\prime}+\left(-2 x^{2}+3 x-2\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(2 x^{2}-x\right) y^{\prime \prime}+(2 x-2) y^{\prime}+\left(-2 x^{2}+3 x-2\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{2 x-2}{x(2 x-1)} \\
q(x) & =-\frac{2 x^{2}-3 x+2}{x(2 x-1)}
\end{aligned}
$$

Table 559: Table $p(x), q(x)$ singularites.

$p(x)=\frac{2 x-2}{x(2 x-1)}$	
singularity	type
$x=0$	"regular"
$x=\frac{1}{2}$	"regular"

$q(x)=-\frac{2 x^{2}-3 x+2}{x(2 x-1)}$	
singularity	type
$x=0$	"regular"
$x=\frac{1}{2}$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $\left[0, \frac{1}{2}\right]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
y^{\prime \prime} x(2 x-1)+(2 x-2) y^{\prime}+\left(-2 x^{2}+3 x-2\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x(2 x-1) \tag{1}\\
& +(2 x-2)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(-2 x^{2}+3 x-2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2(n+r) a_{n} x^{n+r-1}\right) \tag{2A}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1)(n+r-2) x^{n+r-1} \\
\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r-1} \\
\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}\right) & =\sum_{n=3}^{\infty}\left(-2 a_{n-3} x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n} & =\sum_{n=2}^{\infty} 3 a_{n-2} x^{n+r-1} \\
\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r-1}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers
of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right) \\
& +\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-2(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=3}^{\infty}\left(-2 a_{n-3} x^{n+r-1}\right) \\
& \quad+\left(\sum_{n=2}^{\infty} 3 a_{n-2} x^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
-x^{n+r-1} a_{n}(n+r)(n+r-1)-2(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
-x^{-1+r} a_{0} r(-1+r)-2 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(-x^{-1+r} r(-1+r)-2 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(-1-r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
-r(1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(-1-r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{-2+2 r}{r+2}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}
$$

For $3 \leq n$ the recursive equation is

$$
\begin{align*}
& 2 a_{n-1}(n+r-1)(n+r-2)-a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+2 a_{n-1}(n+r-1)-2 a_{n}(n+r)-2 a_{n-3}+3 a_{n-2}-2 a_{n-1}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 n^{2} a_{n-1}+4 n r a_{n-1}+2 r^{2} a_{n-1}-4 n a_{n-1}-4 r a_{n-1}-2 a_{n-3}+3 a_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=\frac{2 n^{2} a_{n-1}-4 n a_{n-1}-2 a_{n-3}+3 a_{n-2}}{n(1+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+2 r}{r+2}$	-1
a_{2}	$\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{8 r^{3}+2 r-4}{(r+4)(r+3)(r+2)}
$$

Which for the root $r=0$ becomes

$$
a_{3}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+2 r}{r+2}$	-1
a_{2}	$\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}$	$\frac{1}{2}$
a_{3}	$\frac{8 r^{3}+2 r-4}{(r+4)(r+3)(r+2)}$	$-\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16 r^{4}+32 r^{3}+12 r^{2}-20 r+5}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+2 r}{r+2}$	-1
a_{2}	$\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}$	$\frac{1}{2}$
a_{3}	$\frac{8 r^{3}+2 r-4}{(r+4)(r+3)(r+2)}$	$-\frac{1}{6}$
a_{4}	$\frac{16 r^{4}+32 r^{3}+12 r^{2}-20 r+5}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{32 r^{5}+160 r^{4}+232 r^{3}+8 r^{2}-78 r-6}{(r+6)(r+5)(r+4)(r+3)(r+2)}
$$

Which for the root $r=0$ becomes

$$
a_{5}=-\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+2 r}{r+2}$	-1
a_{2}	$\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}$	$\frac{1}{2}$
a_{3}	$\frac{8 r^{3}+2 r-4}{(r+4)(r+3)(r+2)}$	$-\frac{1}{6}$
a_{4}	$\frac{16 r^{4}+32 r^{3}+12 r^{2}-20 r+5}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}$	$\frac{1}{24}$
a_{5}	$\frac{32 r^{5}+160 r^{4}+232 r^{3}+8 r^{2}-78 r-6}{(r+6)(r+5)(r+4)(r+3)(r+2)}$	$-\frac{1}{120}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{-2+2 r}{r+2}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{-2+2 r}{r+2} & =\lim _{r \rightarrow-1} \frac{-2+2 r}{r+2} \\
& =-4
\end{aligned}
$$

The limit is -4 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=\frac{-2+2 r}{r+2}
$$

Substituting $n=2$ in $\mathrm{Eq}(3)$ gives

$$
b_{2}=\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}
$$

For $3 \leq n$ the recursive equation is

$$
\begin{align*}
& 2 b_{n-1}(n+r-1)(n+r-2)-b_{n}(n+r)(n+r-1) \tag{4}\\
& \quad+2 b_{n-1}(n+r-1)-2(n+r) b_{n}-2 b_{n-3}+3 b_{n-2}-2 b_{n-1}=0
\end{align*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{align*}
& 2 b_{n-1}(n-2)(n-3)-b_{n}(n-1)(n-2)+2 b_{n-1}(n-2) \tag{4~A}\\
& \quad-2(n-1) b_{n}-2 b_{n-3}+3 b_{n-2}-2 b_{n-1}=0
\end{align*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{2 n^{2} b_{n-1}+4 n r b_{n-1}+2 r^{2} b_{n-1}-4 n b_{n-1}-4 r b_{n-1}-2 b_{n-3}+3 b_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=\frac{2 n^{2} b_{n-1}-8 n b_{n-1}-2 b_{n-3}+3 b_{n-2}+6 b_{n-1}}{n^{2}-n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-2+2 r}{r+2}$	-4
b_{2}	$\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}$	$\frac{11}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{8 r^{3}+2 r-4}{\left(r^{2}+7 r+12\right)(r+2)}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=-\frac{7}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-2+2 r}{r+2}$	-4
b_{2}	$\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}$	$\frac{11}{2}$
b_{3}	$\frac{8 r^{3}+2 r-4}{(r+4)(r+3)(r+2)}$	$-\frac{7}{3}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16 r^{4}+32 r^{3}+12 r^{2}-20 r+5}{(r+3)(r+2)\left(r^{2}+9 r+20\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=\frac{7}{8}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-2+2 r}{r+2}$	-4
b_{2}	$\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}$	$\frac{11}{2}$
b_{3}	$\frac{8 r^{3}+2 r-4}{(r+4)(r+3)(r+2)}$	$-\frac{7}{3}$
b_{4}	$\frac{16 r^{4}+3 r^{3}+12 r^{2}-20 r+5}{(r+5)(r+4)(r+3)(r+2)}$	$\frac{7}{8}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{32 r^{5}+160 r^{4}+232 r^{3}+8 r^{2}-78 r-6}{\left(r^{2}+7 r+12\right)(r+2)\left(r^{2}+11 r+30\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=-\frac{1}{5}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-2+2 r}{r+2}$	-4
b_{2}	$\frac{4 r^{2}-4 r+3}{r^{2}+5 r+6}$	$\frac{11}{2}$
b_{3}	$\frac{8 r^{3}+2 r-4}{(r+4)(r+3)(r+2)}$	$-\frac{7}{3}$
b_{4}	$\frac{16 r^{4}+32 r^{3}+12 r^{2}-20 r+5}{(r+5)(r+4)(r+3)(r+2)}$	$\frac{7}{8}$
b_{5}	$\frac{32 r^{5}+160 r^{4}+232 r^{3}+8 r^{2}-78 r-6}{(r+6)(r+5)(r+4)(r+3)(r+2)}$	$-\frac{1}{5}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-4 x+\frac{11 x^{2}}{2}-\frac{7 x^{3}}{3}+\frac{7 x^{4}}{8}-\frac{x^{5}}{5}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-4 x+\frac{11 x^{2}}{2}-\frac{7 x^{3}}{3}+\frac{7 x^{4}}{8}-\frac{x^{5}}{5}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
=c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-4 x+\frac{11 x^{2}}{2}-\frac{7 x^{3}}{3}+\frac{7 x^{4}}{8}-\frac{x^{5}}{5}+O\left(x^{6}\right)\right)}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \tag{1}\\
& +\frac{c_{2}\left(1-4 x+\frac{11 x^{2}}{2}-\frac{7 x^{3}}{3}+\frac{7 x^{4}}{8}-\frac{x^{5}}{5}+O\left(x^{6}\right)\right)}{x}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-4 x+\frac{11 x^{2}}{2}-\frac{7 x^{3}}{3}+\frac{7 x^{4}}{8}-\frac{x^{5}}{5}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Verified OK.

15.17.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x(2 x-1)+(2 x-2) y^{\prime}+\left(-2 x^{2}+3 x-2\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{\left(2 x^{2}-3 x+2\right) y}{x(2 x-1)}-\frac{2(x-1) y^{\prime}}{x(2 x-1)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2(x-1) y^{\prime}}{x(2 x-1)}-\frac{\left(2 x^{2}-3 x+2\right) y}{x(2 x-1)}=0$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{2(x-1)}{x(2 x-1)}, P_{3}(x)=-\frac{2 x^{2}-3 x+2}{x(2 x-1)}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
$$

- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x(2 x-1)+(2 x-2) y^{\prime}+\left(-2 x^{2}+3 x-2\right) y=0
$$

- Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
-a_{0} r(1+r) x^{-1+r}+\left(-a_{1}(1+r)(2+r)+2 a_{0}(1+r)(-1+r)\right) x^{r}+\left(-a_{2}(2+r)(3+r)+2 a_{1}(\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-r(1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,0\}$
- \quad The coefficients of each power of x must be 0

$$
\left[-a_{1}(1+r)(2+r)+2 a_{0}(1+r)(-1+r)=0,-a_{2}(2+r)(3+r)+2 a_{1}(2+r) r+3 a_{0}=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=\frac{2 a_{0}(-1+r)}{2+r}, a_{2}=\frac{a_{0}\left(4 r^{2}-4 r+3\right)}{r^{2}+5 r+6}\right\}
$$

- Each term in the series must be 0, giving the recursion relation
$-a_{k+1}(k+r+1)(k+2+r)+2 k^{2} a_{k}+4 k r a_{k}+2 r^{2} a_{k}-2 a_{k}-2 a_{k-2}+3 a_{k-1}=0$
- \quad Shift index using $k->k+2$
$-a_{k+3}(k+3+r)(k+4+r)+2(k+2)^{2} a_{k+2}+4(k+2) r a_{k+2}+2 r^{2} a_{k+2}-2 a_{k+2}-2 a_{k}+3 a_{k+}$
- Recursion relation that defines series solution to ODE
$a_{k+3}=\frac{2 k^{2} a_{k+2}+4 k r a_{k+2}+2 r^{2} a_{k+2}+8 k a_{k+2}+8 r a_{k+2}-2 a_{k}+3 a_{k+1}+6 a_{k+2}}{(k+3+r)(k+4+r)}$
- \quad Recursion relation for $r=-1$
$a_{k+3}=\frac{2 k^{2} a_{k+2}+4 k a_{k+2}-2 a_{k}+3 a_{k+1}}{(k+2)(k+3)}$
- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+3}=\frac{2 k^{2} a_{k+2}+4 k a_{k+2}-2 a_{k}+3 a_{k+1}}{(k+2)(k+3)}, a_{1}=-4 a_{0}, a_{2}=\frac{11 a_{0}}{2}\right]
$$

- Recursion relation for $r=0$
$a_{k+3}=\frac{2 k^{2} a_{k+2}+8 k a_{k+2}-2 a_{k}+3 a_{k+1}+6 a_{k+2}}{(k+3)(k+4)}$
- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{2 k^{2} a_{k+2}+8 k a_{k+2}-2 a_{k}+3 a_{k+1}+6 a_{k+2}}{(k+3)(k+4)}, a_{1}=-a_{0}, a_{2}=\frac{a_{0}}{2}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{k+3}=\frac{2 k^{2} a_{k+2}+4 k a_{k+2}-2 a_{k}+3 a_{1+k}}{(k+2)(k+3)}, a_{1}=-4 a_{0}, a_{2}=\frac{11 a_{0}}{2}, b_{k+3}=\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 44

```
Order:=6;
dsolve((2*x^2-x)*diff (y(x),x$2)+(2*x-2)*\operatorname{diff}(y(x),x)+(-2*x^2+3*x-2)*y(x)=0,y(x),type='series
```

$$
\begin{aligned}
y(x)= & c_{1}\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-2 x+\frac{7}{2} x^{2}-\frac{4}{3} x^{3}+\frac{13}{24} x^{4}-\frac{7}{60} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 60
AsymptoticDSolveValue[(2*x^2-x)*y' ' $\left.[x]+(2 * x-2) * y '[x]+\left(-2 * x^{\wedge} 2+3 * x-2\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{7 x^{3}}{8}-\frac{7 x^{2}}{3}+\frac{11 x}{2}+\frac{1}{x}-4\right)+c_{2}\left(\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)
$$

15.18 problem 18

15.18.1 Maple step by step solution 4250

Internal problem ID [11919]
Internal file name [OUTPUT/11928_Saturday_April_13_2024_10_26_27_PM_76458216/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(
    x)]`]]
```

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\frac{3 y}{4}=0
$$

With the expansion point for the power series method at $x=0$.
The ode can be written as

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

Which shows it is a Euler ODE. The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{3}{4 x^{2}}
\end{aligned}
$$

Table 561: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{3}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : []
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x+3 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& -4\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+3\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)-4 x^{n+r} a_{n}(n+r)+3 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)-4 x^{r} a_{0} r+3 a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)-4 x^{r} r+3 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(4 r^{2}-8 r+3\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-8 r+3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(4 r^{2}-8 r+3\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\sqrt{x}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $0 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)-4 a_{n}(n+r)+3 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=0 \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=0 \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	0	0
a_{4}	0	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	0	0
a_{4}	0	0
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if
C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow \frac{1}{2}} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $0 \leq n$ the recursive equation is

$$
\begin{equation*}
4 b_{n}(n+r)(n+r-1)-4 b_{n}(n+r)+3 b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
4 b_{n}\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)-4 b_{n}\left(n+\frac{1}{2}\right)+3 b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=0 \tag{5}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}=0 \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	0	0
b_{4}	0	0

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	0	0
b_{4}	0	0
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{3}{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{3}{2}}\left(1+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{\frac{3}{2}}\left(1+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{\frac{3}{2}}\left(1+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{\frac{3}{2}}\left(1+O\left(x^{6}\right)\right)+c_{2} \sqrt{x}\left(1+O\left(x^{6}\right)\right)
$$

Verified OK.

15.18.1 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime} x^{2}-4 y^{\prime} x+3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{x}-\frac{3 y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{3 y}{4 x^{2}}=0
$$

- Multiply by denominators of the ODE
$4 y^{\prime \prime} x^{2}-4 y^{\prime} x+3 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$4\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{2}-4 \frac{d}{d t} y(t)+3 y(t)=0$
- \quad Simplify
$4 \frac{d^{2}}{d t^{2}} y(t)-8 \frac{d}{d t} y(t)+3 y(t)=0$
- Isolate 2 nd derivative
$\frac{d^{2}}{d t^{2}} y(t)=2 \frac{d}{d t} y(t)-\frac{3 y(t)}{4}$
- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)+\frac{3 y(t)}{4}=0$
- Characteristic polynomial of ODE
$r^{2}-2 r+\frac{3}{4}=0$
- Factor the characteristic polynomial
$\frac{(2 r-1)(2 r-3)}{4}=0$
- Roots of the characteristic polynomial
$r=\left(\frac{1}{2}, \frac{3}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{\frac{t}{2}}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{\frac{3 t}{2}}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{3 t}{2}}$
- Change variables back using $t=\ln (x)$
$y=c_{1} \sqrt{x}+c_{2} x^{\frac{3}{2}}$
- Simplify
$y=\sqrt{x}\left(c_{2} x+c_{1}\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 27

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+3/4*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\sqrt{x}\left(c_{1} x+c_{2}\right)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 20
AsymptoticDSolveValue $[\mathrm{x} \sim 2 * y$ ' ' $[\mathrm{x}]-\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+3 / 4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2} x^{3 / 2}+c_{1} \sqrt{x}
$$

15.19 problem 19

15.19.1 Maple step by step solution 4265

Internal problem ID [11920]
Internal file name [OUTPUT/11929_Saturday_April_13_2024_10_26_28_PM_82600808/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y(x-1)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y(x-1)=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{x-1}{x^{2}}
\end{aligned}
$$

Table 563: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x-1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+y^{\prime} x+y(x-1)=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)(x-1)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-1}-a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n^{2}+2 n r+r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{1}{r(r+2)}
$$

Which for the root $r=1$ becomes

$$
a_{1}=-\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r(r+2)}$	$-\frac{1}{3}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{r(r+2)(r+3)(r+1)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=\frac{1}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r(r+2)}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{r(r+2)(r+3)(r+1)}$	$\frac{1}{24}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{r(r+2)^{2}(r+3)(r+1)(r+4)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=-\frac{1}{360}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r(r+2)}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{r(r+2)(r+3)(r+1)}$	$\frac{1}{24}$
a_{3}	$-\frac{1}{r(r+2)^{2}(r+3)(r+1)(r+4)}$	$-\frac{1}{360}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r(r+2)^{2}(r+3)^{2}(r+1)(r+4)(r+5)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{8640}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r(r+2)}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{r(r+2)(r+3)(r+1)}$	$\frac{1}{24}$
a_{3}	$-\frac{1}{r(r+2)^{2}(r+3)(r+1)(r+4)}$	$-\frac{1}{360}$
a_{4}	$\frac{1}{r(r+2)^{2}(r+3)^{2}(r+1)(r+4)(r+5)}$	$\frac{1}{8640}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1}{r(r+2)^{2}(r+3)^{2}(r+1)(r+4)^{2}(r+5)(r+6)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=-\frac{1}{302400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r(r+2)}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{r(r+2)(r+3)(r+1)}$	$\frac{1}{24}$
a_{3}	$-\frac{1}{r(r+2)^{2}(r+3)(r+1)(r+4)}$	$-\frac{1}{360}$
a_{4}	$\frac{1}{r(r+2)^{2}(r+3)^{2}(r+1)(r+4)(r+5)}$	$\frac{1}{8640}$
a_{5}	$-\frac{1}{r(r+2)^{2}(r+3)^{2}(r+1)(r+4)^{2}(r+5)(r+6)}$	$-\frac{1}{302400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{1}{r(r+2)(r+3)(r+1)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{r(r+2)(r+3)(r+1)} & =\lim _{r \rightarrow-1} \frac{1}{r(r+2)(r+3)(r+1)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+y^{\prime} x+y(x-1)=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \\
& +\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) x \\
& +\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)(x-1)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime \prime}(x) x^{2}+y_{1}^{\prime}(x) x+y_{1}(x)(x-1)\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}+y_{1}(x)\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{7}\\
& +\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)(x-1)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime \prime}(x) x^{2}+y_{1}^{\prime}(x) x+y_{1}(x)(x-1)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}+y_{1}(x)\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{8}\\
& +\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)(x-1)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) C \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)(x-1)=0
\end{align*}
$$

Since $r_{1}=1$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(-2+n)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} x^{n} a_{n}(1+n)\right) C \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n}(n-1)\right) x+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)(x-1)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n) & =\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty} b_{n} x^{n} & =\sum_{n=1}^{\infty} b_{n-1} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=1}^{\infty} b_{n-1} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
b_{0}-b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
1-b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=1
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2$, Eq (2B) gives

$$
2 C+1=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{2}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
4 C a_{1}+b_{2}+3 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
3 b_{3}+\frac{2}{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{2}{9}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
6 C a_{2}+b_{3}+8 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8 b_{4}-\frac{25}{72}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=\frac{25}{576}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 C a_{3}+b_{4}+15 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
15 b_{5}+\frac{157}{2880}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{157}{43200}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{2}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & -\frac{1}{2}\left(x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +\frac{1+x-\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}-\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{2}\left(x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right)\right) \ln (x)\right. \\
& \left.+\frac{1+x-\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}-\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \\
& \left.+\frac{1+x-\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}-\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \tag{1}\\
& \left.+\frac{1+x-\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}-\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x}{3}+\frac{x^{2}}{24}-\frac{x^{3}}{360}+\frac{x^{4}}{8640}-\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \\
& \left.+\frac{1+x-\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}-\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

15.19.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+y^{\prime} x+y(x-1)=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}-\frac{(x-1) y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{(x-1) y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{x-1}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}+y^{\prime} x+y(x-1)=0
$$

- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-1+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-1)+a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,1\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k+r-1)+a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)(k+r)+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{a_{k}}{(k+2+r)(k+r)}$
- Recursion relation for $r=-1$

$$
a_{k+1}=-\frac{a_{k}}{(k+1)(k-1)}
$$

- Series not valid for $r=-1$, division by 0 in the recursion relation at $k=1$

$$
a_{k+1}=-\frac{a_{k}}{(k+1)(k-1)}
$$

- Recursion relation for $r=1$

$$
a_{k+1}=-\frac{a_{k}}{(k+3)(k+1)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{a_{k}}{(k+3)(k+1)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 63

```
Order:=6;
dsolve( }\mp@subsup{x}{}{~}2*\mathrm{ diff ( }y(x),x$2)+x*\operatorname{diff}(y(x),x)+(x-1)*y(x)=0,y(x),type='series', x=0)
```

$y(x)$
$=\frac{c_{1} x^{2}\left(1-\frac{1}{3} x+\frac{1}{24} x^{2}-\frac{1}{360} x^{3}+\frac{1}{8640} x^{4}-\frac{1}{302400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(x^{2}-\frac{1}{3} x^{3}+\frac{1}{24} x^{4}-\frac{1}{360} x^{5}+\mathrm{O}(x)\right.\right.}{x}$
\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 83
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+x * y$ ' $\left.[x]+(x-1) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{31 x^{4}-176 x^{3}+144 x^{2}+576 x+576}{576 x}-\frac{1}{48} x\left(x^{2}-8 x+24\right) \log (x)\right) \\
& +c_{2}\left(\frac{x^{5}}{8640}-\frac{x^{4}}{360}+\frac{x^{3}}{24}-\frac{x^{2}}{3}+x\right)
\end{aligned}
$$

15.20 problem 20

15.20.1 Maple step by step solution . 4281

Internal problem ID [11921]
Internal file name [OUTPUT/11930_Saturday_April_13_2024_10_26_29_PM_87387057/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+\left(x^{3}-x\right) y^{\prime}-3 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{3}-x\right) y^{\prime}-3 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{x^{2}-1}{x} \\
& q(x)=-\frac{3}{x^{2}}
\end{aligned}
$$

Table 565: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x^{2}-1}{x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=-\frac{3}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{3}-x\right) y^{\prime}-3 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& +\left(x^{3}-x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-3\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)=\sum_{n=2}^{\infty} a_{n-2}(n+r-2) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)-3 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r-3 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r-3 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-2 r-3\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2 r-3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=3 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-2 r-3\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=4$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{3}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+3} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-2}(n+r-2)-a_{n}(n+r)-3 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}(n+r-2)}{n^{2}+2 n r+r^{2}-2 n-2 r-3} \tag{4}
\end{equation*}
$$

Which for the root $r=3$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}(n+1)}{n(n+4)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=3$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{r}{r^{2}+2 r-3}
$$

Which for the root $r=3$ becomes

$$
a_{2}=-\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{r}{r^{2}+2 r-3}$	$-\frac{1}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{r}{r^{2}+2 r-3}$	$-\frac{1}{4}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r(2+r)}{r^{4}+8 r^{3}+14 r^{2}-8 r-15}
$$

Which for the root $r=3$ becomes

$$
a_{4}=\frac{5}{128}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{r}{r^{2}+2 r-3}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{r(2+r)}{r^{4}+8 r^{3}+14 r^{2}-8 r-15}$	$\frac{5}{128}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{r}{r^{2}+2 r-3}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{r(2+r)}{r^{4}+8 r^{3}+14 r^{2}-8 r-15}$	$\frac{5}{128}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{3}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=4$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{4}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{4} \\
& =\frac{r(2+r)}{r^{4}+8 r^{3}+14 r^{2}-8 r-15}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{r(2+r)}{r^{4}+8 r^{3}+14 r^{2}-8 r-15} & =\lim _{r \rightarrow-1} \frac{r(2+r)}{r^{4}+8 r^{3}+14 r^{2}-8 r-15} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+\left(x^{3}-x\right) y^{\prime}-3 y=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \\
& +\left(x^{3}-x\right)\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& -3 C y_{1}(x) \ln (x)-3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime \prime}(x) x^{2}+\left(x^{3}-x\right) y_{1}^{\prime}(x)-3 y_{1}(x)\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}\right. \\
& \left.+\frac{\left(x^{3}-x\right) y_{1}(x)}{x}\right) C+\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{7}\\
& +\left(x^{3}-x\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)-3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime \prime}(x) x^{2}+\left(x^{3}-x\right) y_{1}^{\prime}(x)-3 y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}+\frac{\left(x^{3}-x\right) y_{1}(x)}{x}\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{8}\\
& +\left(x^{3}-x\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)-3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+\left(x^{2}-2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +\left(x^{3}-x\right)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)-3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=3$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{2+n} a_{n}(n+3)\right) x+\left(x^{2}-2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+3}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(n-2)\right) x^{2} \tag{10}\\
& +\left(x^{3}-x\right)\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}(n-1)\right)-3\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+3} a_{n}(n+3)\right)+\left(\sum_{n=0}^{\infty} C x^{n+5} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 C x^{n+3} a_{n}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=0}^{\infty} x^{n+1} b_{n}(n-1)\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and
adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+3} a_{n}(n+3) & =\sum_{n=4}^{\infty} 2 C a_{n-4}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty} C x^{n+5} a_{n} & =\sum_{n=6}^{\infty} C a_{n-6} x^{n-1} \\
\sum_{n=0}^{\infty}\left(-2 C x^{n+3} a_{n}\right) & =\sum_{n=4}^{\infty}\left(-2 C a_{n-4} x^{n-1}\right) \\
\sum_{n=0}^{\infty} x^{n+1} b_{n}(n-1) & =\sum_{n=2}^{\infty} b_{n-2}(-3+n) x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=4}^{\infty} 2 C a_{n-4}(n-1) x^{n-1}\right)+\left(\sum_{n=6}^{\infty} C a_{n-6} x^{n-1}\right)+\sum_{n=4}^{\infty}\left(-2 C a_{n-4} x^{n-1}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=2}^{\infty} b_{n-2}(-3+n) x^{n-1}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-3 b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-3 b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=0
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-b_{0}-4 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-1-4 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{1}{4}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-3 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-3 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=0
$$

For $n=N$, where $N=4$ which is the difference between the two roots, we are free to choose $b_{4}=0$. Hence for $n=4$, Eq (2B) gives

$$
4 C-\frac{1}{4}=0
$$

Which is solved for C. Solving for C gives

$$
C=\frac{1}{16}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
6 C a_{1}+2 b_{3}+5 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
5 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=0
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=\frac{1}{16}$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=\frac{1}{16}\left(x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right)\right) \ln (x)+\frac{1-\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\frac{1}{16}\left(x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right)\right) \ln (x)+\frac{1-\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\frac{x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right) \ln (x)}{16}+\frac{1-\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\frac{x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right) \ln (x)}{16}+\frac{1-\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\frac{x^{3}\left(1-\frac{x^{2}}{4}+\frac{5 x^{4}}{128}+O\left(x^{6}\right)\right) \ln (x)}{16}+\frac{1-\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

15.20.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+\left(x^{3}-x\right) y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y}{x^{2}}-\frac{\left(x^{2}-1\right) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(x^{2}-1\right) y^{\prime}}{x}-\frac{3 y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{x^{2}-1}{x}, P_{3}(x)=-\frac{3}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-3$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}+\left(x^{2}-1\right) x y^{\prime}-3 y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1.3$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-3+r) x^{r}+a_{1}(2+r)(-2+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+1)(k+r-3)+a_{k-2}(k-2-\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-3+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,3\}$
- Each term must be 0
$a_{1}(2+r)(-2+r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k+r-3)+a_{k-2}(k-2+r)=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+3+r)(k+r-1)+a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}(k+r)}{(k+3+r)(k+r-1)}$
- \quad Recursion relation for $r=-1$
$a_{k+2}=-\frac{a_{k}(k-1)}{(k+2)(k-2)}$
- \quad Series not valid for $r=-1$, division by 0 in the recursion relation at $k=2$
$a_{k+2}=-\frac{a_{k}(k-1)}{(k+2)(k-2)}$
- \quad Recursion relation for $r=3$
$a_{k+2}=-\frac{a_{k}(k+3)}{(k+6)(k+2)}$
- \quad Solution for $r=3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+3}, a_{k+2}=-\frac{a_{k}(k+3)}{(k+6)(k+2)}, a_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 47

```
Order:=6;
dsolve(x^2*diff(y(x), x$2)+(x^3-x)*diff ( }\textrm{y}(\textrm{x}),\textrm{x})-3*y(\textrm{x})=0,y(x),type='series',x=0)
\(y(x)\)
\(=\frac{c_{1} x^{4}\left(1-\frac{1}{4} x^{2}+\frac{5}{128} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left((-9) x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(-144+36 x^{2}+\mathrm{O}\left(x^{6}\right)\right)\right)}{x}\)
```

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 55
AsymptoticDSolveValue[x^2*y' $[\mathrm{x}]+(\mathrm{x} \wedge 3-\mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]-3 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{5 x^{7}}{128}-\frac{x^{5}}{4}+x^{3}\right)+c_{1}\left(\frac{1}{16} x^{3} \log (x)-\frac{x^{4}+16 x^{2}-64}{64 x}\right)
$$

15.21 problem 21

15.21.1 Maple step by step solution 4296

Internal problem ID [11922]
Internal file name [OUTPUT/11931_Saturday_April_13_2024_10_26_30_PM_98169401/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-y^{\prime} x+8 y\left(x^{2}-1\right)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(8 x^{2}-8\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{8 x^{2}-8}{x^{2}}
\end{aligned}
$$

Table 567: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{8 x^{2}-8}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(8 x^{2}-8\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& -\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(8 x^{2}-8\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 8 x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-8 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 8 x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} 8 a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} 8 a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-8 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)-8 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r-8 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r-8 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-2 r-8\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2 r-8=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=4 \\
& r_{2}=-2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-2 r-8\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=6$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{4}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+4} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)+8 a_{n-2}-8 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{8 a_{n-2}}{n^{2}+2 n r+r^{2}-2 n-2 r-8} \tag{4}
\end{equation*}
$$

Which for the root $r=4$ becomes

$$
\begin{equation*}
a_{n}=-\frac{8 a_{n-2}}{n(n+6)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=4$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{8}{r^{2}+2 r-8}
$$

Which for the root $r=4$ becomes

$$
a_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{8}{r^{2}+2 r-8}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{8}{r^{2}+2 r-8}$	$-\frac{1}{2}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{64}{(r+4)(r-2) r(r+6)}
$$

Which for the root $r=4$ becomes

$$
a_{4}=\frac{1}{10}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{8}{r^{2}+2 r-8}$	$-\frac{1}{2}$
a_{3}	0	0
a_{4}	$\frac{64}{(r+4)(r-2) r(r+6)}$	$\frac{1}{10}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{8}{r^{2}+2 r-8}$	$-\frac{1}{2}$
a_{3}	0	0
a_{4}	$\frac{64}{(r+4)(r-2) r(r+6)}$	$\frac{1}{10}$
a_{5}	0	0

For $n=6$, using the above recursive equation gives

$$
a_{6}=-\frac{512}{(r+4)(r-2) r(r+6)(r+8)(r+2)}
$$

Which for the root $r=4$ becomes

$$
a_{6}=-\frac{1}{90}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{8}{r^{2}+2 r-8}$	$-\frac{1}{2}$
a_{3}	0	0
a_{4}	$\frac{64}{(r+4)(r-2) r(r+6)}$	$\frac{1}{10}$
a_{5}	0	0
a_{6}	$-\frac{512}{(r+4)(r-2) r(r+6)(r+8)(r+2)}$	$-\frac{1}{90}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{4}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \ldots\right) \\
& =x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=6$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{6}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{6} \\
& =-\frac{512}{(r+4)(r-2) r(r+6)(r+8)(r+2)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{512}{(r+4)(r-2) r(r+6)(r+8)(r+2)} & =\lim _{r \rightarrow-2}-\frac{512}{(r+4)(r-2) r(r+6)(r+8)(r+2)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}-y^{\prime} x+\left(8 x^{2}-8\right) y=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \\
& -\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) x \\
& +\left(8 x^{2}-8\right)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime \prime}(x) x^{2}-y_{1}^{\prime}(x) x+\left(8 x^{2}-8\right) y_{1}(x)\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}\right. \\
& \left.-y_{1}(x)\right) C+\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{7}\\
& -\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x+\left(8 x^{2}-8\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime \prime}(x) x^{2}-y_{1}^{\prime}(x) x+\left(8 x^{2}-8\right) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}-y_{1}(x)\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{8}\\
& -\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x+\left(8 x^{2}-8\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+8\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x^{2} \tag{9}\\
& -\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x-8\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=4$ and $r_{2}=-2$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{3+n} a_{n}(n+4)\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+4}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-4+n} b_{n}(n-2)(-3+n)\right) x^{2}+8\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right) x^{2} \tag{10}\\
& -\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-2)\right) x-8\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+4} a_{n}(n+4)\right)+\sum_{n=0}^{\infty}\left(-2 C a_{n} x^{n+4}\right)+\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 8 b_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-x^{n-2} b_{n}(n-2)\right)+\sum_{n=0}^{\infty}\left(-8 b_{n} x^{n-2}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-2$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-2} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+4} a_{n}(n+4) & =\sum_{n=6}^{\infty} 2 C a_{n-6}(n-2) x^{n-2} \\
\sum_{n=0}^{\infty}\left(-2 C a_{n} x^{n+4}\right) & =\sum_{n=6}^{\infty}\left(-2 C a_{n-6} x^{n-2}\right) \\
\sum_{n=0}^{\infty} 8 b_{n} x^{n} & =\sum_{n=2}^{\infty} 8 b_{n-2} x^{n-2}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-2$.

$$
\begin{align*}
& \left(\sum_{n=6}^{\infty} 2 C a_{n-6}(n-2) x^{n-2}\right)+\sum_{n=6}^{\infty}\left(-2 C a_{n-6} x^{n-2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=2}^{\infty} 8 b_{n-2} x^{n-2}\right) \tag{2~B}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n-2} b_{n}(n-2)\right)+\sum_{n=0}^{\infty}\left(-8 b_{n} x^{n-2}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-5 b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-5 b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=0
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 b_{0}-8 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8-8 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=1
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 b_{1}-9 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-9 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=0
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 b_{2}-8 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8-8 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=1
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-5 b_{5}+8 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-5 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=0
$$

For $n=N$, where $N=6$ which is the difference between the two roots, we are free to choose $b_{6}=0$. Hence for $n=6$, Eq (2B) gives

$$
6 C+8=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{4}{3}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{4}{3}$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=-\frac{4}{3}\left(x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right)\right) \ln (x)+\frac{1+x^{2}+x^{4}+O\left(x^{7}\right)}{x^{2}}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right) \\
& +c_{2}\left(-\frac{4}{3}\left(x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right)\right) \ln (x)+\frac{1+x^{2}+x^{4}+O\left(x^{7}\right)}{x^{2}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right) \\
& +c_{2}\left(-\frac{4 x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right) \ln (x)}{3}+\frac{1+x^{2}+x^{4}+O\left(x^{7}\right)}{x^{2}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right) \\
& +c_{2}\left(-\frac{4 x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right) \ln (x)}{3}+\frac{1+x^{2}+x^{4}+O\left(x^{7}\right)}{x^{2}}\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right) \\
& +c_{2}\left(-\frac{4 x^{4}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{10}-\frac{x^{6}}{90}+O\left(x^{7}\right)\right) \ln (x)}{3}+\frac{1+x^{2}+x^{4}+O\left(x^{7}\right)}{x^{2}}\right)
\end{aligned}
$$

Verified OK.

15.21.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-y^{\prime} x+\left(8 x^{2}-8\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{8\left(x^{2}-1\right) y}{x^{2}}+\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{8\left(x^{2}-1\right) y}{x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=\frac{8\left(x^{2}-1\right)}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-8$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}-y^{\prime} x+\left(8 x^{2}-8\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(2+r)(-4+r) x^{r}+a_{1}(3+r)(-3+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+2)(k+r-4)+8 a_{k-2}\right) x^{k+r}\right)$
- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
(2+r)(-4+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{-2,4\}
$$

- \quad Each term must be 0
$a_{1}(3+r)(-3+r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+2)(k+r-4)+8 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+4+r)(k-2+r)+8 a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{8 a_{k}}{(k+4+r)(k-2+r)}
$$

- Recursion relation for $r=-2$

$$
a_{k+2}=-\frac{8 a_{k}}{(k+2)(k-4)}
$$

- Series not valid for $r=-2$, division by 0 in the recursion relation at $k=4$

$$
a_{k+2}=-\frac{8 a_{k}}{(k+2)(k-4)}
$$

- Recursion relation for $r=4$

$$
a_{k+2}=-\frac{8 a_{k}}{(k+8)(k+2)}
$$

- \quad Solution for $r=4$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+4}, a_{k+2}=-\frac{8 a_{k}}{(k+8)(k+2)}, a_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 35

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+8*(x^2-1)*y(x)=0,y(x),type='series',x=0);
```

$y(x)=c_{1} x^{4}\left(1-\frac{1}{2} x^{2}+\frac{1}{10} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\frac{c_{2}\left(-86400-86400 x^{2}-86400 x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{x^{2}}$
\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 36
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' $[\mathrm{x}]-\mathrm{x} * \mathrm{y}$ ' $\left.[\mathrm{x}]+8 *\left(\mathrm{x}^{\wedge} 2-1\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(x^{2}+\frac{1}{x^{2}}+1\right)+c_{2}\left(\frac{x^{8}}{10}-\frac{x^{6}}{2}+x^{4}\right)
$$

15.22 problem 22

15.22.1 Maple step by step solution . 4313

Internal problem ID [11923]
Internal file name [OUTPUT/11932_Saturday_April_13_2024_10_26_32_PM_53853751/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+x^{2} y^{\prime}-\frac{3 y}{4}=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x^{2} y^{\prime}-\frac{3 y}{4}=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=-\frac{3}{4 x^{2}}
\end{aligned}
$$

Table 569: Table $p(x), q(x)$ singularites.

$p(x)=1$	
singularity	type

$q(x)=-\frac{3}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x^{2} y^{\prime}-\frac{3 y}{4}=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2}+x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\frac{3\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)}{4}=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-\frac{3 a_{n} x^{n+r}}{4}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{3 a_{n} x^{n+r}}{4}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-\frac{3 a_{n} x^{n+r}}{4}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-\frac{3 a_{0} x^{r}}{4}=0
$$

Or

$$
\left(x^{r} r(-1+r)-\frac{3 x^{r}}{4}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(4 r^{2}-4 r-3\right) x^{r}}{4}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-\frac{3}{4}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(4 r^{2}-4 r-3\right) x^{r}}{4}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)-\frac{3 a_{n}}{4}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}(n+r-1)}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r-3} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(2 n+1)}{2 n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{4 r}{4 r^{2}+4 r-3}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{1}=-\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4 r}{4 r^{2}+4 r-3}$	$-\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{16 r(1+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{2}=\frac{5}{32}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4 r}{4 r^{2}+4 r-3}$	$-\frac{1}{2}$
a_{2}	$\frac{16 r(1+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}$	$\frac{5}{32}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{64 r(1+r)(2+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{3}=-\frac{7}{192}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4 r}{4 r^{2}+4 r-3}$	$-\frac{1}{2}$
a_{2}	$\frac{16 r(1+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}$	$\frac{5}{32}$
a_{3}	$-\frac{64 r(1+r)(2+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)}$	$-\frac{7}{192}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{256 r(1+r)(2+r)(3+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)\left(4 r^{2}+28 r+45\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{4}=\frac{7}{1024}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4 r}{4 r^{2}+4 r-3}$	$-\frac{1}{2}$
a_{2}	$\frac{16 r(1+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}$	$\frac{5}{32}$
a_{3}	$-\frac{64 r(1+r)(2+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)}$	$-\frac{7}{192}$
a_{4}	$\frac{256 r(1+r)(2+r)(3+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)\left(4 r^{2}+28 r+45\right)}$	$\frac{7}{1024}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1024 r(1+r)(2+r)(3+r)(4+r)}{(2 r+9)(2 r-1)(2 r+11)(2 r+3)^{2}(2 r+1)(2 r+7)^{2}(2 r+5)^{2}}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{5}=-\frac{11}{10240}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4 r}{4 r^{2}+4 r-3}$	$-\frac{1}{2}$
a_{2}	$\frac{16 r(1+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}$	$\frac{5}{32}$
a_{3}	$-\frac{64 r(1+r)(2+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)}$	$-\frac{7}{192}$
a_{4}	$\frac{256 r(1+r)(2+r)(3+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)\left(4 r^{2}+28 r+45\right)}$	$\frac{7}{1024}$
a_{5}	$-\frac{1024 r(1+r)(2+r)(3+r)(4+r)}{(2 r+9)(2 r-1)(2 r+11)(2 r+3)^{2}(2 r+1)(2 r+7)^{2}(2 r+5)^{2}}$	$-\frac{11}{10240}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{16 r(1+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{16 r(1+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)} & =\lim _{r \rightarrow-\frac{1}{2}} \frac{16 r(1+r)}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+x^{2} y^{\prime}-\frac{3 y}{4}=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \\
& +x^{2}\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& -\frac{3 C y_{1}(x) \ln (x)}{4}-\frac{3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)}{4}=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime \prime}(x) x^{2}+x^{2} y_{1}^{\prime}(x)-\frac{3 y_{1}(x)}{4}\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}+y_{1}(x) x\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{7}\\
& +x^{2}\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)-\frac{3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)}{4}=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime \prime}(x) x^{2}+x^{2} y_{1}^{\prime}(x)-\frac{3 y_{1}(x)}{4}=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}+y_{1}(x) x\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{8}\\
& +x^{2}\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)-\frac{3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)}{4}=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+(x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +x^{2}\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)-\frac{3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)}{4}=0
\end{align*}
$$

Since $r_{1}=\frac{3}{2}$ and $r_{2}=-\frac{1}{2}$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{n+\frac{1}{2}} a_{n}\left(n+\frac{3}{2}\right)\right) x+(x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-\frac{5}{2}+n} b_{n}\left(n-\frac{1}{2}\right)\left(-\frac{3}{2}+n\right)\right) x^{2} \tag{10}\\
& +x^{2}\left(\sum_{n=0}^{\infty} x^{-\frac{3}{2}+n} b_{n}\left(n-\frac{1}{2}\right)\right)-\frac{3\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)}{4}=0
\end{align*}
$$

Expanding $C x^{\frac{5}{2}}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
C x^{\frac{5}{2}} & =C x^{\frac{5}{2}}+\ldots \\
& =C x^{\frac{5}{2}}
\end{aligned}
$$

Expanding $-C x^{\frac{3}{2}}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-C x^{\frac{3}{2}} & =-C x^{\frac{3}{2}}+\ldots \\
& =-C x^{\frac{3}{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} C x^{n+\frac{3}{2}} a_{n}(2 n+3)\right)+\left(\sum_{n=0}^{\infty} C x^{n+\frac{5}{2}} a_{n}\right) \\
& +\sum_{n=0}^{\infty}\left(-C x^{n+\frac{3}{2}} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n-\frac{1}{2}} b_{n}\left(4 n^{2}-8 n+3\right)}{4}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+\frac{1}{2}} b_{n}(2 n-1)}{2}\right)+\sum_{n=0}^{\infty}\left(-\frac{3 b_{n} x^{n-\frac{1}{2}}}{4}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-\frac{1}{2}$ in each summation term. Going over each summation term above with power of x in it which is not already $x^{n-\frac{1}{2}}$ and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} C x^{n+\frac{3}{2}} a_{n}(2 n+3) & =\sum_{n=2}^{\infty} C a_{n-2}(2 n-1) x^{n-\frac{1}{2}} \\
\sum_{n=0}^{\infty} C x^{n+\frac{5}{2}} a_{n} & =\sum_{n=3}^{\infty} C a_{n-3} x^{n-\frac{1}{2}} \\
\sum_{n=0}^{\infty}\left(-C x^{n+\frac{3}{2}} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-C a_{n-2} x^{n-\frac{1}{2}}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+\frac{1}{2}} b_{n}(2 n-1)}{2} & =\sum_{n=1}^{\infty} \frac{b_{n-1}(-3+2 n) x^{n-\frac{1}{2}}}{2}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-\frac{1}{2}$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} C a_{n-2}(2 n-1) x^{n-\frac{1}{2}}\right)+\left(\sum_{n=3}^{\infty} C a_{n-3} x^{n-\frac{1}{2}}\right) \\
& +\sum_{n=2}^{\infty}\left(-C a_{n-2} x^{n-\frac{1}{2}}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n-\frac{1}{2}} b_{n}\left(4 n^{2}-8 n+3\right)}{4}\right) \tag{2B}\\
& \quad+\left(\sum_{n=1}^{\infty} \frac{b_{n-1}(-3+2 n) x^{n-\frac{1}{2}}}{2}\right)+\sum_{n=0}^{\infty}\left(-\frac{3 b_{n} x^{n-\frac{1}{2}}}{4}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-b_{1}-\frac{b_{0}}{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-b_{1}-\frac{1}{2}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=-\frac{1}{2}
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2$, Eq (2B) gives

$$
2 C-\frac{1}{4}=0
$$

Which is solved for C. Solving for C gives

$$
C=\frac{1}{8}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{0}+4 a_{1}\right) C+\frac{3 b_{2}}{2}+3 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{1}{8}+3 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{1}{24}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{1}+6 a_{2}\right) C+\frac{5 b_{3}}{2}+8 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{61}{384}+8 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{61}{3072}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{2}+8 a_{3}\right) C+\frac{7 b_{4}}{2}+15 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{177}{2048}+15 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{59}{10240}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=\frac{1}{8}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & \frac{1}{8}\left(x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +\frac{1-\frac{x}{2}+\frac{x^{3}}{24}-\frac{61 x^{4}}{3072}+\frac{59 x^{5}}{10240}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\frac{1}{8}\left(x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right)\right) \ln (x)\right. \\
& \left.+\frac{1-\frac{x}{2}+\frac{x^{3}}{24}-\frac{61 x^{4}}{3072}+\frac{59 x^{5}}{10240}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\frac{x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right) \ln (x)}{8}\right. \\
& \left.+\frac{1-\frac{x}{2}+\frac{x^{3}}{24}-\frac{61 x^{4}}{3072}+\frac{59 x^{5}}{10240}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\frac{x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right) \ln (x)}{8}\right. \tag{1}\\
& \left.+\frac{1-\frac{x}{2}+\frac{x^{3}}{24}-\frac{61 x^{4}}{3072}+\frac{59 x^{5}}{10240}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{3}{2}}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\frac{x^{\frac{3}{2}\left(1-\frac{x}{2}+\frac{5 x^{2}}{32}-\frac{7 x^{3}}{192}+\frac{7 x^{4}}{1024}-\frac{11 x^{5}}{10240}+O\left(x^{6}\right)\right) \ln (x)}}{8}\right. \\
& \left.+\frac{1-\frac{x}{2}+\frac{x^{3}}{24}-\frac{61 x^{4}}{3072}+\frac{59 x^{5}}{10240}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Verified OK.

15.22.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}+x^{2} y^{\prime}-\frac{3 y}{4}=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-y^{\prime}+\frac{3 y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}-\frac{3 y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=1, P_{3}(x)=-\frac{3}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{3}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime}+4 y^{\prime \prime} x^{2}-3 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y^{\prime}$ to series expansion
$x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}$
- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+2 r)(-3+2 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-3)+4 a_{k-1}(k-1+r)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-3+2 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{1}{2}, \frac{3}{2}\right\}
$$

- Each term in the series must be 0 , giving the recursion relation
$4\left(k+r-\frac{3}{2}\right)\left(k+r+\frac{1}{2}\right) a_{k}+4 a_{k-1}(k-1+r)=0$
- \quad Shift index using $k->k+1$
$4\left(k-\frac{1}{2}+r\right)\left(k+\frac{3}{2}+r\right) a_{k+1}+4 a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{4 a_{k}(k+r)}{(2 k-1+2 r)(2 k+3+2 r)}$
- \quad Recursion relation for $r=-\frac{1}{2}$
$a_{k+1}=-\frac{4 a_{k}\left(k-\frac{1}{2}\right)}{(2 k-2)(2 k+2)}$
- Series not valid for $r=-\frac{1}{2}$, division by 0 in the recursion relation at $k=1$
$a_{k+1}=-\frac{4 a_{k}\left(k-\frac{1}{2}\right)}{(2 k-2)(2 k+2)}$
- \quad Recursion relation for $r=\frac{3}{2}$
$a_{k+1}=-\frac{4 a_{k}\left(k+\frac{3}{2}\right)}{(2 k+2)(2 k+6)}$
- \quad Solution for $r=\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+1}=-\frac{4 a_{k}\left(k+\frac{3}{2}\right)}{(2 k+2)(2 k+6)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 65

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x^2*diff (y(x), x) -3/4*y (x)=0,y(x),type='series', x=0);
```

$y(x)$
$=\frac{c_{1} x^{2}\left(1-\frac{1}{2} x+\frac{5}{32} x^{2}-\frac{7}{192} x^{3}+\frac{7}{1024} x^{4}-\frac{11}{10240} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(-\frac{1}{4} x^{2}+\frac{1}{8} x^{3}-\frac{5}{128} x^{4}+\frac{7}{768} x^{5}+\mathrm{O}\right.\right.}{\sqrt{x}}$
\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 103

```
AsymptoticDSolveValue[x^2*y''[x]+x^2*y'[x]-3/4*y[x]==0,y[x],{x,0,5}]
```

$$
\begin{aligned}
& y(x) \rightarrow c_{2}\left(\frac{7 x^{11 / 2}}{1024}-\frac{7 x^{9 / 2}}{192}+\frac{5 x^{7 / 2}}{32}-\frac{x^{5 / 2}}{2}\right. \\
& \left.\quad+x^{3 / 2}\right)+c_{1}\left(\frac{1}{256} x^{3 / 2}\left(5 x^{2}-16 x+32\right) \log (x)-\frac{91 x^{4}-224 x^{3}+192 x^{2}+1536 x-3072}{3072 \sqrt{x}}\right)
\end{aligned}
$$

15.23 problem 23

15.23.1 Maple step by step solution . 4324

Internal problem ID [11924]
Internal file name [OUTPUT/11933_Saturday_April_13_2024_10_26_33_PM_41898295/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
x y^{\prime \prime}+y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}+y^{\prime}+2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{2}{x}
\end{aligned}
$$

Table 571: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{2}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}+y^{\prime}+2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}=\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{-1+r} r^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{-1+r} r^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a_{0} is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{2}{(r+1)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{1}=-2
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4}{(r+1)^{2}(r+2)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{2}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{8}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{3}=-\frac{2}{9}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$-\frac{8}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}$	$-\frac{2}{9}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$-\frac{8}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}$	$-\frac{2}{9}$
a_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$\frac{1}{36}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{32}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{5}=-\frac{1}{450}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$-\frac{8}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}$	$-\frac{2}{9}$
a_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$\frac{1}{36}$
a_{5}	$-\frac{32}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}$	$-\frac{1}{450}$

Using the above table, then the first solution $y_{1}(x)$ becomes

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=0$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=0)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$-\frac{2}{(r+1)^{2}}$	-2	$\frac{4}{(r+1)^{3}}$	4
b_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1	$\frac{-16 r-24}{(r+1)^{3}(r+2)^{3}}$	-3
b_{3}	$-\frac{8}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}$	$-\frac{2}{9}$	$\frac{48 r^{2}+192 r+176}{(r+1)^{3}(r+2)^{3}(r+3)^{3}}$	$\frac{22}{27}$
b_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$\frac{1}{36}$	$-\frac{64\left(2 r^{3}+15 r^{2}+35 r+25\right)}{(r+1)^{3}(r+2)^{3}(r+3)^{3}(r+4)^{3}}$	$-\frac{25}{216}$
b_{5}	$-\frac{32}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}$	$-\frac{1}{450}$	$\frac{320 r^{4}+3840 r^{3}+16320 r^{2}+28800 r+17536}{(r+1)^{3}(r+2)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}$	$\frac{137}{13500}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}+\frac{137 x^{5}}{13500} \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}\right. \\
& \left.-\frac{25 x^{4}}{216}+\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}\right. \\
& \left.+\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1}\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}\right. \\
& \left.-\frac{25 x^{4}}{216}+\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}\right. \\
& \left.+\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

15.23.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{2 y}{x}-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{2 y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{2}{x}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+y^{\prime}+2 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}+2 a_{k}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- Each term in the series must be 0, giving the recursion relation
$a_{k+1}(k+1)^{2}+2 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}$
- \quad Recursion relation for $r=0$
$a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 59

```
Order:=6;
dsolve(x*diff(y(x),x$2)+diff (y(x),x)+2*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \left(c_{1}+c_{2} \ln (x)\right)\left(1-2 x+x^{2}-\frac{2}{9} x^{3}+\frac{1}{36} x^{4}-\frac{1}{450} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(4 x-3 x^{2}+\frac{22}{27} x^{3}-\frac{25}{216} x^{4}+\frac{137}{13500} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 101
AsymptoticDSolveValue[x*y''[x]+y'[x]+2*y[x]==0,y[x],\{x,0,5\}]

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{x^{5}}{450}+\frac{x^{4}}{36}-\frac{2 x^{3}}{9}+x^{2}-2 x+1\right) \\
& +c_{2}\left(\frac{137 x^{5}}{13500}-\frac{25 x^{4}}{216}+\frac{22 x^{3}}{27}-3 x^{2}+\left(-\frac{x^{5}}{450}+\frac{x^{4}}{36}-\frac{2 x^{3}}{9}+x^{2}-2 x+1\right) \log (x)+4 x\right)
\end{aligned}
$$

15.24 problem 24

15.24.1 Maple step by step solution 4339

Internal problem ID [11925]
Internal file name [OUTPUT/11934_Saturday_April_13_2024_10_26_34_PM_44280382/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
2 x y^{\prime \prime}+6 y^{\prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
2 x y^{\prime \prime}+6 y^{\prime}+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{2 x}
\end{aligned}
$$

Table 573: Table $p(x), q(x)$ singularites.

$p(x)=\frac{3}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{1}{2 x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
2 x y^{\prime \prime}+6 y^{\prime}+y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+6\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 6(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} a_{n} x^{n+r}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 6(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
2 x^{n+r-1} a_{n}(n+r)(n+r-1)+6(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
2 x^{-1+r} a_{0} r(-1+r)+6 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(2 x^{-1+r} r(-1+r)+6 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
2 r x^{-1+r}(2+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
2 r(2+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
r_{1} & =0 \\
r_{2} & =-2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
2 r x^{-1+r}(2+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+6 a_{n}(n+r)+a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{2\left(n^{2}+2 n r+r^{2}+2 n+2 r\right)} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{2 n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{1}{2 r^{2}+8 r+6}
$$

Which for the root $r=0$ becomes

$$
a_{1}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2 r^{2}+8 r+6}$	$-\frac{1}{6}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{4 r^{4}+40 r^{3}+140 r^{2}+200 r+96}
$$

Which for the root $r=0$ becomes

$$
a_{2}=\frac{1}{96}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2 r^{2}+8 r+6}$	$-\frac{1}{6}$
a_{2}	$\frac{1}{4 r^{4}+40 r^{3}+140 r^{2}+200 r+96}$	$\frac{1}{96}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{8(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}
$$

Which for the root $r=0$ becomes

$$
a_{3}=-\frac{1}{2880}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2 r^{2}+8 r+6}$	$-\frac{1}{6}$
a_{2}	$\frac{1}{4 r^{4}+40 r^{3}+140 r^{2}+200 r+96}$	$\frac{1}{96}$
a_{3}	$-\frac{1}{8(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}$	$-\frac{1}{2880}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{16(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)(r+6)}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{138240}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2 r^{2}+8 r+6}$	$-\frac{1}{6}$
a_{2}	$\frac{1}{4 r^{4}+40 r^{3}+140 r^{2}+200 r+96}$	$\frac{1}{96}$
a_{3}	$-\frac{1}{8(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}$	$-\frac{1}{2880}$
a_{4}	$\frac{1}{16(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)(r+6)}$	$\frac{1}{138240}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1}{32(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)(r+7)}
$$

Which for the root $r=0$ becomes

$$
a_{5}=-\frac{1}{9676800}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2 r^{2}+8 r+6}$	$-\frac{1}{6}$
a_{2}	$\frac{1}{4 r^{4}+40 r^{3}+140 r^{2}+200 r+96}$	$\frac{1}{96}$
a_{3}	$-\frac{1}{8(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}$	$-\frac{1}{2880}$
a_{4}	$\frac{1}{16(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)(r+6)}$	$\frac{1}{138240}$
a_{5}	$-\frac{1}{32(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)(r+7)}$	$-\frac{1}{9676800}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-\frac{x}{6}+\frac{x^{2}}{96}-\frac{x^{3}}{2880}+\frac{x^{4}}{138240}-\frac{x^{5}}{9676800}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{1}{4 r^{4}+40 r^{3}+140 r^{2}+200 r+96}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{4 r^{4}+40 r^{3}+140 r^{2}+200 r+96} & =\lim _{r \rightarrow-2} \frac{1}{4 r^{4}+40 r^{3}+140 r^{2}+200 r+96} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $2 x y^{\prime \prime}+6 y^{\prime}+y=0$ gives

$$
\begin{aligned}
& 2\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x+6 C y_{1}^{\prime}(x) \ln (x) \\
& +\frac{6 C y_{1}(x)}{x}+6\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(2 y_{1}^{\prime \prime}(x) x+y_{1}(x)+6 y_{1}^{\prime}(x)\right) \ln (x)+2\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x+\frac{6 y_{1}(x)}{x}\right) C \\
& +2\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{7}\\
& +6\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
2 y_{1}^{\prime \prime}(x) x+y_{1}(x)+6 y_{1}^{\prime}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(2\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x+\frac{6 y_{1}(x)}{x}\right) C \\
& +2\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{8}\\
& +6\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{aligned}
& \frac{\left(4\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \\
& +\frac{2\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x+6\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x}{x} \\
& =0
\end{aligned}
$$

Since $r_{1}=0$ and $r_{2}=-2$ then the above becomes

$$
\begin{align*}
& \frac{\left(4\left(\sum_{n=0}^{\infty} x^{n-1} a_{n} n\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\right) C}{x} \\
& +\frac{2\left(\sum_{n=0}^{\infty} x^{-4+n} b_{n}(n-2)(-3+n)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right) x+6\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-2)\right) x}{x} \tag{10}\\
& =0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 C x^{n-1} a_{n} n\right)+\left(\sum_{n=0}^{\infty} 4 C x^{n-1} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 x^{-3+n} b_{n}(n-2)(-3+n)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} 6 x^{-3+n} b_{n}(n-2)\right)=0
\end{align*}
$$

The next step is to make all powers of x be $-3+n$ in each summation term. Going over each summation term above with power of x in it which is not already x^{-3+n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 4 C x^{n-1} a_{n} n & =\sum_{n=2}^{\infty} 4 C(n-2) a_{n-2} x^{-3+n} \\
\sum_{n=0}^{\infty} 4 C x^{n-1} a_{n} & =\sum_{n=2}^{\infty} 4 C a_{n-2} x^{-3+n} \\
\sum_{n=0}^{\infty} b_{n} x^{n-2} & =\sum_{n=1}^{\infty} b_{n-1} x^{-3+n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $-3+n$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} 4 C(n-2) a_{n-2} x^{-3+n}\right)+\left(\sum_{n=2}^{\infty} 4 C a_{n-2} x^{-3+n}\right) \\
& +\left(\sum_{n=0}^{\infty} 2 x^{-3+n} b_{n}(n-2)(-3+n)\right) \tag{2B}\\
& +\left(\sum_{n=1}^{\infty} b_{n-1} x^{-3+n}\right)+\left(\sum_{n=0}^{\infty} 6 x^{-3+n} b_{n}(n-2)\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-2 b_{1}+b_{0}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-2 b_{1}+1=0
$$

Solving the above for b_{1} gives

$$
b_{1}=\frac{1}{2}
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2$, Eq (2B) gives

$$
4 C+\frac{1}{2}=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{8}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 C a_{1}+b_{2}+6 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
6 b_{3}+\frac{1}{6}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{1}{36}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
12 C a_{2}+b_{3}+16 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
16 b_{4}-\frac{25}{576}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=\frac{25}{9216}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
16 C a_{3}+b_{4}+30 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
30 b_{5}+\frac{157}{46080}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{157}{1382400}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{8}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & -\frac{1}{8}\left(1-\frac{x}{6}+\frac{x^{2}}{96}-\frac{x^{3}}{2880}+\frac{x^{4}}{138240}-\frac{x^{5}}{9676800}+O\left(x^{6}\right)\right) \ln (x) \\
& +\frac{1+\frac{x}{2}-\frac{x^{3}}{36}+\frac{25 x^{4}}{9216}-\frac{157 x^{5}}{1382400}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1-\frac{x}{6}+\frac{x^{2}}{96}-\frac{x^{3}}{2880}+\frac{x^{4}}{138240}-\frac{x^{5}}{9676800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{8}\left(1-\frac{x}{6}+\frac{x^{2}}{96}-\frac{x^{3}}{2880}+\frac{x^{4}}{138240}-\frac{x^{5}}{9676800}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+\frac{1+\frac{x}{2}-\frac{x^{3}}{36}+\frac{25 x^{4}}{9216}-\frac{157 x^{5}}{1382400}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1-\frac{x}{6}+\frac{x^{2}}{96}-\frac{x^{3}}{2880}+\frac{x^{4}}{138240}-\frac{x^{5}}{9676800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(-\frac{1}{8}+\frac{x}{48}-\frac{x^{2}}{768}+\frac{x^{3}}{23040}-\frac{x^{4}}{1105920}+\frac{x^{5}}{77414400}-\frac{O\left(x^{6}\right)}{8}\right) \ln (x)\right. \\
& \left.+\frac{1+\frac{x}{2}-\frac{x^{3}}{36}+\frac{25 x^{4}}{9216}-\frac{157 x^{5}}{1382400}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{array}{r}
y=c_{1}\left(1-\frac{x}{6}+\frac{x^{2}}{96}-\frac{x^{3}}{2880}+\frac{x^{4}}{138240}-\frac{x^{5}}{9676800}+O\left(x^{6}\right)\right) \\
+c_{2}\left(\left(-\frac{1}{8}+\frac{x}{48}-\frac{x^{2}}{768}+\frac{x^{3}}{23040}-\frac{x^{4}}{1105920}+\frac{x^{5}}{77414400}-\frac{O\left(x^{6}\right)}{8}\right) \ln (x)\right. \tag{1}\\
\\
\left.+\frac{1+\frac{x}{2}-\frac{x^{3}}{36}+\frac{25 x^{4}}{9216}-\frac{157 x^{5}}{1382400}+O\left(x^{6}\right)}{x^{2}}\right)
\end{array}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(1-\frac{x}{6}+\frac{x^{2}}{96}-\frac{x^{3}}{2880}+\frac{x^{4}}{138240}-\frac{x^{5}}{9676800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(-\frac{1}{8}+\frac{x}{48}-\frac{x^{2}}{768}+\frac{x^{3}}{23040}-\frac{x^{4}}{1105920}+\frac{x^{5}}{77414400}-\frac{O\left(x^{6}\right)}{8}\right) \ln (x)\right. \\
& \left.+\frac{1+\frac{x}{2}-\frac{x^{3}}{36}+\frac{25 x^{4}}{9216}-\frac{157 x^{5}}{1382400}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Verified OK.

15.24.1 Maple step by step solution

Let's solve
$2 y^{\prime \prime} x+6 y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{3 y^{\prime}}{x}-\frac{y}{2 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{x}+\frac{y}{2 x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{3}{x}, P_{3}(x)=\frac{1}{2 x}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $\quad x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$2 y^{\prime \prime} x+6 y^{\prime}+y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- \quad Shift index using $k->k+1$
$y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$2 a_{0} r(2+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(2 a_{k+1}(k+1+r)(k+3+r)+a_{k}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$2 r(2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-2,0\}$
- Each term in the series must be 0 , giving the recursion relation

$$
2 a_{k+1}(k+1+r)(k+3+r)+a_{k}=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{a_{k}}{2(k+1+r)(k+3+r)}
$$

- Recursion relation for $r=-2$

$$
a_{k+1}=-\frac{a_{k}}{2(k-1)(k+1)}
$$

- \quad Series not valid for $r=-2$, division by 0 in the recursion relation at $k=1$

$$
a_{k+1}=-\frac{a_{k}}{2(k-1)(k+1)}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=-\frac{a_{k}}{2(k+1)(k+3)}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}}{2(k+1)(k+3)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 62

```
Order:=6;
dsolve(2*x*diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+6*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+\textrm{y}(\textrm{x})=0,y(x),type='series',x=0)
```

$y(x)$
$=\frac{c_{1}\left(1-\frac{1}{6} x+\frac{1}{96} x^{2}-\frac{1}{2880} x^{3}+\frac{1}{138240} x^{4}-\frac{1}{9676800} x^{5}+\mathrm{O}\left(x^{6}\right)\right) x^{2}+c_{2}\left(\ln (x)\left(\frac{1}{4} x^{2}-\frac{1}{24} x^{3}+\frac{1}{384} x^{4}-\frac{1}{11520} x\right.\right.}{x^{2}}$
\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 80
AsymptoticDSolveValue $\left[2 * x * y{ }^{\prime} '[x]+6 * y\right.$ ' $\left.[x]+y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{x^{4}}{138240}-\frac{x^{3}}{2880}+\frac{x^{2}}{96}-\frac{x}{6}+1\right) \\
& +c_{1}\left(\frac{31 x^{4}-352 x^{3}+576 x^{2}+4608 x+9216}{9216 x^{2}}-\frac{1}{768}\left(x^{2}-16 x+96\right) \log (x)\right)
\end{aligned}
$$

15.25 problem 25

15.25.1 Maple step by step solution 4350

Internal problem ID [11926]
Internal file name [OUTPUT/11935_Saturday_April_13_2024_10_26_35_PM_62176316/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}+1\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}+1\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{x^{2}+1}{x^{2}}
\end{aligned}
$$

Table 575: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x^{2}+1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}+1\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& -\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(x^{2}+1\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(-1+r)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(-1+r)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(-1+r)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=1$, Eqs (1A, 1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+1}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n-2}+a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}-2 n-2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{(1+r)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{2}=-\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(1+r)^{2}}$	$-\frac{1}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(1+r)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(1+r)^{2}(r+3)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{64}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(1+r)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{1}{(1+r)^{2}(r+3)^{2}}$	$\frac{1}{64}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(1+r)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{1}{(1+r)^{2}(r+3)^{2}}$	$\frac{1}{64}$
a_{5}	0	0

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=1$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=1)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	0	0	0	0
b_{2}	$-\frac{1}{(1+r)^{2}}$	$-\frac{1}{4}$	$\frac{2}{(1+r)^{3}}$	$\frac{1}{4}$
b_{3}	0	0	0	0
b_{4}	$\frac{1}{(1+r)^{2}(r+3)^{2}}$	$\frac{1}{64}$	$\frac{-4 r-8}{(1+r)^{3}(r+3)^{3}}$	$-\frac{3}{128}$
b_{5}	0	0	0	0

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+x\left(\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+x\left(\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+x\left(\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2}\left(x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+x\left(\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+x\left(\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.

15.25.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-y^{\prime} x+\left(x^{2}+1\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(x^{2}+1\right) y}{x^{2}}+\frac{y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{\left(x^{2}+1\right) y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=\frac{x^{2}+1}{x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}-y^{\prime} x+\left(x^{2}+1\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-1+r)^{2} x^{r}+a_{1} r^{2} x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r-1)^{2}+a_{k-2}\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
(-1+r)^{2}=0
$$

- Values of r that satisfy the indicial equation
$r=1$
- Each term must be 0
$a_{1} r^{2}=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r-1)^{2}+a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+1+r)^{2}+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}}{(k+1+r)^{2}}$
- \quad Recursion relation for $r=1$
$a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}$
- \quad Solution for $r=1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}, a_{1}=0\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 45

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+(x^2+1)*y(x)=0,y(x),type='series',x=0);
```

$y(x)=\left(\left(c_{1}+c_{2} \ln (x)\right)\left(1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(\frac{1}{4} x^{2}-\frac{3}{128} x^{4}+\mathrm{O}\left(x^{6}\right)\right) c_{2}\right) x$

\checkmark Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 65
AsymptoticDSolveValue[x^2*y' $[\mathrm{x}]-\mathrm{x} * \mathrm{y}$ ' $\left.[\mathrm{x}]+\left(\mathrm{x}^{\wedge} 2+1\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{1} x\left(\frac{x^{4}}{64}-\frac{x^{2}}{4}+1\right)+c_{2}\left(x\left(\frac{x^{2}}{4}-\frac{3 x^{4}}{128}\right)+x\left(\frac{x^{4}}{64}-\frac{x^{2}}{4}+1\right) \log (x)\right)
$$

15.26 problem 26

15.26.1 Maple step by step solution . 4365

Internal problem ID [11927]
Internal file name [OUTPUT/11936_Saturday_April_13_2024_10_26_36_PM_90976062/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 6, Series solutions of linear differential equations. Section 6.2 (Frobenius).
Exercises page 251
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}-3\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}-3\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =\frac{x^{2}-3}{x^{2}}
\end{aligned}
$$

Table 577: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x^{2}-3}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}-3\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2} \tag{1}\\
& -\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x+\left(x^{2}-3\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)-3 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r-3 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r-3 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-2 r-3\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2 r-3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=3 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-2 r-3\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=4$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{3}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+3} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n-2}-3 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}-2 n-2 r-3} \tag{4}
\end{equation*}
$$

Which for the root $r=3$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+4)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=3$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{r^{2}+2 r-3}
$$

Which for the root $r=3$ becomes

$$
a_{2}=-\frac{1}{12}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+2 r-3}$	$-\frac{1}{12}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+2 r-3}$	$-\frac{1}{12}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r^{4}+8 r^{3}+14 r^{2}-8 r-15}
$$

Which for the root $r=3$ becomes

$$
a_{4}=\frac{1}{384}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+2 r-3}$	$-\frac{1}{12}$
a_{3}	0	0
a_{4}	$\frac{1}{r^{4}+8 r^{3}+14 r^{2}-8 r-15}$	$\frac{1}{384}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+2 r-3}$	$-\frac{1}{12}$
a_{3}	0	0
a_{4}	$\frac{1}{r^{4}+8 r^{3}+14 r^{2}-8 r-15}$	$\frac{1}{384}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{3}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=4$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{4}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{4} \\
& =\frac{1}{r^{4}+8 r^{3}+14 r^{2}-8 r-15}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{r^{4}+8 r^{3}+14 r^{2}-8 r-15} & =\lim _{r \rightarrow-1} \frac{1}{r^{4}+8 r^{3}+14 r^{2}-8 r-15} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}-y^{\prime} x+\left(x^{2}-3\right) y=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \\
& -\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) x \\
& +\left(x^{2}-3\right)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime \prime}(x) x^{2}-y_{1}^{\prime}(x) x+\left(x^{2}-3\right) y_{1}(x)\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}\right. \\
& \left.-y_{1}(x)\right) C+\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{7}\\
& -\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x+\left(x^{2}-3\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime \prime}(x) x^{2}-y_{1}^{\prime}(x) x+\left(x^{2}-3\right) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x^{2}-y_{1}(x)\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x^{2} \tag{8}\\
& -\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x+\left(x^{2}-3\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x^{2}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& -\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x-3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=3$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{2+n} a_{n}(n+3)\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+3}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right) x^{2}+\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(n-2)\right) x^{2} \tag{10}\\
& -\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}(n-1)\right) x-3\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+3} a_{n}(n+3)\right)+\sum_{n=0}^{\infty}\left(-2 C a_{n} x^{n+3}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{1+n} b_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and
adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+3} a_{n}(n+3) & =\sum_{n=4}^{\infty} 2 C a_{n-4}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-2 C a_{n} x^{n+3}\right) & =\sum_{n=4}^{\infty}\left(-2 C a_{n-4} x^{n-1}\right) \\
\sum_{n=0}^{\infty} x^{1+n} b_{n} & =\sum_{n=2}^{\infty} b_{n-2} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=4}^{\infty} 2 C a_{n-4}(n-1) x^{n-1}\right)+\sum_{n=4}^{\infty}\left(-2 C a_{n-4} x^{n-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} b_{n-2} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-3 b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-3 b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=0
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
b_{0}-4 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
1-4 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=\frac{1}{4}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
b_{1}-3 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-3 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=0
$$

For $n=N$, where $N=4$ which is the difference between the two roots, we are free to choose $b_{4}=0$. Hence for $n=4$, Eq (2B) gives

$$
4 C+\frac{1}{4}=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{16}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
6 C a_{1}+b_{3}+5 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
5 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=0
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{16}$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=-\frac{1}{16}\left(x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right)\right) \ln (x)+\frac{1+\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{16}\left(x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right)\right) \ln (x)+\frac{1+\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right) \ln (x)}{16}+\frac{1+\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right) \ln (x)}{16}+\frac{1+\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{3}\left(1-\frac{x^{2}}{12}+\frac{x^{4}}{384}+O\left(x^{6}\right)\right) \ln (x)}{16}+\frac{1+\frac{x^{2}}{4}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

15.26.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x^{2}-y^{\prime} x+\left(x^{2}-3\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(x^{2}-3\right) y}{x^{2}}+\frac{y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{\left(x^{2}-3\right) y}{x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=\frac{x^{2}-3}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-3$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}-y^{\prime} x+\left(x^{2}-3\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+r)(-3+r) x^{r}+a_{1}(2+r)(-2+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+1)(k+r-3)+a_{k-2}\right) x^{k+r}\right)$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-3+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,3\}$
- Each term must be 0
$a_{1}(2+r)(-2+r)=0$
- Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0, giving the recursion relation
$a_{k}(k+r+1)(k+r-3)+a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+3+r)(k+r-1)+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}}{(k+3+r)(k+r-1)}$
- \quad Recursion relation for $r=-1$
$a_{k+2}=-\frac{a_{k}}{(k+2)(k-2)}$
- Series not valid for $r=-1$, division by 0 in the recursion relation at $k=2$
$a_{k+2}=-\frac{a_{k}}{(k+2)(k-2)}$
- Recursion relation for $r=3$

$$
a_{k+2}=-\frac{a_{k}}{(k+6)(k+2)}
$$

- \quad Solution for $r=3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+3}, a_{k+2}=-\frac{a_{k}}{(k+6)(k+2)}, a_{1}=0\right]
$$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 47

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+(x^2-3)*y(x)=0,y(x),type='series',x=0);
```

$y(x)$
$=\frac{c_{1} x^{4}\left(1-\frac{1}{12} x^{2}+\frac{1}{384} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(9 x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(-144-36 x^{2}+\mathrm{O}\left(x^{6}\right)\right)\right)}{x}$
$\sqrt{ }$ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 52
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' $[x]-x * y$ ' $\left.[x]+\left(x^{\wedge} 2-3\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{\left(x^{2}+8\right)^{2}}{64 x}-\frac{1}{16} x^{3} \log (x)\right)+c_{2}\left(\frac{x^{7}}{384}-\frac{x^{5}}{12}+x^{3}\right)
$$

16 Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
16.1 problem 1 4370
16.2 problem 2 4372
16.3 problem 3 4374
16.4 problem 4 4377
16.5 problem 5 4379
16.6 problem 6 4389
16.7 problem 7 4401
16.8 problem 8 4413
16.9 problem 9 4425
16.10problem 10 4428
16.11 problem 11 4440
16.12problem 12 4452
16.13problem 13 4465
16.14problem 14 4477
16.15problem 15 4489
16.16problem 16 4501
16.17problem 17 4512

16.1 problem 1

Internal problem ID [11928]
Internal file name [OUTPUT/11937_Saturday_April_13_2024_10_26_37_PM_64304397/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277 Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)+y^{\prime}(t)=2 x(t)+4 y(t)+\mathrm{e}^{t} \\
& x^{\prime}(t)+y^{\prime}(t)=y(t)+\mathrm{e}^{4 t}
\end{aligned}
$$

The system is

$$
\begin{align*}
& x^{\prime}(t)+y^{\prime}(t)=2 x(t)+4 y(t)+\mathrm{e}^{t} \tag{1}\\
& x^{\prime}(t)+y^{\prime}(t)=y(t)+\mathrm{e}^{4 t} \tag{2}
\end{align*}
$$

Since the left side is the same, this implies

$$
\begin{align*}
2 x(t)+4 y(t)+\mathrm{e}^{t} & =y(t)+\mathrm{e}^{4 t} \\
y(t) & =\frac{\mathrm{e}^{4 t}}{3}-\frac{2 x(t)}{3}-\frac{\mathrm{e}^{t}}{3} \tag{3}
\end{align*}
$$

Taking derivative of the above w.r.t. t gives

$$
\begin{equation*}
y^{\prime}(t)=\frac{4 \mathrm{e}^{4 t}}{3}-\frac{2 x^{\prime}(t)}{3}-\frac{\mathrm{e}^{t}}{3} \tag{4}
\end{equation*}
$$

Substituting (3,4) in (1) to eliminate $y(t), y^{\prime}(t)$ gives

$$
\begin{align*}
\frac{x^{\prime}(t)}{3}+\frac{4 \mathrm{e}^{4 t}}{3}-\frac{\mathrm{e}^{t}}{3} & =-\frac{2 x(t)}{3}+\frac{4 \mathrm{e}^{4 t}}{3}-\frac{\mathrm{e}^{t}}{3} \\
x^{\prime}(t) & =-2 x(t) \tag{5}
\end{align*}
$$

Which is now solved for $x(t)$. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{2 x} d x & =\int d t \\
-\frac{\ln (x)}{2} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{x}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{x}}=c_{2} \mathrm{e}^{t}
$$

Given now that we have the solution

$$
\begin{equation*}
x(t)=\frac{\mathrm{e}^{-2 t}}{c_{2}^{2}} \tag{6}
\end{equation*}
$$

Then substituting (6) into (3) gives

$$
\begin{equation*}
y(t)=\frac{\left(\mathrm{e}^{6 t} c_{2}^{2}-c_{2}^{2} \mathrm{e}^{3 t}-2\right) \mathrm{e}^{-2 t}}{3 c_{2}^{2}} \tag{7}
\end{equation*}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 32
dsolve ([diff $(x(t), t)+\operatorname{diff}(y(t), t)-2 * x(t)-4 * y(t)=\exp (t), \operatorname{diff}(x(t), t)+\operatorname{diff}(y(t), t)-y(t)=\exp (4 *$

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{-2 t} \\
& y(t)=\frac{\mathrm{e}^{4 t}}{3}-\frac{\mathrm{e}^{t}}{3}-\frac{2 c_{1} \mathrm{e}^{-2 t}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 52
DSolve $\left[\left\{x^{\prime}[t]+y^{\prime}[t]-2 * x[t]-4 * y[t]==\operatorname{Exp}[t], x^{\prime}[t]+y^{\prime}[t]-y[t]==\operatorname{Exp}[4 * t]\right\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{12}\left(3+4 c_{1}\right) e^{-2 t} \\
& y(t) \rightarrow \frac{1}{18} e^{-2 t}\left(-6 e^{3 t}+6 e^{6 t}-3-4 c_{1}\right)
\end{aligned}
$$

16.2 problem 2

Internal problem ID [11929]
Internal file name [OUTPUT/11938_Saturday_April_13_2024_10_26_37_PM_14908028/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277 Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t)+y^{\prime}(t) & =x(t)-2 t \\
x^{\prime}(t)+y^{\prime}(t) & =t^{2}+3 x(t)+y(t)
\end{aligned}
$$

The system is

$$
\begin{align*}
x^{\prime}(t)+y^{\prime}(t) & =x(t)-2 t \tag{1}\\
x^{\prime}(t)+y^{\prime}(t) & =t^{2}+3 x(t)+y(t) \tag{2}
\end{align*}
$$

Since the left side is the same, this implies

$$
\begin{align*}
x(t)-2 t & =t^{2}+3 x(t)+y(t) \\
y(t) & =-t^{2}-2 x(t)-2 t \tag{3}
\end{align*}
$$

Taking derivative of the above w.r.t. t gives

$$
\begin{equation*}
y^{\prime}(t)=-2 t-2 x^{\prime}(t)-2 \tag{4}
\end{equation*}
$$

Substituting $(3,4)$ in (1) to eliminate $y(t), y^{\prime}(t)$ gives

$$
\begin{align*}
-x^{\prime}(t)-2 t-2 & =x(t)-2 t \\
x^{\prime}(t) & =-x(t)-2 \tag{5}
\end{align*}
$$

Which is now solved for $x(t)$. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-x-2} d x & =\int d t \\
-\ln (-x-2) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-x-2}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{1}{-x-2}=c_{2} \mathrm{e}^{t}
$$

Given now that we have the solution

$$
\begin{equation*}
x(t)=-\frac{\mathrm{e}^{-t}}{c_{2}}-2 \tag{6}
\end{equation*}
$$

Then substituting (6) into (3) gives

$$
\begin{equation*}
y(t)=-\frac{\left(t^{2} c_{2} \mathrm{e}^{t}+2 c_{2} t \mathrm{e}^{t}-4 c_{2} \mathrm{e}^{t}-2\right) \mathrm{e}^{-t}}{c_{2}} \tag{7}
\end{equation*}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33
dsolve([diff $(x(t), t)+\operatorname{diff}(y(t), t)-x(t)=-2 * t, \operatorname{diff}(x(t), t)+\operatorname{diff}(y(t), t)-3 * x(t)-y(t)=t \wedge 2]$, sings

$$
\begin{aligned}
& x(t)=-2+\mathrm{e}^{-t} c_{1} \\
& y(t)=-t^{2}+4-2 \mathrm{e}^{-t} c_{1}-2 t
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 42
DSolve $\left[\left\{x^{\prime}[t]+y^{\prime}[t]-x[t]==-2 * t, x^{\prime}[t]+y^{\prime}[t]-3 * x[t]-y[t]==t^{\wedge} 2\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSo

$$
\begin{aligned}
& x(t) \rightarrow-2-\frac{1}{4} c_{1} e^{-t} \\
& y(t) \rightarrow-t^{2}-2 t+\frac{c_{1} e^{-t}}{2}+4
\end{aligned}
$$

16.3 problem 3

Internal problem ID [11930]
Internal file name [OUTPUT/11939_Saturday_April_13_2024_10_26_38_PM_48022610/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277 Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t)+y^{\prime}(t) & =x(t)+3 y(t)+\mathrm{e}^{t} \\
x^{\prime}(t)+y^{\prime}(t) & =-x(t)+\mathrm{e}^{3 t}
\end{aligned}
$$

The system is

$$
\begin{align*}
& x^{\prime}(t)+y^{\prime}(t)=x(t)+3 y(t)+\mathrm{e}^{t} \tag{1}\\
& x^{\prime}(t)+y^{\prime}(t)=-x(t)+\mathrm{e}^{3 t} \tag{2}
\end{align*}
$$

Since the left side is the same, this implies

$$
\begin{align*}
x(t)+3 y(t)+\mathrm{e}^{t} & =-x(t)+\mathrm{e}^{3 t} \\
y(t) & =\frac{\mathrm{e}^{3 t}}{3}-\frac{2 x(t)}{3}-\frac{\mathrm{e}^{t}}{3} \tag{3}
\end{align*}
$$

Taking derivative of the above w.r.t. t gives

$$
\begin{equation*}
y^{\prime}(t)=\mathrm{e}^{3 t}-\frac{2 x^{\prime}(t)}{3}-\frac{\mathrm{e}^{t}}{3} \tag{4}
\end{equation*}
$$

Substituting (3,4) in (1) to eliminate $y(t), y^{\prime}(t)$ gives

$$
\begin{align*}
\frac{x^{\prime}(t)}{3}+\mathrm{e}^{3 t}-\frac{\mathrm{e}^{t}}{3} & =-x(t)+\mathrm{e}^{3 t} \\
x^{\prime}(t) & =-3 x(t)+\mathrm{e}^{t} \tag{5}
\end{align*}
$$

Which is now solved for $x(t)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
x^{\prime}(t)+p(t) x(t)=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =\mathrm{e}^{t}
\end{aligned}
$$

Hence the ode is

$$
x^{\prime}(t)+3 x(t)=\mathrm{e}^{t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu x) & =(\mu)\left(\mathrm{e}^{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{3 t} x\right) & =\left(\mathrm{e}^{3 t}\right)\left(\mathrm{e}^{t}\right) \\
\mathrm{d}\left(\mathrm{e}^{3 t} x\right) & =\mathrm{e}^{4 t} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 t} x=\int \mathrm{e}^{4 t} \mathrm{~d} t \\
& \mathrm{e}^{3 t} x=\frac{\mathrm{e}^{4 t}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 t}$ results in

$$
x(t)=\frac{\mathrm{e}^{-3 t} \mathrm{e}^{4 t}}{4}+\mathrm{e}^{-3 t} c_{1}
$$

which simplifies to

$$
x(t)=\frac{\left(\mathrm{e}^{4 t}+4 c_{1}\right) \mathrm{e}^{-3 t}}{4}
$$

Given now that we have the solution

$$
\begin{equation*}
x(t)=\frac{\left(\mathrm{e}^{4 t}+4 c_{1}\right) \mathrm{e}^{-3 t}}{4} \tag{6}
\end{equation*}
$$

Then substituting (6) into (3) gives

$$
\begin{equation*}
y(t)=\frac{\mathrm{e}^{3 t}}{3}-\frac{\mathrm{e}^{-3 t} \mathrm{e}^{4 t}}{6}-\frac{2 \mathrm{e}^{-3 t} c_{1}}{3}-\frac{\mathrm{e}^{t}}{3} \tag{7}
\end{equation*}
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 37
dsolve([diff $(x(t), t)+\operatorname{diff}(y(t), t)-x(t)-3 * y(t)=\exp (t), \operatorname{diff}(x(t), t)+\operatorname{diff}(y(t), t)+x(t)=\exp (3 * t)$

$$
\begin{aligned}
& x(t)=\frac{\mathrm{e}^{t}}{4}+c_{1} \mathrm{e}^{-3 t} \\
& y(t)=\frac{\mathrm{e}^{3 t}}{3}-\frac{\mathrm{e}^{t}}{2}-\frac{2 c_{1} \mathrm{e}^{-3 t}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 55
DSolve $\left[\left\{x^{\prime}[t]+y^{\prime}[t]-x[t]-3 * y[t]==\operatorname{Exp}[t], x^{\prime}[t]+y^{\prime}[t]+x[t]==\operatorname{Exp}[3 * t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSin

$$
\begin{aligned}
& x(t) \rightarrow \frac{e^{t}}{4}+\frac{3}{16} c_{1} e^{-3 t} \\
& y(t) \rightarrow-\frac{e^{t}}{2}+\frac{e^{3 t}}{3}-\frac{1}{8} c_{1} e^{-3 t}
\end{aligned}
$$

16.4 problem 4

Internal problem ID [11931]
Internal file name [OUTPUT/11940_Saturday_April_13_2024_10_26_38_PM_75029156/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277 Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t)+y^{\prime}(t) & =x(t)+2 y(t)+2 \mathrm{e}^{t} \\
x^{\prime}(t)+y^{\prime}(t) & =3 x(t)+4 y(t)+\mathrm{e}^{2 t}
\end{aligned}
$$

The system is

$$
\begin{align*}
x^{\prime}(t)+y^{\prime}(t) & =x(t)+2 y(t)+2 \mathrm{e}^{t} \tag{1}\\
x^{\prime}(t)+y^{\prime}(t) & =3 x(t)+4 y(t)+\mathrm{e}^{2 t} \tag{2}
\end{align*}
$$

Since the left side is the same, this implies

$$
\begin{align*}
x(t)+2 y(t)+2 \mathrm{e}^{t} & =3 x(t)+4 y(t)+\mathrm{e}^{2 t} \\
y(t) & =-\frac{\mathrm{e}^{2 t}}{2}-x(t)+\mathrm{e}^{t} \tag{3}
\end{align*}
$$

Taking derivative of the above w.r.t. t gives

$$
\begin{equation*}
y^{\prime}(t)=-\mathrm{e}^{2 t}-x^{\prime}(t)+\mathrm{e}^{t} \tag{4}
\end{equation*}
$$

Substituting (3,4) in (1) to eliminate $y(t), y^{\prime}(t)$ gives

$$
\begin{align*}
-\mathrm{e}^{2 t}+\mathrm{e}^{t} & =-x(t)-\mathrm{e}^{2 t}+4 \mathrm{e}^{t} \\
x(t) & =3 \mathrm{e}^{t} \tag{5}
\end{align*}
$$

Substituting (5) into (3) gives

$$
\begin{equation*}
y(t)=-\frac{\mathrm{e}^{2 t}}{2}-2 \mathrm{e}^{t} \tag{7}
\end{equation*}
$$

Since $x(t)=3 \mathrm{e}^{t}$, is missing derivative in x then it is an algebraic equation. Solving for $x(t)$.

$$
x(t)=3 \mathrm{e}^{t}
$$

Given now that we have the solution

$$
\begin{equation*}
x(t)=3 \mathrm{e}^{t} \tag{6}
\end{equation*}
$$

Then substituting (6) into (3) gives

$$
\begin{equation*}
y(t)=-\frac{\mathrm{e}^{2 t}}{2}-2 \mathrm{e}^{t} \tag{7}
\end{equation*}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23
dsolve([diff $(x(t), t)+\operatorname{diff}(y(t), t)-x(t)-2 * y(t)=2 * \exp (t), \operatorname{diff}(x(t), t)+\operatorname{diff}(y(t), t)-3 * x(t)-4 * y$

$$
\begin{aligned}
& x(t)=3 \mathrm{e}^{t} \\
& y(t)=-\frac{\mathrm{e}^{2 t}}{2}-2 \mathrm{e}^{t}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 25
DSolve $\left[\left\{x^{\prime}[t]+y^{\prime}[t]-x[t]-2 * y[t]==2 * \operatorname{Exp}[t], x^{\prime}[t]+y^{\prime}[t]-3 * x[t]-4 * y[t]==\operatorname{Exp}[2 * t]\right\},\{x[t], y[t]\}, t\right.$

$$
\begin{aligned}
& x(t) \rightarrow 3 e^{t} \\
& y(t) \rightarrow-\frac{1}{2} e^{t}\left(e^{t}+4\right)
\end{aligned}
$$

16.5 problem 5

16.5.1 Solution using Matrix exponential method 4379
16.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4381
16.5.3 Maple step by step solution . 4386

Internal problem ID [11932]
Internal file name [OUTPUT/11941_Saturday_April_13_2024_10_26_39_PM_92028239/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t)+2 y(t)-\mathrm{e}^{t}+\mathrm{e}^{-t} \\
y^{\prime}(t) & =-5 x(t)-3 y(t)+2 \mathrm{e}^{t}-\mathrm{e}^{-t}
\end{aligned}
$$

16.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-\mathrm{e}^{t}+\mathrm{e}^{-t} \\
2 \mathrm{e}^{t}-\mathrm{e}^{-t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)+3 \sin (t) & 2 \sin (t) \\
-5 \sin (t) & \cos (t)-3 \sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)+3 \sin (t) & 2 \sin (t) \\
-5 \sin (t) & \cos (t)-3 \sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)+3 \sin (t)) c_{1}+2 \sin (t) c_{2} \\
-5 \sin (t) c_{1}+(\cos (t)-3 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(3 c_{1}+2 c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(-5 c_{1}-3 c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\cos (t)-3 \sin (t) & -2 \sin (t) \\
5 \sin (t) & \cos (t)+3 \sin (t)
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\cos (t)+3 \sin (t) & 2 \sin (t) \\
-5 \sin (t) & \cos (t)-3 \sin (t)
\end{array}\right] \int\left[\begin{array}{cc}
\cos (t)-3 \sin (t) & -2 \sin (t) \\
5 \sin (t) & \cos (t)+3 \sin (t)
\end{array}\right]\left[\begin{array}{c}
-\mathrm{e}^{t}+\mathrm{e}^{-t} \\
2 \mathrm{e}^{t}-\mathrm{e}^{-t}
\end{array}\right. \\
& =\left[\begin{array}{cc}
\cos (t)+3 \sin (t) & 2 \sin (t) \\
-5 \sin (t) & \cos (t)-3 \sin (t)
\end{array}\right]\left[\begin{array}{c}
-\sin (t)\left(\mathrm{e}^{t}-\mathrm{e}^{-t}\right) \\
\frac{(\cos (t)+3 \sin (t))\left(\mathrm{e}^{t}-\mathrm{e}^{-t}\right)}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
\frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\left(3 c_{1}+2 c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(-5 c_{1}-3 c_{2}\right) \sin (t)+c_{2} \cos (t)+\frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
\end{aligned}
$$

16.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-\mathrm{e}^{t}+\mathrm{e}^{-t} \\
2 \mathrm{e}^{t}-\mathrm{e}^{-t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 2 \\
-5 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
i	1	complex eigenvalue
$-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
3+i & 2 \\
-5 & -3+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3+i & 2 & 0 \\
-5 & -3+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{3}{2}-\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3+i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3+i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{3}{5}+\frac{i}{5}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}+\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{3}{5}+\frac{i}{5}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}+\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{3}{5}+\frac{i}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}+\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{5}+\frac{i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}+\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3+i \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3-i & 2 & 0 \\
-5 & -3-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{3}{2}+\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3-i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3-i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{3}{5}-\frac{i}{5}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}-\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{3}{5}-\frac{i}{5}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}-\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{3}{5}-\frac{i}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}-\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{5}-\frac{i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}-\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3-i \\
5
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k		eigenvectors
i	1	1	No	$\left[\begin{array}{c}-\frac{3}{5}-\frac{i}{5} \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}-\frac{3}{5}+\frac{i}{5} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{3}{5}-\frac{i}{5}\right) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{3}{5}+\frac{i}{5}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \ldots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\left(-\frac{3}{5}-\frac{i}{5}\right) \mathrm{e}^{i t} & \left(-\frac{3}{5}+\frac{i}{5}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{5 i e^{-i t}}{2} & \left(\frac{1}{2}+\frac{3 i}{2}\right) \mathrm{e}^{-i t} \\
-\frac{5 i e^{i t}}{2} & \left(\frac{1}{2}-\frac{3 i}{2}\right) \mathrm{e}^{i t}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\left(-\frac{3}{5}-\frac{i}{5}\right) \mathrm{e}^{i t} & \left(-\frac{3}{5}+\frac{i}{5}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{5 i \mathrm{e}^{-i t}}{2} & \left(\frac{1}{2}+\frac{3 i}{2}\right) \mathrm{e}^{-i t} \\
-\frac{5 i e^{i t}}{2} & \left(\frac{1}{2}-\frac{3 i}{2}\right) \mathrm{e}^{i t}
\end{array}\right]\left[\begin{array}{c}
-\mathrm{e}^{t}+\mathrm{e}^{-t} \\
2 \mathrm{e}^{t}-\mathrm{e}^{-t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\left(-\frac{3}{5}-\frac{i}{5}\right) \mathrm{e}^{i t} & \left(-\frac{3}{5}+\frac{i}{5}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{c}
\left(-\frac{1}{2}+i\right) \mathrm{e}^{(-1-i) t}+\left(1+\frac{i}{2}\right) \mathrm{e}^{(1-i) t} \\
\left(-\frac{1}{2}-i\right) \mathrm{e}^{(-1+i) t}+\left(1-\frac{i}{2}\right) \mathrm{e}^{(1+i) t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\left(-\frac{3}{5}-\frac{i}{5}\right) \mathrm{e}^{i t} & \left(-\frac{3}{5}+\frac{i}{5}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]\left[\begin{array}{c}
\left(\frac{1}{4}+\frac{3 i}{4}\right)\left(-\mathrm{e}^{(-1-i) t}+\mathrm{e}^{(1-i) t}\right) \\
\left(\frac{1}{4}-\frac{3 i}{4}\right)\left(-\mathrm{e}^{(-1+i) t}+\mathrm{e}^{(1+i) t}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
\frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
\left(-\frac{3}{5}-\frac{i}{5}\right) c_{1} \mathrm{e}^{i t} \\
c_{1} \mathrm{e}^{i t}
\end{array}\right]+\left[\begin{array}{c}
\left(-\frac{3}{5}+\frac{i}{5}\right) c_{2} \mathrm{e}^{-i t} \\
c_{2} \mathrm{e}^{-i t}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{3}{5}-\frac{i}{5}\right) c_{1} \mathrm{e}^{i t}+\left(-\frac{3}{5}+\frac{i}{5}\right) c_{2} \mathrm{e}^{-i t} \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}+\frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
$$

16.5.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=3 x(t)+2 y(t)-\mathrm{e}^{t}+\frac{1}{\mathrm{e}^{t}}, y^{\prime}(t)=-5 x(t)-3 y(t)+2 \mathrm{e}^{t}-\frac{1}{\mathrm{e}^{t}}\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
\frac{3 x(t) \mathrm{e}^{t}+2 y(t) \mathrm{e}^{t}-\left(\mathrm{e}^{t}\right)^{2}+1}{\mathrm{e}^{t}}-3 x(t)-2 y(t) \\
-\frac{5 x(t) \mathrm{e}^{t}+3 y(t) \mathrm{e}^{t}-2\left(\mathrm{e}^{t}\right)^{2}+1}{\mathrm{e}^{t}}+5 x(t)+3 y(t)
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
-\frac{3}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-\frac{3}{5}-\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\frac{3}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}
-\frac{3}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
-\frac{3}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\left(-\frac{3}{5}+\frac{\mathrm{I}}{5}\right)(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\left[\begin{array}{c}
-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5} \\
\cos (t)
\end{array}\right], \vec{x}_{2}(t)=\left[\begin{array}{c}
\frac{3 \sin (t)}{5}+\frac{\cos (t)}{5} \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
c_{2}\left(\frac{3 \sin (t)}{5}+\frac{\cos (t)}{5}\right)+c_{1}\left(-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}\right) \\
c_{1} \cos (t)-c_{2} \sin (t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-3 c_{1}+c_{2}\right) \cos (t)}{5}+\frac{\sin (t)\left(c_{1}+3 c_{2}\right)}{5} \\
c_{1} \cos (t)-c_{2} \sin (t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-3 c_{1}+c_{2}\right) \cos (t)}{5}+\frac{\sin (t)\left(c_{1}+3 c_{2}\right)}{5}, y(t)=c_{1} \cos (t)-c_{2} \sin (t)\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 48

```
dsolve([2*\operatorname{diff}(x(t),t)+\operatorname{diff}(y(t),t)-x(t)-y(t)=exp(-t),\operatorname{diff}(x(t),t)+\operatorname{diff}(y(t),t)+2*x(t)+y(t)=
```

$$
\begin{aligned}
& x(t)=c_{1} \sin (t)+c_{2} \cos (t) \\
& y(t)=\frac{c_{1} \cos (t)}{2}-\frac{3 c_{2} \cos (t)}{2}-\frac{3 c_{1} \sin (t)}{2}-\frac{c_{2} \sin (t)}{2}+\frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 60
DSolve $\left[\left\{2 * x^{\prime}[t]+y^{\prime}[t]-x[t]-y[t]==\operatorname{Exp}[-t], x^{\prime}[t]+y^{\prime}[t]+2 * x[t]+y[t]==\operatorname{Exp}[t]\right\},\{x[t], y[t]\}, t, \operatorname{Inc}\right]$

$$
\begin{aligned}
x(t) & \rightarrow c_{1} \cos (t)+\left(3 c_{1}+2 c_{2}\right) \sin (t) \\
y(t) & \rightarrow \frac{1}{2}\left(-e^{-t}+e^{t}+2 c_{2} \cos (t)-2\left(5 c_{1}+3 c_{2}\right) \sin (t)\right)
\end{aligned}
$$

16.6 problem 6

16.6.1 Solution using Matrix exponential method 4389
16.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4391
16.6.3 Maple step by step solution . 4396

Internal problem ID [11933]
Internal file name [OUTPUT/11942_Sunday_April_14_2024_02_31_02_AM_19754612/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)+t-\mathrm{e}^{t} \\
y^{\prime}(t) & =5 x(t)+y(t)-t+2 \mathrm{e}^{t}
\end{aligned}
$$

16.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
5 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
t-\mathrm{e}^{t} \\
-t+2 \mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
\frac{5 \mathrm{e}^{t}}{2}-\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
\frac{5 \mathrm{e}^{t}}{2}-\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} c_{1} \\
\left(\frac{5 \mathrm{e}^{t}}{2}-\frac{5 \mathrm{e}^{-t}}{2}\right) c_{1}+\mathrm{e}^{t} c_{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} & 0 \\
-\frac{5 \mathrm{e}^{t}}{2}+\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
\frac{5 \mathrm{e}^{t}}{2}-\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{cc}
\mathrm{e}^{t} & 0 \\
-\frac{5 \mathrm{e}^{t}}{2}+\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
t-\mathrm{e}^{t} \\
-t+2 \mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
\frac{5 \mathrm{e}^{t}}{2}-\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 t}}{2}+\mathrm{e}^{t}(t-1) \\
\frac{3(-1-t) \mathrm{e}^{-t}}{2}+\frac{5 \mathrm{e}^{2 t}}{4}+\frac{5 \mathrm{e}^{t}(1-t)}{2}-\frac{t}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
t-1-\frac{\mathrm{e}^{t}}{2} \\
\frac{(-2 t+5) \mathrm{e}^{t}}{4}-4 t+1
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} c_{1}+t-1-\frac{\mathrm{e}^{t}}{2} \\
-\frac{5 \mathrm{e}^{-t} c_{1}}{2}+\frac{\left(-2 t+10 c_{1}+4 c_{2}+5\right) \mathrm{e}^{t}}{4}-4 t+1
\end{array}\right]
\end{aligned}
$$

16.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
5 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
t-\mathrm{e}^{t} \\
-t+2 \mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 0 \\
5 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 0 \\
5 & 1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-1-\lambda)(1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
5 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
5 & 2 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
5 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
5 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{5}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
5 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & 0 \\
5 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 0 & 0 \\
5 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{5 R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1	1	No	$\left[\begin{array}{c}0 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}-\frac{2}{5} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{-t}}{5} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
0 & -\frac{2 \mathrm{e}^{-t}}{5} \\
\mathrm{e}^{t} & \mathrm{e}^{-t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t} \\
-\frac{5 \mathrm{e}^{t}}{2} & 0
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
0 & -\frac{2 \mathrm{e}^{-t}}{5} \\
\mathrm{e}^{t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t} \\
-\frac{5 \mathrm{e}^{t}}{2} & 0
\end{array}\right]\left[\begin{array}{c}
t-\mathrm{e}^{t} \\
-t+2 \mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
0 & -\frac{2 \mathrm{e}^{-t}}{5} \\
\mathrm{e}^{t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{1}{2}+\frac{3 t \mathrm{e}^{-t}}{2} \\
\frac{5 \mathrm{e}^{t}\left(-t+\mathrm{e}^{t}\right)}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
0 & -\frac{2 \mathrm{e}^{-t}}{5} \\
\mathrm{e}^{t} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
\frac{(-3 t-3) \mathrm{e}^{-t}}{2}-\frac{t}{2} \\
\frac{5 \mathrm{e}^{2 t}}{4}+\frac{5 \mathrm{e}^{t}(1-t)}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
t-1-\frac{\mathrm{e}^{t}}{2} \\
\frac{(-2 t+5) \mathrm{e}^{t}}{4}-4 t+1
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
c_{1} \mathrm{e}^{t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{2 c_{2} \mathrm{e}^{-t}}{5} \\
c_{2} \mathrm{e}^{-t}
\end{array}\right]+\left[\begin{array}{c}
t-1-\frac{\mathrm{e}^{t}}{2} \\
\frac{(-2 t+5) \mathrm{e}^{t}}{4}-4 t+1
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 c_{2} e^{-t}}{5}+t-1-\frac{\mathrm{e}^{t}}{2} \\
c_{2} \mathrm{e}^{-t}+\frac{\left(-2 t+4 c_{1}+5\right) \mathrm{e}^{t}}{4}-4 t+1
\end{array}\right]
$$

16.6.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-x(t)+t-\mathrm{e}^{t}, y^{\prime}(t)=5 x(t)+y(t)-t+2 \mathrm{e}^{t}\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 0 \\
5 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
t-\mathrm{e}^{t} \\
-t+2 \mathrm{e}^{t}
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 0 \\
5 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
t-\mathrm{e}^{t} \\
-t+2 \mathrm{e}^{t}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(t)=\left[\begin{array}{c}t-\mathrm{e}^{t} \\ -t+2 \mathrm{e}^{t}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
5 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}-\frac{2}{5} \\ 1\end{array}\right]$
- Consider eigenpair
$\left[1,\left[\begin{array}{l}0 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution $\vec{x}_{p}($ $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
$\square \quad$ Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}-\frac{2 \mathrm{e}^{-t}}{5} & 0 \\ \mathrm{e}^{-t} & \mathrm{e}^{t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th

$$
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{-t}}{5} & 0 \\
\mathrm{e}^{-t} & \mathrm{e}^{t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-\frac{2}{5} & 0 \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix
$\Phi(t)=\left[\begin{array}{cc}\mathrm{e}^{-t} & 0 \\ \frac{5 \mathrm{e}^{t}}{2}-\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{t}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution
$\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms
$\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}}{2}+t-1+\frac{3 \mathrm{e}^{-t}}{2} \\
-\frac{15 \mathrm{e}^{-t}}{4}+\frac{(-2 t+11) \mathrm{e}^{t}}{4}-4 t+1
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}}{2}+t-1+\frac{3 \mathrm{e}^{-t}}{2} \\
-\frac{15 \mathrm{e}^{-t}}{4}+\frac{(-2 t+11) \mathrm{e}^{t}}{4}-4 t+1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 c_{1} \mathrm{e}^{-t}}{5}-\frac{\mathrm{e}^{t}}{2}+t-1+\frac{3 \mathrm{e}^{-t}}{2} \\
\frac{\left(4 c_{1}-15\right) \mathrm{e}^{-t}}{4}+\frac{\left(-2 t+4 c_{2}+11\right) \mathrm{e}^{t}}{4}-4 t+1
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=-\frac{2 c_{1} \mathrm{e}^{-t}}{5}-\frac{\mathrm{e}^{t}}{2}+t-1+\frac{3 \mathrm{e}^{-t}}{2}, y(t)=\frac{\left(4 c_{1}-15\right) \mathrm{e}^{-t}}{4}+\frac{\left(-2 t+4 c_{2}+11\right) \mathrm{e}^{t}}{4}-4 t+1\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 42

```
dsolve([2*\operatorname{diff}(x(t),t)+\operatorname{diff}(y(t),t)-3*x(t)-y(t)=t, diff (x (t),t)+\operatorname{diff}(y(t),t)-4*x(t)-y(t)=exp(
```

$$
\begin{aligned}
& x(t)=t-1-\frac{\mathrm{e}^{t}}{2}+c_{2} \mathrm{e}^{-t} \\
& y(t)=-\frac{5 c_{2} \mathrm{e}^{-t}}{2}-4 t+1+c_{1} \mathrm{e}^{t}-\frac{\mathrm{e}^{t} t}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.665 (sec). Leaf size: 72
DSolve $\left[\left\{2 * x^{\prime}[t]+y^{\prime}[t]-3 * x[t]-y[t]==t, x^{\prime}[t]+y^{\prime}[t]+4 * x[t]-y[t]==\operatorname{Exp}[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow-\frac{t}{7}+\frac{e^{t}}{6}+c_{1} e^{7 t}-\frac{1}{49} \\
& y(t) \rightarrow-\frac{4 t}{7}-\frac{11}{6} c_{1} e^{7 t}+\frac{1}{36} e^{t}\left(6 t-11+66 c_{1}+36 c_{2}\right)-\frac{39}{49}
\end{aligned}
$$

16.7 problem 7

16.7.1 Solution using Matrix exponential method 4401
16.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4403
16.7.3 Maple step by step solution . 4408

Internal problem ID [11934]
Internal file name [OUTPUT/11943_Sunday_April_14_2024_02_31_04_AM_22296256/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=-t+2 \mathrm{e}^{3 t}+6 y(t) \\
& y^{\prime}(t)=x(t)+t-\mathrm{e}^{3 t}
\end{aligned}
$$

16.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 6 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
2 \mathrm{e}^{3 t}-t \\
-\mathrm{e}^{3 t}+t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
&=\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{1} \\
c_{2}
\end{array}\right] \\
&=\left[\begin{array}{c}
\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6} c_{1}}{12}+\left(\frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2}\right) c_{2}
\end{array}\right] \\
& {\left[\begin{array}{l}
\left.\frac{\left(-c_{2} \sqrt{6}+c_{1}\right) \mathrm{e}^{-\sqrt{6} t}}{2}+\frac{\mathrm{e}^{\sqrt{6} t}\left(c_{2} \sqrt{6}+c_{1}\right)}{2}\right] \\
\\
=
\end{array}\right] } \\
&\left.\frac{\left(-c_{1} \sqrt{6}+6 c_{2}\right) \mathrm{e}^{-\sqrt{6} t}}{12}+\frac{\mathrm{e}^{\sqrt{6} t}\left(c_{1} \sqrt{6}+6 c_{2}\right)}{12}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{6}} t}{2}+\frac{\mathrm{e}^{-\sqrt{6}} t}{2} & -\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{2} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{6}} t}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2} & -\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{2} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 \mathrm{e}^{3 t}-t \\
-\mathrm{e}^{3 t}+t
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{6}} t}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2}
\end{array}\right]\left[\begin{array}{c}
-\frac{\sqrt{6} \mathrm{e}^{-t(\sqrt{6}-3)}}{6}+\frac{(\sqrt{6}(t-1)-6 t+1) \mathrm{e}^{-\sqrt{6} t}}{12}+\frac{\sqrt{6} \mathrm{e}^{t(\sqrt{6}+3)}}{6}-\frac{\mathrm{e}^{\sqrt{6} t}}{2} \\
-\frac{\mathrm{e}^{-t(\sqrt{6}-3)}}{6}+\frac{((-6 t+1) \sqrt{6}+6 t-6) \mathrm{e}^{-\sqrt{6} t}}{72}-\frac{\mathrm{e}^{t(\sqrt{6}+3)}}{6}+\frac{((6 t-1), ~}{} .
\end{array}\right. \\
& =\left[\begin{array}{c}
-t+\frac{1}{6} \\
\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{6}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(-3 c_{2} \sqrt{6}+3 c_{1}\right) \mathrm{e}^{-\sqrt{6} t}}{6}+\frac{\left(3 c_{2} \sqrt{6}+3 c_{1}\right) \mathrm{e}^{\sqrt{6} t}}{6}-t+\frac{1}{6} \\
\frac{\left(-c_{1} \sqrt{6}+6 c_{2}\right) \mathrm{e}^{-\sqrt{6} t}}{12}+\frac{\mathrm{e}^{\sqrt{6} t}\left(c_{1} \sqrt{6}+6 c_{2}\right)}{12}+\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{6}
\end{array}\right]
\end{aligned}
$$

16.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 6 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
2 \mathrm{e}^{3 t}-t \\
-\mathrm{e}^{3 t}+t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
0 & 6 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 6 \\
1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\sqrt{6} \\
& \lambda_{2}=-\sqrt{6}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\sqrt{6}$	1	real eigenvalue
$-\sqrt{6}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\sqrt{6}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
0 & 6 \\
1 & 0
\end{array}\right]-(\sqrt{6})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\sqrt{6} & 6 & 0 \\
1 & -\sqrt{6} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{\sqrt{6} R_{1}}{6} \Longrightarrow\left[\begin{array}{cc|c}
-\sqrt{6} & 6 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\sqrt{6} & 6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t \sqrt{6}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
t \sqrt{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
t \sqrt{6} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \sqrt{6} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\sqrt{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \sqrt{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{6} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\sqrt{6}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
0 & 6 \\
1 & 0
\end{array}\right]-(-\sqrt{6})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
\sqrt{6} & 6 \\
1 & \sqrt{6}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\sqrt{6} & 6 & 0 \\
1 & \sqrt{6} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{\sqrt{6} R_{1}}{6} \Longrightarrow\left[\begin{array}{cc|c}
\sqrt{6} & 6 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\sqrt{6} & 6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t \sqrt{6}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \sqrt{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \sqrt{6} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \sqrt{6} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\sqrt{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \sqrt{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{6} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\sqrt{6}$	1	1	No	$\left[\begin{array}{c}\sqrt{6} \\ 1\end{array}\right]$
$-\sqrt{6}$	1	1	No	$\left[\begin{array}{c}-\sqrt{6} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\sqrt{6}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\sqrt{6} t} \\
& =\left[\begin{array}{c}
\sqrt{6} \\
1
\end{array}\right] e^{\sqrt{6} t}
\end{aligned}
$$

Since eigenvalue $-\sqrt{6}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\sqrt{6} t} \\
& =\left[\begin{array}{c}
-\sqrt{6} \\
1
\end{array}\right] e^{-\sqrt{6} t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\sqrt{6} \mathrm{e}^{\sqrt{6} t} \\
\mathrm{e}^{\sqrt{6} t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\sqrt{6} \mathrm{e}^{-\sqrt{6} t} \\
\mathrm{e}^{-\sqrt{6} t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\sqrt{6} \mathrm{e}^{\sqrt{6} t} & -\sqrt{6} \mathrm{e}^{-\sqrt{6} t} \\
\mathrm{e}^{\sqrt{6} t} & \mathrm{e}^{-\sqrt{6} t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{\sqrt{6} \mathrm{e}^{-\sqrt{6} t}}{12} & \frac{\mathrm{e}^{-\sqrt{6} t}}{2} \\
-\frac{\sqrt{6} \mathrm{e}^{\sqrt{6} t}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\sqrt{6} \mathrm{e}^{\sqrt{6} t} & -\sqrt{6} \mathrm{e}^{-\sqrt{6} t} \\
\mathrm{e}^{\sqrt{6} t} & \mathrm{e}^{-\sqrt{6} t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\sqrt{6} \mathrm{e}^{-\sqrt{6} t}}{12} & \frac{\mathrm{e}^{-\sqrt{6} t}}{2} \\
-\frac{\sqrt{6} \mathrm{e}^{\sqrt{6} t}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 \mathrm{e}^{3 t}-t \\
-\mathrm{e}^{3 t}+t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\sqrt{6} \mathrm{e}^{\sqrt{6} t} & -\sqrt{6} \mathrm{e}^{-\sqrt{6} t} \\
\mathrm{e}^{\sqrt{6} t} & \mathrm{e}^{-\sqrt{6} t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{(\sqrt{6}-3) \mathrm{e}^{-t(\sqrt{6}-3)}}{6}-\frac{t \mathrm{e}^{-\sqrt{6} t}(\sqrt{6}-6)}{12} \\
\frac{(-\sqrt{6}-3) \mathrm{e}^{t(\sqrt{6}+3)}}{6}+\frac{t \mathrm{e}^{\sqrt{6} t}(\sqrt{6}+6)}{12}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\sqrt{6} \mathrm{e}^{\sqrt{6} t} & -\sqrt{6} \mathrm{e}^{-\sqrt{6} t} \\
\mathrm{e}^{\sqrt{6} t} & \mathrm{e}^{-\sqrt{6} t}
\end{array}\right]\left[\begin{array}{c}
-\frac{\left(2 \mathrm{e}^{3 t}+\left(t-\frac{1}{6}\right) \sqrt{6}-t+1\right) \mathrm{e}^{-\sqrt{6} t}}{12} \\
-\frac{\mathrm{e}^{t(\sqrt{6}+3)}}{6}+\frac{((6 t-1) \sqrt{6}+6 t-6) \mathrm{e}^{\sqrt{6} t}}{72}
\end{array}\right] \\
& =\left[\begin{array}{c}
-t+\frac{1}{6} \\
\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{6}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
c_{1} \sqrt{6} \mathrm{e}^{\sqrt{6} t} \\
c_{1} \mathrm{e}^{\sqrt{6} t}
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \sqrt{6} \mathrm{e}^{-\sqrt{6} t} \\
c_{2} \mathrm{e}^{-\sqrt{6} t}
\end{array}\right]+\left[\begin{array}{c}
-t+\frac{1}{6} \\
\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{6}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \sqrt{6} \mathrm{e}^{\sqrt{6} t}-c_{2} \sqrt{6} \mathrm{e}^{-\sqrt{6} t}-t+\frac{1}{6} \\
c_{1} \mathrm{e}^{\sqrt{6} t}+c_{2} \mathrm{e}^{-\sqrt{6} t}+\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{6}
\end{array}\right]
$$

16.7.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-t+2\left(\mathrm{e}^{t}\right)^{3}+6 y(t), y^{\prime}(t)=x(t)+t-\left(\mathrm{e}^{t}\right)^{3}\right]
$$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}0 & 6 \\ 1 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}2\left(\mathrm{e}^{t}\right)^{3}-t \\ -\left(\mathrm{e}^{t}\right)^{3}+t\end{array}\right]$
- \quad System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}0 & 6 \\ 1 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}2\left(\mathrm{e}^{t}\right)^{3}-t \\ -\left(\mathrm{e}^{t}\right)^{3}+t\end{array}\right]$
- Define the forcing function
$\vec{f}(t)=\left[\begin{array}{c}2\left(\mathrm{e}^{t}\right)^{3}-t \\ -\left(\mathrm{e}^{t}\right)^{3}+t\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ll}0 & 6 \\ 1 & 0\end{array}\right]$
- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\sqrt{6},\left[\begin{array}{c}
\sqrt{6} \\
1
\end{array}\right]\right],\left[-\sqrt{6},\left[\begin{array}{c}
-\sqrt{6} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\sqrt{6},\left[\begin{array}{c}
\sqrt{6} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{\sqrt{6} t} \cdot\left[\begin{array}{c}\sqrt{6} \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[-\sqrt{6},\left[\begin{array}{c}
-\sqrt{6} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{-\sqrt{6} t} \cdot\left[\begin{array}{c}
-\sqrt{6} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
$\square \quad$ Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}\sqrt{6} \mathrm{e}^{\sqrt{6} t} & -\sqrt{6} \mathrm{e}^{-\sqrt{6} t} \\ \mathrm{e}^{\sqrt{6} t} & \mathrm{e}^{-\sqrt{6} t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
\sqrt{6} \mathrm{e}^{\sqrt{6} t} & -\sqrt{6} \mathrm{e}^{-\sqrt{6} t} \\
\mathrm{e}^{\sqrt{6} t} & \mathrm{e}^{-\sqrt{6} t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
\sqrt{6} & -\sqrt{6} \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{6}} t}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{6} t}+\mathrm{e}^{\sqrt{6} t}\right) \sqrt{6}}{12} & \frac{\mathrm{e}^{\sqrt{6} t}}{2}+\frac{\mathrm{e}^{-\sqrt{6} t}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution $\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{(-3 \sqrt{6}-1) \mathrm{e}^{-\sqrt{6} t}}{12}+\frac{(3 \sqrt{6}-1) \mathrm{e}^{\sqrt{6} t}}{12}-t+\frac{1}{6} \\
\frac{(\sqrt{6}+18) \mathrm{e}^{-\sqrt{6} t}}{72}+\frac{(-\sqrt{6}+18) \mathrm{e}^{\sqrt{6} t}}{72}+\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{6}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{(-3 \sqrt{6}-1) \mathrm{e}^{-\sqrt{6} t}}{12}+\frac{(3 \sqrt{6}-1) \mathrm{e}^{\sqrt{6} t}}{12}-t+\frac{1}{6} \\
\frac{(\sqrt{6}+18) \mathrm{e}^{-\sqrt{6} t}}{72}+\frac{(-\sqrt{6}+18) \mathrm{e}^{\sqrt{6} t}}{72}+\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{6}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-1+\left(-12 c_{2}-3\right) \sqrt{6}\right) \mathrm{e}^{-\sqrt{6} t}}{12}+\frac{\left(-1+\left(12 c_{1}+3\right) \sqrt{6}\right) \mathrm{e}^{\sqrt{6} t}}{12}-t+\frac{1}{6} \\
\frac{\left(72 c_{2}+\sqrt{6}+18\right) \mathrm{e}^{-\sqrt{6} t}}{72}+\frac{\left(72 c_{1}-\sqrt{6}+18\right) \mathrm{e}^{\sqrt{6} t}}{72}+\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{6}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-1+\left(-12 c_{2}-3\right) \sqrt{6}\right) \mathrm{e}^{-\sqrt{6} t}}{12}+\frac{\left(-1+\left(12 c_{1}+3\right) \sqrt{6}\right) \mathrm{e}^{\sqrt{6} t}}{12}-t+\frac{1}{6}, y(t)=\frac{\left(72 c_{2}+\sqrt{6}+18\right) \mathrm{e}^{-\sqrt{6} t}}{72}+\frac{\left(72 c_{1}-\sqrt{6}-\right.}{72}\right.
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 66
dsolve([diff $(x(t), t)+\operatorname{diff}(y(t), t)-x(t)-6 * y(t)=\exp (3 * t), \operatorname{diff}(x(t), t)+2 * \operatorname{diff}(y(t), t)-2 * x(t)-6 *$

$$
\begin{aligned}
& x(t)=\mathrm{e}^{\sqrt{6} t} c_{2}+\mathrm{e}^{-\sqrt{6} t} c_{1}-t+\frac{1}{6} \\
& y(t)=\frac{\sqrt{6} \mathrm{e}^{\sqrt{6} t} c_{2}}{6}-\frac{\sqrt{6} \mathrm{e}^{-\sqrt{6} t} c_{1}}{6}-\frac{1}{6}+\frac{t}{6}-\frac{\mathrm{e}^{3 t}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 8.119 (sec). Leaf size: 142
DSolve $\left[\left\{x^{\prime}[t]+y^{\prime}[t]-x[t]-6 * y[t]==\operatorname{Exp}[3 * t], x^{\prime}[t]+2 * y\right.\right.$ ' $\left.[t]-2 * x[t]-6 * y[t]==t\right\},\{x[t], y[t]\}, t, \operatorname{Inc} c$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{6}\left(-6 t+3\left(c_{1}-\sqrt{6} c_{2}\right) e^{-\sqrt{6} t}+3\left(c_{1}+\sqrt{6} c_{2}\right) e^{\sqrt{6} t}+1\right) \\
& y(t) \rightarrow \frac{1}{12} e^{-\sqrt{6} t}\left(2 e^{\sqrt{6} t}(t-1)-4 e^{(3+\sqrt{6}) t}+\left(\sqrt{6} c_{1}+6 c_{2}\right) e^{2 \sqrt{6} t}-\sqrt{6} c_{1}+6 c_{2}\right)
\end{aligned}
$$

16.8 problem 8

16.8.1 Solution using Matrix exponential method 4413
16.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4415
16.8.3 Maple step by step solution . 4420

Internal problem ID [11935]
Internal file name [OUTPUT/11944_Sunday_April_14_2024_02_31_05_AM_57356254/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =6 t-1+3 y(t) \\
y^{\prime}(t) & =x(t)-3 t+1
\end{aligned}
$$

16.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
6 t-1 \\
1-3 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{3}} t}{2}+\frac{\mathrm{e}^{-\sqrt{3}} t}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{3}} t}{2}+\frac{\mathrm{e}^{-\sqrt{3}} t}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3}} t}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2}\right) c_{1}+\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3} c_{2}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3} c_{1}}{6}+\left(\frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{2} \sqrt{3}+c_{1}\right) \mathrm{e}^{-\sqrt{3} t}}{2}+\frac{\mathrm{e}^{\sqrt{3} t}\left(c_{2} \sqrt{3}+c_{1}\right)}{2} \\
\frac{\left(-c_{1} \sqrt{3}+3 c_{2}\right) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\mathrm{e}^{\sqrt{3} t}\left(c_{1} \sqrt{3}+3 c_{2}\right)}{6}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{3}} t}{2}+\frac{\mathrm{e}^{-\sqrt{3}} t}{2} & -\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{2} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{\mathrm{e}^{\sqrt{3} 3}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{3}} t}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{\mathrm{e}^{\sqrt{3}} t}{2}+\frac{\mathrm{e}^{-\sqrt{3}} t}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2} & -\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{2} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2}
\end{array}\right]\left[\begin{array}{c}
6 t-1 \\
1-3 t
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{((4-6 t) \sqrt{3}+9 t-9) \mathrm{e}^{-\sqrt{3} t}}{6}+\mathrm{e}^{\sqrt{3} t}\left(\left(t-\frac{2}{3}\right) \sqrt{3}+\frac{3 t}{2}-\frac{3}{2}\right) \\
\frac{((3 t-3) \sqrt{3}-6 t+4) \mathrm{e}^{-\sqrt{3} t}}{6}-\frac{\mathrm{e}^{\sqrt{3} t}\left(\sqrt{3}(t-1)+2 t-\frac{4}{3}\right)}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
3 t-3 \\
-2 t+\frac{4}{3}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(-c_{2} \sqrt{3}+c_{1}\right) \mathrm{e}^{-\sqrt{3}} t}{2}+\frac{\mathrm{e}^{\sqrt{3} t}\left(c_{2} \sqrt{3}+c_{1}\right)}{2}+3 t-3 \\
\frac{\left(-c_{1} \sqrt{3}+3 c_{2}\right) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\mathrm{e}^{\sqrt{3} t}\left(c_{1} \sqrt{3}+3 c_{2}\right)}{6}-2 t+\frac{4}{3}
\end{array}\right]
\end{aligned}
$$

16.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
6 t-1 \\
1-3 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 3 \\
1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =\sqrt{3} \\
\lambda_{2} & =-\sqrt{3}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\sqrt{3}$	1	real eigenvalue
$-\sqrt{3}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right]-(\sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\sqrt{3} & 3 \\
1 & -\sqrt{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\sqrt{3} & 3 & 0 \\
1 & -\sqrt{3} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{\sqrt{3} R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
-\sqrt{3} & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\sqrt{3} & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t \sqrt{3}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
t \sqrt{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
t \sqrt{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \sqrt{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \sqrt{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right]-(-\sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
\sqrt{3} & 3 \\
1 & \sqrt{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\sqrt{3} & 3 & 0 \\
1 & \sqrt{3} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{\sqrt{3} R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
\sqrt{3} & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\sqrt{3} & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t \sqrt{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \sqrt{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \sqrt{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \sqrt{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \sqrt{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\sqrt{3}$	1	1	No	$\left[\begin{array}{c}\sqrt{3} \\ 1\end{array}\right]$
$-\sqrt{3}$	1	1	No	$\left[\begin{array}{c}-\sqrt{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\sqrt{3} t} \\
& =\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right] e^{\sqrt{3} t}
\end{aligned}
$$

Since eigenvalue $-\sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\sqrt{3} t} \\
& =\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right] e^{-\sqrt{3} t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\sqrt{3} \mathrm{e}^{\sqrt{3} t} \\
\mathrm{e}^{\sqrt{3} t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\
\mathrm{e}^{-\sqrt{3} t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \ldots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\sqrt{3} \mathrm{e}^{\sqrt{3} t} & -\sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\
\mathrm{e}^{\sqrt{3} t} & \mathrm{e}^{-\sqrt{3} t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{\sqrt{3} \mathrm{e}^{-\sqrt{3}} t}{6} & \frac{\mathrm{e}^{-\sqrt{3} t}}{2} \\
-\frac{\sqrt{3} \sqrt{3} t}{6} & \frac{\mathrm{e}^{\sqrt{3} t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\sqrt{3} \mathrm{e}^{\sqrt{3} t} & -\sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\
\mathrm{e}^{\sqrt{3} t} & \mathrm{e}^{-\sqrt{3} t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\sqrt{3} \mathrm{e}^{-\sqrt{3} t}}{6} & \frac{\mathrm{e}^{-\sqrt{3} t}}{2} \\
-\frac{\sqrt{3} \mathrm{e}^{\sqrt{3} t}}{6} & \frac{\mathrm{e}^{\sqrt{3} t}}{2}
\end{array}\right]\left[\begin{array}{c}
6 t-1 \\
1-3 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\sqrt{3} \mathrm{e}^{\sqrt{3} t} & -\sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\
\mathrm{e}^{\sqrt{3} t} & \mathrm{e}^{-\sqrt{3} t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{(\sqrt{3}(6 t-1)-9 t+3) \mathrm{e}^{-\sqrt{3} t}}{6} \\
\frac{((-6 t+1) \sqrt{3}-9 t+3) \mathrm{e}^{\sqrt{3} t}}{6}
\end{array}\right] d t \\
& =\left[\begin{array}{c}
\sqrt{3} \mathrm{e}^{\sqrt{3} t} \\
-\sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\
\mathrm{e}^{\sqrt{3} t} \\
\mathrm{e}^{-\sqrt{3} t}
\end{array}\right]\left[\begin{array}{c}
-\frac{(3 \sqrt{3} t+\sqrt{3}+6) \mathrm{e}^{-\sqrt{3} t}(6 \sqrt{3} t-\sqrt{3}-9 t+3)}{54 t+18+18 \sqrt{3}} \\
\frac{(3 \sqrt{3} t+\sqrt{3}-6) \mathrm{e}^{\sqrt{3} t}(6 \sqrt{3} t-\sqrt{3}+9 t-3)}{-54 t-18+18 \sqrt{3}}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{27 t^{3}-9 t^{2}-24 t+6}{9 t^{2}+6 t-2} \\
\frac{-54 t^{3}+36 t-8}{-9+3(3 t+1)^{2}}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
c_{1} \sqrt{3} \mathrm{e}^{\sqrt{3} t} \\
c_{1} \mathrm{e}^{\sqrt{3} t}
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\
c_{2} \mathrm{e}^{-\sqrt{3} t}
\end{array}\right]+\left[\begin{array}{c}
\frac{27 t^{3}-9 t^{2}-24 t+6}{9 t^{2}+6 t-2} \\
\frac{-54 t^{3}+36 t-8}{-9+3(3 t+1)^{2}}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \sqrt{3} \mathrm{e}^{\sqrt{3} t}-c_{2} \sqrt{3} \mathrm{e}^{-\sqrt{3} t}+3 t-3 \\
c_{1} \mathrm{e}^{\sqrt{3} t}+c_{2} \mathrm{e}^{-\sqrt{3} t}-2 t+\frac{4}{3}
\end{array}\right]
$$

16.8.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=6 t-1+3 y(t), y^{\prime}(t)=x(t)-3 t+1\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
6 t-1 \\
1-3 t
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
6 t-1 \\
1-3 t
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
6 t-1 \\
1-3 t
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
0 & 3 \\
1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\sqrt{3},\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right]\right],\left[-\sqrt{3},\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\sqrt{3},\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{\sqrt{3} t} \cdot\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\sqrt{3},\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{-\sqrt{3} t} \cdot\left[\begin{array}{c}
-\sqrt{3} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
$\square \quad$ Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}\sqrt{3} \mathrm{e}^{\sqrt{3} t} & -\sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\ \mathrm{e}^{\sqrt{3} t} & \mathrm{e}^{-\sqrt{3} t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
\sqrt{3} \mathrm{e}^{\sqrt{3} t} & -\sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\
\mathrm{e}^{\sqrt{3} t} & \mathrm{e}^{-\sqrt{3} t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
\sqrt{3} & -\sqrt{3} \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{\sqrt{3}} t}{2}+\frac{\mathrm{e}^{-\sqrt{3}} t}{2} & \frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{2} \\
\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{\mathrm{e}^{\sqrt{3} t}}{2}+\frac{\mathrm{e}^{-\sqrt{3} t}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution $\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{(4 \sqrt{3}+9) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{(-4 \sqrt{3}+9) \mathrm{e}^{\sqrt{3} t}}{6}+3 t-3 \\
\frac{(-3 \sqrt{3}-4) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{(3 \sqrt{3}-4) \mathrm{e}^{\sqrt{3} t}}{6}-2 t+\frac{4}{3}
\end{array}\right]
$$

- \quad Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{(4 \sqrt{3}+9) \mathrm{e}^{-\sqrt{3}} t}{6}+\frac{(-4 \sqrt{3}+9) \mathrm{e}^{\sqrt{3} t}}{6}+3 t-3 \\
\frac{(-3 \sqrt{3}-4) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{(3 \sqrt{3}-4) \mathrm{e}^{\sqrt{3} t}}{6}-2 t+\frac{4}{3}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(9+\left(-6 c_{2}+4\right) \sqrt{3}\right) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\left(9+\left(-4+6 c_{1}\right) \sqrt{3}\right) \mathrm{e}^{\sqrt{3} t}}{6}+3 t-3 \\
\frac{\left(6 c_{2}-3 \sqrt{3}-4\right) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\left(6 c_{1}+3 \sqrt{3}-4\right) \mathrm{e}^{\sqrt{3} t}}{6}-2 t+\frac{4}{3}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(9+\left(-6 c_{2}+4\right) \sqrt{3}\right) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\left(9+\left(-4+6 c_{1}\right) \sqrt{3}\right) \mathrm{e}^{\sqrt{3} t}}{6}+3 t-3, y(t)=\frac{\left(6 c_{2}-3 \sqrt{3}-4\right) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\left(6 c_{1}+3 \sqrt{3}-4\right)}{6}\right.
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 60
dsolve $([\operatorname{diff}(x(t), t)+\operatorname{diff}(y(t), t)-x(t)-3 * y(t)=3 * t, \operatorname{diff}(x(t), t)+2 * \operatorname{diff}(y(t), t)-2 * x(t)-3 * y(t)=$

$$
\begin{aligned}
& x(t)=\mathrm{e}^{\sqrt{3} t} c_{2}+\mathrm{e}^{-\sqrt{3} t} c_{1}+3 t-3 \\
& y(t)=\frac{\sqrt{3} \mathrm{e}^{\sqrt{3} t} c_{2}}{3}-\frac{\sqrt{3} \mathrm{e}^{-\sqrt{3} t} c_{1}}{3}+\frac{4}{3}-2 t
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 6.866 (sec). Leaf size: 137
DSolve $\left[\left\{x^{\prime}[t]+y{ }^{\prime}[t]-x[t]-3 * y[t]==3 * t, x^{\prime}[t]+2 * y^{\prime}[t]-2 * x[t]-3 * y[t]==1\right\},\{x[t], y[t]\}, t\right.$, IncludeSi

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{-\sqrt{3} t}\left(6 e^{\sqrt{3} t}(t-1)+\left(c_{1}+\sqrt{3} c_{2}\right) e^{2 \sqrt{3} t}+c_{1}-\sqrt{3} c_{2}\right) \\
& y(t) \rightarrow \frac{1}{6} e^{-\sqrt{3} t}\left(e^{\sqrt{3} t}(8-12 t)+\left(\sqrt{3} c_{1}+3 c_{2}\right) e^{2 \sqrt{3} t}-\sqrt{3} c_{1}+3 c_{2}\right)
\end{aligned}
$$

16.9 problem 9

Internal problem ID [11936]
Internal file name [OUTPUT/11945_Sunday_April_14_2024_02_31_07_AM_5011505/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277 Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
& x^{\prime}(t)+y^{\prime}(t)=-2 y(t)+\sin (t) \\
& x^{\prime}(t)+y^{\prime}(t)=x(t)+y(t)
\end{aligned}
$$

The system is

$$
\begin{align*}
& x^{\prime}(t)+y^{\prime}(t)=-2 y(t)+\sin (t) \tag{1}\\
& x^{\prime}(t)+y^{\prime}(t)=x(t)+y(t) \tag{2}
\end{align*}
$$

Since the left side is the same, this implies

$$
\begin{align*}
-2 y(t)+\sin (t) & =x(t)+y(t) \\
y(t) & =-\frac{x(t)}{3}+\frac{\sin (t)}{3} \tag{3}
\end{align*}
$$

Taking derivative of the above w.r.t. t gives

$$
\begin{equation*}
y^{\prime}(t)=-\frac{x^{\prime}(t)}{3}+\frac{\cos (t)}{3} \tag{4}
\end{equation*}
$$

Substituting (3,4) in (1) to eliminate $y(t), y^{\prime}(t)$ gives

$$
\begin{align*}
\frac{2 x^{\prime}(t)}{3}+\frac{\cos (t)}{3} & =\frac{2 x(t)}{3}+\frac{\sin (t)}{3} \\
x^{\prime}(t) & =x(t)+\frac{\sin (t)}{2}-\frac{\cos (t)}{2} \tag{5}
\end{align*}
$$

Which is now solved for $x(t)$.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
x^{\prime}(t)+p(t) x(t)=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-1 \\
& q(t)=\frac{\sin (t)}{2}-\frac{\cos (t)}{2}
\end{aligned}
$$

Hence the ode is

$$
-x(t)+x^{\prime}(t)=\frac{\sin (t)}{2}-\frac{\cos (t)}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu x) & =(\mu)\left(\frac{\sin (t)}{2}-\frac{\cos (t)}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} x\right) & =\left(\mathrm{e}^{-t}\right)\left(\frac{\sin (t)}{2}-\frac{\cos (t)}{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{-t} x\right) & =\left(\frac{(\sin (t)-\cos (t)) \mathrm{e}^{-t}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t} x=\int \frac{(\sin (t)-\cos (t)) \mathrm{e}^{-t}}{2} \mathrm{~d} t \\
& \mathrm{e}^{-t} x=-\frac{\mathrm{e}^{-t} \sin (t)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t}$ results in

$$
x(t)=-\frac{\mathrm{e}^{t} \mathrm{e}^{-t} \sin (t)}{2}+c_{1} \mathrm{e}^{t}
$$

which simplifies to

$$
x(t)=c_{1} \mathrm{e}^{t}-\frac{\sin (t)}{2}
$$

Given now that we have the solution

$$
\begin{equation*}
x(t)=c_{1} \mathrm{e}^{t}-\frac{\sin (t)}{2} \tag{6}
\end{equation*}
$$

Then substituting (6) into (3) gives

$$
\begin{equation*}
y(t)=-\frac{c_{1} \mathrm{e}^{t}}{3}+\frac{\sin (t)}{2} \tag{7}
\end{equation*}
$$

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 27

```
dsolve([diff (x (t),t)+\operatorname{diff}(y(t),t)+2*y(t)=\operatorname{sin}(t),\operatorname{diff}(x(t),t)+\operatorname{diff}(y(t),t)-x(t)-y(t)=0],\operatorname{sings}
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{t}-\frac{\sin (t)}{2} \\
& y(t)=-\frac{c_{1} \mathrm{e}^{t}}{3}+\frac{\sin (t)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 38
DSolve $\left[\left\{x^{\prime}[t]+y^{\prime}[t]+2 * y[t]==\operatorname{Sin}[t], x^{\prime}[t]+y^{\prime}[t]-x[t]-y[t]==0\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSo

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{2}\left(-\sin (t)+3 c_{1} e^{t}\right) \\
y(t) & \rightarrow \frac{1}{2}\left(\sin (t)-c_{1} e^{t}\right)
\end{aligned}
$$

16.10 problem 10

16.10.1 Solution using Matrix exponential method 4428
16.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4430
16.10.3 Maple step by step solution . 4435

Internal problem ID [11937]
Internal file name [OUTPUT/11946_Sunday_April_14_2024_02_31_07_AM_84888398/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=\frac{3 x(t)}{2}-\frac{3 y(t)}{2}+\frac{t}{2}+\frac{1}{2} \\
& y^{\prime}(t)=-\frac{x(t)}{2}+\frac{5 y(t)}{2}-\frac{t}{2}+\frac{1}{2}
\end{aligned}
$$

16.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{t}{2}+\frac{1}{2} \\
-\frac{t}{2}+\frac{1}{2}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{t}}{4}+\frac{\mathrm{e}^{3 t}}{4} & -\frac{3 \mathrm{e}^{3 t}}{4}+\frac{3 \mathrm{e}^{t}}{4} \\
-\frac{\mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}}{4} & \frac{\mathrm{e}^{t}}{4}+\frac{3 \mathrm{e}^{3 t}}{4}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{t}}{4}+\frac{\mathrm{e}^{3 t}}{4} & -\frac{3 \mathrm{e}^{3 t}}{4}+\frac{3 \mathrm{e}^{t}}{4} \\
-\frac{\mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}}{4} & \frac{\mathrm{e}^{t}}{4}+\frac{3 \mathrm{e}^{3 t}}{4}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{3 \mathrm{e}^{t}}{4}+\frac{\mathrm{e}^{3 t}}{4}\right) c_{1}+\left(-\frac{3 \mathrm{e}^{3 t}}{4}+\frac{3 \mathrm{e}^{t}}{4}\right) c_{2} \\
\left(-\frac{\mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}}{4}\right) c_{1}+\left(\frac{\mathrm{e}^{t}}{4}+\frac{3 \mathrm{e}^{3 t}}{4}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-3 c_{2}\right) \mathrm{e}^{3 t}}{4}+\frac{3 \mathrm{e}^{t}\left(c_{1}+c_{2}\right)}{4} \\
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}\left(c_{1}+c_{2}\right)}{4}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}\left(3 \mathrm{e}^{2 t}+1\right)}{4} & \frac{3 \mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}-1\right)}{4} \\
\frac{\mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}-1\right)}{4} & \frac{\mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}+3\right)}{4}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{t}}{4}+\frac{\mathrm{e}^{3 t}}{4} & -\frac{3 \mathrm{e}^{3 t}}{4}+\frac{3 \mathrm{e}^{t}}{4} \\
-\frac{\mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}}{4} & \frac{\mathrm{e}^{t}}{4}+\frac{3 \mathrm{e}^{3 t}}{4}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}\left(3 \mathrm{e}^{2 t}+1\right)}{4} & \frac{3 \mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}-1\right)}{4} \\
\frac{\mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}-1\right)}{4} & \frac{\mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}+3\right)}{4}
\end{array}\right]\left[\begin{array}{c}
\frac{t}{2}+\frac{1}{2} \\
-\frac{t}{2}+\frac{1}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{t}}{4}+\frac{\mathrm{e}^{3 t}}{4} & -\frac{3 \mathrm{e}^{3 t}}{4}+\frac{3 \mathrm{e}^{t}}{4} \\
-\frac{\mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}}{4} & \frac{\mathrm{e}^{t}}{4}+\frac{3 \mathrm{e}^{3 t}}{4}
\end{array}\right]\left[\begin{array}{c}
\frac{(-6 t+1) \mathrm{e}^{-3 t}}{36}-\frac{3 \mathrm{e}^{-t}}{4} \\
\frac{(6 t-1) \mathrm{e}^{-3 t}}{36}-\frac{\mathrm{e}^{-t}}{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{13}{18}-\frac{t}{6} \\
-\frac{5}{18}+\frac{t}{6}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-3 c_{2}\right) \mathrm{e}^{3 t}}{4}+\frac{3 \mathrm{e}^{t}\left(c_{1}+c_{2}\right)}{4}-\frac{13}{18}-\frac{t}{6} \\
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}\left(c_{1}+c_{2}\right)}{4}-\frac{5}{18}+\frac{t}{6}
\end{array}\right]
\end{aligned}
$$

16.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{t}{2}+\frac{1}{2} \\
-\frac{t}{2}+\frac{1}{2}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\frac{3}{2}-\lambda & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2} & -\frac{3}{2} & 0 \\
-\frac{1}{2} & \frac{3}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2} & -\frac{3}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2} & -\frac{3}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{rr|r}
-\frac{3}{2} & -\frac{3}{2} & 0 \\
-\frac{1}{2} & -\frac{1}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3}{2} & -\frac{3}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3}{2} & -\frac{3}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}3 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
3 \mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{3 t} & 3 \mathrm{e}^{t} \\
\mathrm{e}^{3 t} & \mathrm{e}^{t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-3 t}}{4} & \frac{3 \mathrm{e}^{-3 t}}{4} \\
\frac{\mathrm{e}^{-t}}{4} & \frac{\mathrm{e}^{-t}}{4}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\mathrm{e}^{3 t} & 3 \mathrm{e}^{t} \\
\mathrm{e}^{3 t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-3 t}}{4} & \frac{3 \mathrm{e}^{-3 t}}{4} \\
\frac{\mathrm{e}^{-t}}{4} & \frac{\mathrm{e}^{-t}}{4}
\end{array}\right]\left[\begin{array}{c}
\frac{t}{2}+\frac{1}{2} \\
-\frac{t}{2}+\frac{1}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{3 t} & 3 \mathrm{e}^{t} \\
\mathrm{e}^{3 t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{\mathrm{e}^{-3 t}(2 t-1)}{4} \\
\frac{\mathrm{e}^{-t}}{4}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{3 t} & 3 \mathrm{e}^{t} \\
\mathrm{e}^{3 t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
\frac{(6 t-1) \mathrm{e}^{-3 t}}{36} \\
-\frac{\mathrm{e}^{-t}}{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{13}{18}-\frac{t}{6} \\
-\frac{5}{18}+\frac{t}{6}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-c_{1} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{3 t}
\end{array}\right]+\left[\begin{array}{c}
3 c_{2} \mathrm{e}^{t} \\
c_{2} \mathrm{e}^{t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{13}{18}-\frac{t}{6} \\
-\frac{5}{18}+\frac{t}{6}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{3 t}+3 c_{2} \mathrm{e}^{t}-\frac{13}{18}-\frac{t}{6} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{t}-\frac{5}{18}+\frac{t}{6}
\end{array}\right]
$$

16.10.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=\frac{3 x(t)}{2}-\frac{3 y(t)}{2}+\frac{t}{2}+\frac{1}{2}, y^{\prime}(t)=-\frac{x(t)}{2}+\frac{5 y(t)}{2}-\frac{t}{2}+\frac{1}{2}\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
\frac{t}{2}+\frac{1}{2} \\
-\frac{t}{2}+\frac{1}{2}
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
\frac{t}{2}+\frac{1}{2} \\
-\frac{t}{2}+\frac{1}{2}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
\frac{t}{2}+\frac{1}{2} \\
-\frac{t}{2}+\frac{1}{2}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
\frac{3}{2} & -\frac{3}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}3 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}3 \mathrm{e}^{t} & -\mathrm{e}^{3 t} \\ \mathrm{e}^{t} & \mathrm{e}^{3 t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$ $\Phi(t)=\left[\begin{array}{cc}3 \mathrm{e}^{t} & -\mathrm{e}^{3 t} \\ \mathrm{e}^{t} & \mathrm{e}^{3 t}\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix
$\Phi(t)=\left[\begin{array}{cc}\frac{3 \mathrm{e}^{t}}{4}+\frac{\mathrm{e}^{3 t}}{4} & -\frac{3 \mathrm{e}^{3 t}}{4}+\frac{3 \mathrm{e}^{t}}{4} \\ -\frac{\mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}}{4} & \frac{\mathrm{e}^{t}}{4}+\frac{3 \mathrm{e}^{3 t}}{4}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution
$\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{3 \mathrm{e}^{t}}{4}-\frac{13}{18}-\frac{\mathrm{e}^{3 t}}{36}-\frac{t}{6} \\
\frac{\mathrm{e}^{3 t}}{36}+\frac{t}{6}-\frac{5}{18}+\frac{\mathrm{e}^{t}}{4}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{3 \mathrm{e}^{t}}{4}-\frac{13}{18}-\frac{\mathrm{e}^{3 t}}{36}-\frac{t}{6} \\
\frac{\mathrm{e}^{3 t}}{36}+\frac{t}{6}-\frac{5}{18}+\frac{\mathrm{e}^{t}}{4}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
3 c_{1} \mathrm{e}^{t}-c_{2} \mathrm{e}^{3 t}+\frac{3 \mathrm{e}^{t}}{4}-\frac{13}{18}-\frac{\mathrm{e}^{3 t}}{36}-\frac{t}{6} \\
c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}+\frac{\mathrm{e}^{3 t}}{36}+\frac{t}{6}-\frac{5}{18}+\frac{\mathrm{e}^{t}}{4}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=3 c_{1} \mathrm{e}^{t}-c_{2} \mathrm{e}^{3 t}+\frac{3 \mathrm{e}^{t}}{4}-\frac{13}{18}-\frac{\mathrm{e}^{3 t}}{36}-\frac{t}{6}, y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}+\frac{\mathrm{e}^{3 t}}{36}+\frac{t}{6}-\frac{5}{18}+\frac{\mathrm{e}^{t}}{4}\right\}
$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 40

```
dsolve([diff (x (t),t)-\operatorname{diff}(y(t),t)-2*x(t)+4*y(t)=t,\operatorname{diff}(x(t),t)+\operatorname{diff}(y(t),t)-x(t)-y(t)=1],\operatorname{sin}
```

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{t}+c_{1} \mathrm{e}^{3 t}-\frac{t}{6}-\frac{13}{18} \\
& y(t)=\frac{c_{2} \mathrm{e}^{t}}{3}-c_{1} \mathrm{e}^{3 t}-\frac{5}{18}+\frac{t}{6}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 74
DSolve[\{x'[t]-y'[t]-2*x[t]+4*y[t]==t,x'[t]+y'[t]-x[t]-y[t]==1\},\{x[t],y[t]\},t,IncludeSingular

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{36}\left(-6 t+9\left(c_{1}-3 c_{2}\right) e^{3 t}+27\left(c_{1}+c_{2}\right) e^{t}-26\right) \\
y(t) & \rightarrow \frac{1}{36}\left(6 t-9\left(c_{1}-3 c_{2}\right) e^{3 t}+9\left(c_{1}+c_{2}\right) e^{t}-10\right)
\end{aligned}
$$

16.11 problem 11

16.11.1 Solution using Matrix exponential method 4440
16.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4442
16.11.3 Maple step by step solution . 4447

Internal problem ID [11938]
Internal file name [OUTPUT/11947_Sunday_April_14_2024_02_31_09_AM_68378690/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2+x(t)-3 y(t)+4 t \\
y^{\prime}(t) & =4-3 x(t)+y(t)-4 t
\end{aligned}
$$

16.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
4 t-2 \\
4-4 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2}\right) c_{2} \\
\left(-\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\mathrm{e}^{-2 t}\left(c_{1}+c_{2}\right)}{2}+\frac{\mathrm{e}^{4 t}\left(c_{1}-c_{2}\right)}{2} \\
\frac{\mathrm{e}^{-2 t}\left(c_{1}+c_{2}\right)}{2}-\frac{\mathrm{e}^{4 t}\left(c_{1}-c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{ll}
\frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-4 t}}{2} & \frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-4 t}}{2} \\
\frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-4 t}}{2} & \frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-4 t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-4 t}}{2} & \frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-4 t}}{2} \\
\frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-4 t}}{2} & \frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-4 t}}{2}
\end{array}\right]\left[\begin{array}{c}
4 t-2 \\
4-4 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{6 t}-2 t+1\right) \mathrm{e}^{-4 t}}{2} \\
\frac{\left(\mathrm{e}^{6 t}+2 t-1\right) \mathrm{e}^{-4 t}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
1-t \\
t
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}\left(c_{1}+c_{2}\right)}{2}+\frac{\mathrm{e}^{4 t}\left(c_{1}-c_{2}\right)}{2}+1-t \\
\frac{\mathrm{e}^{-2 t}\left(c_{1}+c_{2}\right)}{2}+\frac{\left(-c_{1}+c_{2}\right) \mathrm{e}^{4 t}}{2}+t
\end{array}\right]
\end{aligned}
$$

16.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
4 t-2 \\
4-4 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -3 \\
-3 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda-8=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=4
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3 & -3 & 0 \\
-3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-3 & -3 \\
-3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-3 & -3 & 0 \\
-3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$
4	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{4 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & -\mathrm{e}^{4 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{4 t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{2 t}}{2} & \frac{\mathrm{e}^{2 t}}{2} \\
-\frac{\mathrm{e}^{-4 t}}{2} & \frac{\mathrm{e}^{-4 t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & -\mathrm{e}^{4 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{4 t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\mathrm{e}^{2 t}}{2} & \frac{\mathrm{e}^{2 t}}{2} \\
-\frac{\mathrm{e}^{-4 t}}{2} & \frac{\mathrm{e}^{-4 t}}{2}
\end{array}\right]\left[\begin{array}{c}
4 t-2 \\
4-4 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & -\mathrm{e}^{4 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{4 t}
\end{array}\right] \int\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{-4 t}(-4 t+3)
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & -\mathrm{e}^{4 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{4 t}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}}{2} \\
\frac{\mathrm{e}^{-4 t}(2 t-1)}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
1-t \\
t
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
c_{1} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \mathrm{e}^{4 t} \\
c_{2} \mathrm{e}^{4 t}
\end{array}\right]+\left[\begin{array}{c}
1-t \\
t
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-2 t}-c_{2} \mathrm{e}^{4 t}+1-t \\
c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t}+t
\end{array}\right]
$$

16.11.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-2+x(t)-3 y(t)+4 t, y^{\prime}(t)=4-3 x(t)+y(t)-4 t\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
4 t-2 \\
4-4 t
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
4 t-2 \\
4-4 t
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(t)=\left[\begin{array}{c}4 t-2 \\ 4-4 t\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{4 t} .\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution $\vec{x}_{p}($ $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
$\square \quad$ Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}\mathrm{e}^{-2 t} & -\mathrm{e}^{4 t} \\ \mathrm{e}^{-2 t} & \mathrm{e}^{4 t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th

$$
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & -\mathrm{e}^{4 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{4 t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix
$\Phi(t)=\left[\begin{array}{cc}\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} \\ -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
1-\frac{\mathrm{e}^{-2 t}}{2}-\frac{\mathrm{e}^{4 t}}{2}-t \\
\frac{\mathrm{e}^{4 t}}{2}+t-\frac{\mathrm{e}^{-2 t}}{2}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
1-\frac{\mathrm{e}^{-2 t}}{2}-\frac{\mathrm{e}^{4 t}}{2}-t \\
\frac{\mathrm{e}^{4 t}}{2}+t-\frac{\mathrm{e}^{-2 t}}{2}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(2 c_{1}-1\right) \mathrm{e}^{-2 t}}{2}+\frac{\left(-2 c_{2}-1\right) \mathrm{e}^{4 t}}{2}-t+1 \\
\frac{\left(2 c_{1}-1\right) \mathrm{e}^{-2 t}}{2}+\frac{\left(2 c_{2}+1\right) \mathrm{e}^{4 t}}{2}+t
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(2 c_{1}-1\right) \mathrm{e}^{-2 t}}{2}+\frac{\left(-2 c_{2}-1\right) \mathrm{e}^{4 t}}{2}-t+1, y(t)=\frac{\left(2 c_{1}-1\right) \mathrm{e}^{-2 t}}{2}+\frac{\left(2 c_{2}+1\right) \mathrm{e}^{4 t}}{2}+t\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 40

```
dsolve([2*diff(x(t),t)+diff (y(t),t)+x(t)+5*y(t)=4*t, diff (x(t),t)+diff (y(t),t)+2*x(t)+2*y(t)=
```

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{4 t}+c_{1} \mathrm{e}^{-2 t}-t+1 \\
& y(t)=-c_{2} \mathrm{e}^{4 t}+c_{1} \mathrm{e}^{-2 t}+t
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 80
DSolve $\left[\left\{2 * x^{\prime}[t]+y^{\prime}[t]+x[t]+5 * y[t]==4 * t, x^{\prime}[t]+y^{\prime}[t]+2 * x[t]+2 * y[t]==2\right\},\{x[t], y[t]\}, t\right.$, IncludeSi

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{-2 t}\left(-2 e^{2 t}(t-1)+\left(c_{1}-c_{2}\right) e^{6 t}+c_{1}+c_{2}\right) \\
& y(t) \rightarrow \frac{1}{2} e^{-2 t}\left(2 e^{2 t} t+\left(c_{2}-c_{1}\right) e^{6 t}+c_{1}+c_{2}\right)
\end{aligned}
$$

16.12 problem 12

16.12.1 Solution using Matrix exponential method 4452
16.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4454
16.12.3 Maple step by step solution . 4460

Internal problem ID [11939]
Internal file name [OUTPUT/11948_Sunday_April_14_2024_02_31_09_AM_49739451/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 t^{2}-6 y(t)-2 t-1 \\
y^{\prime}(t) & =-t^{2}+x(t)+y(t)+2 t+1
\end{aligned}
$$

16.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -6 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
2 t^{2}-2 t-1 \\
-t^{2}+2 t+1
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right)-\frac{\sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} & -\frac{12 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} \\
\frac{2 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} & \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right)+\frac{\sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} 3}{2}\right)-23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}{23} & -\frac{12 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} \\
\frac{2 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} & \frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)+23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}{23}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)-23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}{23} & -\frac{12 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} \\
\frac{2 \sqrt{23} \mathrm{e}^{\frac{t}{2} \sin \left(\frac{\sqrt{23} t}{2}\right)}}{23} & \frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} 3}{2}\right)+23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}{23}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)-23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right) c_{1}}{23}-\frac{12 \sqrt{23} \mathrm{e}^{\frac{t}{2} \sin \left(\frac{\sqrt{23} t}{2}\right) c_{2}}}{23} \\
\frac{2 \sqrt{23} \mathrm{e}^{\frac{t}{2} \sin \left(\frac{\sqrt{23} t}{2}\right) c_{1}}}{23}+\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)+23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right) c_{2}}{23}
\end{array}\right] \\
& =\left[\begin{array}{l}
-\frac{\mathrm{e}^{\frac{t}{2}\left(\sqrt{23}\left(c_{1}+12 c_{2}\right) \sin \left(\frac{\sqrt{23} t}{2}\right)-23 \cos \left(\frac{\sqrt{23} t}{2}\right) c_{1}\right)}}{23} \\
2\left(\sqrt{23}\left(c_{1}+\frac{c_{2}}{2}\right) \sin \left(\frac{\sqrt{23} t}{2}\right)+\frac{23 \cos \left(\frac{\sqrt{23} t}{2}\right) c_{2}}{2}\right) \mathrm{e}^{\frac{t}{2}}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)+23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{23} & \frac{12 \sin \left(\frac{\sqrt{23} t}{2}\right) \sqrt{23} \mathrm{e}^{-\frac{t}{2}}}{23} \\
-\frac{2 \sin \left(\frac{\sqrt{23} t}{2}\right) \sqrt{23} \mathrm{e}^{-\frac{t}{2}}}{23} & -\frac{\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)-23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{23}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)-23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}{23} & -\frac{12 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} \\
\frac{2 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} & \frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)+23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}{23}
\end{array}\right] \int\left[\begin{array}{c}
\frac{\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)+23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right) \mathrm{e}}{23} \\
-\frac{2 \sin \left(\frac{\sqrt{23} t}{2}\right) \sqrt{23} \mathrm{e}^{-\frac{t}{2}}}{23}
\end{array}\right. \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)-23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}{23} & -\frac{12 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} \\
\frac{2 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} & \frac{\mathrm{e}^{\frac{t}{2}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)+23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}}{23}
\end{array}\right]\left[\begin{array}{c}
\frac{14 \mathrm{e}^{-\frac{t}{2}}\left(\left(\frac{23}{7} t^{2}-\frac{23}{6} t-\frac{943}{126}\right) \cos \left(\frac{\sqrt{23} t}{2}\right)+\right.}{69} \\
-\frac{5 \mathrm{e}^{-\frac{t}{2}}\left(\left(-\frac{23}{5} t^{2}+\frac{23}{3} t+\frac{23}{45}\right) \cos \left(\frac{\sqrt{23} t}{2}\right)\right.}{69}
\end{array}\right. \\
& =\left[\begin{array}{c}
\frac{2}{3} t^{2}-\frac{7}{9} t-\frac{41}{27} \\
\frac{1}{3} t^{2}-\frac{5}{9} t-\frac{1}{27}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{\frac{t}{2} \sqrt{23}\left(c_{1}+12 c_{2}\right) \sin \left(\frac{\sqrt{23} t}{2}\right)}}{23}+\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right) c_{1}+\frac{2 t^{2}}{3}-\frac{7 t}{9}-\frac{41}{27} \\
\frac{2 \mathrm{e}^{\frac{t}{2}} \sqrt{23}\left(c_{1}+\frac{c_{2}}{2}\right) \sin \left(\frac{\sqrt{23} t}{2}\right)}{23}+\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right) c_{2}+\frac{t^{2}}{3}-\frac{5 t}{9}-\frac{1}{27}
\end{array}\right]
\end{aligned}
$$

16.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -6 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
2 t^{2}-2 t-1 \\
-t^{2}+2 t+1
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & -6 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -6 \\
1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda+6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{i \sqrt{23}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{23}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{1}{2}-\frac{i \sqrt{23}}{2}$	1	complex eigenvalue
$\frac{1}{2}+\frac{i \sqrt{23}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{2}-\frac{i \sqrt{23}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & -6 \\
1 & 1
\end{array}\right]-\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{2}+\frac{i \sqrt{23}}{2} & -6 \\
1 & \frac{1}{2}+\frac{i \sqrt{23}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\frac{1}{2}+\frac{i \sqrt{23}}{2} & -6 & 0 \\
1 & \frac{1}{2}+\frac{i \sqrt{23}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{-\frac{1}{2}+\frac{i \sqrt{23}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{2}+\frac{i \sqrt{23}}{2} & -6 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{1}{2}+\frac{i \sqrt{23}}{2} & -6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{12 t}{i \sqrt{23}-1}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{12 t}{\mathrm{I} \sqrt{23}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12 t}{i \sqrt{23}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{12 t}{\mathrm{I} \sqrt{23}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{12}{i \sqrt{23}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{12 t}{\mathrm{I} \sqrt{23}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12}{i \sqrt{23}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{12 t}{\mathrm{I} \sqrt{23}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12}{i \sqrt{23}-1} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{1}{2}+\frac{i \sqrt{23}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & -6 \\
1 & 1
\end{array}\right]-\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{2}-\frac{i \sqrt{23}}{2} & -6 \\
1 & \frac{1}{2}-\frac{i \sqrt{23}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{1}{2}-\frac{i \sqrt{23}}{2} & -6 & 0 \\
1 & \frac{1}{2}-\frac{i \sqrt{23}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{-\frac{1}{2}-\frac{i \sqrt{23}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{2}-\frac{i \sqrt{23}}{2} & -6 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{1}{2}-\frac{i \sqrt{23}}{2} & -6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{12 t}{1+i \sqrt{23}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{12 t}{1+\mathrm{I} \sqrt{23}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12 t}{1+i \sqrt{23}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{12 t}{1+\mathrm{I} \sqrt{23}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{12}{1+i \sqrt{23}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{12 t}{1+\mathrm{I} \sqrt{23}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12}{1+i \sqrt{23}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{12 t}{1+\mathrm{I} \sqrt{23}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12}{1+i \sqrt{23}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{1}{2}+\frac{i \sqrt{23}}{2}$	1	1	No	$\left[\begin{array}{c}-\frac{6}{2}+\frac{i \sqrt{23}}{2} \\ 1\end{array}\right]$
$\frac{1}{2}-\frac{i \sqrt{23}}{2}$	1	1	No	$\left[\begin{array}{c}-\frac{6}{2}-\frac{i \sqrt{23}}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{6 \mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}+\frac{i \sqrt{23}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{6 \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{23}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \ldots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\left.6 \mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right.}\right) t}{\frac{1}{2}+\frac{i \sqrt{23}}{2}} & -\frac{6 \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{23}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{i \sqrt{23} \mathrm{e}^{-\frac{(1+i \sqrt{23}) t}{2}}}{23} & -\frac{\sqrt{23} \mathrm{e}^{-\frac{(1+i \sqrt{23}) t}{2}}(i-\sqrt{23})}{46} \\
\frac{i \sqrt{23} \mathrm{e} \frac{(i \sqrt{23}-1) t}{2}}{23} & \frac{\sqrt{23} \mathrm{e}^{\frac{(i \sqrt{23}-1) t}{2}}(\sqrt{23}+i)}{46}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{6 \mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}+\frac{i \sqrt{23}}{2}} & -\frac{6 \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{23}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}
\end{array}\right]\left[\begin{array}{cc}
-\frac{i \sqrt{23} \mathrm{e}^{-\frac{(1+i \sqrt{23}) t}{2}}}{23} & -\frac{\sqrt{233} \mathrm{e}^{-\frac{(1+i \sqrt{23}) t}{2}}(i-\sqrt{23})}{46} \\
\frac{i \sqrt{23} \mathrm{e}^{\frac{(i \sqrt{23}-1) t}{2}}}{23} & \frac{\sqrt{23} \mathrm{e}^{\frac{(i \sqrt{23}-1) t}{2}}(\sqrt{23}+i)}{46}
\end{array}\right]\left[\begin{array}{c}
2 t^{2}-2 t-1 \\
-t^{2}+2 t+1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{6 \mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}+\frac{i \sqrt{23}}{2}} & -\frac{6 \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{23}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}
\end{array}\right]\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{-\frac{(1+i \sqrt{23}) t}{2}}\left(i\left(t+\frac{1}{3}\right)(t-1) \sqrt{23}+\frac{23 t^{2}}{3}-\frac{46 t}{3}-\frac{23}{3}\right)}{46} \\
\frac{3 \mathrm{e}^{\frac{(i \sqrt{23}-1) t}{2}}\left(i\left(t+\frac{1}{3}\right)(t-1) \sqrt{23}-\frac{23 t^{2}}{3}+\frac{46 t}{3}+\frac{23}{3}\right)}{46}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{6 \mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}+\frac{i \sqrt{23}}{2}} & -\frac{6 \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{23}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{23}}{2}\right) t} & \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{23}}{2}\right) t}
\end{array}\right]\left[\begin{array}{c}
\frac{\sqrt{23} \mathrm{e}^{-\frac{(1+i \sqrt{23}) t}{2}}\left(-36 i \sqrt{23} t^{2}+51 i \sqrt{23} t+43 i \sqrt{23}+36 t^{2}-87 t+113\right)\left(-3 i t^{2}-\sqrt{23} t^{2}\right.}{16146-1242 i(2 t+1) \sqrt{23}-19872 t^{2}+32292 t} \\
-\frac{\sqrt{23} \mathrm{e}^{\frac{(i \sqrt{23}-1) t}{2}}\left(-36 \sqrt{23} t^{2}+51 \sqrt{23} t+43 \sqrt{23}+36 i t^{2}-87 i t+113 i\right)\left(3 i t^{2}-\sqrt{23} t^{2}\right.}{(2484 t+1242) \sqrt{23}+19872 t^{2}-32292 i t-16146 i}
\end{array}\right. \\
& =\left[\begin{array}{cc}
\frac{-\frac{128}{3} t^{6}+\frac{1696}{9} t^{5}-\frac{3328}{27} t^{4}-\frac{10136}{27} t^{3}+\frac{6776}{27} t^{2}+\frac{2960}{9} t+\frac{656}{9}}{\left(-\frac{13}{2}+i\left(t+\frac{1}{2}\right) \sqrt{23}+8 t^{2}-13 t\right)\left(\frac{13}{2}+i\left(t+\frac{1}{2}\right) \sqrt{23}-8 t^{2}+13 t\right)}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
& \vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{32\left(-t^{4}+\frac{13}{4} t^{3}-\frac{11}{8} t^{2}-3 t-\frac{3}{4}\right)\left(-\frac{82}{27}+(i \sqrt{23}-1) c_{1} \mathrm{e}^{\frac{(1+i \sqrt{23}) t}{2}}+c_{2}(-1-i \sqrt{23}) \mathrm{e}^{\left.-\frac{(i \sqrt{23}-1) t}{2}+\frac{4 t^{2}}{3}-\frac{14 t}{9}\right)}\right.}{\left(-\frac{13}{2}+i\left(t+\frac{1}{2}\right) \sqrt{23}+8 t^{2}-13 t\right)\left(\frac{13}{2}+i\left(t+\frac{1}{2}\right) \sqrt{23}-8 t^{2}+13 t\right)} \\
\frac{8\left(-8 t^{4}+26 t^{3}-11 t^{2}-24 t-6\right)\left(27 c_{2} \mathrm{e}^{-\frac{(i \sqrt{23}-1) t}{2}}+27 c_{1} \mathrm{e}^{\frac{(1+i \sqrt{23}) t}{2}}+9 t^{2}-15 t-1\right)}{27\left(-\frac{13}{2}+i\left(t+\frac{1}{2}\right) \sqrt{23}+8 t^{2}-13 t\right)\left(\frac{13}{2}+i\left(t+\frac{1}{2}\right) \sqrt{23}-8 t^{2}+13 t\right)}
\end{array}\right]
$$

16.12.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=2 t^{2}-6 y(t)-2 t-1, y^{\prime}(t)=-t^{2}+x(t)+y(t)+2 t+1\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & -6 \\
1 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
2 t^{2}-2 t-1 \\
-t^{2}+2 t+1
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & -6 \\
1 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
2 t^{2}-2 t-1 \\
-t^{2}+2 t+1
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
2 t^{2}-2 t-1 \\
-t^{2}+2 t+1
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
0 & -6 \\
1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2},\left[\begin{array}{c}
-\frac{6}{2} \frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2} \\
1
\end{array}\right]\right],\left[\frac{1}{2}+\frac{\mathrm{I} \sqrt{23}}{2},\left[\begin{array}{c}
-\frac{6}{2}+\frac{\mathrm{I} \sqrt{23}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2},\left[\begin{array}{c}
-\frac{6}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2}\right) t} \cdot\left[\begin{array}{c}
-\frac{6}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
\mathrm{e}^{\frac{t}{2}} \cdot\left(\cos \left(\frac{\sqrt{23} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{23} t}{2}\right)\right) \cdot\left[\begin{array}{c}
-\frac{6}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{6\left(\cos \left(\frac{\sqrt{23} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{23} t}{2}\right)\right)}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2}} \\
\cos \left(\frac{\sqrt{23} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{23} t}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{23} t}{2}\right)}{2}-\frac{\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)}{2} \\
\cos \left(\frac{\sqrt{23} t}{2}\right)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\sqrt{23} \cos \left(\frac{\sqrt{23} t}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{23} t}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{23} t}{2}\right)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\vec{x}_{p}(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(-\frac{\cos \left(\frac{\sqrt{23} t}{2}\right)}{2}-\frac{\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)}{2}\right) & \mathrm{e}^{\frac{t}{2}}\left(-\frac{\sqrt{23} \cos \left(\frac{\sqrt{23} t}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{23} t}{2}\right)}{2}\right) \\
\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right) & -\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(-\frac{\cos \left(\frac{\sqrt{23} t}{2}\right)}{2}-\frac{\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)}{2}\right) & \mathrm{e}^{\frac{t}{2}\left(-\frac{\sqrt{23} \cos \left(\frac{\sqrt{23} t}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{23} t}{2}\right)}{2}\right)} \\
\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right) & -\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{23}}{2} \\
1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{\left(\sqrt{23} \cos \left(\frac{\sqrt{23} t}{2}\right)-\sin \left(\frac{\sqrt{23} t}{2}\right)\right) \sqrt{23} \mathrm{e}^{\frac{t}{2}}}{23} & -\frac{12 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} \\
\frac{2 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{23} & \frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right)+23 \cos \left(\frac{\sqrt{23} t}{2}\right)\right)}{23}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution $\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix $\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)$
- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
-\frac{53 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{621}+\frac{41 \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right)}{27}+\frac{2 t^{2}}{3}-\frac{7 t}{9}-\frac{41}{27} \\
\frac{83 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{621}+\frac{\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right)}{27}+\frac{t^{2}}{3}-\frac{5 t}{9}-\frac{1}{27}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\left[\begin{array}{c}
-\frac{53 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{621}+\frac{41 \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right)}{27}+\frac{2 t^{2}}{3}-\frac{7 t}{9}-\frac{41}{27} \\
\frac{83 \sqrt{23} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right)}{621}+\frac{\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right)}{27}+\frac{t^{2}}{3}-\frac{5 t}{9}-\frac{1}{27}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{\frac{t}{2}}\left(c_{2} \sqrt{23}+c_{1}-\frac{82}{27}\right) \cos \left(\frac{\sqrt{23} t}{2}\right)}{2}-\frac{\mathrm{e}^{\frac{t}{2}}\left(\left(c_{1}+\frac{106}{621}\right) \sqrt{23}-c_{2}\right) \sin \left(\frac{\sqrt{23} t}{2}\right)}{2}+\frac{2 t^{2}}{3}-\frac{7 t}{9}-\frac{41}{27} \\
-\frac{1}{27}+\frac{\left(27 c_{1}+1\right) \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} 3}{2}\right)}{27}-\mathrm{e}^{\frac{t}{2}}\left(c_{2}-\frac{83 \sqrt{23}}{621}\right) \sin \left(\frac{\sqrt{23} t}{2}\right)+\frac{t^{2}}{3}-\frac{5 t}{9}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\frac{\mathrm{e}^{\frac{t}{2}}\left(c_{2} \sqrt{23}+c_{1}-\frac{82}{27}\right) \cos \left(\frac{\sqrt{23} t}{2}\right)}{2}-\frac{\mathrm{e}^{\frac{t}{2}}\left(\left(c_{1}+\frac{106}{621}\right) \sqrt{23}-c_{2}\right) \sin \left(\frac{\sqrt{23} t}{2}\right)}{2}+\frac{2 t^{2}}{3}-\frac{7 t}{9}-\frac{41}{27}, y(t)=-\frac{1}{27}+\frac{(2}{}\right.
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 116

```
dsolve([diff (x (t),t)+\operatorname{diff}(y(t),t)-x(t)+5*y(t)=t^2, diff (x(t),t)+2*\operatorname{diff}(y(t),t)-2*x(t)+4*y(t)=
```

$$
\begin{aligned}
x(t)= & \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right) c_{2}+\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right) c_{1}+\frac{2 t^{2}}{3}-\frac{7 t}{9}-\frac{41}{27} \\
y(t)= & \frac{t^{2}}{3}-\frac{\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{23} t}{2}\right) c_{2}}{12}-\frac{\mathrm{e}^{\frac{t}{2}} \sqrt{23} \cos \left(\frac{\sqrt{23} t}{2}\right) c_{2}}{12} \\
& -\frac{\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{23} t}{2}\right) c_{1}}{12}+\frac{\mathrm{e}^{\frac{t}{2}} \sqrt{23} \sin \left(\frac{\sqrt{23} t}{2}\right) c_{1}}{12}-\frac{5 t}{9}-\frac{1}{27}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 11.178 (sec). Leaf size: 143
DSolve $\left[\left\{x^{\prime}[t]+y y^{\prime}[t]-x[t]+5 * y[t]==t \wedge 2, x^{\prime}[t]+2 * y y^{\prime}[t]-2 * x[t]+4 * y[t]==2 * t+1\right\},\{x[t], y[t]\}, t\right.$, Inclu

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{27}\left(18 t^{2}-21 t-41\right)+c_{1} e^{t / 2} \cos \left(\frac{\sqrt{23} t}{2}\right)-\frac{\left(c_{1}+12 c_{2}\right) e^{t / 2} \sin \left(\frac{\sqrt{23} t}{2}\right)}{\sqrt{23}} \\
y(t) & \rightarrow \frac{1}{27}\left(9 t^{2}-15 t-1\right)+c_{2} e^{t / 2} \cos \left(\frac{\sqrt{233} t}{2}\right)+\frac{\left(2 c_{1}+c_{2}\right) e^{t / 2} \sin \left(\frac{\sqrt{233}}{2}\right)}{\sqrt{23}}
\end{aligned}
$$

16.13 problem 13

16.13.1 Solution using Matrix exponential method 4465
16.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4467
16.13.3 Maple step by step solution . 4472

Internal problem ID [11940]
Internal file name [OUTPUT/11949_Sunday_April_14_2024_02_31_12_AM_27299389/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-t^{2}+x(t)+y(t)+6 t \\
y^{\prime}(t) & =3 t^{2}-3 x(t)-3 y(t)-8 t
\end{aligned}
$$

16.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-t^{2}+6 t \\
3 t^{2}-8 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{2}+\frac{3}{2} & \frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2} & \frac{3 \mathrm{e}^{-2 t}}{2}-\frac{1}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{2}+\frac{3}{2} & \frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2} & \frac{3 \mathrm{e}^{-2 t}}{2}-\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{-2 t}}{2}+\frac{3}{2}\right) c_{1}+\left(\frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2}\right) c_{2} \\
\left(-\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-2 t}}{2}-\frac{1}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{1}-c_{2}\right) \mathrm{e}^{-2 t}}{2}+\frac{3 c_{1}}{2}+\frac{c_{2}}{2} \\
\frac{\left(3 c_{1}+3 c_{2}\right) \mathrm{e}^{-2 t}}{2}-\frac{3 c_{1}}{2}-\frac{c_{2}}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{3}{2}-\frac{\mathrm{e}^{2 t}}{2} & -\frac{\mathrm{e}^{2 t}}{2}+\frac{1}{2} \\
\frac{3 \mathrm{e}^{2 t}}{2}-\frac{3}{2} & -\frac{1}{2}+\frac{3 \mathrm{e}^{2 t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{2}+\frac{3}{2} & \frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2} & \frac{3 \mathrm{e}^{-2 t}}{2}-\frac{1}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3}{2}-\frac{\mathrm{e}^{2 t}}{2} & -\frac{\mathrm{e}^{2 t}}{2}+\frac{1}{2} \\
\frac{3 \mathrm{e}^{2 t}}{2}-\frac{3}{2} & -\frac{1}{2}+\frac{3 \mathrm{e}^{2 t}}{2}
\end{array}\right]\left[\begin{array}{c}
-t^{2}+6 t \\
3 t^{2}-8 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{2}+\frac{3}{2} & \frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2} & \frac{3 \mathrm{e}^{-2 t}}{2}-\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
-\frac{(t-1)^{2} \mathrm{e}^{2 t}}{2}+\frac{5 t^{2}}{2} \\
\frac{3(t-1)^{2} \mathrm{e}^{2 t}}{2}-\frac{5 t^{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 t^{2}+t-\frac{1}{2} \\
-t^{2}-3 t+\frac{3}{2}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(-c_{1}-c_{2}\right) \mathrm{e}^{-2 t}}{2}+\frac{3 c_{1}}{2}+\frac{c_{2}}{2}+2 t^{2}+t-\frac{1}{2} \\
\frac{\left(3 c_{1}+3 c_{2}\right) \mathrm{e}^{-2 t}}{2}-\frac{3 c_{1}}{2}-\frac{c_{2}}{2}-t^{2}-3 t+\frac{3}{2}
\end{array}\right]
\end{aligned}
$$

16.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-t^{2}+6 t \\
3 t^{2}-8 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
-3 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
-2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
3 & 1 \\
-3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3 & 1 & 0 \\
-3 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ll|l}
3 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
3 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & 1 & 0 \\
-3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+3 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}-\frac{1}{3} \\ 1\end{array}\right]$
0	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}}{3} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{3} & -1 \\
\mathrm{e}^{-2 t} & 1
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{2 t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2} \\
-\frac{3}{2} & -\frac{1}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{3} & -1 \\
\mathrm{e}^{-2 t} & 1
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{2 t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2} \\
-\frac{3}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
-t^{2}+6 t \\
3 t^{2}-8 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{3} & -1 \\
\mathrm{e}^{-2 t} & 1
\end{array}\right] \int\left[\begin{array}{c}
3 \mathrm{e}^{2 t} t(t-1) \\
-5 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{3} & -1 \\
\mathrm{e}^{-2 t} & 1
\end{array}\right]\left[\begin{array}{c}
\frac{3(t-1)^{2} \mathrm{e}^{2 t}}{2} \\
-\frac{5 t^{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 t^{2}+t-\frac{1}{2} \\
-t^{2}-3 t+\frac{3}{2}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{-2 t}}{3} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \\
c_{2}
\end{array}\right]+\left[\begin{array}{c}
2 t^{2}+t-\frac{1}{2} \\
-t^{2}-3 t+\frac{3}{2}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{-2 t}}{3}-c_{2}+2 t^{2}+t-\frac{1}{2} \\
c_{1} \mathrm{e}^{-2 t}+c_{2}-t^{2}-3 t+\frac{3}{2}
\end{array}\right]
$$

16.13.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-t^{2}+x(t)+y(t)+6 t, y^{\prime}(t)=3 t^{2}-3 x(t)-3 y(t)-8 t\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-t^{2}+6 t \\
3 t^{2}-8 t
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-t^{2}+6 t \\
3 t^{2}-8 t
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
-t^{2}+6 t \\
3 t^{2}-8 t
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-3 & -3
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution $\vec{x}_{p}($ $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
$\square \quad$ Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}-\frac{\mathrm{e}^{-2 t}}{3} & -1 \\ \mathrm{e}^{-2 t} & 1\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th

$$
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{3} & -1 \\
\mathrm{e}^{-2 t} & 1
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-\frac{1}{3} & -1 \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}}{2}+\frac{3}{2} & \frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2} & \frac{3 \mathrm{e}^{-2 t}}{2}-\frac{1}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution
$\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
2 t^{2}+\frac{\mathrm{e}^{-2 t}}{2}+t-\frac{1}{2} \\
-t^{2}+\frac{3}{2}-\frac{3 \mathrm{e}^{-2 t}}{2}-3 t
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
2 t^{2}+\frac{\mathrm{e}^{-2 t}}{2}+t-\frac{1}{2} \\
-t^{2}+\frac{3}{2}-\frac{3 \mathrm{e}^{-2 t}}{2}-3 t
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-2 c_{1}+3\right) \mathrm{e}^{-2 t}}{6}+2 t^{2}+t-c_{2}-\frac{1}{2} \\
c_{1} \mathrm{e}^{-2 t}-t^{2}+\frac{3}{2}-\frac{3 \mathrm{e}^{-2 t}}{2}-3 t+c_{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-2 c_{1}+3\right) \mathrm{e}^{-2 t}}{6}+2 t^{2}+t-c_{2}-\frac{1}{2}, y(t)=c_{1} \mathrm{e}^{-2 t}-t^{2}+\frac{3}{2}-\frac{3 \mathrm{e}^{-2 t}}{2}-3 t+c_{2}\right\}
$$

Solution by Maple

Time used: 0.016 (sec). Leaf size: 43

```
dsolve([2*diff(x(t),t)+diff(y(t),t)+x(t)+y(t)=t~2+4*t, diff(x (t),t)+\operatorname{diff}(y(t),t)+2*x(t)+2*y(t
```

$$
\begin{aligned}
& x(t)=-\frac{c_{1} \mathrm{e}^{-2 t}}{2}+2 t^{2}+t+c_{2} \\
& y(t)=-t^{2}+\frac{3 c_{1} \mathrm{e}^{-2 t}}{2}-3 t+1-c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 82
DSolve $\left[\left\{2 * x^{\prime}[t]+y '[t]+x[t]+y[t]==t^{\wedge} 2+4 * t, x^{\prime}[t]+y^{\prime}[t]+2 * x[t]+2 * y[t]==2 * t^{\wedge} 2-2 * t\right\},\{x[t], y[t]\}, t\right.$

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{2} e^{-2 t}\left(e^{2 t}\left(4 t^{2}+2 t-1+3 c_{1}+c_{2}\right)-c_{1}-c_{2}\right) \\
y(t) & \rightarrow \frac{1}{2}\left(-2 t^{2}-6 t+3\left(c_{1}+c_{2}\right) e^{-2 t}+3-3 c_{1}-c_{2}\right)
\end{aligned}
$$

16.14 problem 14

16.14.1 Solution using Matrix exponential method 4477
16.14.2 Solution using explicit Eigenvalue and Eigenvector method . . .4479
16.14.3 Maple step by step solution . 4484

Internal problem ID [11941]
Internal file name [OUTPUT/11950_Sunday_April_14_2024_02_31_13_AM_60911303/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-5-x(t)-t-y(t) \\
y^{\prime}(t) & =7+2 x(t)+2 t+y(t)
\end{aligned}
$$

16.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-5-t \\
2 t+7
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)-\sin (t) & -\sin (t) \\
2 \sin (t) & \cos (t)+\sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)-\sin (t) & -\sin (t) \\
2 \sin (t) & \cos (t)+\sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)-\sin (t)) c_{1}-\sin (t) c_{2} \\
2 \sin (t) c_{1}+(\cos (t)+\sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-c_{1}-c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(2 c_{1}+c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\cos (t)+\sin (t) & \sin (t) \\
-2 \sin (t) & \cos (t)-\sin (t)
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\cos (t)-\sin (t) & -\sin (t) \\
2 \sin (t) & \cos (t)+\sin (t)
\end{array}\right] \int\left[\begin{array}{cc}
\cos (t)+\sin (t) & \sin (t) \\
-2 \sin (t) & \cos (t)-\sin (t)
\end{array}\right]\left[\begin{array}{c}
-5-t \\
2 t+7
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\cos (t)-\sin (t) & -\sin (t) \\
2 \sin (t) & \cos (t)+\sin (t)
\end{array}\right]\left[\begin{array}{c}
(-3-t) \cos (t)-\sin (t)(t+4) \\
\sin (t)(2 t+7)-\cos (t)
\end{array}\right] \\
& =\left[\begin{array}{c}
-3-t \\
-1
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\left(-c_{1}-c_{2}\right) \sin (t)+c_{1} \cos (t)-3-t \\
\left(2 c_{1}+c_{2}\right) \sin (t)+c_{2} \cos (t)-1
\end{array}\right]
\end{aligned}
$$

16.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-5-t \\
2 t+7
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & -1 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
i	1	complex eigenvalue
$-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1+i & -1 \\
2 & 1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+i & -1 & 0 \\
2 & 1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-i & -1 & 0 \\
2 & 1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}-\frac{1}{2}+\frac{i}{2} \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}-\frac{1}{2}-\frac{i}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\left(-\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{i t} & \left(-\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-i \mathrm{e}^{-i t} & \left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{-i t} \\
i \mathrm{e}^{i t} & \left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{i t}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\left(-\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{i t} & \left(-\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{cc}
-i \mathrm{e}^{-i t} & \left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{-i t} \\
i \mathrm{e}^{i t} & \left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{i t}
\end{array}\right]\left[\begin{array}{c}
-5-t \\
2 t+7
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\left(-\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{i t} & \left(-\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{\mathrm{e}^{-i t}(7+3 i+2 t)}{2} \\
-\frac{\mathrm{e}^{i t(}(-7+3 i-2 t)}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\left(-\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{i t} & \left(-\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{-i t}(2 i t+7 i-1)}{2} \\
-\frac{\mathrm{e}^{i t}(2 i t+7 i+1)}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-3-t \\
-1
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{i t} \\
c_{1} \mathrm{e}^{i t}
\end{array}\right]+\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{-i t} \\
c_{2} \mathrm{e}^{-i t}
\end{array}\right]+\left[\begin{array}{c}
-3-t \\
-1
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{i t}+\left(-\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{-i t}-3-t \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}-1
\end{array}\right]
$$

16.14.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-5-x(t)-t-y(t), y^{\prime}(t)=7+2 x(t)+2 t+y(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-5-t \\
2 t+7
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-5-t \\
2 t+7
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
-5-t \\
2 t+7
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}-\frac{1}{2}-\frac{\mathrm{I}}{2} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos
$(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}-\frac{1}{2}-\frac{\mathrm{I}}{2} \\ 1\end{array}\right]$
- Simplify expression

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right)(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\left[\begin{array}{c}
-\frac{\cos (t)}{2}-\frac{\sin (t)}{2} \\
\cos (t)
\end{array}\right], \vec{x}_{2}(t)=\left[\begin{array}{c}
\frac{\sin (t)}{2}-\frac{\cos (t)}{2} \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\vec{x}_{p}(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}-\frac{\cos (t)}{2}-\frac{\sin (t)}{2} & \frac{\sin (t)}{2}-\frac{\cos (t)}{2} \\ \cos (t) & -\sin (t)\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$
$\Phi(t)=\left[\begin{array}{cc}-\frac{\cos (t)}{2}-\frac{\sin (t)}{2} & \frac{\sin (t)}{2}-\frac{\cos (t)}{2} \\ \cos (t) & -\sin (t)\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}-\frac{1}{2} & -\frac{1}{2} \\ 1 & 0\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\cos (t)-\sin (t) & -\sin (t) \\
2 \sin (t) & \cos (t)+\sin (t)
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution $\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
-t-3+3 \cos (t)-4 \sin (t) \\
-1+\cos (t)+7 \sin (t)
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\left[\begin{array}{c}
-t-3+3 \cos (t)-4 \sin (t) \\
-1+\cos (t)+7 \sin (t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{l}
\frac{\left(6-c_{1}-c_{2}\right) \cos (t)}{2}+\frac{\left(-c_{1}+c_{2}-8\right) \sin (t)}{2}-t-3 \\
\left(1+c_{1}\right) \cos (t)-1+\left(-c_{2}+7\right) \sin (t)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(6-c_{1}-c_{2}\right) \cos (t)}{2}+\frac{\left(-c_{1}+c_{2}-8\right) \sin (t)}{2}-t-3, y(t)=\left(1+c_{1}\right) \cos (t)-1+\left(-c_{2}+7\right) \sin (t)\right\}
$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 42

```
dsolve([3*diff(x(t),t)+2*diff(y(t),t)-x(t)+y(t)=t-1, diff (x(t),t)+\operatorname{diff}(y(t),t)-x(t)=t+2],sing
```

$$
\begin{aligned}
& x(t)=c_{2} \sin (t)+c_{1} \cos (t)-3-t \\
& y(t)=-c_{2} \cos (t)+c_{1} \sin (t)-1-c_{2} \sin (t)-c_{1} \cos (t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 44
DSolve $\left[\left\{3 * x^{\prime}[t]+2 * y^{\prime}[t]-x[t]+y[t]==t-1, x^{\prime}[t]+y^{\prime}[t]-x[t]==t+2\right\},\{x[t], y[t]\}, t\right.$, IncludeSingulars

$$
\begin{aligned}
& x(t) \rightarrow-t+c_{1} \cos (t)-\left(c_{1}+c_{2}\right) \sin (t)-3 \\
& y(t) \rightarrow c_{2} \cos (t)+\left(2 c_{1}+c_{2}\right) \sin (t)-1
\end{aligned}
$$

16.15 problem 15

16.15.1 Solution using Matrix exponential method 4489
16.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4491
16.15.3 Maple step by step solution . 4496

Internal problem ID [11942]
Internal file name [OUTPUT/11951_Sunday_April_14_2024_02_31_14_AM_14031841/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=-\frac{7 x(t)}{2}-\frac{9 y(t)}{2}+\frac{\mathrm{e}^{t}}{2} \\
& y^{\prime}(t)=\frac{3 x(t)}{2}+\frac{5 y(t)}{2}+\frac{\mathrm{e}^{t}}{2}
\end{aligned}
$$

16.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{7}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\left(\mathrm{e}^{3 t}-3\right) \mathrm{e}^{-2 t}}{2} & -\frac{3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} \\
\frac{\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} & \frac{\left(3 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\left(\mathrm{e}^{3 t}-3\right) \mathrm{e}^{-2 t}}{2} & -\frac{3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} \\
\frac{\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} & \frac{\left(3 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\left(\mathrm{e}^{3 t}-3\right) \mathrm{e}^{-2 t} c_{1}}{2}-\frac{3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t} c_{2}}{2} \\
\frac{\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t} c_{1}}{2}+\frac{\left(3 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t} c_{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\left(\left(c_{1}+3 c_{2}\right) \mathrm{e}^{3 t}-3 c_{1}-3 c_{2}\right) \mathrm{e}^{-2 t}}{2} \\
\frac{\left(\left(c_{1}+3 c_{2}\right) \mathrm{e}^{3 t}-c_{1}-c_{2}\right) \mathrm{e}^{-2 t}}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{2 t}}{2}-\frac{\mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} \\
-\frac{\mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\left(\mathrm{e}^{3 t}-3\right) \mathrm{e}^{-2 t}}{2} & -\frac{3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} \\
\frac{\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} & \frac{\left(3 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{2 t}}{2}-\frac{\mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} \\
-\frac{\mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
\frac{\mathrm{e}^{t}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\left(\mathrm{e}^{3 t}-3\right) \mathrm{e}^{-2 t}}{2} & -\frac{3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} \\
\frac{\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} & \frac{\left(3 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2}
\end{array}\right]\left[\begin{array}{c}
-t+\frac{\mathrm{e}^{3 t}}{2} \\
t-\frac{\mathrm{e}^{3 t}}{6}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(\frac{1}{2}-t\right) \\
\mathrm{e}^{t}\left(t-\frac{1}{6}\right)
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
-\left(\left(t+\frac{c_{1}}{2}+\frac{3 c_{2}}{2}-\frac{1}{2}\right) \mathrm{e}^{3 t}-\frac{3 c_{1}}{2}-\frac{3 c_{2}}{2}\right) \mathrm{e}^{-2 t} \\
\left(\left(\frac{c_{1}}{2}+\frac{3 c_{2}}{2}+t-\frac{1}{6}\right) \mathrm{e}^{3 t}-\frac{c_{1}}{2}-\frac{c_{2}}{2}\right) \mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

16.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{7}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{7}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{5}{2}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{7}{2}-\lambda & -\frac{9}{2} \\
\frac{3}{2} & \frac{5}{2}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda-2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-\frac{7}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{5}{2}
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{3}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{9}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{3}{2} & -\frac{9}{2} & 0 \\
\frac{3}{2} & \frac{9}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3}{2} & -\frac{9}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3}{2} & -\frac{9}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-3 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{7}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{5}{2}
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-\frac{9}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{9}{2} & -\frac{9}{2} & 0 \\
\frac{3}{2} & \frac{3}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{9}{2} & -\frac{9}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{9}{2} & -\frac{9}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}-3 \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
-3 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-3 \mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-3 \mathrm{e}^{-2 t} & -\mathrm{e}^{t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2} & -\frac{\mathrm{e}^{2 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-3 \mathrm{e}^{-2 t} & -\mathrm{e}^{t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2} & -\frac{\mathrm{e}^{2 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
\frac{\mathrm{e}^{t}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-3 \mathrm{e}^{-2 t} & -\mathrm{e}^{t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 t}}{2} \\
1
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-3 \mathrm{e}^{-2 t} & -\mathrm{e}^{t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 t}}{6} \\
t
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(\frac{1}{2}-t\right) \\
\mathrm{e}^{t}\left(t-\frac{1}{6}\right)
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-3 c_{1} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \mathrm{e}^{t} \\
c_{2} \mathrm{e}^{t}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{t}\left(\frac{1}{2}-t\right) \\
\mathrm{e}^{t}\left(t-\frac{1}{6}\right)
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(\left(t+c_{2}-\frac{1}{2}\right) \mathrm{e}^{3 t}+3 c_{1}\right) \mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}\left(\left(c_{2}+t-\frac{1}{6}\right) \mathrm{e}^{3 t}+c_{1}\right)
\end{array}\right]
$$

16.15.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-\frac{7 x(t)}{2}-\frac{9 y(t)}{2}+\frac{\mathrm{e}^{t}}{2}, y^{\prime}(t)=\frac{3 x(t)}{2}+\frac{5 y(t)}{2}+\frac{\mathrm{e}^{t}}{2}\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-\frac{7}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{5}{2}
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-\frac{7}{2} & -\frac{9}{2} \\ \frac{3}{2} & \frac{5}{2}\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}\frac{\mathrm{e}^{t}}{2} \\ \frac{\mathrm{e}^{t}}{2}\end{array}\right]$
- Define the forcing function
$\vec{f}(t)=\left[\begin{array}{c}\frac{\mathrm{e}^{t}}{2} \\ \frac{\mathrm{e}^{t}}{2}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-\frac{7}{2} & -\frac{9}{2} \\
\frac{3}{2} & \frac{5}{2}
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-3 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-3 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}-3 \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
$\square \quad$ Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}-3 \mathrm{e}^{-2 t} & -\mathrm{e}^{t} \\ \mathrm{e}^{-2 t} & \mathrm{e}^{t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th

$$
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-3 \mathrm{e}^{-2 t} & -\mathrm{e}^{t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-3 & -1 \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\left(\mathrm{e}^{3 t}-3\right) \mathrm{e}^{-2 t}}{2} & -\frac{3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} \\
\frac{\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2} & \frac{\left(3 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution
$\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{(1-2 t) \mathrm{e}^{-2 t} \mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{(6 t-1) \mathrm{e}^{-2 t} \mathrm{e}^{3 t}}{6}+\frac{\mathrm{e}^{-2 t}}{6}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{(1-2 t) \mathrm{e}^{-2 t} \mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{(6 t-1) \mathrm{e}^{-2 t} \mathrm{e}^{3 t}}{6}+\frac{\mathrm{e}^{-2 t}}{6}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(\left(t+c_{2}-\frac{1}{2}\right) \mathrm{e}^{3 t}+3 c_{1}+\frac{1}{2}\right) \mathrm{e}^{-2 t} \\
\left(\left(c_{2}+t-\frac{1}{6}\right) \mathrm{e}^{3 t}+c_{1}+\frac{1}{6}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\left(\left(t+c_{2}-\frac{1}{2}\right) \mathrm{e}^{3 t}+3 c_{1}+\frac{1}{2}\right) \mathrm{e}^{-2 t}, y(t)=\left(\left(c_{2}+t-\frac{1}{6}\right) \mathrm{e}^{3 t}+c_{1}+\frac{1}{6}\right) \mathrm{e}^{-2 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 45

```
dsolve([2*diff(x(t),t)+4*\operatorname{diff}(y(t),t)+x(t)-y(t)=3*exp(t), diff (x(t),t)+\operatorname{diff}(y(t),t)+2*x(t)+2*
```

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{t}+c_{1} \mathrm{e}^{-2 t}-\mathrm{e}^{t} t \\
& y(t)=-c_{2} \mathrm{e}^{t}-\frac{c_{1} \mathrm{e}^{-2 t}}{3}+\mathrm{e}^{t} t+\frac{\mathrm{e}^{t}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 76
DSolve $\left[\left\{2 * x^{\prime}[t]+4 * y^{\prime}[t]+x[t]-y[t]==3 * \operatorname{Exp}[t], x^{\prime}[t]+y^{\prime}[t]+2 * x[t]+2 * y[t]==\operatorname{Exp}[t]\right\},\{x[t], y[t]\}, t\right.$

$$
\begin{aligned}
& x(t) \rightarrow \frac{3}{2}\left(c_{1}+c_{2}\right) e^{-2 t}-\frac{1}{2} e^{t}\left(2 t-1+c_{1}+3 c_{2}\right) \\
& y(t) \rightarrow \frac{1}{6} e^{t}\left(6 t-1+3 c_{1}+9 c_{2}\right)-\frac{1}{2}\left(c_{1}+c_{2}\right) e^{-2 t}
\end{aligned}
$$

16.16 problem 16

16.16.1 Solution using Matrix exponential method 4501
16.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4503
16.16.3 Maple step by step solution . 4508

Internal problem ID [11943]
Internal file name [OUTPUT/11952_Sunday_April_14_2024_02_31_15_AM_15795806/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)-2 t-t^{2} \\
y^{\prime}(t) & =-3 x(t)+y(t)+2 t+2 t^{2}
\end{aligned}
$$

16.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-t^{2}-2 t \\
2 t^{2}+2 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1} \\
\left(-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{t}\right) c_{1}+\mathrm{e}^{t} c_{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & 0 \\
3 \mathrm{e}^{-2 t}\left(\mathrm{e}^{t}-1\right) & \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & 0 \\
3 \mathrm{e}^{-2 t}\left(\mathrm{e}^{t}-1\right) & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
-t^{2}-2 t \\
2 t^{2}+2 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}\left(2 t^{2}+6 t+3\right)}{4} \\
\frac{3\left(-2 t^{2}-6 t-3\right) \mathrm{e}^{-2 t}}{4}+\mathrm{e}^{-t}\left(t^{2}+6 t+6\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{2} t^{2}+\frac{3}{2} t+\frac{3}{4} \\
-\frac{1}{2} t^{2}+\frac{3}{2} t+\frac{15}{4}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1}+\frac{t^{2}}{2}+\frac{3 t}{2}+\frac{3}{4} \\
\frac{15}{4}-3 \mathrm{e}^{2 t} c_{1}+\mathrm{e}^{t}\left(3 c_{1}+c_{2}\right)-\frac{t^{2}}{2}+\frac{3 t}{2}
\end{array}\right]
\end{aligned}
$$

16.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-t^{2}-2 t \\
2 t^{2}+2 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 0 \\
-3 & 1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(2-\lambda)(1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & 0 \\
-3 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & 0 & 0 \\
-3 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+3 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$
Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
0 & 0 \\
-3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
-3 & -1 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
-3 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}-\frac{1}{3} \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 t}}{3} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{3} & 0 \\
\mathrm{e}^{2 t} & \mathrm{e}^{t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-3 \mathrm{e}^{-2 t} & 0 \\
3 \mathrm{e}^{-t} & \mathrm{e}^{-t}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{3} & 0 \\
\mathrm{e}^{2 t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{cc}
-3 \mathrm{e}^{-2 t} & 0 \\
3 \mathrm{e}^{-t} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
-t^{2}-2 t \\
2 t^{2}+2 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{3} & 0 \\
\mathrm{e}^{2 t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{c}
3 \mathrm{e}^{-2 t} t(t+2) \\
-\mathrm{e}^{-t} t(t+4)
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{3} & 0 \\
\mathrm{e}^{2 t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{-2 t}\left(2 t^{2}+6 t+3\right)}{4} \\
\mathrm{e}^{-t}\left(t^{2}+6 t+6\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{2} t^{2}+\frac{3}{2} t+\frac{3}{4} \\
-\frac{1}{2} t^{2}+\frac{3}{2} t+\frac{15}{4}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{2 t}}{3} \\
c_{1} \mathrm{e}^{2 t}
\end{array}\right]+\left[\begin{array}{c}
0 \\
c_{2} \mathrm{e}^{t}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} t^{2}+\frac{3}{2} t+\frac{3}{4} \\
-\frac{1}{2} t^{2}+\frac{3}{2} t+\frac{15}{4}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{2 t}}{3}+\frac{t^{2}}{2}+\frac{3 t}{2}+\frac{3}{4} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{t}-\frac{t^{2}}{2}+\frac{3 t}{2}+\frac{15}{4}
\end{array}\right]
$$

16.16.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=2 x(t)-2 t-t^{2}, y^{\prime}(t)=-3 x(t)+y(t)+2 t+2 t^{2}\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-t^{2}-2 t \\
2 t^{2}+2 t
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-t^{2}-2 t \\
2 t^{2}+2 t
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
-t^{2}-2 t \\
2 t^{2}+2 t
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
2 & 0 \\
-3 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}0 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{t} .\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}0 & -\frac{e^{2 t}}{3} \\ e^{t} & e^{2 t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
0 & -\frac{\mathrm{e}^{2 t}}{3} \\
\mathrm{e}^{t} & \mathrm{e}^{2 t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
0 & -\frac{1}{3} \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{t^{2}}{2}-\frac{3 \mathrm{e}^{2 t}}{4}+\frac{3 t}{2}+\frac{3}{4} \\
-\frac{t^{2}}{2}+\frac{9 \mathrm{e}^{2 t}}{4}-6 \mathrm{e}^{t}+\frac{3 t}{2}+\frac{15}{4}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{t^{2}}{2}-\frac{3 \mathrm{e}^{2 t}}{4}+\frac{3 t}{2}+\frac{3}{4} \\
-\frac{t^{2}}{2}+\frac{9 \mathrm{e}^{2 t}}{4}-6 \mathrm{e}^{t}+\frac{3 t}{2}+\frac{15}{4}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-4 c_{2}-9\right) \mathrm{e}^{2 t}}{12}+\frac{t^{2}}{2}+\frac{3 t}{2}+\frac{3}{4} \\
\frac{15}{4}+\frac{\left(4 c_{2}+9\right) \mathrm{e}^{2 t}}{4}+\left(c_{1}-6\right) \mathrm{e}^{t}-\frac{t^{2}}{2}+\frac{3 t}{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-4 c_{2}-9\right) \mathrm{e}^{2 t}}{12}+\frac{t^{2}}{2}+\frac{3 t}{2}+\frac{3}{4}, y(t)=\frac{15}{4}+\frac{\left(4 c_{2}+9\right) \mathrm{e}^{2 t}}{4}+\left(c_{1}-6\right) \mathrm{e}^{t}-\frac{t^{2}}{2}+\frac{3 t}{2}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 45
dsolve([2*diff $(x(t), t)+\operatorname{diff}(y(t), t)-x(t)-y(t)=-2 * t, \operatorname{diff}(x(t), t)+\operatorname{diff}(y(t), t)+x(t)-y(t)=t \sim 2]$,

$$
\begin{aligned}
& x(t)=\frac{t^{2}}{2}+\frac{3 t}{2}+\frac{3}{4}+c_{2} \mathrm{e}^{2 t} \\
& y(t)=\frac{15}{4}-3 c_{2} \mathrm{e}^{2 t}+\frac{3 t}{2}-\frac{t^{2}}{2}+c_{1} \mathrm{e}^{t}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.215 (sec). Leaf size: 67
DSolve $\left[\left\{2 * x^{\prime}[t]+y^{\prime}[t]-x[t]-y[t]==-2 * t, x^{\prime}[t]+y^{\prime}[t]+x[t]-y[t]==t \wedge 2\right\},\{x[t], y[t]\}, t\right.$, IncludeSingu

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{4}\left(2 t^{2}+6 t+4 c_{1} e^{2 t}+3\right) \\
& y(t) \rightarrow-\frac{t^{2}}{2}+\frac{3 t}{2}-3 c_{1} e^{2 t}+\left(3 c_{1}+c_{2}\right) e^{t}+\frac{15}{4}
\end{aligned}
$$

16.17 problem 17

16.17.1 Solution using Matrix exponential method 4512
16.17.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4514
16.17.3 Maple step by step solution . 4519

Internal problem ID [11944]
Internal file name [OUTPUT/11953_Sunday_April_14_2024_02_31_16_AM_41821047/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.1. Exercises page 277
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=3 x(t)-t+1 \\
& y^{\prime}(t)=-5 x(t)+y(t)+2 t-1
\end{aligned}
$$

16.17.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
-5 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
1-t \\
2 t-1
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
-\frac{5 \mathrm{e}^{3 t}}{2}+\frac{5 \mathrm{e}^{t}}{2} & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
-\frac{5 \mathrm{e}^{3 t}}{2}+\frac{5 \mathrm{e}^{t}}{2} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} c_{1} \\
\left(-\frac{5 \mathrm{e}^{3 t}}{2}+\frac{5 \mathrm{e}^{t}}{2}\right) c_{1}+\mathrm{e}^{t} c_{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & 0 \\
\frac{5 \mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}-1\right)}{2} & \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
-\frac{5 \mathrm{e}^{3 t}}{2}+\frac{5 \mathrm{e}^{t}}{2} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & 0 \\
\frac{\left.5 \mathrm{e}^{-3 t} \mathrm{e}^{2 t}-1\right)}{2} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
1-t \\
2 t-1
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
-\frac{5 \mathrm{e}^{3 t}}{2}+\frac{5 \mathrm{e}^{t}}{2} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}(-2+3 t)}{9} \\
\frac{5(2-3 t) \mathrm{e}^{-3 t}}{18}+\frac{\mathrm{e}^{-t}(-2+t)}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{2}{9}+\frac{t}{3} \\
-\frac{4}{9}-\frac{t}{3}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} c_{1}-\frac{2}{9}+\frac{t}{3} \\
-\frac{4}{9}-\frac{5 \mathrm{e}^{3 t} c_{1}}{2}+\frac{\mathrm{e}^{t}\left(5 c_{1}+2 c_{2}\right)}{2}-\frac{t}{3}
\end{array}\right]
\end{aligned}
$$

16.17.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
-5 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
1-t \\
2 t-1
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 0 \\
-5 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 0 \\
-5 & 1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(3-\lambda)(1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
-5 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 & 0 \\
-5 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 & 0 & 0 \\
-5 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{5 R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 0 \\
-5 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
0 & 0 \\
-5 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
-5 & -2 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
-5 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-5 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{5}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
5
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{c}-\frac{2}{5} \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{3 t}}{5} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{3 t}}{5} & 0 \\
\mathrm{e}^{3 t} & \mathrm{e}^{t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{5 \mathrm{e}^{-3 t}}{2} & 0 \\
\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}
\end{array}\right]
$$

Hence

$$
\left.\left.\begin{array}{rl}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{3 t}}{5} & 0 \\
\mathrm{e}^{3 t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{5 \mathrm{e}^{-3 t}}{2} & 0 \\
\frac{5 \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
1-t \\
2 t-1
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{3 t}}{5} & 0 \\
\mathrm{e}^{3 t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{5 \mathrm{e}^{-3 t}(t-1)}{2} \\
-\frac{\mathrm{e}^{-t}(-3+t)}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{3 t}}{5} & 0 \\
\mathrm{e}^{3 t} & \mathrm{e}^{t}
\end{array}\right]\left[-\frac{5 \mathrm{e}^{-3 t}(-2+3 t)}{18}\right. \\
\frac{\mathrm{e}^{-t}(-2+t)}{2}
\end{array}\right] \quad \begin{array}{c}
-\frac{2}{9}+\frac{t}{3} \\
-\frac{4}{9}-\frac{t}{3}
\end{array}\right]
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{2 c_{1} \mathrm{e}^{3 t}}{5} \\
c_{1} \mathrm{e}^{3 t}
\end{array}\right]+\left[\begin{array}{c}
0 \\
c_{2} \mathrm{e}^{t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{2}{9}+\frac{t}{3} \\
-\frac{4}{9}-\frac{t}{3}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 c_{1} \mathrm{e}^{3 t}}{5}-\frac{2}{9}+\frac{t}{3} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{t}-\frac{4}{9}-\frac{t}{3}
\end{array}\right]
$$

16.17.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=3 x(t)-t+1, y^{\prime}(t)=-5 x(t)+y(t)+2 t-1\right]
$$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & 0 \\ -5 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}1-t \\ 2 t-1\end{array}\right]$
- \quad System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & 0 \\ -5 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}1-t \\ 2 t-1\end{array}\right]$
- Define the forcing function
$\vec{f}(t)=\left[\begin{array}{c}1-t \\ 2 t-1\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & 0 \\
-5 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}0 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{t} .\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{x}_{p} $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}0 & -\frac{2 e^{3 t}}{5} \\ \mathrm{e}^{t} & \mathrm{e}^{3 t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
0 & -\frac{2 \mathrm{e}^{3 t}}{5} \\
\mathrm{e}^{t} & \mathrm{e}^{3 t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
0 & -\frac{2}{5} \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
-\frac{5 \mathrm{e}^{3 t}}{2}+\frac{5 \mathrm{e}^{t}}{2} & \mathrm{e}^{t}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{2 \mathrm{e}^{3 t}}{9}-\frac{2}{9}+\frac{t}{3} \\
-\frac{5 \mathrm{e}^{3 t}}{9}-\frac{4}{9}-\frac{t}{3}+\mathrm{e}^{t}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{2 \mathrm{e}^{3 t}}{9}-\frac{2}{9}+\frac{t}{3} \\
-\frac{5 \mathrm{e}^{3 t}}{9}-\frac{4}{9}-\frac{t}{3}+\mathrm{e}^{t}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{9}+\frac{2\left(5-9 c_{c}\right) \mathrm{e}^{3 t}}{45}+\frac{t}{3} \\
c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}-\frac{5 \mathrm{e}^{3 t}}{9}-\frac{4}{9}-\frac{t}{3}+\mathrm{e}^{t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\frac{2}{9}+\frac{2\left(5-9 c_{2}\right) \mathrm{e}^{3 t}}{45}+\frac{t}{3}, y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}-\frac{5 \mathrm{e}^{3 t}}{9}-\frac{4}{9}-\frac{t}{3}+\mathrm{e}^{t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35
dsolve $([2 * \operatorname{diff}(x(t), t)+\operatorname{diff}(y(t), t)-x(t)-y(t)=1, \operatorname{diff}(x(t), t)+\operatorname{diff}(y(t), t)+2 * x(t)-y(t)=t], \sin$

$$
\begin{aligned}
& x(t)=\frac{t}{3}-\frac{2}{9}+c_{2} \mathrm{e}^{3 t} \\
& y(t)=-\frac{4}{9}-\frac{5 c_{2} \mathrm{e}^{3 t}}{2}-\frac{t}{3}+c_{1} \mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 58
DSolve[\{2*x'[t]+y'[t]-x[t]-y[t]==1, $\left.x^{\prime}[t]+y^{\prime}[t]+2 * x[t]-y[t]==t\right\},\{x[t], y[t]\}, t$, IncludeSingular

$$
\begin{aligned}
& x(t) \rightarrow \frac{t}{3}+c_{1} e^{3 t}-\frac{2}{9} \\
& y(t) \rightarrow-\frac{t}{3}-\frac{5}{2} c_{1} e^{3 t}+\left(\frac{5 c_{1}}{2}+c_{2}\right) e^{t}-\frac{4}{9}
\end{aligned}
$$

17 Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299

17.1 problem 1 . 4524
17.2 problem 2 . 4532
17.3 problem 3 . 4540

17.1 problem 1

17.1.1 Solution using Matrix exponential method 4524
17.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4525

Internal problem ID [11945]
Internal file name [OUTPUT/11954_Sunday_April_14_2024_02_31_17_AM_22819234/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t)+4 y(t) \\
y^{\prime}(t) & =2 x(t)+y(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=2]
$$

17.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{5 t}}{3} & \frac{2 \mathrm{e}^{5 t}}{3}-\frac{2 \mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{5 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{5 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{5 t}}{3} & \frac{2 \mathrm{e}^{5 t}}{3}-\frac{2 \mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{5 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{5 t}}{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-t}+2 \mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}+\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 4 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda-5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & 4 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & 4 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
4 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 4 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 4 & 0 \\
2 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
5	1	1	No	$\left[\begin{array}{c}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{5 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-t}+2 c_{2} \mathrm{e}^{5 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{5 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=1 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{-t}+2 \mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}+\mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 560: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 30
dsolve([diff $(x(t), t)=3 * x(t)+4 * y(t), \operatorname{diff}(y(t), t)=2 * x(t)+y(t), x(0)=1, y(0)=2]$, sings

$$
\begin{aligned}
& x(t)=2 \mathrm{e}^{5 t}-\mathrm{e}^{-t} \\
& y(t)=\mathrm{e}^{5 t}+\mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 34
DSolve $\left[\left\{x^{\prime}[t]==3 * x[t]+4 * y[t], y^{\prime}[t]==2 * x[t]+y[t]\right\},\{x[0]==1, y[0]==2\},\{x[t], y[t]\}, t\right.$, IncludeSing

$$
\begin{aligned}
& x(t) \rightarrow e^{-t}\left(2 e^{6 t}-1\right) \\
& y(t) \rightarrow e^{-t}+e^{5 t}
\end{aligned}
$$

17.2 problem 2

17.2.1 Solution using Matrix exponential method 4532
17.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4533

Internal problem ID [11946]
Internal file name [OUTPUT/11955_Sunday_April_14_2024_02_31_18_AM_92513105/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =5 x(t)+3 y(t) \\
y^{\prime}(t) & =4 x(t)+y(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=0, y(0)=8]
$$

17.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
5 & 3 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{4}+\frac{3 \mathrm{e}^{7 t}}{4} & \frac{3 \mathrm{e}^{7 t}}{8}-\frac{3 \mathrm{e}^{-t}}{8} \\
\frac{\mathrm{e}^{7 t}}{2}-\frac{\mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{4}+\frac{\mathrm{e}^{7 t}}{4}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{-t}}{4}+\frac{3 \mathrm{e}^{7 t}}{4} & \frac{3 \mathrm{e}^{7 t}}{8}-\frac{3 \mathrm{e}^{-t}}{8} \\
\frac{\mathrm{e}^{7 t}}{2}-\frac{\mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{4}+\frac{\mathrm{e}^{7 t}}{4}
\end{array}\right]\left[\begin{array}{l}
0 \\
8
\end{array}\right] \\
& =\left[\begin{array}{l}
3 \mathrm{e}^{7 t}-3 \mathrm{e}^{-t} \\
6 \mathrm{e}^{-t}+2 \mathrm{e}^{7 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
5 & 3 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
5 & 3 \\
4 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & 3 \\
4 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda-7=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=7
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
7	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
5 & 3 \\
4 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
6 & 3 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
6 & 3 & 0 \\
4 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{ll|l}
6 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
6 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=7$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
5 & 3 \\
4 & 1
\end{array}\right]-(7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 3 \\
4 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 3 & 0 \\
4 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
7	1	1	No	$\left[\begin{array}{c}\frac{3}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 7 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{7 t} \\
& =\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right] e^{7 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{7 t}}{2} \\
\mathrm{e}^{7 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{-t}}{2}+\frac{3 c_{2} \mathrm{e}^{7 t}}{2} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{7 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=0 \tag{1}\\
y(0)=8
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
0 \\
8
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1}}{2}+\frac{3 c_{2}}{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=6 \\
c_{2}=2
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
3 \mathrm{e}^{7 t}-3 \mathrm{e}^{-t} \\
6 \mathrm{e}^{-t}+2 \mathrm{e}^{7 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 561: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
dsolve([diff(x(t),t) = 5*x(t)+3*y(t), diff (y(t),t) = 4*x(t)+y(t), x (0) = 0, y(0) = 8], sings
```

$$
\begin{aligned}
x(t) & =3 \mathrm{e}^{7 t}-3 \mathrm{e}^{-t} \\
y(t) & =2 \mathrm{e}^{7 t}+6 \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 36
DSolve $\left[\left\{x^{\prime}[t]==5 * x[t]+3 * y[t], y^{\prime}[t]==4 * x[t]+y[t]\right\},\{x[0]==0, y[0]==8\},\{x[t], y[t]\}, t\right.$, IncludeSing

$$
\begin{aligned}
x(t) & \rightarrow 3 e^{-t}\left(e^{8 t}-1\right) \\
y(t) & \rightarrow 2 e^{-t}\left(e^{8 t}+3\right)
\end{aligned}
$$

17.3 problem 3

17.3.1 Solution using Matrix exponential method 4540
17.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4542
17.3.3 Maple step by step solution . 4547

Internal problem ID [11947]
Internal file name [OUTPUT/11956_Sunday_April_14_2024_02_31_19_AM_54968245/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.3. Exercises page 299
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =5 x(t)+2 y(t)+5 t \\
y^{\prime}(t) & =3 x(t)+4 y(t)+17 t
\end{aligned}
$$

17.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
5 t \\
17 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{2 t}}{5}+\frac{3 \mathrm{e}^{7 t}}{5} & \frac{2 \mathrm{e}^{7 t}}{5}-\frac{2 \mathrm{e}^{2 t}}{5} \\
\frac{3 \mathrm{e}^{7 t}}{5}-\frac{3 \mathrm{e}^{2 t}}{5} & \frac{3 \mathrm{e}^{2 t}}{5}+\frac{2 \mathrm{e}^{7 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{2 t}}{5}+\frac{3 \mathrm{e}^{7 t}}{5} & \frac{2 \mathrm{e}^{7 t}}{5}-\frac{2 \mathrm{e}^{2 t}}{5} \\
\frac{3 \mathrm{e}^{7 t}}{5}-\frac{3 \mathrm{e}^{2 t}}{5} & \frac{3 \mathrm{e}^{2 t}}{5}+\frac{2 \mathrm{e}^{7 t}}{5}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{2 \mathrm{e}^{2 t}}{5}+\frac{3 \mathrm{e}^{7 t}}{5}\right) c_{1}+\left(\frac{2 \mathrm{e}^{7 t}}{5}-\frac{2 \mathrm{e}^{2 t}}{5}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{7 t}}{5}-\frac{3 \mathrm{e}^{2 t}}{5}\right) c_{1}+\left(\frac{3 \mathrm{e}^{2 t}}{5}+\frac{2 \mathrm{e}^{7 t}}{5}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(2 c_{1}-2 c_{2}\right) \mathrm{e}^{2 t}}{5}+\frac{3 \mathrm{e}^{7 t}\left(c_{1}+\frac{2 c_{2}}{3}\right)}{5} \\
\frac{\left(-3 c_{1}+3 c_{2}\right) \mathrm{e}^{2 t}}{5}+\frac{3 \mathrm{e}^{7 t}\left(c_{1}+\frac{2 c_{2}}{3}\right)}{5}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-7 t}\left(2 \mathrm{e}^{5 t}+3\right)}{5} & -\frac{2 \mathrm{e}^{-7 t}\left(\mathrm{e}^{5 t}-1\right)}{5} \\
-\frac{3 \mathrm{e}^{-7 t}\left(e^{5 t}-1\right)}{5} & \frac{\mathrm{e}^{-7 t}\left(3 \mathrm{e}^{5 t}+2\right)}{5}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{2 t}}{5}+\frac{3 \mathrm{e}^{7 t}}{5} & \frac{2 \mathrm{e}^{7 t}}{5}-\frac{2 \mathrm{e}^{2 t}}{5} \\
\frac{3 \mathrm{e}^{7 t}}{5}-\frac{3 \mathrm{e}^{2 t}}{5} & \frac{3 \mathrm{e}^{2 t}}{5}+\frac{2 \mathrm{e}^{7 t}}{5}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\mathrm{e}^{-7 t}\left(2 \mathrm{e}^{5 t}+3\right)}{5} & -\frac{2 \mathrm{e}^{-7 t}\left(\mathrm{e}^{5 t}-1\right)}{5} \\
-\frac{3 \mathrm{e}^{-7 t}\left(\mathrm{e}^{5 t}-1\right)}{5} & \frac{\mathrm{e}^{-7 t}\left(3 \mathrm{e}^{5 t}+2\right)}{5}
\end{array}\right]\left[\begin{array}{c}
5 t \\
17 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{2 t}}{5}+\frac{3 \mathrm{e}^{7 t}}{5} & \frac{2 \mathrm{e}^{7 t}}{5}-\frac{2 \mathrm{e}^{2 t}}{5} \\
\frac{3 \mathrm{e}^{7 t}}{5}-\frac{3 \mathrm{e}^{2 t}}{5} & \frac{3 \mathrm{e}^{2 t}}{5}+\frac{2 \mathrm{e}^{7 t}}{5}
\end{array}\right]\left[\begin{array}{c}
\frac{(-7 t-1) \mathrm{e}^{-7 t}}{5}+\frac{6(2 t+1) \mathrm{e}^{-2 t}}{5} \\
\frac{(-7 t-1) \mathrm{e}^{-7 t}}{5}+\frac{9(-2 t-1) \mathrm{e}^{-2 t}}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
1+t \\
-5 t-2
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(2 c_{1}-2 c_{2}\right) \mathrm{e}^{2 t}}{5}+\frac{\mathrm{e}^{7 t}\left(3 c_{1}+2 c_{2}\right)}{5}+t+1 \\
\frac{\left(-3 c_{1}+3 c_{2}\right) \mathrm{e}^{2 t}}{5}+\frac{\mathrm{e}^{7 t}\left(3 c_{1}+2 c_{2}\right)}{5}-5 t-2
\end{array}\right]
\end{aligned}
$$

17.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
5 t \\
17 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & 2 \\
3 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-9 \lambda+14=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=7
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
7	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
3 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & 2 & 0 \\
3 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
3 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
3 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=7$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right]-(7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 2 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}-\frac{2}{3} \\ 1\end{array}\right]$
7	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 7 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{7 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{7 t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{2 t}}{3} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{7 t} \\
\mathrm{e}^{7 t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{rr}
-\frac{2 \mathrm{e}^{2 t}}{3} & \mathrm{e}^{7 t} \\
\mathrm{e}^{2 t} & \mathrm{e}^{7 t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{-2 t}}{5} & \frac{3 \mathrm{e}^{-2 t}}{5} \\
\frac{3 \mathrm{e}^{-7 t}}{5} & \frac{2 \mathrm{e}^{-7 t}}{5}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{2 t}}{3} & \mathrm{e}^{7 t} \\
\mathrm{e}^{2 t} & \mathrm{e}^{7 t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{-2 t}}{5} & \frac{3 \mathrm{e}^{-2 t}}{5} \\
\frac{3 \mathrm{e}^{-7 t}}{5} & \frac{2 \mathrm{e}^{-7 t}}{5}
\end{array}\right]\left[\begin{array}{c}
5 t \\
17 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{2 t}}{3} & \mathrm{e}^{7 t} \\
\mathrm{e}^{2 t} & \mathrm{e}^{7 t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{36 t \mathrm{e}^{-2 t}}{5} \\
\frac{49 \mathrm{e}^{-7 t} t}{5}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{2 t}}{3} & \mathrm{e}^{7 t} \\
\mathrm{e}^{2 t} & \mathrm{e}^{7 t}
\end{array}\right]\left[\begin{array}{c}
-\frac{9(2 t+1) \mathrm{e}^{-2 t}}{5} \\
-\frac{(7 t+1) \mathrm{e}^{-7 t}}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
1+t \\
-5 t-2
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{2 c_{1} \mathrm{e}^{2 t}}{3} \\
c_{1} \mathrm{e}^{2 t}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \mathrm{e}^{7 t} \\
c_{2} \mathrm{e}^{7 t}
\end{array}\right]+\left[\begin{array}{c}
1+t \\
-5 t-2
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{7 t}+1+t \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{7 t}-5 t-2
\end{array}\right]
$$

17.3.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=5 x(t)+2 y(t)+5 t, y^{\prime}(t)=3 x(t)+4 y(t)+17 t\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
5 & 2 \\
3 & 4
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
5 t \\
17 t
\end{array}\right]
$$

- \quad System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}5 & 2 \\ 3 & 4\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}5 t \\ 17 t\end{array}\right]$
- Define the forcing function
$\vec{f}(t)=\left[\begin{array}{c}5 t \\ 17 t\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ll}5 & 2 \\ 3 & 4\end{array}\right]$
- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]\right],\left[7,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}-\frac{2}{3} \\ 1\end{array}\right]$
- Consider eigenpair
$\left[7,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{7 t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution $\vec{x}_{p}($ $\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{rr}-\frac{2 \mathrm{e}^{2 t}}{3} & \mathrm{e}^{7 t} \\ \mathrm{e}^{2 t} & \mathrm{e}^{7 t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th

$$
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{2 t}}{3} & \mathrm{e}^{7 t} \\
\mathrm{e}^{2 t} & \mathrm{e}^{7 t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-\frac{2}{3} & 1 \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{2 t}}{5}+\frac{3 \mathrm{e}^{7 t}}{5} & \frac{2 \mathrm{e}^{7 t}}{5}-\frac{2 \mathrm{e}^{2 t}}{5} \\
\frac{3 \mathrm{e}^{7 t}}{5}-\frac{3 \mathrm{e}^{2 t}}{5} & \frac{3 \mathrm{e}^{2 t}}{5}+\frac{2 \mathrm{e}^{7 t}}{5}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution
$\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{x}_{p}(t)=\left[\begin{array}{c}
t+1-\frac{6 \mathrm{e}^{2 t}}{5}+\frac{\mathrm{e}^{7 t}}{5} \\
\frac{\mathrm{e}^{7 t}}{5}-5 t-2+\frac{9 \mathrm{e}^{2 t}}{5}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
t+1-\frac{6 \mathrm{e}^{2 t}}{5}+\frac{\mathrm{e}^{7 t}}{5} \\
\frac{\mathrm{e}^{7 t}}{5}-5 t-2+\frac{9 \mathrm{e}^{2 t}}{5}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-10 c_{1}-18\right) \mathrm{e}^{2 t}}{15}+\frac{\left(15 c_{2}+3\right) \mathrm{e}^{7 t}}{15}+t+1 \\
\frac{\left(9+5 c_{1}\right) \mathrm{e}^{2 t}}{5}+\frac{\left(1+5 c_{2}\right) \mathrm{e}^{7 t}}{5}-5 t-2
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-10 c_{1}-18\right) \mathrm{e}^{2 t}}{15}+\frac{\left(15 c_{2}+3\right) \mathrm{e}^{7 t}}{15}+t+1, y(t)=\frac{\left(9+5 c_{1}\right) \mathrm{e}^{2 t}}{5}+\frac{\left(1+5 c_{2}\right) \mathrm{e}^{7 t}}{5}-5 t-2\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 41

```
dsolve([diff (x (t),t)=5*x(t)+2*y(t)+5*t, diff (y(t),t)=3*x(t)+4*y(t)+17*t],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{7 t}+c_{1} \mathrm{e}^{2 t}+t+1 \\
& y(t)=c_{2} \mathrm{e}^{7 t}-\frac{3 c_{1} \mathrm{e}^{2 t}}{2}-2-5 t
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 84
DSolve $\left[\left\{x^{\prime}[t]==5 * x[t]+2 * y[t]+5 * t, y^{\prime}[t]==3 * x[t]+4 * y[t]+17 * t\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
& x(t) \rightarrow t+\frac{1}{5}\left(2\left(c_{1}-c_{2}\right) e^{2 t}+\left(3 c_{1}+2 c_{2}\right) e^{7 t}+5\right) \\
& y(t) \rightarrow-5 t-\frac{3}{5}\left(c_{1}-c_{2}\right) e^{2 t}+\frac{1}{5}\left(3 c_{1}+2 c_{2}\right) e^{7 t}-2
\end{aligned}
$$

18 Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309

18.1 problem 1 . 4553
18.2 problem 2 . 4562
18.3 problem 23 . 4571
18.4 problem 24 . 4579

18.1 problem 1

18.1.1 Solution using Matrix exponential method 4553
18.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4554
18.1.3 Maple step by step solution . 4559

Internal problem ID [11948]
Internal file name [OUTPUT/11957_Sunday_April_14_2024_02_31_20_AM_21165008/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x^{\prime}(t) & =5 x(t)-2 y(t) \\
y^{\prime}(t) & =4 x(t)-y(t)
\end{aligned}
$$

18.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
5 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\mathrm{e}^{t}+2 \mathrm{e}^{3 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{t} \\
2 \mathrm{e}^{3 t}-2 \mathrm{e}^{t} & 2 \mathrm{e}^{t}-\mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{t}+2 \mathrm{e}^{3 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{t} \\
2 \mathrm{e}^{3 t}-2 \mathrm{e}^{t} & 2 \mathrm{e}^{t}-\mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\mathrm{e}^{t}+2 \mathrm{e}^{3 t}\right) c_{1}+\left(-\mathrm{e}^{3 t}+\mathrm{e}^{t}\right) c_{2} \\
\left(2 \mathrm{e}^{3 t}-2 \mathrm{e}^{t}\right) c_{1}+\left(2 \mathrm{e}^{t}-\mathrm{e}^{3 t}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 c_{1}-c_{2}\right) \mathrm{e}^{3 t}-\left(c_{1}-c_{2}\right) \mathrm{e}^{t} \\
\left(2 c_{1}-c_{2}\right) \mathrm{e}^{3 t}-2\left(c_{1}-c_{2}\right) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

18.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
5 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
5 & -2 \\
4 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & -2 \\
4 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
5 & -2 \\
4 & -1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & -2 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & -2 & 0 \\
4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
4 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
4 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
5 & -2 \\
4 & -1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -2 \\
4 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -2 & 0 \\
4 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$
3	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{t}}{2}+c_{2} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 562: Phase plot

18.1.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=5 x(t)-2 y(t), y^{\prime}(t)=4 x(t)-y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}5 & -2 \\ 4 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}5 & -2 \\ 4 & -1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
5 & -2 \\
4 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{t} .\left[\begin{array}{l}\frac{1}{2} \\ 1\end{array}\right]$
- Consider eigenpair
$\left[3,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{3 t} .\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}$
- Substitute solutions into the general solution
$\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{t}}{2}+c_{2} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{c_{1} \mathrm{e}^{t}}{2}+c_{2} \mathrm{e}^{3 t}, y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}\right\}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 31
dsolve([diff $(x(t), t)=5 * x(t)-2 * y(t), \operatorname{diff}(y(t), t)=4 * x(t)-y(t)]$, singsol=all)

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t} \\
& y(t)=2 c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 63
DSolve $\left[\left\{x^{\prime}[t]==5 * x[t]-2 * y[t], y^{\prime}[t]==4 * x[t]-y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$ I

$$
\begin{aligned}
& x(t) \rightarrow e^{t}\left(c_{1}\left(2 e^{2 t}-1\right)-c_{2}\left(e^{2 t}-1\right)\right) \\
& y(t) \rightarrow e^{t}\left(2 c_{1}\left(e^{2 t}-1\right)-c_{2}\left(e^{2 t}-2\right)\right)
\end{aligned}
$$

18.2 problem 2

18.2.1 Solution using Matrix exponential method 4562
18.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4563
18.2.3 Maple step by step solution . 4568

Internal problem ID [11949]
Internal file name [OUTPUT/11958_Sunday_April_14_2024_02_31_20_AM_33601750/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x^{\prime}(t) & =5 x(t)-y(t) \\
y^{\prime}(t) & =3 x(t)+y(t)
\end{aligned}
$$

18.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{2 t}}{2} \\
\frac{3 \mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{2 t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2}-\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{2 t}}{2} \\
\frac{3 \mathrm{e}^{t t}}{2}-\frac{3 \mathrm{e}^{2 t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2}-\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{2 t}}{2}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{2 t}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{2 t}}{2}-\frac{\mathrm{e}^{4 t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}\left(-\frac{c_{2}}{3}+c_{1}\right)}{2} \\
\frac{\left(-3 c_{1}+3 c_{2}\right) \mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}\left(-\frac{c_{2}}{3}+c_{1}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

18.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & -1 \\
3 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda+8=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=4
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & -1 & 0 \\
3 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{l}\frac{1}{3} \\ 1\end{array}\right]$
4	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{4 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}}{3} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 563: Phase plot

18.2.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=5 x(t)-y(t), y^{\prime}(t)=3 x(t)+y(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{4 t}, y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{4 t}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 35
dsolve([diff $(x(t), t)=5 * x(t)-y(t), \operatorname{diff}(y(t), t)=3 * x(t)+y(t)]$, singsol=all)

$$
\begin{aligned}
x(t) & =c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{2 t} \\
y(t) & =c_{1} \mathrm{e}^{4 t}+3 c_{2} \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 73
DSolve $\left[\left\{x^{\prime}[t]==5 * x[t]-y[t], y^{\prime}[t]==3 * x[t]+y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$ Tru

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{2 t}\left(c_{1}\left(3 e^{2 t}-1\right)-c_{2}\left(e^{2 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{2} e^{2 t}\left(3 c_{1}\left(e^{2 t}-1\right)-c_{2}\left(e^{2 t}-3\right)\right)
\end{aligned}
$$

18.3 problem 23

18.3.1 Solution using Matrix exponential method 4571
18.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4572

Internal problem ID [11950]
Internal file name [OUTPUT/11959_Sunday_April_14_2024_02_31_21_AM_78993495/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+7 y(t) \\
y^{\prime}(t) & =3 x(t)+2 y(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=9, y(0)=-1]
$$

18.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{7 \mathrm{e}^{-5 t}}{10}+\frac{3 \mathrm{e}^{5 t}}{10} & \frac{7 \mathrm{e}^{5 t}}{10}-\frac{7 \mathrm{e}^{-5 t}}{10} \\
\frac{3 \mathrm{e}^{5 t}}{10}-\frac{3 \mathrm{e}^{-5 t}}{10} & \frac{3 \mathrm{e}^{-5 t}}{10}+\frac{7 \mathrm{e}^{5 t}}{10}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{7 \mathrm{e}^{-5 t}}{10}+\frac{3 \mathrm{e}^{5 t}}{10} & \frac{7 \mathrm{e}^{5 t}}{10}-\frac{7 \mathrm{e}^{-5 t}}{10} \\
\frac{3 \mathrm{e}^{5 t}}{10}-\frac{3 \mathrm{e}^{-5 t}}{10} & \frac{3 \mathrm{e}^{-5 t}}{10}+\frac{7 \mathrm{e}^{5 t}}{10}
\end{array}\right]\left[\begin{array}{c}
9 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
7 \mathrm{e}^{-5 t}+2 \mathrm{e}^{5 t} \\
2 \mathrm{e}^{5 t}-3 \mathrm{e}^{-5 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

18.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 7 \\
3 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-25=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=-5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-5	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]-(-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
3 & 7 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & 7 & 0 \\
3 & 7 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
3 & 7 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
3 & 7 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{7 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-7 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-7 & 7 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-7 & 7 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{7} \Longrightarrow\left[\begin{array}{cc|c}
-7 & 7 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-7 & 7 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
5	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$
-5	1	1	No	$\left[\begin{array}{c}-\frac{7}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 5 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{5 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Since eigenvalue -5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-5 t} \\
& =\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{7 \mathrm{e}^{-5 t}}{3} \\
\mathrm{e}^{-5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{5 t}-\frac{7 c_{2} \mathrm{e}^{-5 t}}{3} \\
c_{1} \mathrm{e}^{5 t}+c_{2} \mathrm{e}^{-5 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x(0)=9 \tag{1}\\
y(0)=-1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
9 \\
-1
\end{array}\right]=\left[\begin{array}{c}
c_{1}-\frac{7 c_{2}}{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=2 \\
c_{2}=-3
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
7 \mathrm{e}^{-5 t}+2 \mathrm{e}^{5 t} \\
2 \mathrm{e}^{5 t}-3 \mathrm{e}^{-5 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 564: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 34

```
dsolve([diff(x(t),t) = -2*x(t)+7*y(t), diff (y(t),t) = 3*x(t)+2*y(t), x(0) = 9, y(0) = - 1],
```

$$
\begin{aligned}
& x(t)=2 \mathrm{e}^{5 t}+7 \mathrm{e}^{-5 t} \\
& y(t)=2 \mathrm{e}^{5 t}-3 \mathrm{e}^{-5 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 38
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]+7 * y[t], y^{\prime}[t]==3 * x[t]+2 * y[t]\right\},\{x[0]==9, y[0]==-1\},\{x[t], y[t]\}, t\right.$, Include

$$
\begin{aligned}
& x(t) \rightarrow 7 e^{-5 t}+2 e^{5 t} \\
& y(t) \rightarrow 2 e^{5 t}-3 e^{-5 t}
\end{aligned}
$$

18.4 problem 24

18.4.1 Solution using Matrix exponential method 4579
18.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4580

Internal problem ID [11951]
Internal file name [OUTPUT/11960_Sunday_April_14_2024_02_31_22_AM_81973480/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.4. Exercises page 309
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+y(t) \\
y^{\prime}(t) & =7 x(t)+4 y(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=6, y(0)=2]
$$

18.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
7 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{8 t}+7\right) \mathrm{e}^{-3 t}}{8} & \frac{\left(\mathrm{e}^{8 t}-1\right) \mathrm{e}^{-3 t}}{8} \\
\frac{7\left(\mathrm{e}^{8 t}-1\right) \mathrm{e}^{-3 t}}{8} & \frac{\left(7 \mathrm{e}^{8 t}+1\right) \mathrm{e}^{-3 t}}{8}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{8 t}+7\right) \mathrm{e}^{-3 t}}{8} & \frac{\left(\mathrm{e}^{8 t}-1\right) \mathrm{e}^{-3 t}}{8} \\
\frac{7\left(\mathrm{e}^{8 t}-1\right) \mathrm{e}^{-3 t}}{8} & \frac{\left(7 \mathrm{e}^{8 t}+1\right) \mathrm{e}^{-3 t}}{8}
\end{array}\right]\left[\begin{array}{l}
6 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{3\left(\mathrm{e}^{8 t}+7\right) \mathrm{e}^{-3 t}}{4}+\frac{\left(\mathrm{e}^{8 t}-1\right) \mathrm{e}^{-3 t}}{4} \\
\frac{21\left(\mathrm{e}^{8 t}-1\right) \mathrm{e}^{-3 t}}{4}+\frac{\left(7 \mathrm{e}^{8 t}+1\right) \mathrm{e}^{-3 t}}{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\mathrm{e}^{8 t}+5\right) \mathrm{e}^{-3 t} \\
\left(7 \mathrm{e}^{8 t}-5\right) \mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

18.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
7 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 1 \\
7 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 1 \\
7 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda-15=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & 1 \\
7 & 4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 1 \\
7 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 1 & 0 \\
7 & 7 & 0
\end{array}\right]} \\
R_{2}=R_{2}-7 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & 1 \\
7 & 4
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-7 & 1 \\
7 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-7 & 1 & 0 \\
7 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-7 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-7 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{7}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{7} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{7} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{7} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{7} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{7} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{7} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{7} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
7
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
5	1	1	No	$\left[\begin{array}{c}\frac{1}{7} \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{5 t} \\
& =\left[\begin{array}{c}
\frac{1}{7} \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-3 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{5 t}}{7} \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(c_{1} \mathrm{e}^{8 t}-7 c_{2}\right) \mathrm{e}^{-3 t}}{7} \\
\left(c_{1} \mathrm{e}^{8 t}+c_{2}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=6 \tag{1}\\
y(0)=2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
6 \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}}{7}-c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=7 \\
c_{2}=-5
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(7 \mathrm{e}^{8 t}+35\right) \mathrm{e}^{-3 t}}{7} \\
\left(7 \mathrm{e}^{8 t}-5\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 565: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 32
dsolve([diff $(x(t), t)=-2 * x(t)+y(t), \operatorname{diff}(y(t), t)=7 * x(t)+4 * y(t), x(0)=6, y(0)=2]$, sing

$$
\begin{aligned}
& x(t)=\mathrm{e}^{5 t}+5 \mathrm{e}^{-3 t} \\
& y(t)=7 \mathrm{e}^{5 t}-5 \mathrm{e}^{-3 t}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 36
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]+y[t], y^{\prime}[t]==7 * x[t]+4 * y[t]\right\},\{x[0]==6, y[0]==2\},\{x[t], y[t]\}, t\right.$, IncludeSin

$$
\begin{aligned}
x(t) & \rightarrow e^{-3 t}\left(e^{8 t}+5\right) \\
y(t) & \rightarrow e^{-3 t}\left(7 e^{8 t}-5\right)
\end{aligned}
$$

19 Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
19.1 problem 1 4588
19.2 problem 2 4593
19.3 problem 3 4598
19.4 problem 4 4603
19.5 problem 5 4608
19.6 problem 6 4613
19.7 problem 7 4618
19.8 problem 8 4626
19.9 problem 9 4634
19.10problem 10 4642
19.11 problem 11 4650
19.12 problem 12 4657
19.13problem 13 4665
19.14problem 14 4673

19.1 problem 1

Internal problem ID [11952]
Internal file name [OUTPUT/11961_Sunday_April_14_2024_02_31_23_AM_64925071/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 2 \\
3 & 2-\lambda
\end{array}\right] & =0 \\
\lambda^{2}-3 \lambda-4 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =4 \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
4	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 2 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering $\lambda=4$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & 2 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 2 & 0 \\
3 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-1	1	2	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
4	1	2	No	$\left[\begin{array}{l}2 \\ 3\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 4
\end{array}\right] \\
& P=\left[\begin{array}{cc}
-1 & 2 \\
1 & 3
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
1 & 3
\end{array}\right]^{-1}
$$

19.2 problem 2

Internal problem ID [11953]
Internal file name [OUTPUT/11962_Sunday_April_14_2024_02_31_23_AM_658154/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{cc}
3 & 2 \\
6 & -1
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 2 \\
6 & -1
\end{array}\right]-\lambda\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 2 \\
6 & -1-\lambda
\end{array}\right] & =0 \\
\lambda^{2}-2 \lambda-15 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
5	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-3$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
3 & 2 \\
6 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
3 & 2 \\
6 & -1
\end{array}\right]-\left[\begin{array}{cc}
-3 & 0 \\
0 & -3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
6 & 2 \\
6 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
6 & 2 & 0 \\
6 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
6 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
6 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

Considering $\lambda=5$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
3 & 2 \\
6 & -1
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
3 & 2 \\
6 & -1
\end{array}\right]-\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 2 \\
6 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
6 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+3 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-3	1	2	No	$\left[\begin{array}{c}-1 \\ 3\end{array}\right]$
5	1	2	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
-3 & 0 \\
0 & 5
\end{array}\right] \\
& P=\left[\begin{array}{cc}
-1 & 1 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cc}
3 & 2 \\
6 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{cc}
-3 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
3 & 1
\end{array}\right]^{-1}
$$

19.3 problem 3

Internal problem ID [11954]
Internal file name [OUTPUT/11963_Sunday_April_14_2024_02_31_24_AM_18998694/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{cc}
3 & 1 \\
12 & 2
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 1 \\
12 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 1 \\
12 & 2-\lambda
\end{array}\right] & =0 \\
\lambda^{2}-5 \lambda-6 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=6 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
6	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
3 & 1 \\
12 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
3 & 1 \\
12 & 2
\end{array}\right]-\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
4 & 1 \\
12 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
4 & 1 & 0 \\
12 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
4 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
4 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{4}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]
$$

Considering $\lambda=6$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
3 & 1 \\
12 & 2
\end{array}\right]-(6)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
3 & 1 \\
12 & 2
\end{array}\right]-\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & 1 \\
12 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 1 & 0 \\
12 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+4 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-1	1	2	No	$\left[\begin{array}{c}-1 \\ 4\end{array}\right]$
6	1	2	No	$\left[\begin{array}{c}1 \\ 3\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 6
\end{array}\right] \\
& P=\left[\begin{array}{cc}
-1 & 1 \\
4 & 3
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cc}
3 & 1 \\
12 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
4 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 6
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
4 & 3
\end{array}\right]^{-1}
$$

19.4 problem 4

Internal problem ID [11955]
Internal file name [OUTPUT/11964_Sunday_April_14_2024_02_31_24_AM_23223417/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]-\lambda\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
-2-\lambda & 7 \\
3 & 2-\lambda
\end{array}\right] & =0 \\
\lambda^{2}-25 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =5 \\
\lambda_{2} & =-5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-5	1	real eigenvalue
5	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-5$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]-(-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]-\left[\begin{array}{cc}
-5 & 0 \\
0 & -5
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
3 & 7 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & 7 & 0 \\
3 & 7 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
3 & 7 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
3 & 7 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{7 t}{3}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-7 \\
3
\end{array}\right]
$$

Considering $\lambda=5$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]-\left[\begin{array}{cc}
5 & 0 \\
0 & 5
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-7 & 7 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-7 & 7 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{7} \Longrightarrow\left[\begin{array}{cc|c}
-7 & 7 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-7 & 7 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-5	1	2	No	$\left[\begin{array}{c}-7 \\ 3\end{array}\right]$
5	1	2	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
-5 & 0 \\
0 & 5
\end{array}\right] \\
& P=\left[\begin{array}{cc}
-7 & 1 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cc}
-2 & 7 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
-7 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{cc}
-5 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{cc}
-7 & 1 \\
3 & 1
\end{array}\right]^{-1}
$$

19.5 problem 5

Internal problem ID [11956]
Internal file name [OUTPUT/11965_Sunday_April_14_2024_02_31_25_AM_38090367/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ll}
3 & 4 \\
5 & 2
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ll}
3 & 4 \\
5 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 4 \\
5 & 2-\lambda
\end{array}\right] & =0 \\
\lambda^{2}-5 \lambda-14 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =7 \\
\lambda_{2} & =-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
7	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-2$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
3 & 4 \\
5 & 2
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
3 & 4 \\
5 & 2
\end{array}\right]-\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
5 & 4 \\
5 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
5 & 4 & 0 \\
5 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
5 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
5 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{4 t}{5}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{4 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4 t}{5} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{4 t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{4}{5} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{4 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{5} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{4 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-4 \\
5
\end{array}\right]
$$

Considering $\lambda=7$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
3 & 4 \\
5 & 2
\end{array}\right]-(7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
3 & 4 \\
5 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-4 & 4 \\
5 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-4 & 4 & 0 \\
5 & -5 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{5 R_{1}}{4} \Longrightarrow\left[\begin{array}{cc|c}
-4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-2	1	2	No	$\left[\begin{array}{c}-4 \\ 5\end{array}\right]$
7	1	2	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
-2 & 0 \\
0 & 7
\end{array}\right] \\
& P=\left[\begin{array}{cc}
-4 & 1 \\
5 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ll}
3 & 4 \\
5 & 2
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
5 & 1
\end{array}\right]\left[\begin{array}{cc}
-2 & 0 \\
0 & 7
\end{array}\right]\left[\begin{array}{cc}
-4 & 1 \\
5 & 1
\end{array}\right]^{-1}
$$

19.6 problem 6

Internal problem ID [11957]
Internal file name [OUTPUT/11966_Sunday_April_14_2024_02_31_25_AM_34181949/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
3-\lambda & -5 \\
-4 & 2-\lambda
\end{array}\right] & =0 \\
\lambda^{2}-5 \lambda-14 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =7 \\
\lambda_{2} & =-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
7	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-2$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]-\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
5 & -5 \\
-4 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
5 & -5 & 0 \\
-4 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{4 R_{1}}{5} \Longrightarrow\left[\begin{array}{cc|c}
5 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
5 & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering $\lambda=7$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]-(7)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-4 & -5 \\
-4 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-4 & -5 & 0 \\
-4 & -5 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-4 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{5 t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{5 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{5 t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{5}{4} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{5 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{4} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{5 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-5 \\
4
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-2	1	2	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$
7	1	2	No	$\left[\begin{array}{c}-5 \\ 4\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
-2 & 0 \\
0 & 7
\end{array}\right] \\
& P=\left[\begin{array}{cc}
1 & -5 \\
1 & 4
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & -5 \\
1 & 4
\end{array}\right]\left[\begin{array}{cc}
-2 & 0 \\
0 & 7
\end{array}\right]\left[\begin{array}{cc}
1 & -5 \\
1 & 4
\end{array}\right]^{-1}
$$

19.7 problem 7

Internal problem ID [11958]
Internal file name [OUTPUT/11967_Sunday_April_14_2024_02_31_26_AM_18554227/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 1 & -1 \\
2 & 3-\lambda & -4 \\
4 & 1 & -4-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+7 \lambda-6 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
-3	1	real eigenvalue
2	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{lll}
0 & 1 & -1 \\
2 & 2 & -4 \\
4 & 1 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{lll|l}
0 & 1 & -1 & 0 \\
2 & 2 & -4 & 0 \\
4 & 1 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{lll|l}
2 & 2 & -4 & 0 \\
0 & 1 & -1 & 0 \\
4 & 1 & -5 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 2 & -4 & 0 \\
0 & 1 & -1 & 0 \\
0 & -3 & 3 & 0
\end{array}\right] \\
R_{3}=R_{3}+3 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 2 & -4 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & 2 & -4 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Considering $\lambda=-3$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-(-3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
4 & 1 & -1 \\
2 & 6 & -4 \\
4 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
4 & 1 & -1 & 0 \\
2 & 6 & -4 & 0 \\
4 & 1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{lll|l}
4 & 1 & -1 & 0 \\
0 & \frac{11}{2} & -\frac{7}{2} & 0 \\
4 & 1 & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
4 & 1 & -1 & 0 \\
0 & \frac{11}{2} & -\frac{7}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4 & 1 & -1 \\
0 & \frac{11}{2} & -\frac{7}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{11}, v_{2}=\frac{7 t}{11}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{11} \\
\frac{7}{11} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{11} \\
\frac{7}{11} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
7 \\
11
\end{array}\right]
$$

Considering $\lambda=2$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-1 & 1 & -1 \\
2 & 1 & -4 \\
4 & 1 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 0 \\
2 & 1 & -4 & 0 \\
4 & 1 & -6 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 0 \\
0 & 3 & -6 & 0 \\
4 & 1 & -6 & 0
\end{array}\right] \\
& R_{3}=R_{3}+4 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 0 \\
0 & 3 & -6 & 0 \\
0 & 5 & -10 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{5 R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 0 \\
0 & 3 & -6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 1 & -1 \\
0 & 3 & -6 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
1	1	3	No	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
-3	1	3	No	$\left[\begin{array}{c}1 \\ 7 \\ 11\end{array}\right]$
2	1	3	No	$\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 7 & 2 \\
1 & 11 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 7 & 2 \\
1 & 11 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 7 & 2 \\
1 & 11 & 1
\end{array}\right]^{-1}
$$

19.8 problem 8

Internal problem ID [11959]
Internal file name [OUTPUT/11968_Sunday_April_14_2024_02_31_26_AM_33178477/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & -1 & -1 \\
1 & 3-\lambda & 1 \\
-3 & -6 & 6-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+10 \lambda^{2}-31 \lambda+30 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue
5	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=2$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-1 & -1 & -1 \\
1 & 1 & 1 \\
-3 & -6 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
1 & 1 & 1 & 0 \\
-3 & -6 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-3 & -6 & 4 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}-3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & -3 & 7 & 0
\end{array}\right]
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & -3 & 7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & -3 & 7 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{10 t}{3}, v_{2}=\frac{7 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{10}{3} \\
\frac{7}{3} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{10}{3} \\
\frac{7}{3} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-10 \\
7 \\
3
\end{array}\right]
$$

Considering $\lambda=3$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-2 & -1 & -1 \\
1 & 0 & 1 \\
-3 & -6 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
1 & 0 & 1 & 0 \\
-3 & -6 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
-3 & -6 & 3 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & -\frac{9}{2} & \frac{9}{2} & 0
\end{array}\right] \\
& R_{3}=R_{3}-9 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & -1 & -1 \\
0 & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Considering $\lambda=5$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-(5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-4 & -1 & -1 \\
1 & -2 & 1 \\
-3 & -6 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-4 & -1 & -1 & 0 \\
1 & -2 & 1 & 0 \\
-3 & -6 & 1 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & -1 & -1 & 0 \\
0 & -\frac{9}{4} & \frac{3}{4} & 0 \\
-3 & -6 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{3 R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & -1 & -1 & 0 \\
0 & -\frac{9}{4} & \frac{3}{4} & 0 \\
0 & -\frac{21}{4} & \frac{7}{4} & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{7 R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & -1 & -1 & 0 \\
0 & -\frac{9}{4} & \frac{3}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-4 & -1 & -1 \\
0 & -\frac{9}{4} & \frac{3}{4} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}, v_{2}=\frac{t}{3}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
2	1	3	No	$\left[\begin{array}{c}-10 \\ 7 \\ 3\end{array}\right]$
3	1	3	No	$\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$
5	1	3	No	$\left[\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
-10 & -1 & -1 \\
7 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]=\left[\begin{array}{ccc}
-10 & -1 & -1 \\
7 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{ccc}
-10 & -1 & -1 \\
7 & 1 & 1 \\
3 & 1 & 3
\end{array}\right]^{-1}
$$

19.9 problem 9

Internal problem ID [11960]
Internal file name [OUTPUT/11969_Sunday_April_14_2024_02_31_27_AM_2632022/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & -1 & -1 \\
1 & 3-\lambda & 1 \\
-3 & 1 & -1-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+3 \lambda^{2}+4 \lambda-12 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-2$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]-\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
3 & -1 & -1 \\
1 & 5 & 1 \\
-3 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
3 & -1 & -1 & 0 \\
1 & 5 & 1 & 0 \\
-3 & 1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
3 & -1 & -1 & 0 \\
0 & \frac{16}{3} & \frac{4}{3} & 0 \\
-3 & 1 & 1 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3 & -1 & -1 & 0 \\
0 & \frac{16}{3} & \frac{4}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3 & -1 & -1 \\
0 & \frac{16}{3} & \frac{4}{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{4}, v_{2}=-\frac{t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{4} \\
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{4} \\
-\frac{t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{4} \\
-\frac{t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{4} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\frac{t}{4} \\
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{4} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\frac{t}{4} \\
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right]
$$

Considering $\lambda=2$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]-\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-1 & -1 & -1 \\
1 & 1 & 1 \\
-3 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
1 & 1 & 1 & 0 \\
-3 & 1 & -3 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-3 & 1 & -3 & 0
\end{array}\right] \\
& R_{3}=R_{3}-3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Considering $\lambda=3$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]-\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-2 & -1 & -1 \\
1 & 0 & 1 \\
-3 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
1 & 0 & 1 & 0 \\
-3 & 1 & -4 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
-3 & 1 & -4 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{5}{2} & -\frac{5}{2} & 0
\end{array}\right] \\
& R_{3}=R_{3}+5 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & -1 & -1 \\
0 & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-2	1	3	No	$\left[\begin{array}{c}1 \\ -1 \\ 4\end{array}\right]$
2	1	3	No	$\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
3	1	3	No	$\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 1 \\
4 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 1 \\
4 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 1 \\
4 & 1 & 1
\end{array}\right]^{-1}
$$

19.10 problem 10

Internal problem ID [11961]
Internal file name [OUTPUT/11970_Sunday_April_14_2024_02_31_28_AM_40149345/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & -\lambda & 1 \\
0 & 1 & 1-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+2 \lambda^{2}+\lambda-2 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue
2	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]-\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
2 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{lll|l}
2 & 1 & 0 & 0 \\
0 & \frac{1}{2} & 1 & 0 \\
0 & 1 & 2 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}-2 R_{2} \Longrightarrow\left[\begin{array}{lll|l}
2 & 1 & 0 & 0 \\
0 & \frac{1}{2} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & \frac{1}{2} & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]} \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Considering $\lambda=2$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-1	1	3	No	$\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
1	1	3	No	$\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
2	1	3	No	$\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
-2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]^{-1}
$$

19.11 problem 11

Internal problem ID [11962]
Internal file name [OUTPUT/11971_Sunday_April_14_2024_02_31_28_AM_20775540/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 3 & -6 \\
0 & 2-\lambda & 2 \\
0 & -1 & 5-\lambda
\end{array}\right] & =0 \\
-(-1+\lambda)\left(\lambda^{2}-7 \lambda+12\right) & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=4 \\
& \lambda_{3}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
3	1	real eigenvalue
4	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 3 & -6 \\
0 & 1 & 2 \\
0 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
0 & 3 & -6 & 0 \\
0 & 1 & 2 & 0 \\
0 & -1 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
0 & 3 & -6 & 0 \\
0 & 0 & 4 & 0 \\
0 & -1 & 4 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{llc|c}
0 & 3 & -6 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 2 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
0 & 3 & -6 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
0 & 3 & -6 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Considering $\lambda=3$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-2 & 3 & -6 \\
0 & -1 & 2 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2 & 3 & -6 & 0 \\
0 & -1 & 2 & 0 \\
0 & -1 & 2 & 0
\end{array}\right]} \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 3 & -6 & 0 \\
0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 3 & -6 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
0 \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
1
\end{array}\right]
$$

Considering $\lambda=4$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]-(4)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]-\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-3 & 3 & -6 \\
0 & -2 & 2 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-3 & 3 & -6 & 0 \\
0 & -2 & 2 & 0 \\
0 & -1 & 1 & 0
\end{array}\right]} \\
R_{3}=R_{3}-\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & 3 & -6 & 0 \\
0 & -2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-3 & 3 & -6 \\
0 & -2 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
1	1	3	No	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
3	1	3	No	$\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$
4	1	3	No	$\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
1 & 3 & -6 \\
0 & 2 & 2 \\
0 & -1 & 5
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]^{-1}
$$

19.12 problem 12

Internal problem ID [11963]
Internal file name [OUTPUT/11972_Sunday_April_14_2024_02_31_29_AM_78741034/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0 \\
& \operatorname{det}\left[\begin{array}{ccc}
-5-\lambda & -12 & 6 \\
1 & 5-\lambda & -1 \\
-7 & \left.\begin{array}{cc}
-10 & 8-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+8 \lambda^{2}-19 \lambda+12 & =0
\end{array}=\begin{array}{rl}
-12
\end{array}\right. \\
&\left.=\begin{array}{rl}
-12
\end{array}\right]
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =3 \\
\lambda_{3} & =4
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
3	1	real eigenvalue
4	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]-\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-6 & -12 & 6 \\
1 & 4 & -1 \\
-7 & -10 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-6 & -12 & 6 & 0 \\
1 & 4 & -1 & 0 \\
-7 & -10 & 7 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{6} \Longrightarrow\left[\begin{array}{ccc|c}
-6 & -12 & 6 & 0 \\
0 & 2 & 0 & 0 \\
-7 & -10 & 7 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-\frac{7 R_{1}}{6} \Longrightarrow\left[\begin{array}{ccc|c}
-6 & -12 & 6 & 0 \\
0 & 2 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right] \\
& R_{3}=R_{3}-2 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-6 & -12 & 6 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-6 & -12 & 6 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Considering $\lambda=3$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]-\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-8 & -12 & 6 \\
1 & 2 & -1 \\
-7 & -10 & 5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-8 & -12 & 6 & 0 \\
1 & 2 & -1 & 0 \\
-7 & -10 & 5 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{8} \Longrightarrow\left[\begin{array}{ccc|c}
-8 & -12 & 6 & 0 \\
0 & \frac{1}{2} & -\frac{1}{4} & 0 \\
-7 & -10 & 5 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{7 R_{1}}{8} \Longrightarrow\left[\begin{array}{ccc|c}
-8 & -12 & 6 & 0 \\
0 & \frac{1}{2} & -\frac{1}{4} & 0 \\
0 & \frac{1}{2} & -\frac{1}{4} & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-8 & -12 & 6 & 0 \\
0 & \frac{1}{2} & -\frac{1}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-8 & -12 & 6 \\
0 & \frac{1}{2} & -\frac{1}{4} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
0 \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
0 \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

Considering $\lambda=4$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]-(4)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]-\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-9 & -12 & 6 \\
1 & 1 & -1 \\
-7 & -10 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-9 & -12 & 6 & 0 \\
1 & 1 & -1 & 0 \\
-7 & -10 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{9} \Longrightarrow\left[\begin{array}{ccc|c}
-9 & -12 & 6 & 0 \\
0 & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-7 & -10 & 4 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{7 R_{1}}{9} \Longrightarrow\left[\begin{array}{ccc|c}
-9 & -12 & 6 & 0 \\
0 & -\frac{1}{3} & -\frac{1}{3} & 0 \\
0 & -\frac{2}{3} & -\frac{2}{3} & 0
\end{array}\right] \\
R_{3}=R_{3}-2 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-9 & -12 & 6 & 0 \\
0 & -\frac{1}{3} & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-9 & -12 & 6 \\
0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
1	1	3	No	$\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
3	1	3	No	$\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$
4	1	3	No	$\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
-5 & -12 & 6 \\
1 & 5 & -1 \\
-7 & -10 & 8
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
1 & 2 & 1
\end{array}\right]^{-1}
$$

19.13 problem 13

Internal problem ID [11964]
Internal file name [OUTPUT/11973_Sunday_April_14_2024_02_31_30_AM_38495058/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
-2-\lambda & 5 & 5 \\
-1 & 4-\lambda & 5 \\
3 & -3 & 2-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+4 \lambda^{2}-\lambda-6 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]-\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-1 & 5 & 5 \\
-1 & 5 & 5 \\
3 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 5 & 5 & 0 \\
-1 & 5 & 5 & 0 \\
3 & -3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 5 & 5 & 0 \\
0 & 0 & 0 & 0 \\
3 & -3 & 3 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 5 & 5 & 0 \\
0 & 0 & 0 & 0 \\
0 & 12 & 18 & 0
\end{array}\right]
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-1 & 5 & 5 & 0 \\
0 & 12 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 5 & 5 \\
0 & 12 & 18 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{5 t}{2}, v_{2}=-\frac{3 t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{5 t}{2} \\
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 t}{2} \\
-\frac{3 t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{5 t}{2} \\
-\frac{3 t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{5}{2} \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{5 t}{2} \\
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{2} \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{5 t}{2} \\
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-3 \\
2
\end{array}\right]
$$

Considering $\lambda=2$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-4 & 5 & 5 \\
-1 & 2 & 5 \\
3 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-4 & 5 & 5 & 0 \\
-1 & 2 & 5 & 0 \\
3 & -3 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & 5 & 5 & 0 \\
0 & \frac{3}{4} & \frac{15}{4} & 0 \\
3 & -3 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{3 R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & 5 & 5 & 0 \\
0 & \frac{3}{4} & \frac{15}{4} & 0 \\
0 & \frac{3}{4} & \frac{15}{4} & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & 5 & 5 & 0 \\
0 & \frac{3}{4} & \frac{15}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-4 & 5 & 5 \\
0 & \frac{3}{4} & \frac{15}{4} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-5 t, v_{2}=-5 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-5 t \\
-5 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-5 t \\
-5 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-5 t \\
-5 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-5 \\
-5 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-5 t \\
-5 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-5 \\
1
\end{array}\right]
$$

Considering $\lambda=3$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-5 & 5 & 5 \\
-1 & 1 & 5 \\
3 & -3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-5 & 5 & 5 & 0 \\
-1 & 1 & 5 & 0 \\
3 & -3 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 5 & 5 & 0 \\
0 & 0 & 4 & 0 \\
3 & -3 & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{3 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 5 & 5 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 2 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 5 & 5 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-5 & 5 & 5 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
1	1	3	No	$\left[\begin{array}{c}-5 \\ -3 \\ 2\end{array}\right]$
2	1	3	No	$\left[\begin{array}{c}-5 \\ -5 \\ 1\end{array}\right]$
3	1	3	No	$\left[\begin{array}{c}1 \\ 1 \\ 0\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
-5 & -5 & 1 \\
-3 & -5 & 1 \\
2 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
-2 & 5 & 5 \\
-1 & 4 & 5 \\
3 & -3 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-5 & -5 & 1 \\
-3 & -5 & 1 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
-5 & -5 & 1 \\
-3 & -5 & 1 \\
2 & 1 & 0
\end{array}\right]^{-1}
$$

19.14 problem 14

Internal problem ID [11965]
Internal file name [OUTPUT/11974_Sunday_April_14_2024_02_31_31_AM_74535894/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.5. Matrices and vectors. Exercises page 345
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors" Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
-2 & 6 & -18 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
\operatorname{det}(A-\lambda I) & =0 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
-2-\lambda & 6 & -18 \\
12 & -23-\lambda & 66 \\
5 & -10 & 29-\lambda
\end{array}\right] & =0 \\
-\lambda^{3}+4 \lambda^{2}+\lambda-4 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =4 \\
\lambda_{3} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue
4	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=-1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-2 & 6 & -18 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-2 & 6 & -18 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]-\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-1 & 6 & -18 \\
12 & -22 & 66 \\
5 & -10 & 30
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 6 & -18 & 0 \\
12 & -22 & 66 & 0 \\
5 & -10 & 30 & 0
\end{array}\right]} \\
R_{2}=R_{2}+12 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 6 & -18 & 0 \\
0 & 50 & -150 & 0 \\
5 & -10 & 30 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}+5 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 6 & -18 & 0 \\
0 & 50 & -150 & 0 \\
0 & 20 & -60 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{2 R_{2}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 6 & -18 & 0 \\
0 & 50 & -150 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 6 & -18 \\
0 & 50 & -150 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
0 \\
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 \\
1
\end{array}\right]
$$

Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-2 & 6 & -18 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-2 & 6 & -18 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-3 & 6 & -18 \\
12 & -24 & 66 \\
5 & -10 & 28
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-3 & 6 & -18 & 0 \\
12 & -24 & 66 & 0 \\
5 & -10 & 28 & 0
\end{array}\right]} \\
R_{2}=R_{2}+4 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & 6 & -18 & 0 \\
0 & 0 & -6 & 0 \\
5 & -10 & 28 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{5 R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & 6 & -18 & 0 \\
0 & 0 & -6 & 0 \\
0 & 0 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & 6 & -18 & 0 \\
0 & 0 & -6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-3 & 6 & -18 \\
0 & 0 & -6 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Considering $\lambda=4$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ccc}
-2 & 6 & -18 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]-(4)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ccc}
-2 & 6 & -18 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]-\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-6 & 6 & -18 \\
12 & -27 & 66 \\
5 & -10 & 25
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-6 & 6 & -18 & 0 \\
12 & -27 & 66 & 0 \\
5 & -10 & 25 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-6 & 6 & -18 & 0 \\
0 & -15 & 30 & 0 \\
5 & -10 & 25 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{5 R_{1}}{6} \Longrightarrow\left[\begin{array}{ccc|c}
-6 & 6 & -18 & 0 \\
0 & -15 & 30 & 0 \\
0 & -5 & 10 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-6 & 6 & -18 & 0 \\
0 & -15 & 30 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-6 & 6 & -18 \\
0 & -15 & 30 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
-1	1	3	No	$\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$
1	1	3	No	$\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
4	1	3	No	$\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
0 & 2 & -1 \\
3 & 1 & 2 \\
1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ccc}
-2 & 6 & -18 \\
12 & -23 & 66 \\
5 & -10 & 29
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2 & -1 \\
3 & 1 & 2 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & -1 \\
3 & 1 & 2 \\
1 & 0 & 1
\end{array}\right]^{-1}
$$

20 Chapter 7, Systems of linear differential equations. Section 7.7. Exercises page 375

20.1 problem 1 . 4682
20.2 problem 2

4694

20.1 problem 1

20.1.1 Solution using Matrix exponential method 4682
20.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4683
20.1.3 Maple step by step solution . 4690

Internal problem ID [11966]
Internal file name [OUTPUT/11975_Sunday_April_14_2024_02_31_32_AM_73858456/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.7. Exercises page 375
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x^{\prime}(t)=x(t)+y(t)-z(t) \\
& y^{\prime}(t)=2 x(t)+3 y(t)-4 z(t) \\
& z^{\prime}(t)=4 x(t)+y(t)-4 z(t)
\end{aligned}
$$

20.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{\left(-4 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t}}{10} & \mathrm{e}^{2 t}-\mathrm{e}^{t} & \frac{\left(-6 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{10} \\
\frac{\left(-8 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-7\right) \mathrm{e}^{-3 t}}{10} & -\mathrm{e}^{t}+2 \mathrm{e}^{2 t} & \frac{\left(-12 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+7\right) \mathrm{e}^{-3 t}}{10} \\
\frac{\left(-4 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-11\right) \mathrm{e}^{-3 t}}{10} & \mathrm{e}^{2 t}-\mathrm{e}^{t} & \frac{\left(-6 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+11\right) \mathrm{e}^{-3 t}}{10}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{\left(-4 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t}}{10} & \mathrm{e}^{2 t}-\mathrm{e}^{t} & \frac{\left(-6 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{10} \\
\frac{\left(-8 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-7\right) \mathrm{e}^{-3 t}}{10} & -\mathrm{e}^{t}+2 \mathrm{e}^{2 t} & \frac{\left(-12 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+7\right) \mathrm{e}^{-3 t}}{10} \\
\frac{\left(-4 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-11\right) \mathrm{e}^{-3 t}}{10} & \mathrm{e}^{2 t}-\mathrm{e}^{t} & \frac{\left(-6 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+11\right) \mathrm{e}^{-3 t}}{10}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-4 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t} c_{1}}{10}+\left(\mathrm{e}^{2 t}-\mathrm{e}^{t}\right) c_{2}+\frac{\left(-6 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t} c_{3}}{10} \\
\frac{\left(-8 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-7\right) \mathrm{e}^{-3 t} c_{1}}{10}+\left(-\mathrm{e}^{t}+2 \mathrm{e}^{2 t}\right) c_{2}+\frac{\left(-12 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+7\right) \mathrm{e}^{-3 t} c_{3}}{10} \\
\frac{\left(-4 \mathrm{e}^{5 t}+15 \mathrm{e}^{4 t}-11\right) \mathrm{e}^{-3 t} c_{1}}{10}+\left(\mathrm{e}^{2 t}-\mathrm{e}^{t}\right) c_{2}+\frac{\left(-6 \mathrm{e}^{5 t}+5 \mathrm{e}^{4 t}+11\right) \mathrm{e}^{-3 t} c_{3}}{10}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{3\left(\left(c_{1}-\frac{2 c_{2}}{3}+\frac{c_{3}}{3}\right) \mathrm{e}^{4 t}+\left(-\frac{4 c_{1}}{15}+\frac{2 c_{2}}{3}-\frac{2 c_{3}}{5}\right) \mathrm{e}^{5 t}-\frac{c_{1}}{15}+\frac{c_{3}}{15}\right) \mathrm{e}^{-3 t}}{2} \\
\frac{3\left(\left(c_{1}-\frac{2 c_{2}}{3}+\frac{c_{3}}{3}\right) \mathrm{e}^{4 t}+\left(-\frac{8 c_{1}}{15}+\frac{4 c_{2}}{3}-\frac{4 c_{3}}{5}\right) \mathrm{e}^{5 t}-\frac{7 c_{1}}{15}+\frac{7 c_{3}}{15}\right) \mathrm{e}^{-3 t}}{2} \\
\frac{3 \mathrm{e}^{-3 t}\left(\left(c_{1}-\frac{2 c_{2}}{3}+\frac{c_{3}}{3}\right) \mathrm{e}^{4 t}+\left(-\frac{4 c_{1}}{15}+\frac{2 c_{2}}{3}-\frac{2 c_{3}}{5}\right) \mathrm{e}^{5 t}-\frac{11 c_{1}}{15}+\frac{11 c_{3}}{15}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 1 & -1 \\
2 & 3-\lambda & -4 \\
4 & 1 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-7 \lambda+6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-3 \\
\lambda_{2} & =1 \\
\lambda_{3} & =2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
-3	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-(-3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
4 & 1 & -1 & 0 \\
2 & 6 & -4 & 0 \\
4 & 1 & -1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
4 & 1 & -1 & 0 \\
0 & \frac{11}{2} & -\frac{7}{2} & 0 \\
4 & 1 & -1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
4 & 1 & -1 & 0 \\
0 & \frac{11}{2} & -\frac{7}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4 & 1 & -1 \\
0 & \frac{11}{2} & -\frac{7}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{11}, v_{2}=\frac{7 t}{11}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{11} \\
\frac{7}{11} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{11} \\
\frac{7}{11} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{11} \\
\frac{7 t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
7 \\
11
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=} \\
& {\left[\begin{array}{lll}
0 & 1 & -1 \\
2 & 2 & -4 \\
4 & 1 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
0 \\
0
\end{array}\right]} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
0 & 1 & -1 & 0 \\
2 & 2 & -4 & 0 \\
4 & 1 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
2 & 2 & -4 & 0 \\
0 & 1 & -1 & 0 \\
4 & 1 & -5 & 0
\end{array}\right]} \\
R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 2 & -4 & 0 \\
0 & 1 & -1 & 0 \\
0 & -3 & 3 & 0
\end{array}\right] \\
R_{3}=R_{3}+3 R_{2} \Longrightarrow\left[\begin{array}{lcc|c}
2 & 2 & -4 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & 2 & -4 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 0 \\
2 & 1 & -4 & 0 \\
4 & 1 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 0 \\
0 & 3 & -6 & 0 \\
4 & 1 & -6 & 0
\end{array}\right] \\
R_{3}=R_{3}+4 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 0 \\
0 & 3 & -6 & 0 \\
0 & 5 & -10 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{5 R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 0 \\
0 & 3 & -6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 1 & -1 \\
0 & 3 & -6 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	1	1	No	$\left[\begin{array}{c}\frac{1}{11} \\ \frac{7}{11} \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}1 \\ 2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-3 t} \\
& =\left[\begin{array}{c}
\frac{1}{11} \\
\frac{7}{11} \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}}{11} \\
\frac{7 \mathrm{e}^{-3 t}}{11} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
2 \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(11 c_{3} \mathrm{e}^{5 t}+11 c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}}{11} \\
\frac{\left(22 c_{3} \mathrm{e}^{5 t}+11 c_{2} \mathrm{e}^{4 t}+7 c_{1}\right) \mathrm{e}^{-3 t}}{11} \\
\left(c_{3} \mathrm{e}^{5 t}+c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

20.1.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=x(t)+y(t)-z(t), y^{\prime}(t)=2 x(t)+3 y(t)-4 z(t), z^{\prime}(t)=4 x(t)+y(t)-4 z(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & -1 \\
2 & 3 & -4 \\
4 & 1 & -4
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
\frac{1}{11} \\
\frac{7}{11} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-3,\left[\begin{array}{c}\frac{1}{11} \\ \frac{7}{11} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
\frac{1}{11} \\
\frac{7}{11} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair
$\vec{x}_{3}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}$
- Substitute solutions into the general solution
$\vec{x}=\mathrm{e}^{-3 t} c_{1} \cdot\left[\begin{array}{c}\frac{1}{11} \\ \frac{7}{11} \\ 1\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+c_{3} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(11 c_{3} \mathrm{e}^{5 t}+11 c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}}{11} \\
\frac{\left(22 c_{3} 5^{5 t}+11 c_{2} \mathrm{e}^{4 t}+7 c_{1}\right) \mathrm{e}^{-3 t}}{11} \\
\left(c_{3} \mathrm{e}^{5 t}+c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(11 c_{3} \mathrm{e}^{5 t}+11 c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}}{11}, y(t)=\frac{\left(22 c_{3} \mathrm{e}^{5 t}+11 c_{2} \mathrm{e}^{4 t}+7 c_{1}\right) \mathrm{e}^{-3 t}}{11}, z(t)=\left(c_{3} \mathrm{e}^{5 t}+c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 65

```
dsolve([diff (x (t),t)=x(t)+y(t)-z(t),\operatorname{diff}(y(t),t)=2*x(t)+3*y(t)-4*z(t),\operatorname{diff}(z(t),t)=4*x(t)+y
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{-3 t} \\
& y(t)=c_{1} \mathrm{e}^{t}+2 c_{2} \mathrm{e}^{2 t}+7 c_{3} \mathrm{e}^{-3 t} \\
& z(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+11 c_{3} \mathrm{e}^{-3 t}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 198
DSolve $\left[\left\{x^{\prime}[t]==x[t]+y[t]-z[t], y^{\prime}[t]==2 * x[t]+3 * y[t]-4 * z[t], z^{\prime}[t]==4 * x[t]+y[t]-4 * z[t]\right\},\{x[t], y\right.$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{10} e^{-3 t}\left(c_{1}\left(15 e^{4 t}-4 e^{5 t}-1\right)+2\left(5 c_{2}-3 c_{3}\right) e^{5 t}+5\left(c_{3}-2 c_{2}\right) e^{4 t}+c_{3}\right) \\
& y(t) \rightarrow \frac{1}{10} e^{-3 t}\left(c_{1}\left(15 e^{4 t}-8 e^{5 t}-7\right)+4\left(5 c_{2}-3 c_{3}\right) e^{5 t}+5\left(c_{3}-2 c_{2}\right) e^{4 t}+7 c_{3}\right) \\
& z(t) \rightarrow \frac{1}{10} e^{-3 t}\left(c_{1}\left(15 e^{4 t}-4 e^{5 t}-11\right)+2\left(5 c_{2}-3 c_{3}\right) e^{5 t}+5\left(c_{3}-2 c_{2}\right) e^{4 t}+11 c_{3}\right)
\end{aligned}
$$

20.2 problem 2

20.2.1 Solution using Matrix exponential method 4694
20.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4695
20.2.3 Maple step by step solution .4703

Internal problem ID [11967]
Internal file name [OUTPUT/11976_Sunday_April_14_2024_02_31_33_AM_94077692/index.tex]
Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.

Section: Chapter 7, Systems of linear differential equations. Section 7.7. Exercises page 375
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)-y(t)-z(t) \\
y^{\prime}(t) & =x(t)+3 y(t)+z(t) \\
z^{\prime}(t) & =-3 x(t)-6 y(t)+6 z(t)
\end{aligned}
$$

20.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{10 \mathrm{e}^{2 t}}{3}-3 \mathrm{e}^{3 t}+\frac{2 \mathrm{e}^{5 t}}{3} & \frac{7 \mathrm{e}^{5 t}}{6}-\frac{9 \mathrm{e}^{3 t}}{2}+\frac{10 \mathrm{e}^{2 t}}{3} & -\frac{\mathrm{e}^{5 t}}{2}+\frac{\mathrm{e}^{3 t}}{2} \\
3 \mathrm{e}^{3 t}-\frac{7 \mathrm{e}^{2 t}}{3}-\frac{2 \mathrm{e}^{5 t}}{3} & -\frac{7 \mathrm{e}^{2 t}}{3}-\frac{7 \mathrm{e}^{5 t}}{6}+\frac{9 \mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{5 t}}{2}-\frac{\mathrm{e}^{3 t}}{2} \\
3 \mathrm{e}^{3 t}-\mathrm{e}^{2 t}-2 \mathrm{e}^{5 t} & -\frac{7 \mathrm{e}^{5 t}}{2}+\frac{9 \mathrm{e}^{3 t}}{2}-\mathrm{e}^{2 t} & \frac{3 \mathrm{e}^{5 t}}{2}-\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{10 \mathrm{e}^{2 t}}{3}-3 \mathrm{e}^{3 t}+\frac{2 \mathrm{e}^{5 t}}{3} & \frac{7 \mathrm{e}^{5 t}}{6}-\frac{9 \mathrm{e}^{3 t}}{2}+\frac{10 \mathrm{e}^{2 t}}{3} & -\frac{\mathrm{e}^{5 t}}{2}+\frac{\mathrm{e}^{3 t}}{2} \\
3 \mathrm{e}^{3 t}-\frac{7 \mathrm{e}^{2 t}}{3}-\frac{2 \mathrm{e}^{5 t}}{3} & -\frac{7 \mathrm{e}^{2 t}}{3}-\frac{7 \mathrm{e}^{5 t}}{6}+\frac{9 \mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{5 t}}{2}-\frac{\mathrm{e}^{3 t}}{2} \\
3 \mathrm{e}^{3 t}-\mathrm{e}^{2 t}-2 \mathrm{e}^{5 t} & -\frac{7 \mathrm{e}^{5 t}}{2}+\frac{9 \mathrm{e}^{3 t}}{2}-\mathrm{e}^{2 t} & \frac{3 \mathrm{e}^{5 t}}{2}-\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{10 \mathrm{e}^{2 t}}{3}-3 \mathrm{e}^{3 t}+\frac{2 \mathrm{e}^{5 t}}{3}\right) c_{1}+\left(\frac{7 \mathrm{e}^{5 t}}{6}-\frac{9 \mathrm{e}^{3 t}}{2}+\frac{10 \mathrm{e}^{2 t}}{3}\right) c_{2}+\left(-\frac{\mathrm{e}^{5 t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{3} \\
\left(3 \mathrm{e}^{3 t}-\frac{7 \mathrm{e}^{2 t}}{3}-\frac{2 \mathrm{e}^{5 t}}{3}\right) c_{1}+\left(-\frac{7 \mathrm{e}^{2 t}}{3}-\frac{7 \mathrm{e}^{5 t}}{6}+\frac{9 \mathrm{e}^{3 t}}{2}\right) c_{2}+\left(\frac{\mathrm{e}^{5 t}}{2}-\frac{\mathrm{e}^{3 t}}{2}\right) c_{3} \\
\left(3 \mathrm{e}^{3 t}-\mathrm{e}^{2 t}-2 \mathrm{e}^{5 t}\right) c_{1}+\left(-\frac{7 \mathrm{e}^{5 t}}{2}+\frac{9 \mathrm{e}^{3 t}}{2}-\mathrm{e}^{2 t}\right) c_{2}+\left(\frac{3 \mathrm{e}^{5 t}}{2}-\frac{\mathrm{e}^{3 t}}{2}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(6 c_{1}-9 c_{2}+c_{3}\right) \mathrm{e}^{3 t}}{2}+\frac{\left(4 c_{1}+7 c_{2}-3 c_{3}\right) \mathrm{e}^{5 t}}{6}+\frac{10 \mathrm{e}^{2 t}\left(c_{1}+c_{2}\right)}{3} \\
\frac{\left(6 c_{1}+9 c_{2}-c_{3}\right) \mathrm{e}^{3 t}}{2}+\frac{\left(-4 c_{1}-7 c_{2}+3 c_{3}\right) \mathrm{e}^{5 t}}{6}-\frac{7 \mathrm{e}^{2 t}\left(c_{1}+c_{2}\right)}{3} \\
\frac{\left(6 c_{1}+9 c_{2}-c_{3}\right) \mathrm{e}^{3 t}}{2}+\frac{\left(-4 c_{1}-7 c_{2}+3 c_{3}\right) \mathrm{e}^{5 t}}{2}-\mathrm{e}^{2 t}\left(c_{1}+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & -1 & -1 \\
1 & 3-\lambda & 1 \\
-3 & -6 & 6-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-10 \lambda^{2}+31 \lambda-30=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=5 \\
& \lambda_{3}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
1 & 1 & 1 & 0 \\
-3 & -6 & 4 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-3 & -6 & 4 & 0
\end{array}\right] \\
& R_{3}=R_{3}-3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & -3 & 7 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-1 & -1 & -1 & 0 \\
0 & -3 & 7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & -3 & 7 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{10 t}{3}, v_{2}=\frac{7 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{10}{3} \\
\frac{7}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{10}{3} \\
\frac{7}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{10 t}{3} \\
\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-10 \\
7 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
1 & 0 & 1 & 0 \\
-3 & -6 & 3 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
-3 & -6 & 3 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & -\frac{9}{2} & \frac{9}{2} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{3}=R_{3}-9 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -1 & -1 & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & -1 & -1 \\
0 & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=5$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right]-(5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-4 & -1 & -1 & 0 \\
1 & -2 & 1 & 0 \\
-3 & -6 & 1 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & -1 & -1 & 0 \\
0 & -\frac{9}{4} & \frac{3}{4} & 0 \\
-3 & -6 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{3 R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & -1 & -1 & 0 \\
0 & -\frac{9}{4} & \frac{3}{4} & 0 \\
0 & -\frac{21}{4} & \frac{7}{4} & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{7 R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & -1 & -1 & 0 \\
0 & -\frac{9}{4} & \frac{3}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-4 & -1 & -1 \\
0 & -\frac{9}{4} & \frac{3}{4} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}, v_{2}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$
5	1	1	No	$\left[\begin{array}{c}-\frac{1}{3} \\ \frac{1}{3} \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}-\frac{10}{3} \\ \frac{7}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{5 t} \\
& =\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{2 t} \\
& =\left[\begin{array}{c}
-\frac{10}{3} \\
\frac{7}{3} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{5 t}}{3} \\
\frac{\mathrm{e}^{5 t}}{3} \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\frac{10 \mathrm{e}^{2 t}}{3} \\
\frac{7 \mathrm{e}^{2 t}}{3} \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{3 t}-\frac{c_{2} \mathrm{e}^{5 t}}{3}-\frac{10 c 3 \mathrm{e}^{2 t}}{3} \\
c_{1} \mathrm{e}^{3 t}+\frac{c_{2} \mathrm{e}^{5 t}}{3}+\frac{7 c_{3} \mathrm{e}^{2 t}}{3} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{5 t}+c_{3} \mathrm{e}^{2 t}
\end{array}\right]
$$

20.2.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=x(t)-y(t)-z(t), y^{\prime}(t)=x(t)+3 y(t)+z(t), z^{\prime}(t)=-3 x(t)-6 y(t)+6 z(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & -6 & 6
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & -6 & 6\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & -6 & 6\end{array}\right]$
- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
-\frac{10}{3} \\
\frac{7}{3} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right],\left[5,\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
-\frac{10}{3} \\
\frac{7}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}-\frac{10}{3} \\ \frac{7}{3} \\ 1\end{array}\right]$
- Consider eigenpair

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[5,\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{3}=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{10}{3} \\
\frac{7}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{10 c_{1} \mathrm{e}^{2 t}}{3}-c_{2} \mathrm{e}^{3 t}-\frac{c_{3} 5^{5 t}}{3} \\
\frac{7 c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{3 t}+\frac{c_{3} \mathrm{e}^{5 t}}{3} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs
$\left\{x(t)=-\frac{10 c_{1} \mathrm{e}^{2 t}}{3}-c_{2} \mathrm{e}^{3 t}-\frac{c_{3} \mathrm{e}^{5 t}}{3}, y(t)=\frac{7 c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{3 t}+\frac{c_{3} \mathrm{e}^{5 t}}{3}, z(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}\right\}$
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 74

```
dsolve([diff (x (t),t)=x (t)-y(t)-z(t), diff (y(t),t)=x (t)+3*y(t)+z(t), diff (z(t),t)=-3*x(t)-6*y(t
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{5 t} \\
& y(t)=-c_{1} \mathrm{e}^{3 t}-\frac{7 c_{2} \mathrm{e}^{2 t}}{10}-c_{3} \mathrm{e}^{5 t} \\
& z(t)=-c_{1} \mathrm{e}^{3 t}-\frac{3 c_{2} \mathrm{e}^{2 t}}{10}-3 c_{3} \mathrm{e}^{5 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 217
DSolve $\left[\left\{x^{\prime}[t]==x[t]-y[t]-z[t], y^{\prime}[t]==x[t]+3 * y[t]+z[t], z^{\prime}[t]==3 * x[t]-6 * y[t]+6 * z[t]\right\},\{x[t], y[t\right.$

$$
\begin{aligned}
x(t) \rightarrow-\frac{1}{45} e^{2 t}\left(5\left(c_{1}+10 c_{2}\right) e^{2 t} \cos (\sqrt{5} t)+\sqrt{5}\left(7 c_{1}-11 c_{2}+9 c_{3}\right) e^{2 t} \sin (\sqrt{5} t)\right. \\
\left.-50\left(c_{1}+c_{2}\right)\right) \\
y(t) \rightarrow \frac{1}{45} e^{2 t}\left(5\left(c_{1}+10 c_{2}\right) e^{2 t} \cos (\sqrt{5} t)+\sqrt{5}\left(7 c_{1}-11 c_{2}+9 c_{3}\right) e^{2 t} \sin (\sqrt{5} t)-5\left(c_{1}+c_{2}\right)\right) \\
z(t) \rightarrow\left(c_{1}+c_{2}\right)\left(-e^{2 t}\right)+\left(c_{1}+c_{2}+c_{3}\right) e^{4 t} \cos (\sqrt{5} t)+\frac{\left(c_{1}-8 c_{2}+2 c_{3}\right) e^{4 t} \sin (\sqrt{5} t)}{\sqrt{5}}
\end{aligned}
$$

